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ABSTRACT: Various methods have been developed for measuring the surface tension of liquids, 

and the present study proposes a new method for measuring the surface tension of liquids. A small 

(9 mm in diameter) round liquid surface was excited by sound waves with a common speaker. 

Nine liquids possessing various physical properties and functional groups were employed, and 

three resonance frequencies (frs) were observed for each liquid in a frequency range of 20 – 180 

Hz. The resonances were analyzed with a forced oscillation model. In addition, the amplitudes and 

phases of the resonance oscillations at various positions of the liquid surface were measured, and 

the whole deformations of the liquid surface were determined. The deformation was compared 

with the Bessel functions, and the oscillation modes and boundary conditions were decided. Finally, 
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proportional relationships between frs and σ0.5ρ−0.5 (σ: surface tension, ρ: density) with high 

correlations were obtained, which were supported by a new theoretical equation using 

hydrodynamics. 

INTRODUCTION 

The air/liquid interface (the liquid surface) is a plane of discontinuity in the physical properties of 

a liquid. The surface tension (σ) of a liquid is one of the fundamental physical properties of the 

liquid. If a liquid is contaminated with surface-active impurities, its surface tension is highly 

reduced. Thus, the surface tension is also one of the purity indices of liquids. In our lives, surface 

tension is related to the foaming of water on washing clothes or dishes and the foaming of beer. 

These bubbles are caused by surface-active substances. 

Surface tension is an essential property for surface chemists. When a surfactant shows an 

adsorption equilibrium to the surface, the σ value decreases with an increase in the surfactant bulk 

concentration. The surface excess (the surface concentration) of the surfactant can be obtained 

from the relationship between σ and the bulk concentration by the Gibbs equation. When a 

surfactant is not dissolved in a sub-phase solvent, a π–A relationship (π, surface pressure; A, area 

per molecule) is made. The π–A relationship can be used to know the state of the surfactant 

monolayer on the surface, such as solid phase, liquid-condensed phase, liquid-expanded phase, or 

gaseous phase. π is equal to σ0 − σ, where σ0 is the surface tension of the pure solvent. In addition, 

surfactant monolayers can be assembled on a flat plate by the well-known Langmuir–Blodgett 

(LB) film preparation method (LB method). In the LB method, the surface tension is always 

monitored to keep the state of the monolayers constant.1 

Various methods have been developed to measure the surface tension, almost all of which are 

based on the Young–Laplace equation, such as the drop weight method, the hanging drop method, 
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and the Wilhelmy method.1,2 These methods measure the force on a curved surface or its related 

properties (droplet shape, etc.) and some of them use a probe. For example, in the widely employed 

Wilhelmy method, a small plate is placed on the surface of a solution and the force on the plate is 

measured to determine the surface tension. This is a simple method, but the contact angle between 

the plate and the solution is needed to evaluate the surface tension. In the methods using probes, 

the affinity between the probe and the solution sometimes has a significant effect on the surface 

tension value, and thus the development of probe-free methods is desirable. 

A few methods based on principles other than the Young–Laplace equation have been reported. 

Lamb derived an equation among surface tension, density, wavenumber, and frequency of the 

surface tension wave (ripple, capillary wave) generated on a flat and infinitely wide liquid surface.3 

Based on this Lamb’s equation, the quasi-elastic laser scattering (QELS) method was developed 

as a probe-free method for measurements of surface tension.4-9 In the QELS method, the 

wavenumber and frequency of the equally spaced waves on a flat and wide liquid surface were 

measured simultaneously, and the surface tension was obtained. Recently, Nomoto et al. 

determined surface tension and surface convection simultaneously by an improved QELS 

method.6,7 Since the QELS method measures the frequencies in the kHz range and large 

wavenumbers (small wavelengths), it is suitable for measurements in the micrometer range.8 

Lamb and Levich reported an equation for the frequency of single droplet oscillation with 

surface tension and density.3,10 Ishiwata et al. measured the resonance oscillation of droplets in air 

excited by an electric field.11 Bzdek et al. measured the resonance oscillation associated with the 

fusion of two droplets levitated in air by optical tweezers.12,13 In addition, Ishida et al. measured 

the resonance oscillation of droplets placed on a vibrating substrate.14,15 In these studies, they used 
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the droplet equation or a similar equation to evaluate the surface tensions. These methods are also 

probe-free methods. 

On the other hand, we investigated standing, unequally spaced waves on a small round liquid 

surface excited by a dielectric force. We measured the resonance oscillation of the surface and 

analyzed it with the Bessel functions to evaluate the surface tension.16 This method is a probe-free 

method based on a principle that is not one of the above-mentioned principles. Sakai et al. 

described oscillations on liquid surfaces with an integral of Bessel functions,17 but we related a 

specific resonance to a corresponding Bessel function. A hydrodynamic study was recently 

reported in which a liquid was placed in a large container (diameter 70 mm, depth 22 mm). The 

container was vibrated, and the Faraday waves generated on the liquid surface were related to 

Bessel functions, but the effect of gravity is greater than that of surface tension.18 The present 

paper is intended to reinforce the inadequate experimental evidences on oscillation modes and 

boundary conditions in the previous paper, to improve the sensitivity, and to derive new equations 

and evaluate the results more quantitatively by adding hydrodynamic considerations. It will also 

be shown that the contribution of surface tension waves is larger than that of gravity waves. Laser 

light,17 an electric field,16 mechanical vibration,18 and ultrasonic wave19 have been used as 

noncontact external forces to deform the liquid surface, but simpler sound waves are employed in 

the present study. 

EXPERIMENTAL SECTION 

Liquids. Nine common liquids with various physical properties and functional groups, listed in 

Table 1, were employed as samples. Water was purified with a Milli-Q system (Direct-Q UV, 

Millipore), while the other liquids were of analytical reagent grade. The surface tension (σ), density 
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(ρ), and viscosity (η) of these liquids are given. The suppliers and purities of these liquids are listed 

in Table S1 in the Supporting Information. 

Table 1. Surface tension (σ), density (ρ), and viscosity (η) of used liquids at 25 °C.20 

No. Name σ / mN m−1 ρ / g cm−3 η / mPa s 

1 Ethanol 22.0a 0.785 1.083 

2 4-Methyl-2-pentanone 23.3b 0.796 0.546 

3 Dodecane 24.9 0.745 1.378 

4 D-Limonene 27.3c 0.838 0.923 

5 N,N-Dimethylformamide (DMF) 36.4 0.944 0.802 

6 Dimethyl sulfoxide 43.0 1.10 1.991 

7 Ethylene glycol (EG) 48.0 1.11 16.1a 

8 Formamide 58.2 1.13 3.302 

9 Water 72.6 0.998 0.890 
a Reference 21, b Value at 23.7 °C, c Value at 23.1 °C 

Apparatus and Methods. To measure the height change of a liquid surface, we employed a 

detection system similar to that used in the previous study.16 This system consisted of an inverted 

microscope (IX-51, Olympus) with a microscope objective (UPlanFl, 10×, Olympus), two optical 

fibers, a light source (MegaLight 100, Schott; tungsten halogen lamp, power 100 W), and an 

avalanche photodiode (C5460-01, Hamamatsu Photonics; APD), as shown in Figure 1. A 

homemade glass microcell (4.5 mm in radius (rc), 2 mm in depth (dc)),16 was filled with just the 

right amount of liquid to avoid meniscus formation and rising of the liquid central region. This 

means that the top face of the microcell is at the same level as the liquid surface. The microcell 

with a liquid was placed on a motorized xy-axis stage (PMG413-R05AR, Suruga Seiki) on the 

microscope stage. The xy-axis stage was driven by a motor driver (MS-C2, Chuo Precision 

Industrial). White light from the light source was irradiated by the objective to an arbitrary position 
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on the flat round liquid surface through one optical fiber (core diameter 1.0 mm). The reflected 

light was collected by the same objective and introduced into the APD through the other optical 

fiber (core diameter 300 µm). This system can convert the height change of the liquid surface into 

a voltage change.16 

A mylar speaker (MSI28-12R, SPL Limited; diameter 28 mm, impedance 8 Ω) was used to 

generate sound waves. This speaker was connected to a function generator (FG-4105, IWATSU) 

and driven with an alternating current (ac) with a peak-to-peak voltage (Upp) of 0.55 – 3.3 V and 

a frequency (fex) of 20 – 180 Hz. The speaker was set to a manipulator (M-152, Narishige) on the 

same xy-stage on the microscope stage with the speaker facing downward. The centers of the 

speaker and the microcell were aligned, as shown in Figure 1. 
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Figure 1. Schematic illustration of the detection system for oscillating the liquid surface with a 

speaker. d is the distance between the bottom of the speaker and the liquid surface. H, Half mirror; 

O, optical fiber; T, tube lens. 

The APD output was connected to a two-phase lock-in amplifier (SR830, SRS) to measure the 

root-mean-square amplitude (zrms) and phase (φ) of the height change, and it was also connected 

to an oscilloscope (DS1054Z, RIGOL Technologies) to measure the waveform of the periodic 

height change (z) of the liquid surface. The output of the function generator was also used as the 

reference signal for both the lock-in amplifier and the oscilloscope. After applying the ac voltage 
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to the speaker and waiting at least 1 s, the steady-state height change of the liquid surface was 

measured. A homemade program written in LabVIEW (National Instruments) controlled the motor 

driver and the function generator, and the same program also transferred the digital data from the 

lock-in amplifier and the oscilloscope to a personal computer. All experiments were carried out at 

25 ± 1 °C. 

RESULTS AND DISCUSSION 

Measurements and Analysis of the Liquid Surface Resonances. The height changes of all the 

liquid surfaces showed sine waves, and their zrms and φ values were measured as a function of fex. 

The φ values measured with the lock-in amplifier are in the range of −180° to 180°. Therefore, 

when the φ increases beyond 180°, it becomes a negative value. In other words, the output φ 

becomes discontinuous even if the φ changes monotonously. To improve this, 360° was added to 

the φ in the frequency range higher than the discontinuous point. The details are shown in Section 

S2 in the Supporting Information. Figures 2a and b illustrate an instance of zrms and φ plots against 

fex for the dodecane surface. We successfully measured a few µm-level zrms with the present 

apparatus. Clearly, there are enhancements in zrms at 33, 68, and 110 Hz. The φ value rises sharply 

at these frequencies. When Upp applied to the speaker increased, zrms increased but φ did not change. 
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Figure 2. Dependence of (a) zrms (b) ϕ, and (c) Δϕ Δfex

−1 of the dodecane surface on fex. d = 1.5 

mm, excitation and detection positions: center. Upp = 1.1 V (○), 2.8 V (●). The ϕ and Δϕ Δfex
−1 

values for Upp = 1.1 V were almost the same as those for Upp = 2.8 V, and thus only those for Upp 

= 2.8 V are shown. The lines in (a) and (b) are regression curves. 

 

At first, the dependencies of zrms and φ were analyzed with equations based on a forced 

oscillation model.16,22 The basic equation for a one-dimensional forced oscillation of a substance 

is: 
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where m is the mass of the substance, z is its displacement, t is time, c is the damping coefficient, 

k is the spring constant, and Fex is the amplitude of an external force at an angular frequency, ωex 

(= 2πfex). The steady-state solution of eq 1 is: 

( )ϕ−= tωzz ex0sin  (2) 
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Equation 3 corresponds to a single resonance, but we observed three resonances. Therefore, we 

transformed this equation into the sum of multiple (n) resonances and fit the dependence of zrms in 

Figure 2a to the resulting eq 5 by the nonlinear least-squares method. 
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where zbg is the residue. The zrms values calculated with the obtained mn, cn, and kn values (n = 1 – 

3) (Section S3 in the Supporting Information) are shown as lines, which reproduce the 

experimental values well. Equation 4 corresponds to a single resonance, and thus we also 

transformed this equation into the sum of multiple (n) resonances as eq 6. 

bg2
ex

ex1tan ϕϕ +
−

= ∑ −

n nn

n

ωmk

ωc  (6) 

where φbg is the residue. The values calculated with this equation and the parameters obtained from 

eq 5 are shown as a black line in Figure 2b, which also reproduces the experimental values well. 

The resonance angular frequency (ωrs = 2πfrs; frs resonance frequency) of eq 1 is equal to mk/ , 

where the zrms maximum occurs at ωex = 22/2/ mcmk −  from eq 3. In the present study, kn/mn >> 

cn
2/2mn

2 for all n (Section S3 in the Supporting Information), and the zrms maximum occurs at 

almost frs (= nn mk /)(1/2π ) within 0.3% difference. 
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In the case of the single resonance, the φ changes from 0° to 180° (maximum change 90°) in the 

increasing ωex range around ωrs from eq 4. In the case of the multiple resonances, the second and 

third φs change from 180° to 360° (maximum change 270°) and from 360° to 540° (maximum 

change 450°), respectively, from eq 6. Note that φ in the present study was measured based on the 

voltage applied to the speaker. Since the phase of the sound wave force is 90° advanced from that 

of the speaker vibration, the theoretical first, second, and third φs of the liquid surface based on 

the applied voltage change from −90° to 90° (maximum change 0°), 90° to 270° (maximum change 

180°), and 270° to 450° (maximum change 360°), respectively. The experimental φ values in 

Figure 2b were −49°, 103°, and 277° at the resonance frequencies (33, 68, and 110 Hz, 

respectively), which deviate from the theoretical values. φ includes the transmission process of the 

sound wave energy to the liquid surface, which may be the cause of the deviation, but the details 

are unknown. To make the sharp increase in φ more obvious, the φ slope (Δφ Δfex
−1) was calculated 

numerically and plotted against fex in Figure 2c. The frequencies of the zrms maxima exactly agree 

with those of Δφ Δfex
−1. Therefore, the resonance phenomenon occurring at the liquid surface is 

consistent with the one-dimensional forced oscillation theory. 

In the case of oscillation of a liquid surface, m, c, and k in eq 1 correspond to ρ, η, and σ of the 

liquid, respectively.16 In other words, the frs depends on σ/ρ and is independent of viscosity. On the 

other hand, the full width at the 21/ -times peak maximum is approximately equal to cn/mn,22 

meaning that the higher the viscosity, the broader the peak. 

Similar results to Figure 2 were obtained for the other liquids, and the frs values for the other 

liquid surfaces were measured in the same way with the centered excitation. 

Dependence of zrms on Upp and d. Figure 3a shows a proportional relationship between zrms
2 

and Upp
2 at the frs. It is known that the oscillation energy and the ac electric energy are proportional 
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to zrms
2 and Upp

2, respectively, indicating that the sound wave energy is converted proportionally 

to the oscillation energy of the liquid surface. The resonance frequencies are independent of Upp 

(see Figure 2a), meaning that the intrinsic frs values were obtained. 

 
Figure 3. (a) Proportional relationship between zrms

2 of the dodecane surface and Upp
2 applied to 

the speaker. fex = 33 Hz, d = 1.5 mm, excitation and detection positions: center. (b) Dependence of 

zrms of the dodecane surface on d. fex = 33 Hz, Upp = 2.8 V, excitation and detection positions: 

center. 

We also measured the zrms as a function of the distance (d) between the dodecane surface and 

the bottom of the speaker (see Figure 1). Figure 3b shows that the zrms decreases with the increase 

in d, indicating that the sound wave energy diffuses with distance. Similar results to Figure 3 were 

obtained for the other liquids. 

Deformation of Liquid Surface. The speaker and the microcell were moved with the same xy-

stage to keep the excitation condition constant, and the zrms and φ of the liquid surface were 

measured at various positions to know the deformation of the liquid surface. The reproducibility 

of the position was high, but the accuracy of the position was about ±150 µm. 

The frs values of the DMF surface were already obtained as 35, 74, and 121 Hz. At these 

frequencies, the zrms and φ were measured at various positions. First, the relationship between zrms 
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and φ at 35 Hz is shown as a bar graph in Figure 4a. There are only two clusters; the weighted 

means were −123° ± 6° (cluster α) and 64° ± 6° (cluster β), and their difference is 187° ± 9° 

(confidence limit with 95% probability). These facts mean that the cluster α is in the same one 

phase and the cluster β is also in the same other phase, and that the clusters α and β are in opposite 

phases. In other words, when the surface of the cluster α rises to the top, the surface of the cluster 

β falls to the valley, and vice versa. In Figure 4b, the normalized zrms and φ are shown as colored 

circles (red and blue) at the measured positions of the DMF surface. The clusters α and β are shown 

as red and blue circles, respectively. The color intensity of the circles is proportional to the zrms 

value. This figure clearly shows a centrosymmetric oscillation. The cluster α (red circle) occupies 

the center, and the cluster β (blue circle) occupies the outside. The zrms values are almost 0 at the 

boundary between the clusters α and β, and the location is shown as a green broken line, which 

corresponds to the oscillation node. 
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Figure 4. (a,c,e) Relationship between zrms and ϕ at various positions of the DMF surface at 

resonance frequencies (35, 74, and 121 Hz, respectively). (b,d,f) Deformation images of the DMF 

surface at resonance frequencies  (35, 74, and 121 Hz, respectively). The green broken lines 
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represent the nodes, and blue and red broken lines represent the loops. The outermost gray circle 

represents the DMF edge. Upp = 3.3 V, d = 1.5 mm. The excitation position was centered. 

The bar graph between zrms and φ of the DMF surface at 74 and 121 Hz are shown in Figure 4c 

and 4e, respectively; again, there are only two clusters at these frequencies and their differences 

are 192° ± 9° and 198° ± 13°, respectively, which are approximately 180°. The deformations at 

these frequencies are shown in Figure 4d and 4f, respectively. These figures clearly show the 

centrosymmetric oscillation. Similarly, the nodes are shown as green broken lines. The number of 

node lines is 2 and 3 for 74 Hz and 121 Hz, respectively. 

The speaker and the microcell were moved more finely, and the zrms and φ were measured by 

changing the detection positions on the X- and Y-axes in Figure 4b. We denoted the distances from 

the origin (O) as X and Y, respectively. In Figure 5, the zrms is plotted against X or Y where φ 

belongs to the cluster α, and (−1)×zrms is plotted where φ belongs to the cluster β. The results on 

the X- and Y-axes are in good agreement, which means that the oscillation is centrosymmetric 

again. The zeroth-order Bessel functions of the 1st kind were fit to the results with the least-squares 

method and the best-fit Bessel functions are shown as green curves. The experimental points are 

almost identical to the Bessel functions. The best-fit Bessel functions imply that the edge is not a 

node but an antinode. The Bessel functions that were obtained by fixing the edge to the antinodes 

of the maximum amplitude with the least-squares method are shown as red lines in Figure 5. The 

green and red lines are almost identical, indicating that the edge is a loop (an antinode of the 

maximum amplitude). The positions where zrms = 0 correspond to nodes, which agree well with 

the green broken lines in Figure 4. 

To identify the oscillation mode, information not only at the center but also near the edge is 

important. As the oscillation mode becomes higher, the distance between the node and the edge 
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becomes shorter, as shown in Figure 4f and Figure 5c. Therefore, we think that the resolution of 

the present apparatus does not allow the identification of higher mode deformations. 

 

Figure 5. Deformation of the DMF surface at resonance frequencies (a, 35 Hz; b, 74 Hz; c, 121 

Hz). (●) X, (●) Y, (─) best-fit Bessel functions, (─) best-fit Bessel functions obtained by fixing the 

edge (4.5 mm) to loops. The uncertainties in X and Y were ±150 µm. Upp = 3.3 V, d = 1.5 mm. The 

excitation position is centered. 

Linear Relationship between frs and σ0.5ρ−0.5. We already derived an equation16 between frs 

and σ0.5ρ−0.5 in the same way as for the two-dimensional round drum, but now we derive a new 

equation including the hydrodynamic theory as follows. At first, the velocity potential, φ, of 

centrosymmetric and standing waves occurring on a round liquid surface is expressed as:3,23 

φ(r,z,t) = B 
c

c
cosh

)(cosh
ξd

dzξ + J0(ξr) cos ωt (7) 

(a) 
35 Hz 

(b) 
74 Hz 

(c) 
121 Hz 
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where r is the distance from the center, z is the upward normal axis (z = 0 at the surface), B is a 

constant, dc is the depth of the liquid, J0 is the zeroth-order Bessel function of the 1st kind, and ω 

is the angular frequency. ξ is equal to Λ(i,j)/rc, where Λ(i,j) is the eigenvalue related to the 

oscillation mode (i,j) and rc is the radius of the round liquid surface. Of course, this φ satisfies the 

equation of continuity for incompressible liquids (∇2φ = 0). From the dynamical boundary 

condition of the liquid surface,23 

0
2

2

2

2
=

∂
∂

+
∂

∂
−+

∂

∂





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



z

g
rρ

σ

t

φφ  on z = 0 (surface) (8) 

where g is the acceleration of gravity. By substituting φ of eq 7 into eq 8, frs is approximately 

obtained as: 

ctanh
3

rs 2π

1
dξgξ

ρ

σξ
f 













+≈  (9) 

The detailed derivation is given in Section S4 in the Supporting Information. The present 

experimental conditions correspond to the deep liquid waves, that is, tanh ξdc ≈ 1 with ξ (= 0.85, 

1.56, and 2.26 mm−1, see the next sentences) and dc (2 mm) values. Therefore, 

gξ
ρ

σξ
f +≈

3

rs 2π

1  (10) 

In the Lamb’s equation and the QELS method, the wavenumber is used instead of ξ in eq 10. As 

for the surface waves, the surface tension wave (ripples) and the gravity wave are known. Each 

restoring force is caused by the surface tension and the gravity, respectively. From eq 10, the 

former is dominant for ξ > ρg/σ  and the latter is dominant for ξ < ρg/σ . The ρg/σ  values were 

calculated to be 0.36 – 0.59 mm−1 for the liquids used, which are smaller than the ξ values. 

Therefore, we can say that the oscillation of the liquid surfaces in the present study is the surface 

tension wave. In the followings, we will neglect the contribution of the gravity wave and frs can be 

expressed as: 
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According to eq 11, we plotted the obtained frs against σ0.5ρ−0.5 in Figure 6. We call the 3 groups 

the 1st, 2nd, and 3rd groups from the lower resonances. This figure shows a proportional relationship 

with a high correlation for each group, meaning that the oscillations of all liquid surfaces in each 

group belong to the same oscillation mode. The present 1st group results agree well with the 

previous ones (gray points).16 This fact means that the resonances by the dielectric force16 are the 

same as those by the sound wave, and that the intrinsic resonances of the liquid surfaces are 

obtained regardless of the excitation methods. As for EG (No.7), the 3rd frs cannot be observed. 

This would be due to its higher viscosity by one order of magnitude (Table 1), which leads to the 

broadening of the peak width as mentioned above. Figure 2(a) shows that the peak width of the 3rd 

resonance is wider than those of the 1st and 2nd resonances. These factors would prevent the 

observation of the 3rd frs of EG. 

 
Figure 6. Proportional relationships between frs and σ0.5ρ−0.5 for the three groups (○, 1st; ●, 2nd; ●, 

3rd). The numbers in the figure correspond to the liquid Nos. in Table 1. The gray plots are the 

previous results (No.10 N-methylformamide).16 
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The i of the oscillation mode is the number of node lines passing through the center, and thus i 

= 0. When the edge is fixed physically, the j is the number of concentric node lines including the 

edge node.22 In the present liquid surfaces, however, the edge is not the node but the loop, and 

therefore j is not an integer. We define j as 2
11 , 2

12 , and 2
13  for the 1st, 2nd, and 3rd groups, 

respectively. The Λ(0, 2
11 ), Λ(0, 2

12 ), and Λ(0, 2
13 ) values are obtained as 3.83, 7.02, and 10.17, 

respectively, from the point where the zeroth-order Bessel functions of the 1st kind shows the 

maximum amplitude.24 The C values in eq 11 were calculated with these Λ and rc (= 4.5 mm) 

values, and they were plotted against the obtained slope values in Figure 6. The result is shown in 

Figure 7(a), which means that both are in good agreement. 

 
Figure 7. (a) Correlation between the observed slopes (Cobs) in Figure 6 and the theoretical slopes 

(Cth) calculated with eq 11. (b) Calculated oscillation depth (do) as a function of the oscillation 

mode. 

Motion of Liquid near the Surface. As mentioned above, tanh ξdc ≈ 1 and thus the velocity 

potential is simply given from eq 7 as: 

φ(r,z,t) ≈ B eξz J0(ξr) cos ωt (12) 
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The oscillation amplitudes near a liquid surface in the r and z directions (Ar and Az) can be 

expressed from the kinematical boundary condition as:17,23 

t ξrJ
ω
Bξ

A ξz ωφ sin )(ed
1r −=

∂
∂

∫≈ t
r

 (13) 

t ξrJ
ω
Bξ

A ξz ωφ sin )(ed
0z =

∂
∂

∫≈ t
z

 (14) 

where J1 is the first-order Bessel function of 1st kind. Ar and Az at the same time (t = −π/2ω) are 

calculated with eqs 13 and 14, and are shown schematically in Figure 8. Az is analogous to the 

surface shape. Ar and Az decay exponentially toward the bottom, and both work to flatten the liquid 

surface. Only Ar and Az exist at the nodes and loops, respectively, from the surface to the bottom. 

 
Figure 8. Cross-sectional view of the surface deformation (─) and the motion (oscillation 

amplitude) of the liquid (→) of the oscillation mode (0, 2
11 ). The motion decays exponentially from 

the surface to the bottom. The do for the oscillation energy of this oscillation mode is shown as a 

broken line. 

A round drum has a membrane, the edge of which is physically fixed, and thus the edge becomes 

a node.22 On the other hand, the edge of the liquid surface cannot be physically fixed. In the present 

liquid case, the boundary condition is dφ/dr = 0 at r = rc from the surface to the bottom,3 and 

therefore the liquid at the edge moves only vertically along the edge wall in Figure 8, that is, Ar = 

0. As the result, the edge becomes a loop. This is confirmed with the experimental data (Figures 4 

and 5). 
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Since the oscillation energy is proportional to Ar
2 or Az

2, its dependence on z is expressed as e2ξz 

from eqs 13 and 14. Similar to the penetration depth of the evanescent light wave,25 the oscillation 

depth (do) is defined as the depth where the oscillation energy decays to 1/e times (e: Napier’s 

constant). do is equal to 1/(2ξ), and the calculated do is shown in Figure 7(b). do decreases with the 

increase in j, because the larger the number of nodes, the smaller the distance between the nodes, 

as shown in Figure 4, and the shallower the oscillation depth. The microcell used has a depth of 2 

mm, which is sufficient compared with the do, as shown in Figure 7b. At the bottom of the 

microcell, the oscillation energy decays by 3%, 0.2%, and 0.01% for the (0, 2
11 ), (0, 2

12 ), and (0,

2
13 ) modes, respectively. 

CONCLUSIONS 

The center of a small and round liquid surface was excited by a sound wave emitted from a 

common speaker, and its resonance frequencies (frs) were measured in the range of 20 – 180 Hz 

with a microscope-based system. Nine liquids with various physical properties and functional 

groups were employed as samples, and proportional relationships between frs and σ0.5ρ−0.5 were 

obtained with a high correlation. In addition, the oscillation amplitude and phase at frs were 

measured at different positions on the liquid surface, and the deformation of the liquid surface was 

obtained. From the deformation information, the centrosymmetric oscillation modes of the liquid 

surface, (0, 2
11 ), (0, 2

12 ), and (0, 2
13 ), were identified. Finally, an equation based on the 

hydrodynamics has been successfully given to the above proportional relationships for the first 

time. 

It is difficult to measure the deformation of higher-order oscillation modes with the resolution 

of the present system, and therefore it will be necessary to develop a new measurement system 

with new concepts and means, such as imaging, that has higher resolution. 
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The proportional relationship between frs and σ0.5ρ−0.5 obtained in this study, which is 

independent of the other physical properties and functional groups of liquids, means that this 

relationship would become a new method for measuring surface tension because the density of 

liquids is easy to measure. This method requires only 130 µL of liquid, and the microcell used is 

the appropriate size to be manually filled with a liquid; it is a feature not found in other methods. 

Therefore, it is expected to be applied in the future to extremely valuable samples, such as 

biological samples or solutions of substances that are difficult to synthesize. 
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