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The convex time budget (CTB) method is a widely used experimental technique for eliciting an individual’s
time preference in intertemporal choice problems. This paper investigates the accuracy of the estimation of the
discount factor parameter and the present bias parameter in the quasi-hyperbolic discounted utility function for
the CTB experiment. In this paper, we use a simulation technique called “parameter recovery”. We found that
the precision of present bias parameter estimation is poor within the range of previously reported parameter
estimates, making it difficult to detect the effect of present bias. Our results recommend against using a

combination of the CTB experimental task and the quasi-hyperbolic discounted utility model to explore the

effect of present bias.

1. Introduction

All forms of life face the trade-off between smaller, immediate
rewards and larger, delayed rewards. However, most organisms, includ-
ing humans, struggle to delay rewards and tend to prioritize immediate
gains over larger future rewards. The discount rate is a key factor in
determining the degree to which future payoffs are discounted over
time in intertemporal choice problems.

It is important to note that discount rates can change over time.
To illustrate this, suppose that we face the following choice: consume
one chocolate now or delay gratification for a week and receive two
chocolates. Many individuals would likely succumb to temptation and
choose to consume one chocolate immediately rather than wait for the
larger reward. However, if the choice becomes whether to consume
one chocolate in a week or two chocolates in two weeks, people are
more prone to wait the full two weeks. This tendency is known as
present bias, a time inconsistency of choice associated with the decision
problem between different points in time, as discussed in O’Donoghue

and Rabin (2015). The existence of present bias suggests that our
willpower may be weaker than we imagine. Various studies have in-
vestigated the associations between time inconsistencies in individuals’
time preferences and their behavior, such as impulsive discounting
among individuals with substance abuse disorders (Kirby et al., 1999),
smokers (Bickel et al., 1999), and gamblers (Holt et al., 2003). In
addition, several studies have examined consumer financial behavior
across domains, such as credit card borrowing (Meier and Sprenger,
2010), creditworthiness (Meier and Sprenger, 2012), and mortgage
choices (Atlas et al., 2017).

The convex time budget (CTB) method, developed by Andreoni and
Sprenger (2012a, henceforth AS), is one of the main methods used to
measure time preferences and has rapidly become a highly influential
approach over the past decade.! The CTB method attempts to simul-
taneously elicit the effects of time discounting and the curvature of
the utility function with a single instrument. When analyzing preferen-
ces from behavioral data collected via the CTB method, researchers do
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1 Another well-known method is the double multiple price list (DMPL), proposed by Andersen et al. (2008), which simultaneously measures the curvature of
utility functions and time discounting. While the DMPL method measures an individual’s discount rate by temporarily assuming linear utility and then adjusts
using the results from measuring risk attitudes, the CTB method uniquely estimates curvature by allowing the choice of interior points on the budget constraint
line. For a general overview of time preference elicitation methods, see Cheung (2016) and Cohen et al. (2020).
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not merely compare the intertemporal allocations across conditions but
also estimate the parameters of the quasi-hyperbolic discounted (QHD)
utility function (Laibson, 1997; O’Donoghue and Rabin, 1999). Many
experiments on intertemporal choice problems now adopt the CTB
method in both laboratory and field settings e.g., (Augenblick et al.,
2015; Carvalho et al., 2016; Blumenstock et al., 2018; Cheung et al.,
2022; Dantas et al., 2022).

Following AS, one of the main applications of the CTB method
is to estimate the present bias parameter, g, of the quasi-hyperbolic
discounting model, wherein the parameter g indicates that the discount
factor differs by a factor of § depending on whether the earlier period
is the present in intertemporal decision-making. Imai et al. (2020) have
identified 67 articles that employed the CTB method and presented
a meta-analysis of these studies. This meta-analysis showed that, on
average, the estimated value of the present bias parameter § ranges
from 0.95 to 0.97, indicating that there is very limited evidence of time
inconsistency due to present bias.?

While researchers typically assess the reliability of estimates post
hoc based on the magnitude of standard errors associated with the
estimates, it is uncommon to examine the unbiasedness and precision of
the estimates prior to conducting an experiment. The degree to which
we can accurately estimate an individual’s utility function using a CTB
experiment remains unclear. For instance, if an individual’s present bias
parameter estimate is f = 0.97, which is representative of the value
reported in the literature, can we truly claim that there exists a time
inconsistency in the individual’s behavior?

The present paper studies the properties of the econometric proce-
dures typically applied to CTB data in cases where the true parameter
values are known, to examine the unbiasedness and precision with
which those true values are able to be recovered. We use a simulation
technique called “parameter recovery” (Wilson and Collins, 2019) to
examine the accuracy of parameter estimates.

The process of parameter recovery simulation involves three steps:
first, generating artificial decision data using assumed parameter val-
ues—referred to as “ground-truth values”; second, estimating the pa-
rameters from the artificial data using software designed for real data;
and finally, comparing the estimated parameters with the ground-truth
values to assess the level of accuracy in their recovery.

In particular, we systematically vary the values of the discount
factor 5, the present bias parameter #, and utility curvature in the
neighborhood of the values that have been reported in the literature,
and simulate the choices of agents who act upon such preferences with
varying degrees of noise. We apply standard CTB estimation procedures
to these data to examine how close the resulting estimates are to the
true values used to generate the data.

The results indicate that the CTB design is well-powered to reject
the null hypothesis that 6 = 1 even when the true value of § is very
close to one. However, the same cannot be said for the key present
bias parameter f. For f = 0.97 with about 5% behavioral noise, the
null hypothesis is successfully rejected only around half the time even
though it is false. As a result, it is possible to discriminate rather small
differences in &, but not in f.

The CTB estimates of g and § are strongly negatively correlated,
indicating that the estimator struggles to discriminate between the two
parameters. This can be explained by the fact that even quite sizeable
changes in g are predicted to have much smaller effects upon demand
behavior than rather small differences in 4.

Moreover, the estimates of utility curvature are biased in the di-
rection of greater concavity than in the underlying data generating

2 Cheung et al. (2021), while performing a meta-analysis on the present bias
parameter f estimates that were not limited to CTB method papers, observed
that estimates derived from data collected through the CTB experiment tended
to be closer to 1 compared with those obtained from other methods, including
the DMPL method.
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process; this is notable given that CTB studies typically find rather little
concavity in the first place.

According to Imai et al.’s (2020) meta-analysis, there may be a
tendency for selective reporting of present bias parameter § estimates of
less than one, particularly in studies using real effort tasks. In addition,
our investigation has revealed imprecision in estimating the present
bias parameter g, which can exacerbate the problem of selective re-
porting of the parameter estimate by reducing the power of a statistical
test based on it, regardless of its true value (van Zwet and Cator, 2021).
Consequently, our results imply serious caution against the use of the
CTB method, at least in its conventional form — more precisely, a
combination of the CTB experimental task and the QHD utility model
— when the true extent of present bias is only modest.

In psychology, the replicability of experimental findings can often
be problematic, and in experimental economics, it is a crucial issue
that should also be considered. While it has been recognized that
the replication rate of experimental studies in economics is somewhat
superior to that in psychology (Camerer et al., 2016), there is still
heterogeneity in outcomes across experiments. This variability in exper-
imental outcomes may be attributed to participants’ demographic and
cultural backgrounds, but it could also be contingent on the measure-
ment technique and parameter estimation method used. To ensure the
replicability of experimental results, it is imperative that we audit our
experimental methods by carrying out simulations at the experimental
design phase.

The remainder of this paper is organized as follows. Section 2 de-
scribes the virtual design of a CTB experiment and a behavioral model
for the CTB experiment, as well as the parameter recovery simulation
procedures. Section 3 presents the results of the parameter recov-
ery simulation. In this paper, we perform simulations to (1) analyze
whether discounting behaviors can be detected based on the standard
errors associated with the estimates and (2) evaluate the unbiasedness
and precision of the parameter estimates from the distribution of the
estimates. We then demonstrate that combining the CTB method with
the quasi-hyperbolic discounting model does not yield high-precision
estimates of the present bias parameter. Furthermore, this approach
fails to detect time inconsistency when the true value of the present
bias parameter § is close to one. In the latter part of Section 3, we
discuss the reasons for the low precision in estimating the present bias
parameter and explore the effectiveness — or lack thereof — of several
potential improvements. Section 4 concludes.

2. Methods

To conduct a parameter recovery simulation, we will clarify how to
generate synthetic decision data in a CTB experiment — the definition
of the demand function, the specification of the experimental task, and
the selection of the ground-truth values of the parameters — and how
to estimate parameters.®

2.1. Behavioral model

We now consider the decision problems associated with allocating
the initial endowment, m, between the sooner and later periods. Let
(¢;,¢;4x) denote an allocation bundle where ¢, is the payoff for the
sooner period, 7, and ¢, is for the period k days later. It only matters
whether the front-end delay, ¢, is O (i.e., present) or not; for ¢ > 0, the
value of t does not matter, at least in the model we use. The exchange
rate from tokens to material payoffs varies between the sooner and
later periods, and we normalize the rate for the later period to be 1.
We denote the exchange rate for the sooner payoff as 1 + r, where r
is interpreted as an interest rate. We assume that income is exhausted

3 The codes for generating synthetic decision data and parameter estimation
are available at https://osf.io/j93bx/.
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or that the budget constraint binds the allocation bundle. Here, we can
obtain the budget constraint for the decision problem as follows:

(A +r)e, + ey =m. @

To measure an individual’s time preference, the experimenter asks the
participants for their allocation, (¢, ¢,,,), by changing ¢, k, 1+ r, and
m.

Here, we discuss a theoretical model of participants’ behavior,
(¢, ¢;4%), for a given CTB experiment task, (¢, k, 1+r, m). For the intertem-
poral decision-making task described above, we suppose that each
individual’s time preference is represented by the following constant
intertemporal elasticity of substitution and quasi-hyperbolic discounted
(CES-QHD) utility function (Laibson, 1997; O’Donoghue and Rabin,
1999):

1 1
U(cscpp) = p o+ ﬁ1'=05"; oy 2

The variable 1,_, is an indicator of whether the earlier period is
the present period. The parameter 6 (> 0) is the one-day discount
factor, and the parameter # (> 0) represents the present/future bias.
The parameter p controls the curvature of the utility function and
characterizes the intertemporal elasticity of substitution, ¢ = (1 —p)~1.*

We assume that an individual whose preferences are represented by
the CES-QHD utility function in Eq. (2) faces the utility maximization
problem subject to the budget constraint in Eq. (1). By solving this util-
ity maximization problem, we obtain the following demand function:

1
1+ (pok) (1+7)"
( )1( ) 3)

—_— for t>0.
1+ (6K)"(1+r)

gt,k,1+r,m|é,p,0)=

Note that the value of the demand function, g, corresponds to the
sooner allocation, ¢,, divided by its upper limit, m/(1+r), and therefore
the function g maps onto the interval [0, 1]. For mathematical tractabil-
ity, the elasticity of substitution, o, is used instead of the parameter p
(details are provided in Section 2.3).

We perturbed the generated normalized sooner allocation g(s) by
adding a random number e, which follows a normal distribution with
mean 0 and standard deviation s € {0.01, 0.05, 0.10, 0.15, 0.20}. As the
ratio of mean absolute deviation to standard deviation is 1/2/7 ~ 0.8,
the generated data, on average, have a 0.8% error for the interval
length allowed as a decision ¢, for s = 0.01. In the original experiment
by Andreoni and Sprenger (2012a, henceforth AS), participants were
asked to select an integer in the interval from 0 to 100 as a normalized
allocation, which corresponds to the value of g multiplied by 100.
Given that forcing discrete choices causes rounding errors in decision-
making, an error size of s = 0.01 is inevitable. We obtained the
root mean squared error (RMSE) for the parameter estimation of AS’s
experimental dataset: the first quartile is 0.019, the median is 0.14, and

4 Laibson (1997) specified that an individual’s utility function is a function
of the summation of instantaneous utility characterized by constant relative
risk aversion. Following Laibson (1997), Andreoni and Sprenger (2012a)
interpreted the parameter p as a risk attitude measure. They compared the
parameter p to the within-subject Holt and Laury’s (2002) risk preference
measure elicited by the multiple price list tasks — the components of the
DMPL task — and found that the two measures are virtually uncorrelated.
The relationship between the curvature of utility under risk and utility over
time is highly controversial (Andreoni and Sprenger, 2012b; Abdellaoui et al.,
2013; Harrison et al., 2013; Andersen et al., 2014; Andreoni and Sprenger,
2015; Cheung, 2015; Miao and Zhong, 2015; Andersen et al., 2018; Cheung,
2020). We then refrain from interpreting the parameter p as a risk measure
and instead refer to it as the mathematically straightforward interpretation,
namely the elasticity of substitution between two periods.
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the third quartile is 0.22. Given the RMSE distribution, we believe that
s = 0.20 is not necessarily too large.

The value of the demand function after adding noise should remain
within the interval [0, 1]. Specifically, we draw a random number from
the distribution A (g(s), s) and accept it as a synthesized decision if it
is in [0, 1]; otherwise, we repeatedly draw a random number until it
does. In other words, the noise associated with the decision follows a
truncated distribution. This is because when the actual decision is at
the endpoint of the budget constraint line, noise can cause the decision
to move toward the inside but not toward the outside.®

2.2. Experimental tasks

We have two situations — defined as a combination of the front-end
delay 7 and the delay length k — for the virtual experimental task: 7 = 0
(ie., present) and k = 70 (days); and ¢ = 1 (i.e., not present) and k = 70
(days). The delay length k typically ranges from weeks to months and
is seldom shorter than one week (Imai et al., 2020). In each situation,
we set 21 uniformly spaced prices chosen from 0.6 < 1 +r < 2. We
fixed income m at 20 for simplicity, as it does not affect behavior in
the model. The number of tasks — i.e., the number of data points for
each individual — is 42.

There are three critical differences between our problem set and that
of AS. The first difference lies in our choice of the price 1 + r from a
range where the interest rate r can be both positive and negative. Few
studies employing CTB experiments, including the one by AS, inquire
about negative interest rates. However, without addressing negative
interest rates, it is impossible to estimate the discount factor for an
individual who does not merely discount future payoffs but actually
places a premium on them. For such an individual, the discount factor
5 will be greater than 1.°

Second, we have chosen to set the delay k to a single value, k = 70,
in this paper. This setting diverges from that of AS, wherein k was
varied across three distinct values: 35, 70, and 98. Prior to this study,
we created various problem sets by altering several elements based on
the AS problem set. We then conducted parameter recovery simulations
to compare the recovery performance. As a result, we found that the
estimation accuracy was relatively high when limited to a single case
of k. Therefore, we will evaluate the estimation accuracy using this
setting, which, for the time being, we believe yields the best possible
estimation accuracy.”

5 The truncated-noise data are always the interior points of the budget
constraint line, and no corners are chosen. As Harrison et al. (2013) pointed
out, it is known that corners are easily chosen in CTB experiments. Therefore, it
could be a more realistic assumption that the noise is censored at the corners—
a noise-added value is shifted to 0 or 1 if a random number drawn from
N (g(-),s) falls outside of [0, 1]. For a discussion on the assumptions of noise
and estimation methods, see Section 3.5 and Appendix A.

® The impact of excluding problems associated with negative interest rates
from the problem set on parameter estimation is discussed in Appendix B.
It was found that using the AS problem set, the accuracy of § estimation
significantly declines when the true § is greater than 1.

7 Assuming linear utility, individuals shift their consumption from period
t to t + k once the price 1 + r exceeds the threshold; the switching point
is determined by 1 + r = (f'-06%)~!. The conventional multiple price list
method (Coller and Williams, 1999; Harrison et al., 2002) measures the
discount factor using this concept, suggesting that varying the price with a
fixed delay k is a natural setting for many researchers. Alternatively, keeping
1 + r constant and slightly adjusting k might equally elicit 5§ based on the
equation k = —In(1 + r)/Iné (here, the present bias § is ignored). Note that k
must be nonnegative because it is impossible to travel into the past and receive
a reward after making decisions. For individuals with a true § exceeding
1, instead of setting k to be negative, the problem set should include cases
where 1+ r < 1 for practical 5 estimation. Given the concave utility, it is
not immediately apparent whether adjustments to price, delay, or employing
a hybrid approach, such as AS’s design, would be most effective. In addition,
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Table 1

Ground-truth values.
8 0.9912 0.9925 0.9937 0.9950 0.9962
s 0.85 0.88 0.91 0.94 0.97
Inc 0.33 1.11 1.89 2.67 3.44
() (0.283) (0.671) (0.849) (0.931) (0.968)
s 0.01 0.05 0.10 0.15 0.20

0.9975 0.9987 1.0000 1.0012 1.0025
1.00 1.03 1.06 1.09 1.12
4.22 5.00

(0.985) (0.993)

Note: For the curvature parameter Ino, the corresponding p values are listed.

Third, we reduced the variation of the front-end delay, ¢, to two
states: present or not present. In AS’s experiment, participants made
decisions regarding the allocation between the near future and a more
distant future for + = 7 and ¢ = 35 separately. According to the CES-
QHD utility function model in Eq. (2), there should be no difference in
decisions between ¢ = 7 and ¢t = 35; however, this variance can affect
real behavior. For an actual experimental design, it may be beneficial
to specify the variation in 7 to address behavioral bias, but we discarded
that option.

2.3. Ground-truth values

For the ground-truth values, we used 10 equally spaced values for
6 and p from the range 0.9912 < 6§ < 1.0025 and 0.85 < f < 1.12,
respectively. For the curvature parameter, we used Ino = In(1/1 — p)
instead of the commonly used notation p for mathematical clarity. For
the ground-truth curvature, Ino, we used seven equally spaced values
from the range 0.33 < Ino < 5.00.

Table 1 shows the ground-truth values that generate the decision
data. We chose values for 6, f, and In c; these values are evenly spaced
as if from a uniform distribution. By combining the ground-truth values
of the three parameters listed in Table 1, we generated data for 700
synthetic individuals. As mentioned above, there are five levels of noise,
denoted by s, and we generate 10 sets of data for each s, resulting in
decision data for 35,000 agents.

For the discounting parameters 6 and f, we selected a range that
covers the distribution of the estimates reported in AS’s paper. Typi-
cally, the discount factor 6 and the present bias # are assumed to be
less than 1. However, because some studies report individuals with
estimates greater than 1,° we also included these values in our set of
potential ground-truth values.

We next describe in detail how we selected the range of the cur-
vature parameter Ino: from 0.33 (p = 0.283; nearly Cobb-Douglas
utility curvature) to 5 (p = 0.993; nearly linear curvature). Recall that
the domain of Incs encompasses all real numbers. Let us assume that
Ine = 0 (or p = 0), which corresponds to the Cobb-Douglas utility
function, is at the center of the curvature parameter space. For Inc > 0,
the intertemporal allocations become substitutive, and for Inoc < 0,
they become complementary. As Ine — —oo (or p — —o0), the
utility function approaches a Leontief function: U = min{c,, ¢, }, whose
indifference curve is L-shaped and is known as the perfect complement
utility function. As Inoc — +o0 (or p — 1), the utility function
approaches a linear function: U = ¢, + fl=06%c,, ,, which represents the
perfect substitution utility function.

AS have reported that the curvature of participants’ preferences
in CTB experiments is generally — but not completely — linear. Re-
gardless of the distribution of the actual parameter values, we should

the impact of the number of conditions on k has been thoroughly examined,
as detailed in Section 3.5. Our simulations indicate that no method stands out
as unequivocally superior.

8 We obtained estimates from AS’s experimental dataset. For the distribu-
tion of the § estimates, the 5th percentile is 0.9917, the median is 0.9989, and
the 95th percentile is 1.0018. For the distribution of the § estimates, the 5th
percentile is 0.89, the median is 1.01, and the 95th percentile is 1.15.

also check the estimation errors for individuals who behave in rela-
tively complementary ways, because the utility function model does
not explicitly exclude such individuals. However, it is known that for
the standard CES utility function, U(x,y) = (x” + ¢y?)!/?, when the
curvature p is negative, the share parameter ¢} — which corresponds
to the discounting part gl=06% in the CES-QHD utility — cannot be
accurately estimated for mathematical reasons (Inukai et al., 2022;
Thoni, 2015). As the estimation errors of § and f are inevitably large
for Inc < 0, we excluded them from our analysis. Consequently, we
chose ground-truth values for Ins from 0.33 to 5. Note that previous
studies on the curvature of time preferences report that it is rare to
observe individuals for whom Inc is negative, regardless of whether
the CTB method is used (Andersen et al., 2008; Andreoni and Sprenger,
2012a; Andreoni et al., 2015; Cheung, 2020). We also examined the
estimation errors for cases where Ino < 0 and have included the results
in Appendix C. Our simulations reveal that when the ground-truth value
of Inc is negative, the accuracy of estimating § and f significantly
decreases.

2.4. Estimation methods

As described above, for all individuals i characterized by (5;, §;, In o;),
and for all budget constraint lines j € {1, ...,42}, we obtain the decision
data ?" =g(t;, k;, 1+r;,m; | §;, f;, Ino;)+e. Given the generated data, we
estimate the three parameters using a nonlinear least squares method.’
Following AS, we utilized the “nl” command in Stata. Mathematically,

the values of 5, §, and Ino minimize the sum of squared residuals:
2 )
Z[F{—g(tj,kj,l+rj,mj |§,-,ﬂ,-,lnai)] . (@]
=1

To prevent estimation failures due to nonconvergence of the calcu-
lations, we transformed In ¢ using a sigmoid function f as Ine = f(0) =
4tanh(9) + 1.5, and estimated the latent variable 6.'°

9 In the AS model, the error term was assumed to follow a censored normal
distribution, and a two-limit Tobit model was utilized for estimation. However,
the two-limit Tobit model may lead to unexpected interpretations when the
error scale, s, is moderately large. For example, when g(s) = 0.8 and s = 0.1,
the decision is more likely to be at the corner (¢'= 1) rather than in a position
closer to the theoretical decision. For this reason, we specify an error term
with a truncated normal distribution instead of a censored distribution.

10 For Ino > 5.5, we cannot observe differences in the decision data with
practical significance for an additional decrease in Ino; in other words, we
cannot observe an increase in substitutability as a behavior. For Inc < -2.5,
we also cannot observe an increase in complementarity for an additional
increase in Inc. Then, we assume that Ino greater than 5.5 indicates perfect
substitutes, and Inc less than —2.5 indicates perfect complements. This is
because changes in Ino no longer affect behavior g(s) beyond these points,
as seen in the demand curves in Appendix C. At these extreme values of Ino,
we sometimes face issues with parameter estimations not converging properly.
To solve this, we use the S-shaped function f(6). The effectiveness of this
function was tested. For positive Ino, this transformation had a minimal effect:
out of 35,000 agents, failures occurred for 15 agents (0.004%) without the
transformation and for 17 agents (0.005%) with it. For negative Inc (-2.00,
—1.22, and —0.44), however, errors occurred for 367 (2%) of the 15,000 agents
without the transformation, but we saw no failures when the transformation
was applied. For details on how estimates change with and without this
transformation, see Appendix C.
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For the parameter estimation, we set the convergence criterion to
1075 and the maximum number of iterations at 200. By combining
all parameters (§;, §;,Ino;), and s, we created a pool of 3,500 synthetic
individuals. For each synthetic individual, we regenerated the decision
data 10 times. Of the 3,500 synthetic individuals, 3,483 converged all
10 times. The remaining 17 individuals experienced a single failure to
converge.

2.5. Performance evaluations

To evaluate the performance of our parameter estimation meth-
ods, we employ several quantitative metrics, ensuring comprehen-
sive insight into their unbiasedness and precision. These performance
measures are described in detail below.

Rate of rejection of null hypothesis. In Section 3.1, as a first measure
to discuss the estimation error, we examine whether the estimated
discount factor, 3, and the present/future bias parameter, ﬁ, are distin-
guishable from 1. The value 1 indicates the individual does not discount
(nor places a premium on) future payoffs. The rate is computed using
two-tailed Student’s t-tests at a 5% significance level and reflects the
estimator’s ability to detect deviation from the null hypothesis that
§=1and f§ = 1.!! Using this measure, we can discuss how far the true
parameter values must differ from 1 to detect the effects of discounting
behavior and present bias through parameter estimation based on data
obtained from an experiment in a given setting.

Box plot analysis. In Section 3.2, we plot the boxplot representing
the actual distribution of the estimates in a population with the same
true parameter value to examine the errors of the parameter estimates
further. Here, we assume a population in which the three parameters —
5, B, and In ¢ — are distributed on a three-dimensional grid according to
the ground-truth values we have set. Then, we examine the distribution
of estimates of each parameter within this population. Note that the
evaluation based on the rejection rate of the null hypothesis was
conducted using the standard error of each estimate. By contrast, the
boxplot summarizes estimates from various cases.

By displaying the distribution of parameter estimates using box
plots, we can simultaneously evaluate how much the estimates deviate
from the true values (unbiasedness) and the uncertainty of the estimates
(precision). In addition, by displaying box plots for each ground-truth
value, we can visually verify how much the true values influence the
estimates.

To evaluate the unbiasedness of the estimates, we compare the
median of the estimates — represented by the line in the center of
the box — with the true value. Estimates occasionally include outliers.
Excluding outliers is necessary to calculate the mean of the estimates,
but it is challenging to establish a clear criterion for this exclusion.
Instead of excluding outliers, we use the median, which is less affected
by them. We evaluate bias with positions above or below indicating
over- or underestimation.

To evaluate the precision of the estimates, we can use the length of
the box in a box plot, namely the interquartile range, or the length of
the whiskers, which is the range from the 5th percentile to the 95th
percentile.

Now, let us consider the box plots of the estimated values for two
ground-truths of é, &), and 6, (where &, < ;). For example, imagine
a scenario where the upper end of the whisker of the box plot for &,
exactly matches the lower end for §,. In this case, when attempting to
classify an individual, whose true § is &, as corresponding to either &,

1 The test statistics are computed using the standard error of the estimate,
which is estimated by the jackknife method. We found that estimation using
the bootstrap method overestimates the standard error of the estimate (see Ap-
pendix D). Therefore, we chose the jackknife method to avoid underestimating
the precision, i.e., to be conservative about what we are trying to conclude.
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or §,, there is a 5% probability of mistakenly classifying it as 6 = ;. If
the whiskers of the box plots overlap, the error rate will be higher than
5%, and if the upper and lower ends of the boxes coincide, the error
rate is 25%.

The importance of precision can be understood by analogy to the
resolution of a scale used to measure weight. For example, a (cheap)
bathroom scale measures in units of hundredths of a gram, while a
pharmaceutical scale can measure up to one ten-thousandth of a gram
with precision. Measuring instruments do not always need to have
high resolution; the precision of a pharmaceutical scale is unneces-
sary for measuring body weight, and conversely, a bathroom scale
is completely unsuitable for measuring the weight of the medication
prescribed to a patient. Most scales have their resolution clearly in-
dicated. Researchers must understand the resolution of the measuring
instrument they intend to use in advance.

In our context, the resolution is defined as the minimum distance
between true parameter values. If the estimation is obtained using a
higher resolution, it becomes possible to precisely distinguish between
any two individuals, even if the actual parameter values are very
close. Researchers can assess identifiability by comparing the lengths
of the boxes or whiskers. When evaluating the precision of parameter
estimation, whether to base the discussion on the length of the box
or the length of the whiskers in a box plot depends on the specific
requirements of the research.

Supplemental analyses. To supplement the analysis using the rejection
rate of the null hypothesis and box plots of the estimates, several
analyses are conducted.

To investigate the relationships between the estimated values of
the three parameters in the utility function, Section 3.3 presents scat-
ter plots of the estimated curvature parameter Ino versus the signed
estimation errors for 6 and f. Section 3.4 shows scatter plots of the
estimated values of § versus f.

Furthermore, in Section 3.5, we attempt to modify the experimental
settings or estimation methods to improve the estimated performance.
To compare the results of each modification attempt with the main
simulation results, we use the median of the absolute estimation errors
for each of the three parameters (and the 95% confidence interval
of the median obtained through bootstrap simulations) as the evalua-
tion measure. In the Appendix, we present the rejection rates of the
null hypothesis and the box plots of the estimated values for each
simulation.

3. Results

This section is structured into five subsections, each addressing
distinct aspects of the performance of parameter estimation.

First, the detectability of time discounting parameters, 6 and f, is
evaluated by the rate of rejection of the null hypothesis, revealing that
6 can be reliably distinguished from 1 for § < 1, whereas § estimates
struggle to differentiate from 1 under noisy conditions.

Second, we evaluated the unbiasedness and precision of the esti-
mates by displaying box plots of the estimated values for 6 and p.
The box plots show that § and p estimates tend to shift toward 1.
Generally, 6 exhibits higher precision and distinguishability between
adjacent values than f.

Third, analysis of the curvature parameter In ¢ indicates a significant
bias in its estimates, notably when substantial noise is involved, impact-
ing the precision of § and f estimates, but not leading to systematic
over- or underestimation.

Fourth, the intrinsic difficulty in uniquely identifying g due to
minimal theoretical behavioral differences between closely spaced true
values is dissected, highlighting the challenge in accurate present-bias
estimation.

Finally, various strategies to enhance parameter estimation accu-
racy are assessed, finding that expanded problem sets generally im-
prove precision, but merely altering delay periods or price ratios does
not yield significant accuracy gains.
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3.1. Detectability of time discounting

Fig. 1 shows the rate of successfully rejected null hypotheses, such
that 6 = 1 and § = 1. Each point summarizes the results of 10
replications of all combinations of the ground-truth values of g (or §)
and Ino, i.e., 700 simulation agents.

An inspection of Fig. 1 reveals that for the discount factor parameter
5, when the ground-truth value is less than 0.9962, we can reject the
null hypothesis § = 1 in over 90% of cases, regardless of the amount
of added noise. For the case of § > 1, it may be more challenging to
reject null hypotheses compared with the case of § < 1. As previously
discussed, estimating an individual’s 6 when the true value exceeds one
necessitates collecting data related to negative interest rates. Although
tasks concerning negative interest rates were indeed included in our
problem set, their quantity was smaller compared with tasks related to
positive interest rates. The low success rate in cases where the true §
exceeds one may be attributed to this scarcity of tasks.

By contrast, regarding the present/future bias parameter f, we
encountered more difficulty in concluding that the estimates are not
equal to 1, compared with the case of the discount factor parameter &,
in general. When s = 0.05, to reject the null hypothesis § = 1 with a
success rate of over 90%, the true f must be less than 0.91 or greater
than 1.12. For s > 0.05, even when the true g is as small as 0.85, the
success rate falls below 90%.

Let us recall the meta-analysis by Imai et al. (2020), which found
that the average estimated values of individual § ranged from 0.95 to
0.97. Our results show that when attempting to determine the presence
of behavioral bias from parameter estimation for individuals with a
true B value of 0.97, unless dealing with individuals who are not
perturbed by noise (i.e., with s = 0.01, meaning individuals who can
almost accurately respond to the value of the demand function), the
correct detection rate falls below 50%. This suggests that detecting
time inconsistency from parameter estimates obtained through CTB
experiments for individuals whose true value of g is 0.97 is challenging.

3.2. Unbiasedness and precision

Fig. 2 shows the distribution of the estimated values of § and g as a
box plot (refer to the subsequent subsection for the In ¢ estimates). Each
box summarizes the outcomes of 10 replications across all combinations
of ground-truth values of f (or §) and Ino, ie., 700 simulation agents.

When examining the median values of the estimates, it is evident
that both 6 and f tend to shift closer to 1 than do the ground-truth
values. This observation suggests that the estimates for § and p often
underestimate the effect of discounts (or premiums). In most cases, we
find that deviations from the true value fall within the interquartile
range of the estimates’ distribution. However, when s = 0.20, there are
some instances where the true values lie outside the interquartile range
of the § estimates.

Next, we evaluate the precision of the estimation. For the discount
factor parameter 6, Fig. 2 shows that the whiskers of the estimates for
any two adjacent ground-truths do not overlap and can be distinguished
from each other at the smallest noise level s = 0.01. Even with the
most substantial noise, s = 0.20, the boxes do not overlap, although
the whiskers do. We conclude that the experimental tasks considered
in our simulations have enough precision that, as long as the distance
between the true 6 values of any two individuals is at least the ground-
truth value spacing (1.3x1073), we can distinguish between them, even
assuming relatively large amounts of noise.

In contrast to the case of 6, Fig. 2 reveals that the precision of the
present/future bias parameter g is generally not high. For s = 0.01, the
whiskers for any two adjacent ground-truths do not overlap in most
cases and can barely be distinguished. However, whiskers and boxes
often overlap when the noise is more prominent than for s = 0.01. For
s = 0.20, the boxes overlap unless the true values of g are at least 0.1
away from each other. In the case of g, unlike the case of §, we found
that when comparing the magnitude of g for any two individuals using
the experimental task we are addressing, the two individuals cannot be
distinguished unless their true g values are farther apart than normally
assumed.

Relative to the range of the prior distribution of f that we usually
assume, the significant variance of the estimates suggests the possibil-
ity of errors. It has been argued that focusing solely on statistically
significant results using low-power statistical tests can lead to an over-
estimation of effect sizes (van Zwet and Cator, 2021). A meta-analysis
of estimations of the present bias parameter indicated that the reported
effect is strong, suggesting a potential for publication bias in studies
based on real effort tasks (Imai et al., 2020). Our results raise further
concerns regarding the overestimation of the present bias effect because
greater noise in the estimation produces lower power in the statistical
tests.
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Fig. 3. Box plots of the Ino estimates.

Notes: Each box summarizes 10 replications of all combinations of ground-truth values
for 6§ and B, representing a total of 1,000 simulation agents. The two ends of the
box represent the first and third quartiles, respectively, while the two ends of the
whiskers represent the 5th and 95th percentiles, respectively. On the red line, the
error of the estimate is 0. To converge the estimation, we used the sigmoid function
Inc = f(0) = 4tanh() + 1.5, which allowed the estimated Inc to range between —2.5
and 5.5. The black horizontal dashed lines in the figure denote the boundaries of Ino.

3.3. Curvature parameter

Fig. 3 illustrates the distribution of the estimated curvature pa-
rameter, Ino, through box plots. Unlike the parameters § and f, the
Inc estimates are subject to heavy bias and tend to underestimate,
particularly when the added noise is substantial. At s = 0.20, no
appears to saturate at approximately 2.2.

Next, we examine how the estimated curvature relates to the errors
in estimating the parameters 6 and p. Fig. 4 presents a scatter plot
that illustrates the estimation errors of § and # against the estimated
values of the curvature parameter Ino, revealing several noteworthy
observations.

First, it is evident that when the estimated value of Inc is small,
indicating a stronger concavity, both § and f exhibit more significant
estimation errors. This observation implies that the degree of concav-
ity significantly affects the precision of estimating these parameters.
Second, regardless of the estimated values of Ines, the distribution of
errors for both parameters is symmetrical around zero. This symmetry
suggests that the estimation of § and g, though affected by the curvature
parameter in terms of precision, does not suffer from a systematic bias
toward either overestimation or underestimation.

Furthermore, attention is drawn to the region indicating linearity,
where larger values of Inc are observed. Observations for the lower
noise level, s = 0.05, reveal that as the ground-truth values of Inco
increase, the horizontal width of the distribution also broadens. This
broadening indicates a decline in the precision of Ino. For the high
noise level, s = 0.20, the precision of In o diminishes to an extent where
distinguishing between groups of ground-truth values becomes chal-
lenging. However, it is imperative to note that despite the diminished
estimation precision of Ino, it does not necessarily translate to more
significant estimation errors for 5 and j.

The development of methods such as CTB and DMPL emerged from
the recognition of certain biases inherent in experimental settings.
Traditionally, several experiments e.g., (Coller and Williams, 1999;
Harrison et al., 2002) have assumed linear utility and measured the
discount factor 5. However, it was noted that this approach often leads
to either an underestimation of § or, on the flip side, an overestimation
of the discount rate (for an overview, see Frederick et al., 2002).

This issue arises when attempting to fit the behaviors of individ-
uals, who actually have concave utilities, into a linear utility model.
Due to what is known as Jensen’s inequality, a bias in the discount
factor invariably occurs mathematically. Nonetheless, our simulation
results indicate that if the estimated In o is somewhat large, the bias in
estimating the discount factor can be considered minor, even if the true
curvature is incorrectly estimated to be more linear than it actually is.'?

12 Our findings align with those of Cheung (2020), who observed that
changing discount rates based on the utility function’s concavity has a minimal
impact. Cheung (2020) measured curvature using a method distinct from the
CTB approach. The results showed that while people’s preferences tend to lean
toward concavity, they are, to a degree, nearly linear.
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respectively.
3.4. Why is the present bias estimation precision low?

In the CES-QHD utility function, 6 and p appear as the term in
D = p&* for t = 0 and as D = 6% for t = 1. If the available data for
parameter estimation is only for the case of + = 0, we cannot uniquely
identify 6 and . However, as we indeed have data for both cases, 1 = 0
and ¢ = 1, we should be able to identify the parameters mathematically.

Fig. 5 shows a scatter plot of the estimated values of § and g (for
Ino = 2.67 and s = 0.01; see Appendix E for the scatter plots including
all values of In ¢ and s), along with a red line that satisfies the equation
p67 = 1. Note that both axes use a logarithmic scale centered at 1, and
all points have been offset so that the ground-truth values coincide with
6 = p =1 (indicated by the red cross). What is interesting in Fig. 5 is the
distribution of points along the red line. Theoretically, identifying 6 and
p should be possible; however, in practice, it is difficult, even though
the value of D itself can be estimated with reasonable accuracy.

AsdD/D =dp/p+kds/5, a 1% change in f results in a 1% change
in D, whereas a 1% change in § results in a k% change in D. Given that
the difference between § = 1 and § = 0.9987 is 0.13%, the variation in
D is 9.1% for k = 70. However, f = 0.97 is 3% smaller than g = 1,

yielding a 3% variation in D, which is three times smaller than the
variation seen with §.

We can understand the effects of the parameters by depicting the
demand curves for several combinations of parameters, because the
effect of the variation in D on decisions (or the demand function)
depends on the curvature parameter Inc and price 1 +r.

Fig. 6 shows the demand curve representing the relationship be-
tween the price 1 + r and the amount that individuals are willing to
allocate to the earlier period for Inc = 2.67. Note that the horizontal
axis, representing price 1+r, uses a logarithmic scale and the prices are
indicated on the vertical lines in the figure.

In Fig. 6, we can compare the differences in decisions between
individuals with Inc = 2.67 and different § and f. The difference in
behavior when only § decreases from 1 to 0.9987 is illustrated by the
difference between the blue and orange dashed curves. The difference
when only f decreases from 1 to 0.97 is represented by the difference
between the blue and green dotted curves. We observe that the discount
behavior for 5§ = 0.9987 is more significant than that for g = 0.97.

Given the noise, it is more challenging to test whether the estimated
B is less than 1 for an individual whose true g is 0.97 than to ascertain
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whether the estimated 6 is less than 1 for an individual whose true § is
0.9987, because the difference in decisions is three times smaller.

In the previous subsection, we observed that, assuming significant
noise s = 0.20, the precision of 5 estimation is sufficient to distinguish
between individuals with a true difference of about 1.3 x 10~3, which
corresponds to the spacing of our ground-truth values, while the preci-
sion of B estimation is just enough to distinguish a difference of about
0.1, which is approximately three times the spacing of our ground-truth
values.

Eventually, the low precision of f estimation occurs because we
attempt to identify values within a very narrow range with high pre-
cision. As is clear from the comparison of demand curves in Fig. 6,
when the true difference in the values of g is less than 0.1, identifying
individuals becomes inherently difficult regardless of the econometric
method used, because the differences in behavior are minimal. In the
expanded f range, distinguishing between two individuals with given
ground-truth values becomes possible (see Appendix F).

Although § intuitively seems to require very high precision be-
cause it is a daily discount factor, and values should thus be precisely
estimated to the fourth decimal place, estimating it with sufficient
precision is feasible due to its broader range compared with that of g.
As k depends on the scale of §, we must expand the range of § if we are
to make k a weekly discount factor. It should be noted that changing
the value of k does not improve the precision of f’s estimation (see
Appendix G).

3.5. Some attempts to improve parameter estimation

In the previous subsections, we discussed how accurately we can
estimate the utility parameters by understanding the relationship be-
tween the shape of the utility function and our expected range of
these estimates. However, the accuracy of estimating parameters is also
influenced by the methods employed for calculation and the setup of
the experiments. Next, we examine how improving these computation
methods and experiment designs can enhance the accuracy of our
estimates. Figs. 7 and 9 display the median absolute errors of the
parameter estimates for each described scenario, offering a comparison
with the main simulation, labeled as “BASE”.

Journal of Behavioral and Experimental Finance 43 (2024) 100962

We begin by exploring a situation in which the true values of
the parameters § and Inc are already known. How well can we then
estimate the parameter #? To investigate this, we again utilized the
synthesized decision data, which was employed in the main simulation.
Here, we use the true values of 5 and In ¢ to focus solely on estimating f.
This simulation is labeled as M1 in Fig. 7 (see Appendix H for details).
The results show an improvement in the overall accuracy of the g
estimates. For instance, when the actual value of g is 0.97, our ability
to correctly reject the null hypothesis that = 1 increases from 43% to
59% when the noise level is s = 0.05. However, at a higher noise level
of s = 0.20, the success rate remains at 13%.

Estimating 6 and Inc using only partial data, where a front-end
delay exists (i.e., + = 1), did not, surprisingly, make the estimates of
5 less accurate compared with the accuracy when using all the data to
estimate all three parameters. This result may suggest one reason to use
the CTB method: if the goal is not to detect the effects of present bias,
but solely to estimate the discount factor and the curvature of utility
simultaneously, it is possible to achieve sufficient accuracy for § with
only 21 tasks.

Furthermore, we experimented with keeping é§ and In¢ at their esti-
mated values while estimating g over the entire dataset. This simulation
is labeled as M2 in Fig. 7 (see Appendix I for details). We observed a
slight deterioration in the median error magnitude in the aggregated
data. However, an improvement was noted in the performance of
detecting the present bias through testing the null hypothesis that § = 1.
If the true value of f is 0.97, the percentage of successfully rejecting
the null hypothesis increases from 43% to 57% when the noise level is
s = 0.05. Although this improvement is modest, it is important to note
that dividing the estimation process into two stages actually leads to
better outcomes. This finding is significant, suggesting that a two-stage
approach could provide more reliable results.

We also consider a method that exclusively uses true curvature
parameters, assuming these can be accurately identified — setting aside
the debate on their compatibility with risk attitudes — to estimate §
and f. This simulation is labeled as M3 in Fig. 7 (see Appendix J for
details). This leads to an important question: does using true curvature
parameters solely for estimating 6 and # make the estimations more
accurate? Surprisingly, the accuracy in estimating § and # may worsen.
This unexpected outcome often occurs in situations where the value of
Ino is high, suggestive of a linear utility. In such cases, the values of
the demand function tend to disregard minor differences in estimating
parameters and take on extreme values of 0 or 1, consequently making
accurate parameter estimation challenging.

One possible solution to address this problem is to cap the In ¢ value
at 2.5, regardless of its actual value. Adopting this solution improves
the success rate of detecting the discounting, 5 < 1. However, while the
estimation precision improves, a noticeable estimation bias emerges.
Moreover, adopting this strategy has mixed results on accurately iden-
tifying the present bias, § < 1: success rates drop when the true value is
0.97, yet improve for a true value of 0.85. It is important to be careful
when estimating 6 and p by setting the curvature parameter equal to a
fixed value, as this can harm the accuracy of estimations.

Instead of using the entire dataset simultaneously, we divided it
based on the front-end delay, 7. This approach allows us to identify
the discount factors in two distinct scenarios: §_; = 1 x & for t = 1
and §,_, = #'/79 for t = 0. By calculating the ratio of these discount
factors across ¢, we gained insight into what we refer to as the present
bias parameter: § = (§,-9/5,-;)’°. This simulation is labeled as M4 in
Fig. 7 (see Appendix K for details). However, our simulation revealed
that this method decreases the accuracy of the § estimation.

We then sought a more straightforward method to observe present
bias by directly examining decisions, thus avoiding the need to estimate
the parameter f. To this end, we employed the two-sided paired ¢-
test to assess decisions across 21 varying prices at the two front-end
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Fig. 6. Demand curves.

Notes: Each demand curve corresponds to an individual whose curvature parameter is Ino = 2.67. The demand curve represents the relationship between the price 1+ r and the
amount individuals are willing to allocate to the earlier period. The horizontal axis, representing price 1+ r, employs a logarithmic scale. The curve, depicted as a solid blue line,
is accompanied by three types of error bands. The shaded area represents the range from the 5th to the 95th percentile of noise. The colors signify different bandwidths: red
(indicating a very narrow bandwidth) corresponds to s = 0.01, dark blue to s = 0.10, and light blue to s = 0.20. The individual faces the decision problem of allocating endowments
based on the prices, which are indicated by the vertical lines, between the present (+ = 0) and a future period (k =70 days later).

BASE | & ,

\

M1 | o
]

M2 — ’ I

M3 | o} |
1
]

M4 i

19 2.0 2.1 22 125 150
x10~*

Median absolute error of &

Median absolute error of 3

I

2.25
x1072

1.6 1.8 2.0 2.2

x107"
Median absolute error of Inc

BASE The main simulation.

The simulation that estimates only the parameter 8 while fixing the parameters

The simulation of the two-stage estimation that estimates the parameters § and

Ino using partial data, where t = 1. Then, fixing these estimated values, it

The simulation that estimates the parameters § and § while fixing the parameter

M1

6 and Ino at their ground-truth values.
M2

estimates only [ using the full dataset.
M3

Ino at its ground-truth value.
M4

The simulation that estimates the biased discount factor d;_ = BY/70§ and the

curvature Ino using partial data, where ¢ = 0. Then, it estimates 3 using the
obtained d;—q estimate and the § estimate from M2.

Fig. 7. Median absolute errors of the estimates for each method.Notes:Error bars represent the bootstrap 95% confidence intervals.

delays, t = 0 and ¢ = 1. Our results indicate that this direct comparison
of decisions proved more challenging for identifying present bias than
estimating the parameter f (see Appendix L for details).

Harrison et al. (2013) pointed out that in CTB experiments, indi-
viduals frequently choose the corner points on the budget line. They
suggested that a multinomial logit model could better capture this
behavior than AS’s approach of applying the least squares method to
fit demand functions. This insight prompts further investigation into
how well multinomial logit models can estimate.

10

The proposed method divides the budget line into 101 equal seg-
ments, ranging from 0 to 100, thus transforming a continuous choice
into 101 specific options. To find out how likely each choice is, we
calculate their probabilities. The chance of picking the ith option is
shown by the formula exp(U;)/ 2112% exp(U;), where U; represents the
CES-QHD utility value of choosing the ith option. We utilized these
probabilities for the maximum likelihood estimation.

When comparing the accuracy of the estimates from the multi-
nomial logit models with those obtained by directly fitting demand
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Notes: The goodness of fit is visualized using heatmaps with respect to 6 and p, fixing the value of Inc to its ground-truth value. For illustrative purposes, we generated the figures
for one of the synthetic decision datasets with the truncated noise, where the agent’s ground-truth values are § = 0.9987, f = 0.97, Inc = 2.67, and s = 0.10. The red point indicates
the pair of ground-truth values. Left: The sum of squared residuals in the least squares method. Right: The log-likelihood function in the multinomial logit model.

functions, the multinomial logit model estimates generally exhibit less
unbiasedness and precision (see Appendix A for details). This difference
in accuracy requires careful interpretation because the two approaches
employ distinct computational methods.

Exploring these results further, the heatmaps in Fig. 8 visualize the
model’s goodness of fit with respect to the parameters 6 and p for
one set of synthesized data. In the left panel of the figure, we observe
the squared residuals for the least squares method; in the right panel,
the figure displays the log-likelihood function for the multinomial logit
model. These visuals aid in comparing the two methods of estimating
parameters.

A significant observation is that, for both methods, gradients in the
goodness of fit with respect to § were flatter than those with respect to
6. This implies that accurately finding the optimal point for g is more
difficult. Whether using the least squares approach or the multinomial
logit model approach, estimating § accurately is more challenging than
estimating 6.

Let us now explore how we can better estimate variables in the
design of tasks for CTB experiments.

In our main simulation, we use a set of problems, labeled “BASE”
in Fig. 9: we fix m at 20 and k at 70, and choose 21 prices that range
between 0.6 and 2 for two front-end delays, + = 0 and ¢ = 1. This
results in 42 distinct problems. We have the flexibility to modify several
aspects of the experimental tasks, such as the start period ¢, the delay
k, and the prices 1+ r. By adjusting these elements of the experimental
design, we aim to enhance the accuracy of our parameter estimations
(see Appendix M for details).

First, we aimed to determine whether merely adding more problems
would prove beneficial. Therefore, in PS1, we selected 42 prices, which
is double that of the BASE, all within the same range. For PS2, we aimed
even higher and chose 210 prices, which is ten times larger than the
BASE, again within the same range. '

We discovered that having a greater number of problems unequiv-
ocally improves our estimates. Comparing the estimation precision of
PS1 and PS2 with that of BASE, it is clear that PS1 and PS2 show

13 The fitting of demand functions was conducted using Stata’s “nl” com-
mand, which relies on the Gauss-Newton algorithm. Conversely, the maximum
likelihood estimation for the multinomial logit model utilized R’s “optim”
function, based on the Nelder-Mead algorithm.

14 For PS1, PS2, and the subsequently mentioned PS3 and PS4, because
evaluating the standard error of the parameter estimates using the jackknife
method would take a long time, we opted for an alternative approach by
computing using the inverse of the negative Hessian.

11

an improvement in precision. This enhancement is attributed to the
increased number of problems, as precision appears to be positively
correlated with the number of tasks. Despite PS2 comprising a total
of 420 tasks, it remains challenging to reject the null hypothesis that
an individual’s g estimate, with a true value of 0.97, is equal to 1 when
the noise size is s = 0.20.

When the number of prices remains at 21, increasing the variety
of delay k to two cases (PS3: k = 35,70) and to 10 cases (PS4:
k = 35,42,49, ...,98) also improves estimation precision. PS1 and PS3,
as well as PS2 and PS4, have the same number of tasks, and their
estimation precision is approximately the same.

We then consider the strategy of altering the number of types for
each variable without increasing the total number of problems, which
remains at 42.

In BASE, while k was fixed to one case, 1 + r was set to 21
different cases. Conversely, in PS5, we explore a method in which the
price is fixed to one case, whereas k is set to 21 different cases. As
already discussed, k must always be a positive value. Furthermore, if
the price is set at a value that is only greater than 1, estimating &
becomes challenging for individuals with a true 6 value greater than 1.
Therefore, instead of setting k to a negative value for some problems,
the interest rate was made negative. For 1 + r = 1.25, 15 cases of k
(23, 24, 25, 27, 29, 31, 34, 38, 43, 50, 60, 75, 105, 181, 789) were
set; and for 1 + r = 0.75, six cases of k (39, 50, 67, 96, 158, 393)
were set, totaling 21 combinations of 1 + r and k. As there are two
types for each of the 21 tasks, + = 0 and ¢t = 1, the total number of
problems equals 42. Here, the values of k were chosen to ensure that
the equation, k = 701In(1.25)/ In(1 + r) for any prices 1 + r > 1 in BASE,
and k = 701n(0.75)/ In(1+r) for any prices 1+r < 1 in BASE, is satisfied.'”

For PS6, we set the number of prices, 1+r, to three (0.9, 1.2, and 1.5)
for each combination of ¢ and k, instead of increasing the number of k
values to seven (35, 45.5, 56, 66.5, 77, 87.5, 98). In PS7, we increased
the number of prices, 1 + r, to seven for each combination of ¢ and
k, as opposed to setting the quantity of k equal to three values (35,
70, and 98). PS8 differs from PS7 in that the values of k are altered
to 35, 175, and 350. For PS9, we fixed k at 70 and drew 14 prices
from the range 0.6 < 1+ r < 2, once at r = 0 and twice at t = 1. PS9
corresponds to setting two different 7 situations for when ¢t > 0—i.e., two

15 For individuals with linear utility, where the true g is 1, the switch in
choices from the early period to the late period, due to price increases, occurs
at a price of 1+ r = 6. Using this equation, we determined the value of k
corresponding to each problem in BASE.
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Fig. 9. Median absolute errors of the estimates for each problem set.Notes: Error bars represent the bootstrap 95% confidence intervals.

cases for k = 70: one occurring between 7 and 77 days later, and the
other between 35 and 105 days later.

Upon inspecting Fig. 9, it becomes apparent that, in terms of median
absolute error size, PS5 through PS9 exhibit more degraded perfor-
mance than BASE. Although one might intuitively think that having
multiple k conditions, as is the case with the AS problem set, would
reduce estimation errors more than having only one k value, in reality,
no clear patterns regarding the relationship between problem set com-
position and estimation performance were found. Attempting to modify
the delay period, k, or the price ratio, 1 + r, without increasing the
number of tasks did not result in significant improvements in accuracy.

4. Discussion

This paper evaluates the inaccuracy of the estimates of the CES-QHD
utility parameters obtained using the CTB experiment (Andreoni and
Sprenger, 2012a) by performing parameter recovery simulations (Wil-
son and Collins, 2019). Figs. 1 and 2 demonstrate that the precision of
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the estimation of the time discount factor § is sufficient to distinguish
between 6 = 0.9987 and 6 = 1. However, the precision of the estimation
of B, which represents the present/future bias, is inadequate. It is more
challenging to infer that the estimated value of § = 0.97 is smaller than
1, compared with the estimated § = 0.9987. Our analysis reveals that
CTB experiments have attempted to identify small differences in § that
were inherently indistinguishable.

Considering the variations in demand behavior predicted by a g
value of 0.97 compared with a g value of 1 (as depicted in Fig. 6),
the differences are sufficiently small and are barely detectable in the
presence of noise. Any true value of # closer to 1 than 0.9 cannot be
reliably identified. Unfortunately, however, the estimates of § reported
in the literature, in fact, fall within that range. Given the low precision
of the f estimation, there is a possibility of both overestimating and
underestimating the effect of behavioral bias by chance, which can
make publication bias more problematic.

Although variations in behavior may be subtle and obscured by
noise, incorporating more tasks can counteract the impact of noise and
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enhance the accuracy of estimation. However, it would be impractical
to increase the number of tasks further due to the workload imposed
on participants during the experiment. In reality, the CTB experiments
conducted subsequent to the original study (Andreoni and Sprenger,
2012a) have generally reduced the number of tasks (Imai et al., 2020).

Here, although not exhaustive, let us discuss some indicative con-
siderations regarding parameter estimation accuracy using the multiple
price list (MPL) method (Coller and Williams, 1999; Harrison et al.,
2002; Andersen et al., 2008) compared with the CTB method. To
summarize the conclusion first, the problem we identified in the CTB
method — the low precision in estimating the present bias parameter
p in the CES-QHD utility function — is not immediately resolved by
adopting the MPL method.

The tasks in the MPL experiment are nested within the tasks in the
CTB experiment. In the CTB experiment, participants can choose any
point on the budget line, whereas in the MPL experiment, participants
are forced to choose between two corner points on the budget line.
Therefore, for individuals with concave utility who selected interior
points in the CTB experiment, their decision data degenerate into
binary data in MPL experiments, resulting in a loss of information. To
the extent that the goal is to estimate the parameters of the CES-QHD
utility function, the decision data obtained through the CTB experiment
is at least as rich in terms of information as that obtained through the
MPL experiment.

Andersen et al. (2008) proposed the DMPL method to correct the
bias in discount rate estimation that results from assuming linear utility.
However, the DMPL method — correcting the discount rate using mea-
sures of risk attitudes — remains controversial (Andreoni and Sprenger,
2012b; Abdellaoui et al., 2013; Harrison et al., 2013; Andersen et al.,
2014; Andreoni and Sprenger, 2015; Cheung, 2015; Miao and Zhong,
2015; Andersen et al., 2018; Cheung, 2020). Even if we accept that
corrections based on risk attitude measurements are valid, it should be
noted that this concerns the issue of parameter estimation unbiasedness
and is not directly related to the precision of the estimation.

When considering the actual implementation of the MPL experi-
ment, it is often the case that forcing respondents to indicate their
unique switching point prevents inconsistencies e.g., (Andersen et al.,
2006; Tanaka et al., 2010).'° In such cases, the parameters character-
izing individuals are determined from the consistent switching points
with a one-to-one correspondence; thus, it can only be said that the
amount of noise is at most equal to the step in the price list. However, it
should be noted that assuming the estimation error is limited to approx-
imately the price increments mistakenly overlooks the estimation errors
due to probabilistic noise in individual decision-making. Concerning
probabilistic noise, it is necessary to iteratively conduct several MPL
tasks and observe the variations in responses.

Meanwhile, there are benefits to using MPL experiments in terms
of improving estimation accuracy. Once it has been determined that
the switching point is between two prices from the list, it is possible
to adaptively present a new list of prices to more precisely identify
the switching point between those two prices. In the case of CTB
experiments, however, parameter estimation can only be performed
once all decision data are collected, making it difficult to generate tasks
adaptive to respondents’ answers.'”

The difficulty in estimating f primarily stems from the mathematical
structure of the CES-QHD utility model combined with the CTB exper-
imental tasks. Note that it is entirely possible to discern differences in
behavior by actual humans in CTB experiments, which can be detected

16 Regarding multiple switching in MPL experiments, Yu et al. (2021)
provided a detailed investigation.

17" A method for adaptive task generation, as proposed by Imai and Camerer
(2018), could potentially provide a solution for efficiently conducting high-
precision parameter estimation without the need to increase the overall
number of tasks.
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as outcomes of present bias—these behaviors may not be captured by
the CES-QHD utility model.'®* We believe that researchers persisting
in the use of the CTB experiment will need to significantly overhaul
behavior modeling. We additionally recommend the use of parameter
recovery simulations.
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