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ABSTRACT: Various methods have been developed for measuring the surface tension of liquids,
and the present study proposes a new method for measuring the surface tension of liquids. A small
(9 mm in diameter) round liquid surface was excited by sound waves with a common speaker.
Nine liquids possessing various physical properties and functional groups were employed, and
three resonance frequencies (fis) were observed for each liquid in a frequency range of 20 — 180
Hz. The resonances were analyzed with a forced oscillation model. In addition, the amplitudes and
phases of the resonance oscillations at various positions of the liquid surface were measured, and
the whole deformations of the liquid surface were determined. The deformation was compared

with the Bessel functions, and the oscillation modes and boundary conditions were decided. Finally,



proportional relationships between fis and ¢%°p % (o: surface tension, p: density) with high
correlations were obtained, which were supported by a new theoretical equation using

hydrodynamics.

INTRODUCTION

The air/liquid interface (the liquid surface) is a plane of discontinuity in the physical properties of
a liquid. The surface tension (o) of a liquid is one of the fundamental physical properties of the
liquid. If a liquid is contaminated with surface-active impurities, its surface tension is highly
reduced. Thus, the surface tension is also one of the purity indices of liquids. In our lives, surface
tension is related to the foaming of water on washing clothes or dishes and the foaming of beer.
These bubbles are caused by surface-active substances.

Surface tension is an essential property for surface chemists. When a surfactant shows an
adsorption equilibrium to the surface, the ¢ value decreases with an increase in the surfactant bulk
concentration. The surface excess (the surface concentration) of the surfactant can be obtained
from the relationship between ¢ and the bulk concentration by the Gibbs equation. When a
surfactant is not dissolved in a sub-phase solvent, a 7—A4 relationship (z, surface pressure; A, area
per molecule) is made. The 7—A relationship can be used to know the state of the surfactant
monolayer on the surface, such as solid phase, liquid-condensed phase, liquid-expanded phase, or
gaseous phase. 7 is equal to oo — g, where oy is the surface tension of the pure solvent. In addition,
surfactant monolayers can be assembled on a flat plate by the well-known Langmuir—Blodgett
(LB) film preparation method (LB method). In the LB method, the surface tension is always
monitored to keep the state of the monolayers constant.'

Various methods have been developed to measure the surface tension, almost all of which are

based on the Young—Laplace equation, such as the drop weight method, the hanging drop method,



and the Wilhelmy method.! These methods measure the force on a curved surface or its related
properties (droplet shape, etc.) and some of them use a probe. For example, in the widely employed
Wilhelmy method, a small plate is placed on the surface of a solution and the force on the plate is
measured to determine the surface tension. This is a simple method, but the contact angle between
the plate and the solution is needed to evaluate the surface tension. In the methods using probes,
the affinity between the probe and the solution sometimes has a significant effect on the surface
tension value, and thus the development of probe-free methods is desirable.

A few methods based on principles other than the Young—Laplace equation have been reported.
Lamb derived an equation among surface tension, density, wavenumber, and frequency of the
surface tension wave (ripple, capillary wave) generated on a flat and infinitely wide liquid surface.’
Based on this Lamb’s equation, the quasi-elastic laser scattering (QELS) method was developed
as a probe-free method for measurements of surface tension.*” In the QELS method, the
wavenumber and frequency of the equally spaced waves on a flat and wide liquid surface were
measured simultaneously, and the surface tension was obtained. Recently, Nomoto et al.
determined surface tension and surface convection simultaneously by an improved QELS
method.%’” Since the QELS method measures the frequencies in the kHz range and large
wavenumbers (small wavelengths), it is suitable for measurements in the micrometer range.®

Lamb and Levich reported an equation for the frequency of single droplet oscillation with
surface tension and density.>!? Ishiwata et al. measured the resonance oscillation of droplets in air
excited by an electric field.!! Bzdek et al. measured the resonance oscillation associated with the
fusion of two droplets levitated in air by optical tweezers.!>!> In addition, Ishida et al. measured

the resonance oscillation of droplets placed on a vibrating substrate.!*!> In these studies, they used



the droplet equation or a similar equation to evaluate the surface tensions. These methods are also
probe-free methods.

On the other hand, we investigated standing, unequally spaced waves on a small round liquid
surface excited by a dielectric force. We measured the resonance oscillation of the surface and
analyzed it with the Bessel functions to evaluate the surface tension.'® This method is a probe-free
method based on a principle that is not one of the above-mentioned principles. Sakai et al.
described oscillations on liquid surfaces with an integral of Bessel functions,!” but we related a
specific resonance to a corresponding Bessel function. A hydrodynamic study was recently
reported in which a liquid was placed in a large container (diameter 70 mm, depth 22 mm). The
container was vibrated, and the Faraday waves generated on the liquid surface were related to
Bessel functions, but the effect of gravity is greater than that of surface tension.!® The present
paper is intended to reinforce the inadequate experimental evidences on oscillation modes and
boundary conditions in the previous paper, to improve the sensitivity, and to derive new equations
and evaluate the results more quantitatively by adding hydrodynamic considerations. It will also
be shown that the contribution of surface tension waves is larger than that of gravity waves. Laser

8 and ultrasonic wave'® have been used as

light,!” an electric field,'® mechanical vibration,'
noncontact external forces to deform the liquid surface, but simpler sound waves are employed in
the present study.
EXPERIMENTAL SECTION

Liquids. Nine common liquids with various physical properties and functional groups, listed in

Table 1, were employed as samples. Water was purified with a Milli-Q system (Direct-Q UV,

Millipore), while the other liquids were of analytical reagent grade. The surface tension (o), density



(p), and viscosity (7) of these liquids are given. The suppliers and purities of these liquids are listed
in Table S1 in the Supporting Information.

Table 1. Surface tension (o), density (p), and viscosity (1) of used liquids at 25 °C.?°

No. Name o/mNm! p/gem’ n/mPas
1 Ethanol 22.0° 0.785 1.083

2 4-Methyl-2-pentanone 23.3° 0.796 0.546

3 Dodecane 24.9 0.745 1.378

4 D-Limonene 27.3¢ 0.838 0.923

5 N,N-Dimethylformamide (DMF) 36.4 0.944 0.802

6 Dimethyl sulfoxide 43.0 1.10 1.991

7 Ethylene glycol (EG) 48.0 1.11 16.17

8 Formamide 58.2 1.13 3.302

9 Water 72.6 0.998 0.890

2 Reference 21, ® Value at 23.7 °C, © Value at 23.1 °C

Apparatus and Methods. To measure the height change of a liquid surface, we employed a
detection system similar to that used in the previous study.'® This system consisted of an inverted
microscope (IX-51, Olympus) with a microscope objective (UPlanFl, 10x, Olympus), two optical
fibers, a light source (MegaLight 100, Schott; tungsten halogen lamp, power 100 W), and an
avalanche photodiode (C5460-01, Hamamatsu Photonics; APD), as shown in Figure 1. A
homemade glass microcell (4.5 mm in radius (r¢), 2 mm in depth (d.)),'® was filled with just the
right amount of liquid to avoid meniscus formation and rising of the liquid central region. This
means that the top face of the microcell is at the same level as the liquid surface. The microcell
with a liquid was placed on a motorized xy-axis stage (PMG413-RO5AR, Suruga Seiki) on the
microscope stage. The xy-axis stage was driven by a motor driver (MS-C2, Chuo Precision

Industrial). White light from the light source was irradiated by the objective to an arbitrary position



on the flat round liquid surface through one optical fiber (core diameter 1.0 mm). The reflected
light was collected by the same objective and introduced into the APD through the other optical
fiber (core diameter 300 um). This system can convert the height change of the liquid surface into
a voltage change.'®

A mylar speaker (MSI28-12R, SPL Limited; diameter 28 mm, impedance 8 ) was used to
generate sound waves. This speaker was connected to a function generator (FG-4105, IWATSU)
and driven with an alternating current (ac) with a peak-to-peak voltage (Uyp) 0of 0.55 —3.3 V and
a frequency (fex) of 20 — 180 Hz. The speaker was set to a manipulator (M-152, Narishige) on the
same xy-stage on the microscope stage with the speaker facing downward. The centers of the

speaker and the microcell were aligned, as shown in Figure 1.
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Figure 1. Schematic illustration of the detection system for oscillating the liquid surface with a
speaker. d is the distance between the bottom of the speaker and the liquid surface. H, Half mirror;

O, optical fiber; T, tube lens.

The APD output was connected to a two-phase lock-in amplifier (SR830, SRS) to measure the
root-mean-square amplitude (zmms) and phase (@) of the height change, and it was also connected
to an oscilloscope (DS1054Z, RIGOL Technologies) to measure the waveform of the periodic
height change (z) of the liquid surface. The output of the function generator was also used as the

reference signal for both the lock-in amplifier and the oscilloscope. After applying the ac voltage



to the speaker and waiting at least 1 s, the steady-state height change of the liquid surface was
measured. A homemade program written in LabVIEW (National Instruments) controlled the motor
driver and the function generator, and the same program also transferred the digital data from the
lock-in amplifier and the oscilloscope to a personal computer. All experiments were carried out at
25+1°C.
RESULTS AND DISCUSSION

Measurements and Analysis of the Liquid Surface Resonances. The height changes of all the
liquid surfaces showed sine waves, and their zmms and ¢ values were measured as a function of fex.
The ¢ values measured with the lock-in amplifier are in the range of —180° to 180°. Therefore,
when the ¢ increases beyond 180°, it becomes a negative value. In other words, the output ¢
becomes discontinuous even if the ¢ changes monotonously. To improve this, 360° was added to
the ¢ in the frequency range higher than the discontinuous point. The details are shown in Section
S2 in the Supporting Information. Figures 2a and b illustrate an instance of zims and ¢ plots against
fex for the dodecane surface. We successfully measured a few pum-level zims with the present
apparatus. Clearly, there are enhancements in zms at 33, 68, and 110 Hz. The ¢ value rises sharply

at these frequencies. When U, applied to the speaker increased, zms increased but ¢ did not change.
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Figure 2. Dependence of (a) zms (b) ¢, and (c) Ag Afex ! of the dodecane surface on fex. d = 1.5

mm, excitation and detection positions: center. Up, = 1.1 V (©), 2.8 V (®). The ¢ and Ap Afex !

values for Upp = 1.1 V were almost the same as those for Upp = 2.8 V, and thus only those for Uy

= 2.8 V are shown. The lines in (a) and (b) are regression curves.

At first, the dependencies of zms and ¢ were analyzed with equations based on a forced
oscillation model.'®?? The basic equation for a one-dimensional forced oscillation of a substance
is:

d?z  dz .
rnF+cE+kz=Fexsm(a)ext) (1)



where m is the mass of the substance, z is its displacement, 7 is time, ¢ is the damping coefficient,
k 1s the spring constant, and Fex is the amplitude of an external force at an angular frequency, wex

(= 2mfex). The steady-state solution of eq 1 is:

z= zosin(wext - (p) (2)
F
Zp= \/Ezrms = sz 7 32 (3)
\/(k—mwex )"+ wey
Q= tan_l LXZ (4)
k—muw,gy

Equation 3 corresponds to a single resonance, but we observed three resonances. Therefore, we
transformed this equation into the sum of multiple (») resonances and fit the dependence of zims in
Figure 2a to the resulting eq 5 by the nonlinear least-squares method.

Fe X

Zp = \/Ezrms = Z

2,2 2
n \/(kn —MpWey ) +Cp Wey

> + Zbg (5)
where zpg is the residue. The zms values calculated with the obtained m,, c,, and &, values (n =1 —
3) (Section S3 in the Supporting Information) are shown as lines, which reproduce the

experimental values well. Equation 4 corresponds to a single resonance, and thus we also

transformed this equation into the sum of multiple () resonances as eq 6.

q):ztan_lLexz_{_(pbg (6)
n

kn — MpWex

where gubg 1s the residue. The values calculated with this equation and the parameters obtained from

eq 5 are shown as a black line in Figure 2b, which also reproduces the experimental values well.
The resonance angular frequency (wrs = 27fss; frs resonance frequency) of eq 1 is equal to Jld_m ,

where the Zms maximum occurs at wex = +/k/m —c?/2m? from eq 3. In the present study, kn/m, >>

cn?/2my,* for all n (Section S3 in the Supporting Information), and the zms maximum occurs at

almost fis (= (1/2n)/k,/m, ) within 0.3% difference.
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In the case of the single resonance, the ¢ changes from 0° to 180° (maximum change 90°) in the
increasing wex range around wrs from eq 4. In the case of the multiple resonances, the second and
third ¢s change from 180° to 360° (maximum change 270°) and from 360° to 540° (maximum
change 450°), respectively, from eq 6. Note that ¢ in the present study was measured based on the
voltage applied to the speaker. Since the phase of the sound wave force is 90° advanced from that
of the speaker vibration, the theoretical first, second, and third ¢s of the liquid surface based on
the applied voltage change from —90° to 90° (maximum change 0°), 90° to 270° (maximum change
180°), and 270° to 450° (maximum change 360°), respectively. The experimental ¢ values in
Figure 2b were —49°, 103°, and 277° at the resonance frequencies (33, 68, and 110 Hz,
respectively), which deviate from the theoretical values. ¢ includes the transmission process of the
sound wave energy to the liquid surface, which may be the cause of the deviation, but the details
are unknown. To make the sharp increase in ¢ more obvious, the ¢ slope (Ap Afex ') was calculated
numerically and plotted against fex in Figure 2¢. The frequencies of the z:ms maxima exactly agree
with those of Ap Afex !. Therefore, the resonance phenomenon occurring at the liquid surface is
consistent with the one-dimensional forced oscillation theory.

In the case of oscillation of a liquid surface, m, ¢, and k in eq 1 correspond to p, #, and o of the
liquid, respectively.'® In other words, the f;s depends on a/p and is independent of viscosity. On the
other hand, the full width at the 1/+/2 -times peak maximum is approximately equal to cu/mn,
meaning that the higher the viscosity, the broader the peak.

Similar results to Figure 2 were obtained for the other liquids, and the fis values for the other
liquid surfaces were measured in the same way with the centered excitation.

Dependence of zrms on Upp and d. Figure 3a shows a proportional relationship between Zims>

and U,y at the frs. It is known that the oscillation energy and the ac electric energy are proportional

11



to zms” and Upy?, respectively, indicating that the sound wave energy is converted proportionally
to the oscillation energy of the liquid surface. The resonance frequencies are independent of Upp

(see Figure 2a), meaning that the intrinsic f;s values were obtained.

8

o 4 r (b)
6

: =5

S 2

E =

N"2 N 1 |
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0 1 2 3
Upp? 1 V? d/ mm

Figure 3. (a) Proportional relationship between zms> of the dodecane surface and Upy” applied to
the speaker. fex = 33 Hz, d = 1.5 mm, excitation and detection positions: center. (b) Dependence of
Zms Of the dodecane surface on d. fex = 33 Hz, Upp = 2.8 V, excitation and detection positions:

center.

We also measured the zims as a function of the distance (d) between the dodecane surface and
the bottom of the speaker (see Figure 1). Figure 3b shows that the zims decreases with the increase
in d, indicating that the sound wave energy diffuses with distance. Similar results to Figure 3 were
obtained for the other liquids.

Deformation of Liquid Surface. The speaker and the microcell were moved with the same xy-
stage to keep the excitation condition constant, and the zms and ¢ of the liquid surface were
measured at various positions to know the deformation of the liquid surface. The reproducibility
of the position was high, but the accuracy of the position was about =150 pm.

The fis values of the DMF surface were already obtained as 35, 74, and 121 Hz. At these

frequencies, the zims and ¢ were measured at various positions. First, the relationship between zims

12



and ¢ at 35 Hz is shown as a bar graph in Figure 4a. There are only two clusters; the weighted
means were —123° + 6° (cluster o) and 64° + 6° (cluster B), and their difference is 187° £ 9°
(confidence limit with 95% probability). These facts mean that the cluster a is in the same one
phase and the cluster B is also in the same other phase, and that the clusters a and  are in opposite
phases. In other words, when the surface of the cluster a rises to the top, the surface of the cluster
B falls to the valley, and vice versa. In Figure 4b, the normalized zims and ¢ are shown as colored
circles (red and blue) at the measured positions of the DMF surface. The clusters a and B are shown
as red and blue circles, respectively. The color intensity of the circles is proportional to the zims
value. This figure clearly shows a centrosymmetric oscillation. The cluster a (red circle) occupies
the center, and the cluster B (blue circle) occupies the outside. The zms values are almost 0 at the
boundary between the clusters o and 3, and the location is shown as a green broken line, which

corresponds to the oscillation node.

13
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Figure 4. (a,c,e) Relationship between zms and ¢ at various positions of the DMF surface at
resonance frequencies (35, 74, and 121 Hz, respectively). (b,d,f) Deformation images of the DMF

surface at resonance frequencies (35, 74, and 121 Hz, respectively). The green broken lines
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represent the nodes, and blue and red broken lines represent the loops. The outermost gray circle

represents the DMF edge. Upp, = 3.3 V, d = 1.5 mm. The excitation position was centered.

The bar graph between zmms and ¢ of the DMF surface at 74 and 121 Hz are shown in Figure 4c
and 4e, respectively; again, there are only two clusters at these frequencies and their differences
are 192° + 9° and 198° + 13°, respectively, which are approximately 180°. The deformations at
these frequencies are shown in Figure 4d and 4f, respectively. These figures clearly show the
centrosymmetric oscillation. Similarly, the nodes are shown as green broken lines. The number of
node lines is 2 and 3 for 74 Hz and 121 Hz, respectively.

The speaker and the microcell were moved more finely, and the zims and ¢ were measured by
changing the detection positions on the X- and Y-axes in Figure 4b. We denoted the distances from
the origin (O) as X and Y, respectively. In Figure 5, the zms is plotted against X or Y where ¢
belongs to the cluster a, and (—1)xzms is plotted where ¢ belongs to the cluster . The results on
the X- and Y-axes are in good agreement, which means that the oscillation is centrosymmetric
again. The zeroth-order Bessel functions of the 1*' kind were fit to the results with the least-squares
method and the best-fit Bessel functions are shown as green curves. The experimental points are
almost identical to the Bessel functions. The best-fit Bessel functions imply that the edge is not a
node but an antinode. The Bessel functions that were obtained by fixing the edge to the antinodes
of the maximum amplitude with the least-squares method are shown as red lines in Figure 5. The
green and red lines are almost identical, indicating that the edge is a loop (an antinode of the
maximum amplitude). The positions where zms = 0 correspond to nodes, which agree well with
the green broken lines in Figure 4.

To identify the oscillation mode, information not only at the center but also near the edge is

important. As the oscillation mode becomes higher, the distance between the node and the edge

15



becomes shorter, as shown in Figure 4f and Figure 5c. Therefore, we think that the resolution of

the present apparatus does not allow the identification of higher mode deformations.

4
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Figure 5. Deformation of the DMF surface at resonance frequencies (a, 35 Hz; b, 74 Hz; c, 121
Hz). (e) X, (®) Y, (—) best-fit Bessel functions, (—) best-fit Bessel functions obtained by fixing the
edge (4.5 mm) to loops. The uncertainties in X and ¥ were £150 um. Upp, =3.3 V, d = 1.5 mm. The

excitation position is centered.

Linear Relationship between fis and ¢"5p~"5, We already derived an equation'® between fis

—0.

and ¢°3p %3 in the same way as for the two-dimensional round drum, but now we derive a new

equation including the hydrodynamic theory as follows. At first, the velocity potential, @, of

centrosymmetric and standing waves occurring on a round liquid surface is expressed as:>%*

coshé(z+d,)

Z,0) =B
Hr.z.) coshéd,

Jo(&r) cos wt (7
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where 7 is the distance from the center, z is the upward normal axis (z = 0 at the surface), B is a
constant, d. is the depth of the liquid, Jy is the zeroth-order Bessel function of the 1% kind, and @
is the angular frequency. ¢ is equal to A(ij)/rc, where A(i,j) is the eigenvalue related to the
oscillation mode (i,j) and 7 is the radius of the round liquid surface. Of course, this ¢ satisfies the
equation of continuity for incompressible liquids (V?¢ = 0). From the dynamical boundary

condition of the liquid surface,?

2 2
Zt—f{—%;—sz%:o on z = 0 (surface) (8)
where g is the acceleration of gravity. By substituting ¢ of eq 7 into eq 8, fis is approximately

obtained as:

1 063
fio ~— || =+ g€ [tanh&d, 9)
2n o

The detailed derivation is given in Section S4 in the Supporting Information. The present

experimental conditions correspond to the deep liquid waves, that is, tanh de = 1 with & (= 0.85,

1.56, and 2.26 mm™ !, see the next sentences) and d. (2 mm) values. Therefore,

1
PR (10)
2\ p

In the Lamb’s equation and the QELS method, the wavenumber is used instead of ¢ in eq 10. As
for the surface waves, the surface tension wave (ripples) and the gravity wave are known. Each
restoring force is caused by the surface tension and the gravity, respectively. From eq 10, the

former is dominant for ¢ > /pg/c and the latter is dominant for ¢ < y/pg/o . The |/pg/oc values were

calculated to be 0.36 — 0.59 mm™! for the liquids used, which are smaller than the & values.
Therefore, we can say that the oscillation of the liquid surfaces in the present study is the surface
tension wave. In the followings, we will neglect the contribution of the gravity wave and f;s can be

expressed as:

17
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According to eq 11, we plotted the obtained fis against ¢°>p *> in Figure 6. We call the 3 groups
the 1%, 2", and 3™ groups from the lower resonances. This figure shows a proportional relationship
with a high correlation for each group, meaning that the oscillations of all liquid surfaces in each
group belong to the same oscillation mode. The present 1% group results agree well with the
previous ones (gray points).!® This fact means that the resonances by the dielectric force'® are the
same as those by the sound wave, and that the intrinsic resonances of the liquid surfaces are
obtained regardless of the excitation methods. As for EG (No.7), the 3™ fis cannot be observed.
This would be due to its higher viscosity by one order of magnitude (Table 1), which leads to the
broadening of the peak width as mentioned above. Figure 2(a) shows that the peak width of the 3™
resonance is wider than those of the 1% and 2™ resonances. These factors would prevent the

observation of the 3™ f;s of EG.

180 3
160 | o]
140 | °
N 120 @
T 100 } o° 8 &2
~ 80 | ‘nggé
"l--..,_
| 1 4105 ! 1st
40 | Sgyf
20
0 1 1 1 1
0 2 4 6 8 10

103 5055705 | m15 g1
Figure 6. Proportional relationships between f;s and 6™°p % for the three groups (o, 1%; », 2"%; o,

3. The numbers in the figure correspond to the liquid Nos. in Table 1. The gray plots are the

previous results (No.10 N-methylformamide).'®
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The i of the oscillation mode is the number of node lines passing through the center, and thus i
= 0. When the edge is fixed physically, the j is the number of concentric node lines including the

edge node.?? In the present liquid surfaces, however, the edge is not the node but the loop, and

therefore j is not an integer. We define j as 13, 2, and 33 for the 1%, 2", and 3" groups,

respectively. The 4(0,13), 4(0,23), and 4(0,33) values are obtained as 3.83, 7.02, and 10.17,

respectively, from the point where the zeroth-order Bessel functions of the 1% kind shows the
maximum amplitude.?* The C values in eq 11 were calculated with these 4 and r. (= 4.5 mm)
values, and they were plotted against the obtained slope values in Figure 6. The result is shown in

Figure 7(a), which means that both are in good agreement.

25

77 1.0
a 0

c 20 (@ 08 | (b)
1 s
Eas ¢ Eos |
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— 10 } 7 < 0.4 .
OO 5 | 51// 02 B ®

0.0

0 1

0 5 10 15 20 25 017) (023 (033)
C.. /103 m15 Oscillation mode
th

Figure 7. (a) Correlation between the observed slopes (Cobs) in Figure 6 and the theoretical slopes
(Cm) calculated with eq 11. (b) Calculated oscillation depth (d,) as a function of the oscillation

mode.

Motion of Liquid near the Surface. As mentioned above, tanh ¢dc = 1 and thus the velocity
potential is simply given from eq 7 as:

Hr.z,t) = B e Jo(&r) cos wt (12)
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The oscillation amplitudes near a liquid surface in the » and z directions (4, and A4,) can be

expressed from the kinematical boundary condition as:!'”
A = j.%dt :—B—Ee&J (ér)sin ot (13)
or w 1
_(9¢,, _B & .
A, = [ oodt =¥ (Er)sinot (14)

where J) is the first-order Bessel function of 1% kind. 4; and A4 at the same time (¢ = —n/2w) are
calculated with eqs 13 and 14, and are shown schematically in Figure 8. 4, is analogous to the
surface shape. 4: and 4, decay exponentially toward the bottom, and both work to flatten the liquid

surface. Only 4; and A4 exist at the nodes and loops, respectively, from the surface to the bottom.

loop node loop node loop

¢ ¥ BV ¥ &

2r,

Figure 8. Cross-sectional view of the surface deformation (—) and the motion (oscillation
amplitude) of the liquid (- ) of the oscillation mode (0, 1% ). The motion decays exponentially from

the surface to the bottom. The d, for the oscillation energy of this oscillation mode is shown as a

broken line.

A round drum has a membrane, the edge of which is physically fixed, and thus the edge becomes
anode.?? On the other hand, the edge of the liquid surface cannot be physically fixed. In the present
liquid case, the boundary condition is d¢/dr = 0 at » = r. from the surface to the bottom,> and
therefore the liquid at the edge moves only vertically along the edge wall in Figure 8, that is, 4; =
0. As the result, the edge becomes a loop. This is confirmed with the experimental data (Figures 4

and 5).
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Since the oscillation energy is proportional to 4,* or 4,7, its dependence on z is expressed as e>
from eqs 13 and 14. Similar to the penetration depth of the evanescent light wave,? the oscillation
depth (d,) is defined as the depth where the oscillation energy decays to 1/e times (e: Napier’s
constant). d, is equal to 1/(2¢), and the calculated d, is shown in Figure 7(b). d, decreases with the
increase in j, because the larger the number of nodes, the smaller the distance between the nodes,
as shown in Figure 4, and the shallower the oscillation depth. The microcell used has a depth of 2

mm, which is sufficient compared with the d,, as shown in Figure 7b. At the bottom of the

microcell, the oscillation energy decays by 3%, 0.2%, and 0.01% for the (0,1%), (0,2%), and (0,

1 )
3-) modes, respectively.

CONCLUSIONS

The center of a small and round liquid surface was excited by a sound wave emitted from a
common speaker, and its resonance frequencies (fs) were measured in the range of 20 — 180 Hz
with a microscope-based system. Nine liquids with various physical properties and functional
groups were employed as samples, and proportional relationships between fis and ¢°p %> were
obtained with a high correlation. In addition, the oscillation amplitude and phase at fi; were
measured at different positions on the liquid surface, and the deformation of the liquid surface was

obtained. From the deformation information, the centrosymmetric oscillation modes of the liquid
1 1 1 . . . .
surface, (0, 15 ), (0, 25 ), and (0, 35 ), were identified. Finally, an equation based on the

hydrodynamics has been successfully given to the above proportional relationships for the first
time.

It is difficult to measure the deformation of higher-order oscillation modes with the resolution
of the present system, and therefore it will be necessary to develop a new measurement system

with new concepts and means, such as imaging, that has higher resolution.
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The proportional relationship between fis and ¢™p obtained in this study, which is

independent of the other physical properties and functional groups of liquids, means that this
relationship would become a new method for measuring surface tension because the density of
liquids is easy to measure. This method requires only 130 pL of liquid, and the microcell used is
the appropriate size to be manually filled with a liquid; it is a feature not found in other methods.
Therefore, it is expected to be applied in the future to extremely valuable samples, such as
biological samples or solutions of substances that are difficult to synthesize.
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