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Abstract
Recently, a considerable number of research and development projects have focused on automatic vessels. A highly realistic 
simulator is needed to validate control algorithms for autonomous vessels. For instance, when considering the automatic 
berthing/unberthing of a vessel, the effect of wind in such low-speed operations cannot be ignored because of the low rud-
der performance during slow harbor maneuvers. Therefore, a simulator used to validate an automatic berthing/unberthing 
control algorithm should be able to reproduce the time histories of wind speed and wind direction realistically. Therefore, 
in our first report on this topic, to obtain the wind speed distribution, we proposed a simple algorithm to generate the time 
series and distribution of wind speed only from the mean wind speed. However, for wind direction, the spectral distribution 
could not be determined based on our literature surveys, and hence, a simple method for estimating the coefficients of the 
stochastic differential equation (SDE) could not be proposed. In this study, we propose a new methodology for generating 
the time history of wind direction based on the results of Kuwajima et al.’s work. They proposed a regression equation of 
the standard deviation of wind direction variation for the mean wind speed. In this study, we assumed that the wind direction 
distribution can be represented by a linear filter as in our previous paper, and its coefficients are derived from Kuwajima’s 
proposed equation. Then, as in the previous report, the time series of wind speed and wind direction can be calculated easily 
by analytically solving the one-dimensional SDE. The joint probability density functions of wind speed and wind direction 
obtained by computing them independently agree well with the measurement results.

Keywords Wind speed and direction · Stochastic differential equation · Liner filter · Estimation of drift and diffusion

1 Introduction

Wind disturbance has a significant impact on vessels oper-
ated in harbors under low-speed maneuvering motion, as 
mentioned in our previous report [1]. When wind speeds 
exceed a certain level, it becomes difficult for vessels to 
safely berth by themselves, and a choice has to be made 
between berthing with the help of anchors or tugboats or 

suspending the berthing operation altogether. Not only wind 
speed but also wind direction is a key factor to consider dur-
ing berthing/unberthing operations. Berthing trajectories are 
known to vary depending on the wind direction. Further, 
the threshold values of wind speed can change due to wind 
direction.

Several recent projects have explored automatic berthing/
unberthing control algorithms. To improve the performance 
of automatic berthing/unberthing control systems, it is nec-
essary to tune and optimize the parameters in the control 
algorithms. To do so, numerical simulation is essential, but 
the number of numerical simulations required for optimiza-
tion is huge when algorithms such as stochastic multipoint 
search are employed. Therefore, it is desirable to reduce the 
time required for function evaluation (i.e., simulation for one 
scenario in this case) as much as possible. In such simula-
tions, it is necessary to consider wind disturbances with the 
designated wind spectrum, rather than disturbances such as 
white noise, to increase realism.
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In the research and development field of naval architec-
ture and ocean engineering, the superposition method has 
been used to achieve the objective of generating irregular 
signals with specified spectra. The superposition method is 
as follows. Here, xsig : irregular signal, Ssig(�sig) : spectrum 
of the irregular signal, �sig : frequency, �sig ∈ [0, 2�) : a uni-
formly distributed random number. In this case, the irregular 
signal is expressed as follows.

However, the superposition method, which is conventionally 
used in the fields of naval architecture and ocean engineer-
ing, incurs high computational cost because of the pres-
ence of a for loop for wave superposition. To avoid the 
self-repetition of generated signals, the number of super-
imposed waves must be kept large. From another perspec-
tive, the number also must be maintained to some extent to 
avoid deterioration of statistical properties [2]. For example, 
Maruyama et al. [2] also shows that when the number of 
spectral divisions is set to about 104 , no repetition occurs for 
almost 9 h. However, with such a large number of divisions, 
one is faced with the problem of large computational cost 
required for superposition. To solve this problem, it is nec-
essary to avoid the repetition of time series by other meth-
ods instead of the energy equidivision method. On the other 
hand, another technique that reduces the increase in compu-
tational cost is the spectral unequal subdivision method [3]. 
Even so, however, there may not yet be a unified view on 
what size of subdivision is appropriate. As described above, 
so long as the superposition method is employed for long 
wind-time history, reducing the computational cost drasti-
cally remains a challenge. Therefore, there is a need for an 
alternative method to generate the time series of wind speed 
and direction without self-repetition.

Several studies explored the horizontal component of 
gustiness, and several wind spectrum forms have been pro-
posed by Kármánn [4], Hino [5], Davenport [6], and others. 
Many attempts have been made to find probability distribu-
tions and statistics of speed and wind direction (e.g. [7–9]). 
Among them, Carta et al. studied the joint probability of 
wind velocity and direction [10]. The stochastic behavior 
of wind disturbance too has been investigated  [11–15]. 
Li and Kareem [16] used the autoregressive and moving 
average (ARMA) recursive models to generate wind time 
history. Further, Benth et al.  [17] used an Ornstein–Uhlen-
beck process to model the power production of wind farms. 
Their study is somewhat similar to our previous study [1] 
in terms of direction and approach. Among the aforemen-
tioned studies, Nichita et al. [12] approximated the wind 
spectra with a two-dimensional filter, and calculated the 
wind-time series. Dostal et al.  [18] approximated the wave 

(1)xsig(t) =

∞∑
i=1

√
2Ssigi(�sigi)d�sigi cos(�sigit + �sigi)

with a two-dimensional stochastic differential equation 
(SDE) using the continuous autoregressive moving aver-
age (CARMA) process. Although these studies used two-
dimensional SDEs, as described in a previous paper [1], 
wind velocity variations can possibly be approximated using 
a lower-order filter, i.e., a one-dimensional (1D) filter of the 
lowest possible dimension. To achieve such an objective, the 
authors attempted in the first part of their paper to model the 
wind velocity variation.

The system approximated by the one-dimensional filter 
having a form of the following SDE:

Here, uw(t) ∈ ℝ : wind velocity, ū ∈ ℝ : mean wind velocity, 
mWS ∈ ℝ : drift coefficient, �WS ∈ ℝ : diffusion coefficient. 
For the case where ū = 0 , the stochastic differential equation 
(SDE) in Eq. 2 is also known as the Ornstein–Uhlenbeck 
process. It is a linear SDE with drift coefficient mWS and 
standard deviation �WS . In this study, the set of real numbers 
is denoted by ℝ . The expectation operation is denoted by � , 
and t represents time.

Further, W(t): one-dimensional standard Wiener process 
that satisfies the relation

and dW(t) is the increment of the Wiener process. Here, �D(t) 
means the Dirac’s delta function.

The system is approximated by the well-known Orn-
stein–Uhlenbeck process, which allows the use of known 
analytical solutions and the generation of a time series. It 
should also be noted that, as long as the random numbers 
are not repeated, this method does not cause self-repetition.

In fact, this method has been used in research on the auto-
matic berthing control algorithm by reinforcement learning 
[19] (Fig. 1).

The SDE had two unknown terms, namely, drift term mWS 
and diffusion terms �WS in Eq. 2. In our previous study [1], 
when examining wind speed fluctuations, we approximated 
the drift and diffusion from the values of the Davenport 
spectral [6] and Hino spectral [5]. However, we could not 
determine the drift and diffusion terms for wind direction at 
that time because of the lack of sufficient literature on the 
subject.

Although the randomness of wind direction has not been 
extensively researched, the reports of Kuwajima et al. [20, 

(2)duw(t) = mWS(uw(t) − ū)dt + 𝜎WSdW(t)

(3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�[W(s) −W(t)] = 0

�[(W(s) −W(t))2] = �t − s�
and

⎧⎪⎨⎪⎩

�[W(s)W(t)] = min(s, t)

or

�[dW(s)dW(t)] = �D(t − s)
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21] are available. Based on these studies, we propose a meth-
odology for determining the unknown coefficients of SDEs 
based on the relationship between mean wind speed and 
standard deviation of wind direction variation.

The initial results of our investigation were reported pre-
viously by Maki et al. [22]. The present paper reports the 
results more extensively and with some revisions.

2  Notations

Some symbols have already been defined and used in the 
preface. The meanings of some symbols, including duplica-
tions, are given here. In this study, the n-dimensional Euclid-
ean space is denoted by ℝn , and the set of real numbers for 
n = 1 is denoted by ℝ . Vectors are defined by column vec-
tors. The expectation operation is denoted by � , and t and s 
represent time.

3  One‑dimensional filter of wind direction

We analyzed the data measured on board a ship (see 
Table 1). The sampling frequency of wind speed for all the 
data was 1 [Hz].

Figure 2 shows a picture of the anemometer used to meas-
ure Sample 3.

Kuwajima et al. [20] obtained the following regression 
formula for the relationship between the standard devia-
tion of wind direction �� [deg.] and the mean wind velocity 
ū [m∕s].

To verify the validity of the regression in equation (Eq. 4), 
statistical analysis was performed on the time-series data 
sample shown in Table 1. Figure 3 shows the corresponding 
comparison.

From this figure, we can understand that Kuwajima’s 
regression equation estimates the statistics of wind direction 
from only wind speed information with practical accuracy. The 
final goal of this research is to obtain an SDE that describes 
well the stochastic property of wind direction using Kuwa-
jima’s regression equation.

First, the wind direction �(t) is separated into an average 
component �̄� and a variable component �̃�(t) as follows. Note 
that t is time.

(4)𝜎𝛾 = 32ū−
3

4 .

(5)𝛾(t) = �̄� + �̃�(t).

Fig. 1  Generated wind used in reinforcement learning on automatic 
berthing Controller [19]

Table 1  Used data for analysis

Item Measurer Approx. position Term

Sample 1 K. Sasa 50.01833 N 5.01090 W 2018/12/11–15
Sample 2 K. Sasa 53.50333 N 9.96158 E 2018/12/17–31
Sample 3 R. Sawada 34.34829 N 133.14667 E 2021/11/25

2022/1/15

Fig. 2  Anemometer used in Sample 3 acquisition

Fig. 3  Standard deviation of wind direction
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Further, suppose that the variation component �̃� can be 
approximated by the following one-dimensional SDE where 
W(t) is a one-dimensional Wiener process.

Here, m(t, �̃�) is the drift term, and 𝜎(t, �̃�) is the diffusion 
term. Now, consider the following case:

This equation assumes that the drift term linearly varies with 
slope � with respect to the change from the mean wind direc-
tion and that diffusion is constant in �.

Then, the SDE becomes:

For systems where only additive noise is present, the stabil-
ity of the system is determined only by the stability of the 
deterministic part. In the case of a simple one-dimensional 
system such as the present one, 𝛼 < 0 is the condition for 
the system stability, as stated in the previous work by Maki 
et al. [1]

Now, we have established the form of the SDE. Next, we 
explain how to determine the drift term m and the diffusion 
term � in the SDE. As mentioned in the previous paper[1], 
these terms can be estimated from the time series data using 
Eq. 9 with a conditional expectation [23].

Many studies dealt with obtaining the drift term m(t, �̃�) and 
diffusion term 𝜎(t, �̃�) from time series data [11, 13, 24–30].

As reported in our previous paper[1], when the wind direc-
tion varies, the drift seems to have a linear relation over a wide 
range, while the diffusion � seems to have a slightly parabolic 
shape. Therefore, it may be unreasonable to assume that diffu-
sion � is constant, and this is one of the issues to be addressed 
in the future.

The FPK equation for wind directional variation is as 
follows:

By solving the above equation, we can obtain the stationary 
probability density function as a Gaussian distribution with 
variance �2∕2�:

(6)d�̃� = m(t, �̃�)dt + 𝜎(t, �̃�)dW(t).

(7)

{
m(t, �̃�) = 𝛼�̃�

𝜎(t, �̃�) = 𝜍

(8)d�̃�(t) = 𝛼�̃�dt + 𝜍dW(t).

(9)

⎧⎪⎨⎪⎩

m(t, �̃�) = lim
dt→+0

�[d�̃�(t) ∣ �̃�(t) = �̃�]

dt

𝜎2(t, �̃�) = lim
dt→+0

�
�
(d�̃�(t))2 ∣ �̃�(t) = �̃�

�
dt

(10)0 = −
d

d�̃�
𝛼�̃�P(�̃�) +

1

2

d2

d�̃�2
𝜍2P(�̃�).

Therefore, considering that the standard deviation of this 
normal distribution, that is:

is equal to the regression equation (Eq. 4) for the standard 
deviation obtained by Kuwajima et al. [20], the following 
relationship can be obtained.

Here, �� , � , and � are related to each other, and one of the 
parameters must be specified. Therefore, first, we plotted �̃� 
and � as calculated from the measurement data (see Fig. 4).

In the right figure, � appears to be constant in the range 
of ū > 10 [m∕s] , so hereafter we represent this � value as �̂� 
as follows:

By substituting this into Eq. 13, we determine � . Hereafter, 
the � determined by the following equation is represented 
as �̂�:

Using these values, it is therefore possible to compute a time 
series of the variations in wind direction. Here, �̄� represents 
the average wind speed. This solution can be expressed as 
follows when the initial value is �(0) = �0.

Here, The Itô integral I(t) is defined as follows:

I(t) should be evaluated as left-hand Riemann sums (e.g., 
[31]). See Maki et  al.  [1] for more information on this 
section.

For convenience, we write I(t) as I
N
t
 and t as t

N
t
 . Let dt be 

defined as follows.

Then, the relationship between I
N
t
+1 and I

N
t
 can be expressed 

by the following recurrence formula:

(11)P(�̃�) =

√
𝛼

𝜍2𝜋
exp

(
−
𝛼

𝜍2
�̃�2
)
.

(12)�2
�
=

1

2

�2

�

(13)𝛼 =
𝜍2

2 ⋅ 322
ū

3

2 .

(14)�̂� = 2.3.

(15)�̂� =
�̂�2

2 ⋅ 322
ū

3

2 .

(16)𝛾(t) = e
−�̂�t𝛾0 + �̄�(1 − e

−�̂�t) + I(t).

(17)I(t) ≡ �̂�C �
t

0

e
−�̂�(t−s)dW(s).

(18)dt ≡ t
N
t
+1 − t

N
t
.

(19)I
N
t
+1 = e

−�̂�dt
[
I
N
t
+ �̂�{W(t

N
t
+1) −W(t

N
t
)}
]
.
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As shown in our previous paper [1], the drift term m(�̃�) and 
diffusion term  𝜎(�̃�) can be estimated from the time series 
data as a function of �̃� . From Eq. 11, we can see that P(�) , 
drift term  m, and diffusion term  � are related to each other. 
Even if one of them cannot be determined exactly, it can be 
estimated from another term, as shown by Minano et al.[15]. 
In this case, there may be a slight problem in estimating the 
Diffusion � . Meanwhile, the wind direction generally fol-
lows a normal distribution. Therefore, improving the estima-
tion accuracy rather than imposing Minano’s condition as a 
constraint condition may be a research direction. This is one 
of the author’s future works.

4  Algorithm

The algorithm of the present method is shown in Alg. 1.
Algorithm 1  �(t) generation

Notice that in the case of simultaneous generation 
of wind velocity and direction, the user has to use dif-
ferent Wiener processes for velocity and direction time 
series generation. Otherwise, both time series will have 
a correlation.

5  Results and discussion

The results of the wind direction variation distribution as 
calculated using the obtained �̃�C and �C are shown in Figs. 5 
and 6. The time series are also shown in Figs. 7 and 8. The 
time series data of wind direction is pre-shifted so that the 
mean value is 180◦ . Note that the method proposed in this 
paper for calculating the variation of wind direction requires 
the average wind speed as the only input value. In the fol-
lowing calculations, the mean value of the time series of 
wind velocity for one hour of the measured data was obta
ined.

In these four figures, three results from the analysis of 
real ship measurements data, the orange line (denoted as 
“Lin. filter anal. solution from obs. data”) and the purple line 
(denoted as “Lin. filter anal. solution from theor. data”) are 
compared. The three results are compared. In the calculation 
of the orange line, first the drift and diffusion are calculated 
from the measured values based on Eq. 9. Then, the time 
series of wind direction is calculated using these properties, 
and the obtained data is statistically analyzed. The drift was 
extracted from the slope near the origin (180◦ ), and the dif-
fusion was extracted from the value at the origin. The purple 
line is the result based on the proposed calculation method.

As shown in Figs. 5 and 6, the spectral analysis results of 
the time series generated by the present algorithm are gen-
erally consistent with the results of the spectral analysis of 
the time series measured on board. In addition, the trend of 
the drift obtained from the actual ship measurements seems 
to be generally consistent with the values proposed in this 
paper (see purple line). On the other hand, as already pointed 
out in the previous paper [1], the diffusion obtained from 

Fig. 4  � and � obtained from each Sample
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the actual ship measurements has a quadratic function-like 
shape and cannot be said to be a constant. However, it can 
also be seen that the value proposed in this paper (see the 
purple line), unlike the orange line, is not a minimum value 
but a generally larger value. Further, looking at the PDF, it 
appears that the proposed method generally agrees in trend 
with the results obtained by analyzing time series measured 
on board. Figures 7 and 8 compare the time series data them-
selves, and the trends seem to generally match the onboard 
measurement data. This result implies that the aforemen-
tioned method allows modeling of the variation of wind 
direction in a form of a time series using only the estimate 
of mean wind velocity ū.

On the other hand, the time series of wind speed can 
also be calculated by the method described in our previ-
ous paper [1]. Therefore, we simultaneously calculated the 
time series of wind velocity and direction. As noted in the 
previous section, the Wiener processes were obtained using 
different random numbers to avoid numerically derived 
correlations.

Figures 9 and 10 show the combined probability density 
function (PDF: Probability Density Function). However, there 

is no strong correlation between wind speed and wind direc-
tion from the viewpoint of the observed values (OBSR) shown 
in the left figure. Therefore, wind speed and wind direction 
can be calculated separately. This fact was already pointed 
out by [20, 21]. Figures 9 and 10 on the right (SIM: numeri-
cal results) show the results of numerical calculations based 
on this idea, and they agree well with the results shown in the 
left figure. Therefore, the correlation between the two can be 
ignored from a practical viewpoint.

As we have mentioned, the method proposed in this paper 
allows us to easily compute time series of wind direction from 
average wind speed alone. On the other hand, however, there 
are some issues. As we have pointed out before, the measured 
values of diffusion are not constant, but have the shape of a 
quadratic function. Therefore, it is necessary to consider how 
to make the shape of the diffusion more realistic. Furthermore, 
the data used to obtain this regression equation are not very 
large. Updating the coefficients of the regression equation by 
acquiring more data in the future is one of the research themes 
to be explored by the authors.

Fig. 5  Analyzed results of wind direction (case1)
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6  Conclusion

In this study, we proposed a new algorithm for generating 
the time history of wind direction based on the regression 
equation of the standard deviation of the variations in the 
wind direction from the mean wind speed obtained in the 
study of Kuwajima et al. As done in our previous work [1], 

the one-dimensional SDE was solved analytically to com-
pute the time series of wind speed and direction and that 
of wind speed. The joint PDFs for wind speed and wind 
direction obtained by computing them independently were 
in good agreement with the measurement results. How-
ever, the data used to obtain the regression equation were 
not large. As the next steps in our research, we will update 

Fig. 6  Analyzed results of wind direction (case2)

Fig. 7  Time histories of wind direction (case1)



 Journal of Marine Science and Technology

Fig. 8  Time histories of wind direction (case2)

Fig. 9  Joint PDF of wind direction and speed (case1)

Fig. 10  Joint PDF of wind direction and speed (case1)
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the coefficients of the regression equation by acquiring 
more data in the future.
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