

Title	Algebraic Steenrod operations in the spectral sequence associated with a pair of Hopf algebras
Author(s)	Uehara, Hiroshi
Citation	Osaka Journal of Mathematics. 1972, 9(1), p. 131–141
Version Type	VoR
URL	https://doi.org/10.18910/9818
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

ALGEBRAIC STEENROD OPERATIONS IN THE SPECTRAL SEQUENCE ASSOCIATED WITH A PAIR OF HOPF ALGEBRAS

HIROSHI UEHARA*

(Received July 10, 1971)

Araki [3], [4] and Vazquez [10] investigated behaviors of Steenrod reduced powers in the spectral sequence associated with a fibre space in the sense of Serre. The main purpose of this paper is to establish an algebraic analogy to their works. For example, works of Adams [1], [2] and others, [6], [11], [12], implicitly contain a useful, direct application of our results.

1. Steenrod operations in the spectral sequence associated with an algebraic system \mathfrak{S}

DEFINITION 1. By a graded differential algebra $\mathfrak{S} = \{C, \delta, F, \bigcup\}$ with a decreasing filtration F and with cup-i-products \bigcup , we mean

1) a graded cochain complex C over the field Z_2 :

$$C: C^{0} \rightarrow C^{1} \rightarrow \cdots \rightarrow C^{n} \xrightarrow{\delta^{n}} C^{n+1} \rightarrow \cdots, \text{ where } \delta^{n}: C^{n} \rightarrow C^{n+1}$$

is a morphism of graded vector spaces over Z_2 ,

- 2) for each integer p, $F^{p}C$ is a subcomplex of C such that
 - i) $F^{p+1}C$ is a subcomplex of $F^{p}C$ (in notation: $F^{p}C \supset F^{p+1}C$)
 - ii) $F^{p}C=C$ if $p \leq 0$, and iii) $F^{p}C^{n}=0$ if p>n,

3) for each integer i there exists a Z₂-linear map ∪: C⊗C→C such that if x∈F^pC^{m,s} and y∈F^qC^{n,t}, then x∪y∈F^αC^{m+n-i,s+t} for α=Max{p+q-i, p, q}, where x ∪y=∪(x⊗y), x∪y=x∪y in notations, and s,t stand for gradings. U satisfies the following conditions:
i) U is trivial if i<0, ii) For x∈F^qC^m and y∈F^qCⁿ, x∪y=0 if i>m or n,

^{*} This work is supported in part by the National Science Foundation research grant GP-9585, and in part by the Deutsche Forschungsgemeinschaft while the author was a visiting professor at Universität des Saarlandes during the winter semester, 1970.

iii)
$$x \cup (y \cup z) = (x \cup y) \cup z$$
, iv), $1 \cup x = x \cup 1 = x$ for some $1 \in C^{0,0}$, and
v) $\delta(x \cup y) = x \cup y + y \cup x + \delta x \cup y + x \cup \delta y$.

Associating \mathfrak{S} with an exact couple $\langle D, E, i, j, k \rangle$ by defining $D_1^{p,q} = H^{p+q}(F^pC)$, $E_1^{p,q} = H^{p+q}(F^pC/F^{p+1}C)$, and i, j, k as usual, we have a spectral sequence $\{E_{\gamma}, d_{\gamma} | \gamma \geq 1\}$. Let us define Steenrod operations in the spectral sequence as Araki [4] and Vazquez [10] did. Define a map $\theta_i: C \to C$ by $\theta_i(x) = x \bigcup_i x + x \bigcup_{i=1}^{k} \delta_i x$, then we have

Proposition 1. θ_i induces Steenrod operations ${}_BSt_i$, ${}_FSt_i$ in the spectral sequence associated with the algebraic system \mathfrak{S} such that

$$_{B}St_{i}: E^{p,q}_{\gamma} \rightarrow E^{2p-i,2q}_{2\gamma-2} for \infty \geq \gamma \geq 2$$
,

and

$$_{F}St_{i}: E^{p,q}_{\gamma} \rightarrow E^{p,2q+p-i}_{\gamma} \text{ for } \infty \geq \gamma \geq 1$$
.

They are all Z_2 -homomorphisms.

Proof. It is straightforward by definition that if we denote, as usual, $Z_{\gamma}^{p,q} = \{x \in F^{p}C^{p+q} | \delta x \in F^{p+\gamma}C^{p+q+1}\}, B_{\gamma}^{p,q} = \{x \in F^{p}C^{p+q} | {}^{g}y \in F^{p-\gamma}C^{p+q-1}, \delta y = x\},$ $Z_{\infty}^{p,q} = \{x \in F^{p}C^{p+q} | \delta x = 0\}, \text{ and } B_{\infty}^{p,q} = \{x \in F^{p}C^{p+q} | {}^{g}y \in C^{p+q-1}, \delta y = x\}, \text{ then } \theta_{i}(Z_{\gamma}^{p,q}) \subset Z_{2\gamma-1}^{2p-i,2q} \cap Z_{\gamma}^{p,2q+p-i} \subset Z_{2\gamma-2}^{2p-i,2q} \cap Z_{\gamma-1}^{p,2q+p-i}, \theta_{i}(B_{\gamma-1}^{p,q}) \subset B_{2\gamma-3}^{2p-i,2q} \cap B_{\gamma-1}^{p,2q+p-i},$ $\theta_{i}(Z_{\infty}^{p,q}) \subset Z_{\infty}^{2p-i,2q} \cap Z_{\infty}^{p,2q+p-i}, \text{ and } \theta_{i}(B_{\infty}^{p,q}) \subset B_{\infty}^{2p-i,2q} \cap B_{\infty}^{p,2q+p-i}. \text{ Note that the restriction on } \gamma \geq 2 \text{ comes from the following observation. If } x \in B_{\gamma-1}^{p,q}, \text{ then } B_{\gamma}^{p,q} = 0$

$$\theta_i(x) = \delta y \bigcup_i \delta y = \delta(y \bigcup_i x + y \bigcup_{i=1} y),$$

where $\delta y = x$ with $y \in F^{p-\gamma+1}C^{p+q-1}$. Since $y \bigcup_i x + y \bigcup_{i=1} y \in F^{2p-i-(2\gamma-3)}C^{2p+2q-i-1}$ if $\gamma \ge 2$, $\theta_i(x) \in B^{2p-i,2q}_{2\gamma-3}$ for $\gamma \ge 2$. Hence, θ_i induces ${}_BSt_i$ and ${}_FSt_i$ as stated in Proposition 1. For $x_1, x_2 \in Z^{p,q}_{\gamma}$

$$\theta_i(x_1+x_2) = \theta_i(x_1) + \theta_i(x_2) + \delta(x_1 \underset{i+1}{\cup} x_2) + x_2 \underset{i+1}{\cup} \delta x_1 + \delta x_1 \underset{i+1}{\cup} x_2$$

from the bilinearity of \cup . Since

$$\delta(x_{i_{i+1}} \cup x_{2}) \in B_{1}^{2p-i,2q} \cap B_{0}^{p,2q+p-i} \subset B_{2\gamma-3}^{2p-i,2q} \cap B_{\gamma-1}^{p,2q+p-i},$$

and

$$x_{2\bigcup_{i+1}} \delta x_{1} + \delta x_{1\bigcup_{i+1}} Z_{2\gamma-3}^{2p-i+1,2q-1} \cap Z_{\gamma-1}^{p+1,2q+p-i-1}$$

 $_BSt_i$ and $_FSt_i$ are Z_2 -homomorphisms.

For completeness sake let us show some properties of Steenrod operations

which are useful for their applications. (For example, for computation of cohomology of the Steenrod algebra.) Let $E_{\gamma,s}^{a,b}$ be the subvector space of $E_{\gamma}^{a,b}$ spanned by $(d_s, \dots, d_{\gamma+1}, d_{\gamma})$ -cocycles and let $\kappa_{s+1}^{\gamma} : E_{\gamma,s}^{a,b} \to E_{s+1}^{a,b}$ be the natural epimorphism. An element in $E_{s,b}^{a,b}$ will be said to be g-transgressive.

Proposition 2. $_{F}St_{i}: E_{\gamma}^{p,q} \rightarrow E_{\gamma}^{p,2q+p-i}$ is trivial if i < p or i > p+q,

 $_{B}St_{i}: E_{\gamma}^{p,q} \rightarrow E_{2\gamma-2}^{2p-i,2q}$ is trivial if i > p or i < 0,

and

$$_{B}St_{p} = \kappa_{2\gamma-2}^{\gamma} _{F}St_{p}$$

Proof. If p > i and $x \in \mathbb{Z}_{\gamma}^{p,q}$, then $\theta_i(x) \in F^{2p-i}C^{2p+2q-i} \subset F^{p+1}C^{2p+2q-i}$ and $\delta(\theta_i(x)) = \delta x \bigcup_{i+1} \delta x \in F^{p+\gamma}C^{2p+2q-i+1}$. Hence, $\theta_i(x) \in \mathbb{Z}_{\gamma-1}^{p+1,2q+p-i-1}$, so that by definition the triviality of FSt_i is proved if p > i. The rest of the proof is immediate, and hence, is omitted.

Proposition 3. If $\alpha \in E_{\gamma,c}^{p,q}$, then ${}_{F}St_{i}(\alpha) \in E_{\gamma,a}^{p,2q+p-i}$, where

$$d = Max\{p+2c-i, c\}$$

and $_{B}St_{i}(\alpha) \in E^{2p-i,2q}_{\gamma,2c}$.

Proof. Recall that

$$E_{\gamma,c}^{p,q} = Z_{c+1}^{p,q} + Z_{\gamma-1}^{p+1,q-1} / Z_{\gamma-1}^{p+1,q-1} + B_{\gamma-1}^{p,q} \subset E_{\gamma}^{p,q}.$$

If x is a representative of α , then $\theta_i(x) \in F^p C^{2p+2q-i} \cap F^{2p-i} C^{2p+2q-i}$ and $\delta(\theta_i(x)) \in F^{2p+2c-i+1} C^{2p+2q-i+1} \cap F^{p+c+1} C^{2p+2q-i+1}$. If $i \ge p$, then $\theta_i(x) \in Z^{p,2q+p-i}_{d+1}$ where $d = \max\{p+2c-i, c\}$, while if $p \ge i$, then $\theta_i(x) \in Z^{2p-i,2q}_{2c+1}$. Hence, the proof is completed.

Proposition 4. If $\alpha \in E_2^{p,q}$ is g-transgressive, then ${}_FSt_i(\alpha) \in E_2^{p,2q+p-i}$ is also g-transgressive. Moreover we have

(1)
$$\kappa_{2q B}^{\lambda}St_{i+1}d_{q+1}\kappa_{q+1}^{2}(\alpha) = d_{\lambda}\kappa_{\lambda F}^{2}St_{i}(\alpha),$$

where $\lambda = 2q + (p-i) + 1$ and $\kappa_{2q}^{\lambda} = \kappa_{\lambda}^{2q}$ if $\lambda > 2q$.

Proof. It is obvious from Proposition 3 that ${}_{F}St_{i}(\alpha)$ is g-transgressive. If x is a representative of α , then both sides of (1) is represented by $\delta x \bigcup_{i=1} \delta x$. Hence, the proof is completed.

2. Comparison theorem in homological algebra

To prepare for later sections the algebraic Steenrod operations are introduced by the iterated use of a comparison theorem in relative homological

algebra [5] (For the theorem in a more general and rigorous setting, see [8]), and the explicit formulas of chain homotopies [1], [11] involved in the theorem are presented in this section.

Let $\alpha: A \rightarrow B$ be a morphism of graded augmented algebras A and B over a commutative ring R with unity, and let M and N be left graded modules over algebras A and B respectively. A morphism of graded R-modules $f: M \rightarrow N$ is called a α -homomorphism iff $f(ax) = \alpha(a)f(x)$ for $a \in A$ and $x \in M$.

Proposition 5. Let $\varepsilon: \mathfrak{X} \to M$ be a *R*-split exact resolution of *M* in the category ${}_{A}\mathfrak{M}$ of left *A*-modules and let $\eta: \mathfrak{Y} \to N$ be a *R*-split exact resolution of *N* in the category ${}_{B}\mathfrak{M}$. Then, for any α -homomorphism $f: M \to N$ there exists a α -chain map extension $F: \mathfrak{X} \to \mathfrak{Y}$ of f in the sense that

1) for each $n \ge 0$, $F_n: X_n \to Y_n$ is a α -homomorphism, and

2) $d_n F_n = F_{n-1}\partial_n$ for $n \ge 1$ and $f \in = \eta F_0$, where

3) If F, F' are α -chain map extensions of f, then there exists a α -chain homotopy $h: \mathfrak{X} \rightarrow \mathfrak{Y}$ connecting F with F'.

Proof. First let us observe that the proposition is the usual comparison theorem in case when A=B and α is the identity map. The following remarks enable us to reduce the proposition to the classical theorem; 1) any *B*-module Z can be considered as an A-module by definition $az=\alpha(a)z$ for $a \in A$ and $z \in Z$, 2) any morphism $g: Z \rightarrow Z'$ in $_B \mathfrak{M}$ can be regarded as a morphism in $_A \mathfrak{M}$ by considering Z, Z' as A-modules because

$$g(az) = g(\alpha(a)z) = \alpha(a)g(z) = ag(z)$$
,

3) a R-homomorphism $k: X \to Y$ is a α -homomorphism iff k is a morphism in ${}_{A}\mathfrak{M}$ considering Y as an A-module. For $k(ax) = \alpha(a)k(x) = ak(x)$. From 1) and 2), $\eta: \mathfrak{Y} \to N$ can be considered as a R-split exact complex of N in ${}_{A}\mathfrak{M}$, and from 3) $f: M \to N$ is a morphism in ${}_{A}\mathfrak{M}$. It follows from the usual comparison theorem that there exists a chain map extension F of f in ${}_{A}\mathfrak{M}$. From 3) F is a α -homomorphism. It is immediate to see the rest of the proof. This proves the proposition.

Let us apply the proposition to the following case. Let A be a cocommutative Hopf algebra over Z_2 and let $\alpha: A \rightarrow A \otimes A$ be the cocommutative

comultiplication Δ . Since $M=Z_2$ and $N=Z_2\otimes Z_2\cong Z_2$ can be considered by augmentations as a left A-module and a left $A\otimes A$ -module respectively, the α -map $f: Z_2 \rightarrow Z_2 \otimes Z_2$ defined by $f(1)=1\otimes 1$, can be extended to a Δ -chain map $h^0: \mathfrak{X} \rightarrow \mathfrak{X} \otimes \mathfrak{X}$ by the direct application of the proposition, where \mathfrak{X} is a Z_2 -split exact resolution of Z_2 . If $\rho: \mathfrak{X} \otimes \mathfrak{X} \rightarrow \mathfrak{X} \otimes \mathfrak{X}$ is the twisting chain map, then ρh^0 is again a Δ -chain map extension of f, because Δ is cocommutative. Hence, there exists a Δ -chain homotopy h^1 connecting h^0 with ρh^0 . Since ρh^1 is a Δ -chain homotopy and since $h^1 + \rho h^1$ is a Δ -chain map extension of the trivial Δ -homomorphism $0: Z_2 \rightarrow \mathcal{G}md_1$, there exists a Δ -chain homotopy h^2 connecting h^1 and ρh^1 . By the iterated use of the same arguments we have a sequence of Δ -chain homotopies $\{h^0, h^1, \dots, h^i, \dots\}$. Hence, we have

Proposition 6. Let A be a cocommutative Hopf algebra over Z_2 and let $\Delta: A \to A \otimes A$ be the comultiplication. If $\varepsilon: \mathfrak{X} \to Z_2$ is a Z_2 -split exact resolution of the A-module Z_2 , then there exists a sequence of Δ -homomorphisms $h^i: \mathfrak{X} \to \mathfrak{X} \otimes \mathfrak{X}$ for $i=0, 1, \dots, n, \dots$ such that 1) h^0 is a grade preserving Δ -chain map and 2) for i>0 h^i is a Δ -chain homotopy connecting h^{i-1} with ρh^{i-1} which raises the homological dimensions by i and preserves the grading, where $\rho: \mathfrak{X} \otimes \mathfrak{X} \to \mathfrak{X} \otimes \mathfrak{X}$ is the twisting chain map.

Consider a diagram

where χ is the Z_2 -chain map defined by $\chi(f \otimes g)(x \otimes y) = f(x)g(y)$ for $f, g \in \text{Hom}_A(\mathfrak{X}, Z_2)$ and for $x, y \in \mathfrak{X}$.

DEFINITION 2. The cup-*i*-product \bigcup_{i} in the cochain complex $C = \operatorname{Hom}_{A}(\mathfrak{X}, \mathbb{Z}_{2})$ is defined by $h^{i\mathfrak{F}} \cdot \mathfrak{X}$.

Denoting $\operatorname{Hom}_{A}^{s}(X_{p}, Z_{2})$ by $C^{p,s}$ for each homological dimension $p \ge 0$ and the grading $s \ge 0$, we have the cochain complex

$$C^{*s} = \{C^{p,s} \text{ for } p = 0, 1, \dots, n, \dots\}$$

such that $C = \{C^{*s} | s = 0, 1, \cdots\}$. Then $f \bigcup_i g = \bigcup_i (f \otimes g) \in C^{p+q-i,s+t}$ for $f \in C^{p,s}$ and $g \in C^{q,t}$. It is immediate to see by definition the coboundary formula

$$\delta(f \bigcup_{i} g) = f \bigcup_{i=1}^{i} g + g \bigcup_{i=1}^{i} f + \delta f \bigcup_{i} g + f \bigcup_{i} \delta g$$

For

$$\begin{split} \delta(f \cup g) &= \partial^{\ast} h^{i \ast} \chi(f \otimes g) = \chi(f \otimes g) h^{i} \partial \\ &= \chi(f \otimes g) (h^{i-1} + \rho h^{i-1} + dh^{i}) \\ &= h^{i-1 \ast} \chi(f \otimes g) + h^{i-1 \ast} \rho^{\ast} \chi(f \otimes g) + h^{i \ast} d^{\ast} \chi(f \otimes g) \\ &= h^{i-1 \ast} \chi(f \otimes g) + h^{i-1 \ast} \chi(g \otimes f) + h^{i \ast} \chi(\delta \otimes 1 + 1 \otimes \delta) (f \otimes g) \\ &= f \bigcup_{i=1}^{i-1} g + g \bigcup_{i=1}^{i-1} f + \delta f \bigcup_{i=1}^{i-1} g + f \bigcup_{i=1}^{i-1} \delta g . \end{split}$$

DEFINITION 3. Algebraic Steenrod operation ${}_{A}Sq_{i}$: $H^{p,s}(A) \rightarrow H^{2p^{-i},2s}(A)$ is defined by ${}_{A}Sq_{i}(\xi) = \overline{f \cup f}$, where $\xi \in H^{p,s}(A)$ is represented by $f \in C^{p,s}$ with $\delta f = 0$, and the bar over $f \cup f$ stands for the cohomology class.

Adams [1] and others (for example, see [11]) computed explicitly a Δ -homomorphism h^i in case when \mathfrak{X} is the bar resolution B(A). If

$$\Delta(a) = \sum a' \otimes a''$$

for $a \in A$, then we have

$$\begin{split} h^0_n \left([a_1 | a_2 | \cdots | a_n] \right) \\ &= 1 \otimes [a_1 | \cdots | a_n] + \sum_{1 \le \rho \le n} [a_1' | \cdots | a_\rho'] \otimes a_1'' \cdots a_\rho'' [a_{\rho+1} | \cdots | a_n] \,, \end{split}$$

for odd *i*,

$$\begin{split} h_n^t \left([a_1|\cdots|a_n] \right) \\ &= \sum_{0 \le \rho_0 \le \rho_1 \le \cdots + \rho_i \le n} [a_1'|\cdots|a_{\rho_0}'|a_{\rho_0+1}'\cdots a_{\rho_1}'|a_{\rho_{1+1}}'|\cdots|a_{\rho_2}'|\cdots|a_{\rho_{i-1}+1}'\cdots a_{\rho_i}'|a_{\rho_{i+1}}|\cdots|a_n] \\ &\otimes a_1'\cdots a_{\rho_0}'[a_{\rho_0+1}'|\cdots|a_{\rho_1}''|a_{\rho_{1+1}}'\cdots a_{\rho_2}''|\cdots|a_{\rho_{i-1}+1}'|\cdots|a_{\rho_i}''], \end{split}$$

for even *i*,

$$\begin{split} h_n^i \left([a_1|\cdots|a_n] \right) &= \sum_{0 \le \rho_0 < \rho_1 < \cdots < \rho_i \le n} [a_1'|\cdots|a_{\rho_0}'|a_{\rho_0+1}'\cdots a_{\rho_1}'|\cdots|a_{\rho_{i-1}+1}'|\cdots|a_{\rho_i}'] \\ &\otimes a_1'\cdots a_{\rho_0}' [a_{\rho_0+1}'|\cdots|a_{\rho_1}'|\cdots|a_{\rho_{i-1}+1}'\cdots a_{\rho_i}''|a_{\rho_{i+1}}|\cdots|a_n] \,. \end{split}$$

Let us sketch the method of computation for completeness sake. Let S be the contracting homotopy for B(A), then $t = S \otimes 1 + \varepsilon \otimes S$ is a contracting homotopy for $B(A) \otimes B(A)$. Define $h_0^0 = \Delta$, then $h_1^0 S_0 = t_0 h_0^0$ determine h_1^0 by $h_1^0(ax) = \Delta(a)h_1^0(x)$. Inductively h^0 is obtained easily. Define $h_0^1 = t_0(h_0^0 + \rho h_0^0)$, then h_1^1 is calculated by $h_1^1 S_0 = t_1(h_1^0 + \rho h_1^0)S_0 + t_1 h_0^1$ and $h_1^1(ax) = \Delta(a)h_1^1(x)$. Repeat this process, we get the above formula.

3. $\mathfrak{S}(\Gamma, \Lambda)$ associated with a pair of Hopf algebras (Γ, Λ)

Let (Γ, Λ) be a pair of connected locally finite cocommutative Hopf algebras over Z_2 such that the subhopf algebra Λ is central in Γ . Then we have a sequence of Hopf algebras

$$\Lambda \xrightarrow{i} \Gamma \xrightarrow{\pi} \Omega = \Gamma / I(\Lambda) \cdot \Gamma$$

where the inclusion *i* and the projection π are morphisms of Hopf algebras (see [1]). In this setting we are going to associate with a pair of Hopf algebras (Γ, Λ) a graded differential algebra $\mathfrak{S}(\Gamma, \Lambda) = \{C, \delta, F, \bigcup\}$ with a decreasing filtration *F* and with cup-*i*-products \bigcup_{i} so that behaviors of algebraic Steenrod operations can be discussed in the spectral sequence $\{E_{\gamma}, d_{\gamma}\}$ associated with $\mathfrak{S}(\Gamma, \Lambda)$.

Recall the filtration in the bar construction $B(\Gamma)$ which Adams introduced in [1]. For each integer p define a subcomplex $F_p B(\Gamma)$ of $B(\Gamma)$ such that $F_p B(\Gamma)_n$ is the Γ -submodule of $B(\Gamma)_n = \Gamma \otimes I(\Gamma)^n$ generated by elements of the form $\gamma[\gamma_1|\cdots|\gamma_n]$ with the property that $\gamma_s \in I(\Lambda)$ for at least (n-p) values of s. Then it is immediate to see that F is the canonical increasing filtration in $B(\Gamma)$. Define the product filtration \tilde{F} in $B(\Gamma) \otimes B(\Gamma)$ by

$$\overset{\times}{F}_{p}(B(\Gamma)\otimes B(\Gamma)) = \bigcup_{p\geq s\geq 0} F_{p-s}B(\Gamma)\otimes F_{s}B(\Gamma) \ .$$

Then $(B(\Gamma) \otimes B(\Gamma), \check{F})$ is a resolution of $\Gamma \otimes \Gamma$ -module Z_2 with the increasing filtration \check{F} . Let $\Delta: \Gamma \to \Gamma \otimes \Gamma$ be the cocommutative diagonal and let ρ be the twisting chain map of $B(\Gamma) \otimes B(\Gamma)$. Then we have

Theorem 1. There exists a sequence of Δ -homomorphisms

 $h^i: B(\Gamma) \rightarrow B(\Gamma) \otimes B(\Gamma)$

for $i=0, 1, \dots, n, \dots$ such that 1) h^0 is a Δ -chain map which preserves grading and filtration, 2) h^i is a Δ -chain homotopy connecting h^{i-1} and ρh^{i-1} which preserves grading, raises homological dimension by *i*, and satisfies the filtration condition

$$h^i(F_{\mathfrak{p}}B(\Gamma)) \subset \hat{F}_{\mathfrak{a}}(B(\Gamma) \otimes B(\Gamma))$$

for $\alpha = Min\{2p, p+i\}$.

Proof. In virtue of Proposition 6 it remains only to prove that h_n^t shown in §2 satisfies the filtration condition. By denoting

$$\Delta(\gamma) = \sum \gamma' \otimes \gamma''$$

the three formulas $h_n^i([\gamma_1|\cdots|\gamma_n])$ show that for each j with $n \ge j \ge 1$ exactly one of the three elements γ_j , γ'_j , and γ''_j appears solely between bars. For example,

if *i* is odd, each of the elements $\gamma'_1, \dots, \gamma'_{\rho_0}, \gamma''_{\rho_0+1}, \dots, \gamma''_{\rho_1}, \gamma'_{\rho_1+1}, \dots, \gamma'_{\rho_2}, \dots, \gamma''_{\rho_{i-1}+1}, \dots, \gamma''_{\rho_i}, \gamma_{\rho_i+1}, \dots, \gamma_n$ appears solely in | |. It follows that if $[\gamma_1|\cdots|\gamma_n] \in F_p B(\Gamma)_n$, each term of the sum on the right hand sides of the formulas contains at least (n-p) elements in $I(\Lambda)$. By definition of the product filtration \check{F} we obtain

$$h^i(F_p B(\Gamma)) \subset \overset{\times}{F}_{p+i}(B(\Gamma) \otimes B(\Gamma))$$

If $p \ge i$, then the proof is complete, because Min $\{p+i, 2p\}=p+i$. If $i \ge p$, it is seen that among *i* products

$$\gamma_{\rho_0+1}^{\prime}\cdots\gamma_{\rho_1}^{\prime},\,\gamma_{\rho_1+1}^{\prime\prime}\cdots\gamma_{\rho_2}^{\prime\prime},\,\cdots,\,\gamma_{\rho_{i-1}+1}^{\prime}\cdots\gamma_{\rho_i}^{\prime}$$

(or $\gamma_{p_{i-1}+1}^{\prime\prime}\cdots\gamma_{p_i}^{\prime\prime}$ if *i* is even) there exist at least (i-p) products contained in $I(\Lambda)$. Otherwise, at least (p+1) products are not contained in $I(\Lambda)$. Then γ_s are not in $I(\Lambda)$ for at least (p+1) values of *s*. This is a contradiction. It follows that each term of the sum for $h_n^t([\gamma_1|\cdots|\gamma_n])$ has at least

$$(n-p)+(i-p) = n+i-2p$$

elements in $I(\Lambda)$. Therefore,

$$h^{i}(F_{p}B(\Gamma)) \subset \hat{F}_{2p}(B(\Gamma) \otimes B(\Gamma))$$

if $i \ge p$, where Min $\{p+i, 2p\} = 2p$. This completes the proof.

Now let us dualize what we have obtained in this section. Let (C, δ) be the cochain complex $\operatorname{Hom}_{\Gamma}(B(\Gamma), Z_2)$ over Z_2 . For each integer p define a subcomplex $F^p(C)$ by the image of

$$\operatorname{Hom}_{\Gamma}\left(B(\Gamma)/F_{p-1}B(\Gamma), Z_{2}\right)$$

under the dual of the projection

$$p: B(\Gamma) \rightarrow B(\Gamma)/F_{p-1}B(\Gamma)$$
.

Then it is seen that (C, δ, F) is a cochain complex with a decreasing filtration. Let us call it Adams filtered complex associated with (Γ, Λ) .

Theorem 2. Let (C, δ, F) be Adams filtered complex associated with a pair of Hopf algebras over Z_2 . Then there exist a Z_2 -linear map $\bigcup_i : C \otimes C \rightarrow C$ such that $\mathfrak{S}(\Gamma, \Lambda) = \{C, \delta, F, \bigcup_i\}$ is a graded differential algebra with a decreasing filtration F and with cup-i-products in the sense of Definition 1.

Proof. Let $h^i: B(\Gamma) \to B(\Gamma) \otimes B(\Gamma)$ be the Δ -homomorphism in Theorem 1 and define $\bigcup: C \otimes C \to C$ by $h^{i*\chi}$ as was considered in Definition 2. Since \bigcup is the cup-*i*-product in $C = \operatorname{Hom}_{\Gamma}(B(\Gamma), Z_2)$, it is easy to see that \bigcup_{i} satisfies all the necessary conditions except the filtration condition. Consequently, it is sufficient to show that if $f \in F^p C^{m,s}$ and $g \in F^q C^{n,t}$, then $f \bigcup_{i} g \in F^{\alpha} C^{m+n-i,s+t}$ for $\alpha = \operatorname{Max} \{p+q-i, p, q\}$. Consider first the case when

$$lpha = ext{Max} \{ p{+}q{-}i, \, p, \, q \} = p{+}q{-}i$$
 ,

then

$$Min\{(\alpha - 1) + i, 2(\alpha - 1)\} = (\alpha - 1) + i = p + q - 1$$

except the case when p=q=i. By Theorem 1

If
$$h^i(F_{a_{j-1}}B(\Gamma)) \subset \hat{F}_{p+q_{-1}}(B(\Gamma) \otimes B(\Gamma))$$
.

for $x \in F_{\omega_{-1}}B(\Gamma)_{m+n-i,s+t}$, then $x' \in F_{\xi}B(\Gamma)_{\rho,\theta}$ and $x'' \in F_{\eta}B(\Gamma)_{\sigma,\nu}$ with the property that $\xi + \eta = p + q - 1$, $\rho + \sigma = m + n$, and $\theta + \nu = s + t$. Then

$$(f \cup_i g)(x) = \sum f(x') \cdot g(x'') = 0$$
,

because $\xi < p$ or $\eta < q$. Therefore, $f \bigcup_{i} g \in F^{p+q-i}C^{m+n-i,s+i}$. If $\alpha = p$, then $p \ge q$ and $i \ge q$. In this case also,

$$(f \cup g)(F_{p-1}B(\Gamma)) = 0$$

can be shown because

$$h^i(F_{p-1}B(\Gamma)) \subset \stackrel{\times}{F}_{p-1+i}(B(\Gamma) \otimes B(\Gamma)) \cap \stackrel{\times}{F}_{2p-2}(B(\Gamma) \otimes B(\Gamma))$$
.

Hence, the proof is completed.

From Theorem 2 and Proposition 1 we obtain

Theorem 3. Let (Γ, Λ) be a pair of connected locally finite cocommutative Hopf algebras over Z_2 such that Λ is central in Γ , and let $\{E_{\gamma}, d_{\gamma}\}$ be Adams spectral sequence associated with the system $\mathfrak{S}(\Gamma, \Lambda)$. Then there exist algebraic Steenrod operations ${}_{B}St_i: E_{\gamma}^{p,q} \rightarrow E_{2\gamma-2}^{2p-i,2q}$ for $\infty \geq \gamma \geq 2$ and ${}_{F}St_i: E_{\gamma}^{p,2q+p-i}$ for $\infty \geq \gamma \geq 1$.

4. Some properties of algebraic Steenrod operations

Theorem 4. $_BSt_i$ and $_FSt_i$ defined in Adams spectral sequence satisfy Propositions 2, 3, and 4.

Theorem 5. Let (Γ, Λ) and (Γ', Λ') be pairs of Hopf algebras over Z_2 both of which satisfy the conditions stated before, and let E_{γ} and E'_{γ} be Adams spectral sequences associated with $\mathfrak{S}(\Gamma, \Lambda)$ and $\mathfrak{S}(\Gamma', \Lambda')$ respectively. If $f: (\Gamma, \Lambda) \rightarrow (\Gamma', \Lambda')$ be a morphism of pairs of Hopf algebras, then f induces a sequence of homomorphisms $\phi_{\gamma}: E'_{\gamma} \rightarrow E_{\gamma}$ for $\gamma \geq 1$ such that

$$\phi_{\gamma} {}_{F}St_{i} = {}_{F}St_{i} \phi_{\gamma} \quad and \quad \phi_{2\gamma-2} {}_{B}St_{i} = {}_{B}St_{i} \phi_{\gamma}$$

for $\gamma \geq 2$.

Proof. It is obvious that f induces a chain map $B(f): B(\Gamma) \rightarrow B(\Gamma')$ preserving filtrations and gradings. If h^i and h'^i are Δ -homomorphisms in Theorem 1, then we have $h'^iB(f) = (B(f) \otimes B(f))h^i$. Consequently, B(f) induces a morphism $\mathfrak{S}(f): \mathfrak{S}(\Gamma', \Lambda') \rightarrow \mathfrak{S}(\Gamma, \Lambda)$. By a morphism $\mathfrak{S}(f)$ of the system \mathfrak{S} we mean that $\mathfrak{S}(f)$ is a chain map compatible with gradings, filtrations, and cup-*i*-products. Therefore, it is straightforward to verify the theorem.

Theorem 6. Let $\Lambda \xrightarrow{i} \Gamma \xrightarrow{\pi} \Omega$ be a sequence of Hopf algebras as stated before, and let $\{E_{\gamma}\}$ be Adams spectral sequence associated with (Γ, Λ) . Then the natural maps $B(\pi)$: $B(\Gamma) \rightarrow B(\Omega)$ and B(i): $B(\Lambda) \rightarrow B(\Gamma)$ induce isomorphisms $B(\pi)^*$: $H^p(\Omega) \rightarrow E_2^{p,0}$ and $B(i)^*$: $E_2^{0,q} \rightarrow H^q(\Lambda)$ respectively. If $E_2^{p,0}$ and $E_2^{0,q}$ are identified with $H^p(\Omega)$ and $H^q(\Lambda)$ respectively, then ${}_BSt_i$: $E_2^{p,0} \rightarrow E_2^{2p-i,0}$ coincides with ${}_{\Omega}Sq_i$: $H^p(\Omega) \rightarrow H^{2p-i}(\Omega)$, and ${}_{F}St_i$: $E_2^{0,q} \rightarrow E_2^{0,2q-i}$ coincides with ${}_{\Lambda}Sq_i$: $H^q(\Lambda) \rightarrow H^{2q-i}(\Lambda)$. Moreover, ${}_{B}St_i$: $E_{\infty}^{p,q} \rightarrow E_{\infty}^{2p-i,2q}$ for $i \leq p$ and ${}_{F}St_i$: $E_{\infty}^{p,q} \rightarrow E_{\infty}^{p,2q+p-i}$ for $i \geq p$ are induced by ${}_{\Gamma}Sq_i$: $H^{p+q}(\Gamma) \rightarrow H^{2p+2q-i}(\Gamma)$.

Proof. Adams has shown in [1] that $B(\pi)^*$ and $B(i)^*$ are isomorphisms. Hence, a morphism of pairs of Hopf algebras $\pi: (\Gamma, \Lambda) \rightarrow (\Omega, Z_2)$ induces the isomorphism $\phi_2: E_2^{i^{p,0}} \rightarrow E_2^{p,0}$ for each p, because

$$E_{2}^{\prime p,0} = E_{\infty}^{\prime p,0} = H^{p}(\Omega)$$
.

Since ${}_{B}St_{i}: E_{2}^{\prime p,0} \rightarrow E_{2}^{\prime 2p-i,0}$ is exactly ${}_{\Omega}Sq_{i}: H^{p}(\Omega) \rightarrow H^{2p-i}(\Omega)$, we obtain ${}_{B}St_{i} \phi_{2} = \phi_{2 \ \Omega}Sq_{i}$. Similarly, $\phi_{2 \ F}St_{i} = {}_{\Lambda}Sq_{i} \phi_{2}$. From the facts that $H^{p+q}(\Gamma)$ is filtered by $F^{p}H^{p+q}(\Gamma) = Z_{p}^{p,q}/B_{p}^{p,q}$ with the property that $E_{p}^{p,q} = F^{p}H^{p+q}(\Omega)/F^{p+1}H^{p+q}(\Omega)$ and that ${}_{\Gamma}Sq_{i}$ maps $F^{p}H^{p+q}(\Gamma)$ into $F^{2p-i}H^{2p+2q-i}(\Gamma) \subset H^{2p+2q-i}(\Gamma)$, it is immediate to see that ${}_{B}St_{i}: E_{\infty}^{p,q} \rightarrow E_{\infty}^{2p-i,2q}$ is induced by ${}_{\Gamma}Sq_{i}$. The rest of the proof is obvious. Hence, the proof is complete.

In a subsequent paper the author wishes to discuss higher cohomology operations involved in the Cartan formula and Massey-Uehara products.

OKLAHOMA STATE UNIVERSITY

Bibliography

- J.F. Adams: On the non-existence of elements of Hopf invariant one, Ann. of Math. 72 (1960), 20-104.
- [2] ————: Stable Homotopy Theory, Lecture Notes in Math. 3, Springer, 1969.
- [3] S. Araki: Steenrod reduced powers in the spectral sequences associated with a fibering, Mem. Fac. Sci. Kyushu Univ. Ser. A. 11 (1957), 15-64.
- [4] ———: Steenrod reduced powers in the spectral sequences associated with a fibering II, Mem. Fac. Sci. Kyushu Univ. Ser. A. 11 (1957), 81–97.
- [5] S. Eilenberg and J.C. Moore: Foundation of Relative Homological Algebra, Mem. Amer. Math. Soc. 55, 1965.
- [6] A. Liulevicius: The Factorization of Cyclic Reduced Powers by Secondary Cohomology Operations, Mem. Amer. Math. Soc. 42, 1962.
- [7] J.W. Milnor and J.C. Moore: On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264.
- [8] H. Uehara, F.S. Brenneman, L.D. Olson: A comparison theorem in fibred categories, Abstract #71T-A27, Notices Amer. Math. Soc. 18 (1971), 396.
- [9] H. Uehara: On Cohomology of Hopf Algebras, Lecture notes, Universität des Saarlandes, 1970.
- [10] R. Vazquez: Note on Steenrod squares in the spectral sequence of a fibre space, Bol. Soc. Mat. Mexicana 2 (1957), 1–8.
- [11] A. Zachariou: On Cup-i-products in the Cobar Construction F(A*), Univ. of Manchester, 1966.
- [12] ----: A subalgebra of $Ext_A^{**}(Z_2, Z_2)$, Bull. Amer. Math. Soc. 73 (1967), 647-648.