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Hirosur UEHARA*

(Received July 10, 1971)

Araki [3], [4] and Vazquez [10] investigated behaviors of Steenrod reduced
powers In the spectral sequence associated with a fibre space in the sense of
Serre. 'The main purpose of this paper is to establish an algebraic analogy to
their works. For example, works of Adams [1], [2] and others, [6], [11], [12],
implicitly contain a useful, direct application of our results.

1. Steenrod operations in the spectral sequence associated with
an algebraic system &

DeriNiTION 1. By a graded differential algebra &={C, §, F, U} with a
decreasing filtration F and with cup-i-products U, we mean

1) a graded cochain complex C over the field Z,:

C: C°—»C'—.+—>C"—>C"'—-.., where §": C"—>C""!

is a morphism of graded vector spaces over Z,,
2) for each integer p, F?C is a subcomplex of C such that
i) F?*'C is a subcomplex of F#C (in notation: F?C D F?*'C)
il F?C=Cif p<0, and iii) F?C"=0 if p>n,
3) for each integer 7 there exists a Z,-linear map U: CQ®C—C such that if
x€F?C™* and ye F'C™*, then xU yc F*C™*"~"**! for a=Max{p+q—i,
b, q}, where x Uy=U(x®y), U y=x U y in notations, and s,¢ stand for
] i 0
gradings. U satisfies the following conditions:
i) U is trivial if /<0, ii) For x&F?C™ and ye F'C",xU y=0 if i>m

or n,

* This work is supported in part by the National Science Foundation research grant GP-
9585, and in part by the Deutsche Forschungsgemeinschaft while the author was a visiting
professor at Universitit des Saarlandes during the winter semester, 1970.



132 H. Uenara
i) xU(yU2)=(xUy)Uxz, iv), lUx=xUl=x for some 1=C"° and
v) &(xU y)=x'L_le+y‘L_Jlx+ SxUy+xUdy.

Associating & with an exact couple <D, E, i, j, k> by defining
Dy *=H?*%(F*C), E}'=H?**Y(F?C[F?"'C), and 17, j, k as usual, we have a
spectral sequence {E,, d,|y>1}. Let us define Steenrod operations in the
spectral sequence as Araki [4] and Vazquez [10] did. Define a map §;: C—-C
by 0,.(x)=xl;Jx+xiL;118x, then we have

Proposition 1. 6, induces Steenrod operations pSt;, pSt; in the spectral
sequence associated with the algebraic system & such that
St EY ' —ERL% for co >q9>2
and
pSt;: ER—ED2 = for oo > >1 .
They are all Z,-homomorphisms.

Proof. It is straightforward by definition that if we denote, as usual,
Zn'={xc F?C**|Sxc F**1C?+9+Y} Bri={xc F*C**9|qyc F#C?* 7!, §y=1x},
Z%'={xcF?C?*?|8x=0}, and BZ'={xcF?C?"?|qycC?*?"", §y=«x}, then
0(Zy ) ZB v N Zy et C 2o b2 N Z5 2 et 9,(BoY ) C BRIy N By A,
0,220 Z»-2 0 Zn2+r=t | and (B2 %) C B%~27n Bz2*»=¢  Note that the
restriction on y >2 comes from the following observation. If x&B%:%, then

0:i(x) = dyUdy = d(y Ux+yUy),

where §y=x with ye F?77*'C?*97! Since yUx+y U ycF?? i-@=dC2p+2a7im1
i i-1

if v>2, 0,(x)eB$-4? for y>2. Hence, 6; induces zSt; and St; as stated
in Proposition 1. For x,, x,&Z%*

0:(x%,+x,) = 0;(x,)+0,(x,)+8(x, ‘l;Jlxz)—}—xziEJ‘le—i— Bx‘.-lijlx”
from the bilinearity of L'J Since
3(x, Ux,)e Bjr—*2 N By:2e+r—t C Bip—4:29 N By2pte—t,
i1
and
xziL;rJle,—I— leglxzeZ%:é“'z“‘l N ZyEprate=i=l

pSt; and 5St; are Z,-homomorphisms.

For completeness sake let us show some properties of Steenrod operations
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which are useful for their applications. (For example, for computation of
cohomology of the Steenrod algebra.) Let E%? be the subvector space of E$®
spanned by (d;, -+-, dy,,, dy)-cocycles and let «),,: E33—E%" be the natural
epimorphism. An element in E%} will be said to be g-transgressive.

Proposition 2. .St;: E%—E%27*?~¢ {5 trivial if i<<p or i>p-+-q,
St ER'—E3®=5% 45 trivial if i>p or i<0,
and
pSt, = Kk}y_» pSt,.

Proof. If p>i and x=Z%", then §(x)cF*?~iC**+*4~iC F?*'C*?**?7 and
8(0(x))=8x ) dSxc F?*7C*?**¢~i*!_ Hence, 0,(x)eZ5i}%%*»~'~1, so that by
i+l

definition the triviality of S?; is proved if p>i. The rest of the proof is
immediate, and hence, is omitted.

Proposition 3. If acE%}, then St (o) ES3+*~", where
d = Max{p-+2c—i, c}
and pSt;(a)E E3:.0*.
Proof. Recall that
B3 = Zph+- 2y 2y + By CERC

If x is a representative of ¢, then 0,(x)eF?C***~in F?*~iC***%~¢ and
3(0;(x)) s FeetecmitiCrpraa=itin peretiCeet2a=itt  If {> p then 0,(x)Z5H*"~"
where d=Max{p+2c—1, ¢}, while if p>7, then 0,(x)=Z327{**. Hence, the
proof is completed.

Proposition 4. If a = E} is g-transgressive, then pSt(a) E3***~* is also
g-transgressive. Moreover we have

(1) K2e BSti 11 dgiy keai(@) = duek pSt(a),
where A=2q+(p—1)+1 and xd,=x3" if A>2q.

Proof. It is obvious from Proposition 3 that nSt,(a) is g-transgressive.
If x is a representative of a, then both sides of (1) is represented by 8x|] 8x.
Hence, the proof is completed. al

2. Comparison theorem in homological algebra

To prepare for later sections the algebraic Steenrod operations are
introduced by the iterated use of a comparison theorem in relative homological
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algebra [5] (For the theorem in a more general and rigorous setting, see [8]), and
the explicit formulas of chain homotopies [1], [11] involved in the theorem are
presented in this section.

Let a: A—B be a morphism of graded augmented algebras 4 and B over
a commutative ring R with unity, and let M and N be left graded modules over
algebras 4 and B respectively. A morphism of graded R-modules f: M —N is
called a @-homomorphism iff fax)=a(a)f(x) for ac 4 and x= M.

Proposition 5. Let &: X—M be a R-split exact resolution of M in the
category MM of left A-modules and let : 9)— N be a R-split exact resolution of N
in the category gM. Then, for any a-homomorphism f: M — N there exists a
c~chain map extension F: X—%) of f in the sense that
1) for eachn> 0, F,: X,—Y, is a a-homomorphism, and
2) d,F,=F, 0, for n>1 and f&=nF, where

g 9, 0,
M—=X,=X = - S5X,77 - : %
[ So Sy
fl F, F, F,.l J(F
K d, d,
NZY, Y35 - Y, - 1Y
t, Z, t,

3) If F, F’ are a-chain map extensions of f, then there exists a a-chain homotopy
h: X—%) connecting F with F’.

Proof. First let us observe that the proposition is the usual comparison
theorem in case when A=B and « is the identity map. The following remarks
enable us to reduce the proposition to the classical theorem; 1) any B-module
Z can be considered as an A-module by definition az=a(a)z for ac A and
zeZ, 2) any morphism g: Z—Z’ in zM can be regarded as a morphism in ,IMN
by considering Z, Z’ as A-modules because

8(az) = g(a(a)2) = a(a)g(z) = ag(3)

3) a R-homomorphism k: X—Y is a @-homomorphism iff % is a morphism in
4 considering Y as an A-module. For k(ax)= a(a)k(x)=ak(x). From 1)
and 2), 7: 9—N can be considered as a R-split exact complex of N in ,M, and
from 3) f: M—N is a morphism in ,MM. It follows from the usual comparison
theorem that there exists a chain map extension F of fin ,2M. From 3) F isa
a-homomorphism. It is immediate to see the rest of the proof. This proves
the proposition.

Let us apply the proposition to the following case. Let A be a co-
commutative Hopf algebra over Z, and let a: 4—>4AQ®A be the cocommutative
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comultiplication A. Since M=Z, and N=Z,QZ,~Z, can be considered by
augmentations as a left 4-module and a left AQA-module respectively, the
a-map f: Z,~Z,QZ, defined by f(1)=1® 1, can be extended to a A-chain map
h’: ¥—>X®ZX by the direct application of the proposition, where X is a Z,-split
exact resolution of Z,. If p: X®X—>X®X is the twisting chain map, then phA’
is again a A-chain map extension of f, because A is cocommutative. Hence,
there exists a A-chain homotopy %' connecting #° with ph’. Since ph' is a
A-chain homotopy and since #'+4-ph' is a A-chain map extension of the trivial
A-homomorphism 0: Z,—md,, there exists a A-chain homotopy #° connecting
k' and ph'. By the iterated use of the same arguments we have a sequence of
A-chain homotopies {#’, #',---, k,---}. Hence, we have

Proposition 6. Let A be a cocommutative Hopf algebra over Z, and let
A: A—>AQR A be the comultiplication. If &: X—Z, is a Z,~split exact resolution of
the A-module Z,, then there exists a sequence of A-homomorphisms hi: ¥—XQ%
for i=0, 1,--+, n, «+- such that 1) I’ is a grade preserving A-chain map and 2) for
i>0 k' is a A-chain homotopy connecting h*~* with ph'~* which raises the homological
dimensions by i and preserves the grading, where p: XQX—>XRQX is the twisting
chain map.

Consider a diagram

U

i

HomA(i) Zz)®H0mA(xs A >H0mA(:{9 Z,)

x\ / ot

Hom 46,(XQ%, Z,)

where X is the Z,-chain map defined by X(f®g)(xRy)=f(x)g(y) for f, g
Hom 4(%, Z,) and for x, ye X.

DerFiNiTION 2. The cup-i-product U in the cochain complex C =

Hom,(¥%, Z,) is defined by A#*.X.

Denoting Hom}(X ,, Z,) by C?** for each homological dimension p>0 and
the grading s>0, we have the cochain complex

C* — {Cp,s forp — 0, 1, e m, } _

such that C={C*|s=0,1,-}. Then fUg= U(f®g)eC?**"*** for

feC?® and geC?’. It is immediate to see by definition the coboundary
formula
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S(fUg)=1fUg+e Uf+8f Ug+fUds.
For
3(f Ug) = ' X(fRg) = X(f ®gHd
— (@) +ph "+ db)
= kTX(fR8)+H T X(f Rg)+hdX(f®g)
= BTX(fQ8)+HX(g® f)+HX(3@1+1R8)(f®8)
=fUgte Uf+8fUg+fUdg.
DeriniTION 3.  Algebraic Steenrod operation ,Sq;: H?*(A)—H**7"*(4)
is defined by ,S¢/(£)=f U f, where E& H?*(4) is represented by feC?* with
3f=0, and the bar over f U f stands for the cohomology class.

Adams [1] and others (for example, see [11]) computed explicitely a
A-homomorphism %¢ in case when % is the bar resolution B(A4). If

Ala) =2)a’'®a”
for ac A4, then we have

h?‘ ([allaZI b |an])
= 1®[¢l1, ot lan]_hg?gn[a{ | v ]a£]®a{""a£,[ap+1| o Ian] ’

for odd ¢,
h"i ([axl o Ian])
a3 AL LA A ATM B CARIEARAPANEIES
af’-afjlati, |- |afl| @y eeaff| -+ @] ag],
for even i,

Wl lad) = 33 [af] | af|ahyryaly| | ah,_ el -1 ah]
| 0~"1 i

®af’ag[af] va| -+ 164/ |+ 18¥,_ryrat] | nyis| ]

Let us sketch the method of computation for completeness sake. Let S be
the contracting homotopy for B(A4), then t=S®1+Q S is a contracting
homotopy for B(A)QB(A). Define A= A, then hiS,= t}§ determine A3 by

Y(ax)=A(a)hi(x). Inductively A° is obtained easily. Define hg=t,(h+ ph3),
then A} is calculated by A}S,= ¢t (h+ ph3)S,+t.hs and hi(ax)= A(a)hi(x).
Repeat this process, we get the above formula.
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3. &(T, A) associated with a pair of Hopf algebras (T, A)

Let (T, A) be a pair of connected locally finite cocommutative Hopf algebras
over Z, such that the subhopf algebra A is central in T. Then we have a
sequence of Hopf algebras

7 T
A—>T 5 Q=r/ I(A)-T

where the inclusion 7 and the projection z are morphisms of Hopf algebras (see
[1]). In this setting we are going to associate with a pair of Hopf algebras
(T, A) a graded differential algebra &(T", A)={C, 8, F, U} with a decreasing

filtration F and with cup-i-products U so that behaviors of algebraic Steenrod

operations can be discussed in the spectral sequence {E,, d,} associated with
&(T, A).

Recall the filtration in the bar construction B(I') which Adams introduced
in [1]. For each integer p define a subcomplex F,B(T") of B(T") such that
F,B(I"), is the T'-submodule of B(T"),=T'®I(T")* generated by elements of the
form [v,]| -+ |v,] with the property that v, I(A) for at least (r—p) values of s.
Then it is immediate to see that F is the canonical increasing filtration in B(T").

Define the product filtration ¥ in B(T')@B(T) by
F,(BT)®BIT)= U F, ,B)QFB().

Then (B(I")Q B(T), F ) is a resolution of I'®T'-module Z, with the increasing

filtration F. Let A: I'-TQT be the cocommutative diagonal and let p be the
twisting chain map of B(I')QB(I"). Then we have

Theorem 1. There exists a sequence of A-homomorphisms
k': B(T')—B(I")QB(T)
for i=0,1, ---,n, --- such that 1) h° is a A-chain map which preserves grading and
filtration, 2) k' is a A-chain homotopy connecting h'™* and ph'™ which preserves
grading, raises homological dimension by i, and satisfies the filtration condition
W(F,B(T")) C Fo(B(T)QB(T))
for a=Min{2p, p-+i}.

Proof. In virtue of Proposition 6 it remains only to prove that A% shown
in §2 satisfies the filtration condition. By denoting

Ay) =2 7'®7”

the three formulas A} ([,]--|v,]) show that for each j with n>j>1 exactly one
of the three elements v, v}, and v}’ appears solely between bars. For example,
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if 7 is odd, each of the elements {, ==, Y7, Vili1s =5 Vols Vorer ***s Vog ="
Y41ty Vols Vo410 s Vs appears solely in | [. It follows that if
[v.]:+|vs]eF,B(T),, each term of the sum on the right hand sides of the
formulas contains at least (n—p) elements in I(A). By definition of the product

filtration Fx‘ we obtain
W(F,B)C F,. (BT B().

If p>i, then the proof is complete, because Min {p-+i, 2p}=p+i. If i>p,
it is seen that among ¢ products

’ PP N VR ceeey?
Voo+1""" Vo Vor+1"*Voyr =% Voi_s+1""Vo;

(or ! 4iee+vs! if i is even) there exist at least (—p) products contained in
I(A). Otherwise, at least (p+ 1) products are not contained in I(A). Then v,
are not in I(A) for at least (p+1) values of s. This is a contradiction. It fol-
lows that each term of the sum for &, ([«y,[ -+ |v,]) has at least

(n—p)+(—p) = nti=2p
elements in I(A). Therefore,
W(F ,B(T))CF,,(BT)®B(T))
if i>p, where Min {p-+i, 2p}=2p. This completes the proof.

Now let us dualize what we have obtained in this section. Let (C, 8) be
the cochain complex Homp(B(T'), Z,) over Z,. For each integer p define a
subcomplex F?(C) by the image of

Hom (B(T")/F,_,B(T"), Z,)
under the dual of the projection
p: BI)~B(T)/F, B().

Then it is seen that (C, §, F) is a cochain complex with a decreasing filtration.
Let us call it Adams filtered complex associated with (T", A).

Theorem 2. Let (C, 8, F) be Adams filtered complex associated with a pair
of Hopf algebras over Z,. Then there exist a Z,-linear map U: CQC—C such

that &(T', A)={C, 8, F, U} is a graded differential algebra with a decreasing
Sfiltration F and with cup-i-products in the sense of Definition 1.

Proof. Let h*: B(T')—B(T")®@B(T") be the A-homomorphism in Theorem 1
and define U: CQC—C by A*X as was considered in Definition 2. Since U
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is the cup-i-product in C=Homy(B(T'), Z,), it is easy to see that U satisfies all

the necessary conditions except the filtration condition. Consequently, it is
sufficient to show that if f&F?C™° and g F/C™*, then f Uge F*C™ " i+¢

for a=Max{p+q—1, p, q¢}. Consider first the case when
a = Max{p+q—i, p, ¢} = p+q—1,
then
Min{(a—1)+7, 2(a—1)} = (a—1)+i = p+q—1
except the case when p=g=i. By Theorem 1
B(FaiBT)CF 10 BT)DB(T)) -
If hi(x) = 3 &' @«

for x& Fy_B(T"),pin_i s+t then ¥’ €F¢B(T"), 5 and ¥’ F,B(T), , with the pro-
perty that £¢4+n=p-+q—1, p+o=m-+n, and §+v=s+¢. Then

(fUg) =2 f(*)-£(x") =0,
because §<<p or 7<<q. Therefore, fUgeF** iC™" " If a=p, then
p>q and i>gq. In this case also,

(f UNF,-.B(T) = 0
can be shown because
W(F, BT)CF, . (BT)Q@BT)NF,, (BIT)RBT)).
Hence, the proof is completed.
From Theorem 2 and Proposition 1 we obtain

Theorem 3. Let (T, A) be a pair of connected locally finite cocommutative
Hopf algebras over Z, such that A is central in T, and let {E,, d,} be Adams
spectral sequence associated with the system &(T, A). Then there exist algebraic
Steenrod operations pSt;: E%—E¥%-4* for co >y >2 and pSt;: E3?***~¢ for
co>y>1.

4. Some properties of algebraic Steenrod operations

Theorem 4. ;St; and ;St; defined in Adams spectral sequence satisfy
Propositions 2, 3, and 4.
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Theorem 5. Let (T, A) and (T, A’) be pairs of Hopf algebras over Z, both
of which satisfy the conditions stated before, and let E, and E; be Adams spectral
sequences associated with S(T", A) and S(T, A’) respectively. If f: (T, A)—(T’, A)
be a morphism of pairs of Hopf algebras, then f induces a sequence of homomorphisms
¢y: Ej—E, for v >1 such that

Gy pSt; = pSt; by and ¢y, pSt; = St, Py
Jfor y=>2.

Proof. It is obvious that f induces a chain map B(f): B(T')—B(I")
preserving filtrations and gradings. If #° and A’ are A-homomorphisms in
Theorem 1, then we have #B(f)=(B(f)QB(f))#*. Consequently, B(f) induces
a morphism &(f): &IV, A’)->&(, A). By a morphism &(f) of the system
& we mean that &(f) is a chain map compatible with gradings, filtrations, and
cup-i-products. Therefore, it is straightforward to verify the theorem.

Theorem 6. Let A—z> r 20 bea sequence of Hopf algebras as stated
before, and let {E,} be Adams spectral sequence associated with (I, A). Then the
natural maps B(z): B(T')—B(Q) and B(i): B(A)—B(T") induce isomorphisms
B(z)*: H*(Q)—E%° and B(i)*: E2*— H(A) respectively. If E%° and E3*° are
identified with H?(Q) and H?(A) respectively, then pSt;: E%°— E3~*° coincides
with oSq;: H?(Q)—H*?7(Q), and zSt;: EY*—E3*~* coincides with
ASq;: HY(A)—H?7i(A).  Moreover, 5St;: E%R—E¥»~ %2 for i<p and
St E2—E224 =4 for { > p are induced by .Sq;: H?*9(T")—H*****7(T").

Proof. Adams has shown in [1] that B(z)* and B(7)* are isomorphisms.
Hence, a morphism of pairs of Hopf algebras z: (T, A)—(Q, Z,) induces the
isomorphism ¢,: E47°—E%° for each p, because

Ep° = E»° = HYQ).

Since pSt;: Ef°—E{*~° is exactly oSq;: H?(Q)—H**7/(Q), we obtain
8St; =, oS¢;. Similarly, ¢, »St;=,5¢; ¢,. From the facts that H**4(T") is
filtered by F?H?*9T)=Z2%°/B%° with the property that EZ'=F?H?*9(Q)/
F?*'H?#*9(Q) and that .Sq; maps F?H?*%(T") into F**~¢H***?¢~§T")C H*****74(T"),
it is immediate to see that zS?;: E%*—E?~%2% js induced by .S¢;. 'The rest of
the proof is obvious. Hence, the proof is complete.

In a subsequent paper the author wishes to discuss higher cohomology
operations involved in the Cartan formula and Massey-Uehara products.
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