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AI-Equipped Scanning Probe Microscopy for Autonomous
Site-Specific Atomic-Level Characterization at Room
Temperature
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and Masayuki Abe*

An advanced scanning probe microscopy system enhanced with artificial
intelligence (AI-SPM) designed for self-driving atomic-scale measurements is
presented. This system expertly identifies and manipulates atomic positions
with high precision, autonomously performing tasks such as spectroscopic
data acquisition and atomic adjustment. An outstanding feature of AI-SPM is
its ability to detect and adapt to surface defects, targeting or avoiding them as
necessary. It is also designed to overcome typical challenges such as
positional drift and tip apex atomic variations due to the thermal effects,
ensuring accurate, site-specific surface analysis. The tests under the
demanding conditions of room temperature have demonstrated the
robustness of the system, successfully navigating thermal drift and tip
fluctuations. During these tests on the Si(111)-(7 × 7) surface, AI-SPM
autonomously identified defect-free regions and performed a large number of
current–voltage spectroscopy measurements at different adatom sites, while
autonomously compensating for thermal drift and monitoring probe health.
These experiments produce extensive data sets that are critical for reliable
materials characterization and demonstrate the potential of AI-SPM to
significantly improve data acquisition. The integration of AI into SPM
technologies represents a step toward more effective, precise and reliable
atomic-level surface analysis, revolutionizing materials
characterization methods.
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1. Introduction

The integration of artificial intelligence
(AI) with nanotechnology has been rec-
ognized as critical since the pioneer-
ing work by Drexler in 1986.[1] How-
ever, the advances described in that book
have not been widely realized. As a po-
tential technique to reveal the advances
described in that book, scanning probe
microscopy (SPM) has emerged in the
characterization of nanoscale surfaces,
enabling the discovery of new surface
properties and phenomena.[2,3] The up-
coming “The 25th International Confer-
ence on Non-Contact Atomic Force Mi-
croscopy” (NC-AFM 2024) will even fea-
ture a satellite workshop on AI and ma-
chine learning techniques in atomic force
microscopy (AFM),[4] highlighting the
growing importance of AI-based SPM
(AI-SPM) in advancing its capabilities in
material science. Today, SPM has made
significant contributions to both basic
science and industrial applications. In
particular, in the field of basic science,
it can not only image surfaces but also
measure the physical properties of indi-
vidual atoms and move atoms to create
structures.[5] Most of these experiments

have been performed in cryogenic environments. This is because
not only the SPM instrument but also the apex of the SPM tip
and the sample itself are thermally stable. However, from a prac-
tical standpoint, conducting these processes at room temperature
is essential.

Even in room temperature environments, where thermal
effects can affect measurements, SPM has provided signifi-
cant capabilities such as dynamic imaging to observe temporal
changes in chemical reactions,[6,7] biological processes,[8] surface
dynamics,[9,10] diffusion,[11,12] and crystal growth.[13] In addition,
there are studies of dopant atom manipulation that can be done
at room temperature.[14,15]

There have been challenges in further pursuing these pi-
oneering room-temperature experiments. Using the room-
temperature SPM to achieve atomic resolution does not elim-
inate the thermal effects on the instrument which leads to
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measurement instability. One of the most significant effects of
fluctuations in atomic resolution SPM measurements is thermal
drift and piezo creep. These phenomena continuously change
the relative position of the tip and sample atoms, which not only
prevents continuous measurement of the same area but can also
cause image distortion. Another problem of the room tempera-
ture SPM is the frequent change of the tip apex. The quality of the
image is affected by the frequent change of the tip apex atom es-
pecially in atomic resolution imaging.[16–18] Repairing the tip apex
is usually done by touching to the surface, which requires time
and a great deal of attention. To achieve high-precision measure-
ments under such inherently non-optimized conditions, SPM
techniques such as drift correction[19,20] and tip fabrication[17,21]

become indispensable in the context of room temperature SPM.
However, even with these techniques, it has been difficult to per-
form site-specific experiments at the atomic level at room tem-
perature.

In recent years, to overcome the limits of human capability, ex-
periments utilizing the concept of the self-driving laboratory[22,23]

have become increasingly prevalent, driven by the demand for
extensive and complex data collection. This approach has risen
to prominence as a key solution for challenges like new mate-
rials discovery, largely through the application of AI. The self-
driving concept is also anticipated to be highly beneficial for
time-consuming and labor-intensive SPM experiments, which
are manually operated.[24,25] A deep learning model, adept in sig-
nal processing and computer vision, can identify specific patterns
with accuracy nearly on par with human experts.[26,27] Strategi-
cally integrating AI can significantly reduce the dependency on
manual intervention in SPM operations.[28]

There have been previous studies on the integration of image
recognition AI and SPM that have made notable contributions to
the fields of data analysis and processing.[29–33] The application
of these AI-driven analysis techniques to the processing of real-
time measured data has the potential to significantly automate
SPM operations. The effective use of such technologies requires a
complex integration into the control mechanisms, both hardware
and software, including scanning protocols and AI functions, as
well as the acquisition of extensive data sets for the cultivation of
highly efficient AI models. Particularly in cryogenic conditions,
where thermal perturbations are greatly reduced, recent research
has underscored the utility of AI-assisted methods in promoting
autonomous scanning[34–36] and single atom manipulation.[37]

Comparatively, room temperature environments require more
sophisticated AI to automate SPM measurement tasks than cryo-
genic ones. This enhancement is necessary to compensate for the
challenges posed by thermal fluctuations and to ensure the re-
producibility of experiments. Robustness in handling measure-
ments under unstable conditions is critical for performing real-
time and site-specific experiments at room temperature. In ad-
dition, it is important to recognize during data collection that
the simulated data sets used to train[30,32] may not fully capture
the variations in atomic images. This limitation is due to differ-
ences in tip state and adsorbate patterns in actual measurements.
Addressing these considerations is critical to improving the reli-
ability and performance of site-specific SPM measurements at
room temperature.

In this manuscript, we present a deep learning-based AI-SPM
system specifically designed for site-specific operation at room

temperature. Our AI-SPM system is an integrated fusion of soft-
ware, control firmware, and hardware components that facilitates
the development of a robust neural network through a system-
atic data collection process. Decision making and optimization,
tailored to room temperature conditions, are fully automated to
achieve atomic precision measurements. Using this system, we
demonstrate two key applications in surface characterization: au-
tonomous acquisition of high quality images and large data sets
for atomic precision scanning tunneling spectroscopy (STS) at
room temperature.

2. AI-SPM for Self-Driving Measurement

2.1. AI-SPM Configuration

Figure 1 shows the configuration of our AI-SPM system. The
SPM hardware is conventional, and two main program parts are
added to our home-built scan software for AI operation. The AI
inference section receives the SPM measurement data, makes a
situational judgment, and determines the next task. In partic-
ular, it uses the images to determine the state of the tip apex,
the identification of individual atomic sites and unit cells, the lo-
cation and type of adsorbates, and whether further site-specific
measurements are possible. The tip and sample surface infor-
mation sent by the AI inference component to the Scan Module
part is used in the operator-programmed experiment. In Figure 1,
the Scan Module includes two scripts essential for the room tem-
perature experiment (thermal drift compensation and tip condi-
tion optimization), as well as a self-driving measurement script.
These scripts are used in the experiments in this manuscript.

2.2. Convolutional Neural Networks on AI Inference

The acquired image data of the surface not only confirms the crys-
tal structure of the surface but also provides information on the
condition for site-specific measurement: the presence of defects
or adsorbates, not atomically clean area or steps, tip apex condi-
tion. To automatically make decisions on all this information, we
have used convolutional neural networks (CNNs). Each CNN is
tailored for a specific prediction task, and they all use scanned
topography as input. By integrating these CNNs into a compos-
ite network, we provide comprehensive access to a wide range
of information about the real-time scanning topography.[38] Un-
derstanding both tip and surface conditions enables site-specific
measurements such as STS and atomic manipulation.

Figure 2 shows the CNN architecture for the Si(111)-(7× 7) sur-
face. We have designed a composite network structure consisting
of three different models, Net1, Net2, and Net3, each dedicated
to a specific task. Net1 is tasked with recognizing the conditions
of both the tip and the sample by performing a multi-class clas-
sification of tip apex and surface conditions Ki(i = 0, 1, ⋅⋅⋅, 10).[38]

It determines whether the sample and the tip are both in a state
(K = 1, 2, 3, 4) that allows for site-specific measurements. If the
surface is not contaminated and the tip is capable of atomic reso-
lution, it is considered to be in a “good” state for site-specific mea-
surement. We have found that Net1 has an accuracy of 87–90%
(see Figure S1a Supporting Information). The reason for classi-
fying good into four categories is to determine and create a tip
apex that can be used for atomic manipulation in the future.[39,40]
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Figure 1. Schematic of the Artificial Intelligence Scanning Probe Microscopy (AI-SPM) system. The system compensates for thermal drift and unfavorable
tip state, which is an inherent problem at room temperature. It then determines the presence of adsorption sites and defects, and performs site-specific
experiments at targeted atomic positions. Large amounts of data can be acquired automatically.

Net2 determines adsorbates. On the Si(111)-(7 × 7) we can find
some adsorbates at the atomic level that are moving and some
that are not. Here we define the immobile adsorbate A2 as the
one that is imaged brighter than the Si adsorbate in the half-unit
cell. Another type of adsorbate is those that are imaged like noise
or feedback errors. These are adsorbates in motion that remain
in a half-unit cell (A1 in Figure 2). The moving adsorbates in the
half-unit cell have been studied for clustering and atomic manip-
ulation experiments.[41–48] Net2 is designed to be applied to these
studies as well.

Net3 detects site-specific information of the Si(111)-(7 × 7) sur-
face. Half-unit cells are categorized as bounding boxes of C1 and
C2, respectively. By applying a negative sample bias during the
measurement and observing the response of the screen, it is pos-
sible to determine whether C1 or C2 corresponds to the faulted
or unfaulted half-unit cell. In the experiment of Figure 2, C1 was
identified as faulted, while C2 was found to be unfaulted. Lo-
cal atomic sites are represented as key points Pi (i = 1, 2, ⋅⋅⋅, 9):
three corner holes around each half-unit cell as P1, P2, P3, corner
adatoms as P4, P8, P9, and center adatoms as P5, P6, P7.

2.3. Scan Module Scripts

The Scan Module contains two scripts that are essential for the
room temperature experiment (thermal drift compensation and
tip condition optimization), as well as a self-driving measure-
ment script. These scripts are used in the experiments in this
manuscript. Users can add their own scripts to the scan module
to customize the experiment.

The thermal drift compensation module is based on the feed-
forward technique presented in our previous study.[49] Continu-
ously acquired SPM images are compared using the feature point
matching algorithm to output the thermal drift velocity at the
minute scale, allowing correction of even non-linear thermal drift
at the day scale.

It is equipped to autonomously maintain the optimal state of
the tip apex.[38] Here, the CNN determines the state of the tip
from the acquired images: if the CNN determines that the tip is
not optimal for atomic resolution measurements, tip shaping is
performed by bringing the tip close to the surface and simulta-
neously changing the bias current. The images are then acquired

Figure 2. Convolutional Neural Networks (CNNs Net1, Net2, and Net3) are used in this study for room temperature site-specific analysis of the Si(111)-
(7 × 7) surface. Net1 is tasked with detecting tip and sample conditions, Net2 identifies adsorption sites, and Net3 is responsible for detecting half-unit
cells and atomic positions.
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and Net1 assesses the state of the tip. These processes can be per-
formed automatically until the tip is in a “good” state. The ther-
mal drift module is activated during the tip optimization process
to automatically compensate for thermal drift.

The self-driving measurement module autonomously per-
forms data acquisition based on the AI inference output and
can also utilize other module functions for drift correction and
tip condition optimization. As a result, our AI-SPM system rep-
resents a departure from traditional fixed-routine automation
methods. It provides the ability for self-driving data exploration
and acquisition. A detailed description of the AI-SPM hardware
can be found in the Experimental Section.

2.4. Two-Phase Training Data Acquisition

As mentioned above, even when thermal drift is compensated for
at room temperature, we are facing unstable image conditions
due to tip apex change. Adsorbates and defects may be present
in the first place, but they may also appear during scanning, sig-
nificantly influencing the SPM images. This makes us assemble
a comprehensive and varied set of training data is needed. To ac-
quire data that take into account both the quantity and variety of
datasets, we have developed a “two-phase” approach to training
the AI-SPM itself as the experiment progresses.

Phase 1 consists of collecting and creating datasets of image
information obtained under different conditions. All images are
collected, including those in which atoms were not clearly re-
solved. To obtain a large number of images categorized from K0
to K10, the tip repeatedly pokes the surface and then scans the
image with a manually set drift velocity. This routine ensures di-
versity in the dataset regarding tip states and scanning areas. The
process continues iteratively, accumulating a large dataset. This
dataset is essential for training a robust model that can discrimi-
nate data quality and ensure the system’s ability to autonomously
acquire atomic resolution images on Si(111)-(7 × 7).

In the second phase, the datasets of atomic resolution im-
ages is further expanded. Autonomous measurement of target
atoms is performed within the self-driving measurement mod-
ule with the help of Net3, which provides information about
atomic positions. One of the measurement examples is the au-
tonomous atom manipulation technique. It uses the “atomic
pen” technique[15] to manipulate Si atoms within a unit cell and
individually place them as single adsorptions. Repeated execu-
tion of Phase 2 can generate a larger number of adsorbate and
defect patterns on the topography, thus augmenting the datasets
used to train Net1, Net2, and Net3.

To improve the accuracy of Net1 and Net3, the dataset was ex-
panded to include topography scans from different leading states
and scan areas. In Phase 1 and Phase 2, 11 616 and 7269 images
were acquired, respectively. Of these, 2082, 1105, and 29 145 sam-
ples and their augmented data were used to train Net1, Net2, and
Net3, respectively. These data points, which are likely to be single
images or instances, comprehensively cover a wide range of sur-
face properties. The performance evaluation of Net1, Net2, and
Net3 indicates they achieved accuracies of 0.93, 0.92, and 0.91,
respectively (see Figure S1, Supporting Information). The accu-
racy of our AI models meets the criteria of sufficiently conducting
real-time AI-driven experiments.[35,37]

3. Implementation of AI-SPM

3.1. Local Site Identification

The performance of the local site identification of the STM mea-
surement at room temperature on Si(111)-(7 × 7) surfaces is
shown in Figure 3, which shows the ability of the trained Net1,
Net2, and Net3 to recognize key points of the surface for the site-
specific measurements. Images acquired as shown in Figure 3a
are evaluated by Net1. In this image the (7 × 7) structure and
defects and adsorbates are present. For this image, Net1 outputs
weight values of k2(Good2) = 0.53 and k4(Bad area) = 0.47. This
means that the tip condition is good, but surface defects and ad-
sorbates are present. When identifying adsorbates in Net2, it can
be seen in Figure 3b that it can identify stationary adsorbates
(A1), surrounded by red dashed lines, and adsorbates diffusing
in the half unit cell (A2), surrounded by light blue dashed lines.
In Figure 3c, Net3 classifies almost all regions of the image into
C1 (faulted half) and C2 (unfaulted half) and identifies individual
adatoms and corner holes within these halves. Net3 can identify
each adatom. As shown in Figure 3d, the individual adatoms and
corner holes are represented by Pi(i = 1, 2, ⋅⋅⋅, 9). The labels in-
dicate that i = 1, 2, 3 corresponds to corner holes, i = 4, 8, 9 to
corner adatoms, and i = 5, 6, 7 to center adatoms. These results
demonstrate that our proposed Net1, Net2, and Net3 methods
can identify individual atomic sites as key points at room tem-
perature.

3.2. Probing for Optimal Measurement Regions

Figure 4 shows a sequence of consecutive room-temperature
STM images on the Si(111)-(7 × 7) surface, in which atomic im-
ages free of defects, adsorbates, and steps are autonomously iden-
tified. In the experiment, a total of 45 consecutive images were ac-
quired over different regions. In Figure 4a, scanning started from
the upper left corner of the figure, with the upper left portion of
each image marked by an inverted triangle. The trajectory of the
scanned regions is shown by red lines connecting the sequence
of images. Here, the scanning routine includes two critical mod-
ules to identify the atomic resolution images. First, a thermal
drift correction module compensates for thermal drift to mini-
mize image distortion.[49] The second module, Net1, maintains
the tip in a state conducive to atomic resolution measurements
while bypassing areas affected by impurities, atomic defects, and
step edges. Figure 4b shows Net1 evaluating the acquired STM
images and classifying the most plausible tip or surface condi-
tions in color.

Until now, it has been necessary to determine the appropri-
ate measurement area and continuously monitor the condition
of the tip apex. However, unlike at cryogenic temperatures where
the SPM tip remains relatively stable, the tip changes frequently
at room temperature. This makes it virtually impossible for re-
searchers to conduct sustained long-term experiments.[16] As
shown in Figure 4, by integrating advanced automation and deep
learning techniques, we have been able to create optimal experi-
mental conditions for exploring regions with atomic resolution.
This method enables automatic identification of the appropriate
tip and region at room temperature, which is essential for per-
forming site-specific experiments. As a result, experiments such
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Figure 3. Performance of local site identification on Si(111)-(7 × 7) surfaces. a) An image of scanning tunneling microscopy (STM) evaluated by Net1
with k2 = 0.53 and k4 = 0.47 (shown below the image), which is used for site identification as shown in (b) to (d). b) Identification of adsorbates by
Net2. A1 and A2 indicate moving and stationary adsorbates, respectively. c) Classification of the half-unit cell type by Net3. C1 and C2 are faulted and
unfaulted half-unit cells, respectively. d) Site-specific identification of adsorbate sites and corner holes in the half-unit cells. Each site is labeled by Net3
as Pi(i = 1⋅⋅⋅9). The sample bias voltage and tunneling current in the STM measurement are Vs=1.5 V and It=200 pA, respectively.

as atomic manipulation and STS are expected to be feasible un-
der conditions comparable to cryogenic environments.

3.3. Self-Driving Scanning Tunneling Spectroscopy at Room
Temperature on Different Si(111) Adatom Sites

With the methods described so far, the basic tools are now avail-
able to realize an AI-SPM capable of self-steering measurements.
As an example of a site-specific measurement at room tempera-
ture, we perform I − V measurements on adatoms of the Si(111)-
(7 × 7). From the obtained I − V curve, the data of dI/dV or STS
as the local electronic state can be calculated. There have been
previous studies of the density state of Si(111)-(7 × 7) surfaces
at both room[50–53] and low[53,54] temperatures. Previous studies
have reported that the Si surface exhibits different electronic state
behaviors depending on the temperature.

The results suggest the importance of performing the site-
specific measurement at room temperature. On the other hand,
at room temperature, in addition to the thermal drift and peak in-
stability described above, there is also the effect of thermal fluctu-
ations in the local density of states (LDOS) itself due to the broad-
ening of the Fermi function for the electron population, result-
ing in a reduction in the energy resolution of the STS measure-
ment. Therefore, to obtain a reliable site-specific measurement,
it is necessary to acquire a large amount of data and statistically
process the acquired data to address irregularities such as data
variations and tip changes specific to room temperature. For site-
specific measurements at room temperature, the acquisition of
large amounts of data has been very challenging with previous
room-temperature STM setups.

To ensure the acquisition of reliable data in this inherently un-
certain environment, we have applied our AI-SPM to perform a

large number of I − V curve measurements on the four different
adatom sites of the Si(111)-(7 × 7) and performed statistical anal-
ysis to calculate the STS data. Specifically, it can locate individual
atomic sites of the respective center and corner adatoms of each
faulted and unfaulted half unit cell where adsorbates and defects
were absent.

Using this approach, we obtained a total of 324 I − V curves
measured at center and corner adatoms within both faulted and
unfaulted unit cells. Each I–V curve samples 3600 points and
takes 2.9 s to measure. Following these measurements, the sys-
tem sequentially checks and updates the thermal drift velocity
and monitors the SPM tip’s condition. If Net1’s detection label
is not K0, K1, K2, or K3, the system initiates SPM tip condition-
ing. Additionally, if the detection label indicates the current area
is a bad area, the system will shift to a different scanning area.
The I − V data were automatically obtained in the appropriate
regions and tip conditions as evaluated by AI-SPM. This entire
procedure is performed iteratively, enabling the generation of ro-
bust and reliable data under the challenging room-temperature
environments.

The obtained I − V curves are plotted individually in
Figure 5a–d). Our preliminary experiments have shown that the
state of the tip apex changes about 6.3% of the time when the
voltage is swept (see Figure S3, Supporting Information). To
determine the most representative values for the I − V curves
of individual atoms (Figure 5e), we used the data selection ap-
proach to obtain a group of curves with the highest trends and
the mean I − V curves of the extracted group (see Experimental
Section). By focusing on the region of negative sample bias, sub-
tle differences between the curves of the faulted and unfaulted
half unit cells become apparent. In this region, the conductance
of the faulted unit cells is found to be greater than that of the
unfaulted unit cells, supporting the higher electron density on
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Figure 4. Sequential images of STM on the Si(111)-(7 × 7) surface measured while automatically searching for the optimal measurement area and tip
conditions. a) Self-driving sequential STM imaging. The first scan starts at the upper right corner, and the scan area is automatically changed. The upper
left corner of each image is indicated by an inverted triangle. The inverted triangles are connected by red lines showing the trajectory of the scan areas. b)
Topmost inferred state in color of (a). All STM topographic images were acquired with 2 V sample bias, –200 pA set point, 105 s scan time, and 11.25 ×
11.25 nm scan area. During this measurement, thermal drift correction is enabled by feature point matching.[49]

Figure 5. I − V and calculated curves of scanning tunneling spectroscopy (STS) on different adatom sites of the Si(111)-(7 × 7) surface measured at
room temperature. Weighted plot of I − V curves on a) faulted center adatom b) faulted corner adatom c) unfaulted center adatom d) unfaulted corner
adatom. e) Averaged I − V curves of the four different adatom locations. f) STS (dI/dV) curves calculated from the four I − V curves in (e). The inset in
(f) is the STM topography image acquired with the sample bias at –1.4 V, the tunneling current at 200 pA, and the scan range at 11.25 nm2. The four
different atomic points marked by colored circles in the STM image represent the I − V measurement positions. The measurement noise is reduced by
applying Savitzky–Golay and mean filters.
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the faulted side with a stacking fault compared to the unfaulted
side.[55]

As shown in the inset of Figure 5f, in the STM measurements
of the Si(111) surface, the contrast between the corner adatom
and the center adatom in the faulted and unfaulted half-unit cells
is different in the negative sample bias region. The calculated
STS results also show that under the negative sample bias re-
gion, the four site-specific positions on the faulted/unfaulted cor-
ner and center adatoms show distinct variations (the color of the
points representing the positions of the four atoms corresponds
to the color of the dI/dV curves). Due to the charge transfer from
the adatom to the rest atom, the center adatom, which has a larger
number of neighbors to the rest atom, has a higher electron den-
sity than the corner adatom.[52] This trend of the four sites is evi-
dent in our STS curves, and the positions of the peaks (downward
arrow in Figure 5f) agree with the previous result.[53] In addition,
the most prominent peaks on the surface states of Si(111)-(7 ×
7) appear at –0.8 and 0.3 V, which is supported by the ultravio-
let photoemission spectroscopy and inverse photoemission spec-
troscopy measurement.[56,57] Comparing the difference between
the site-specific STS curves, it is evident that the LDOS of the
center adatom contributes most to the –0.8 V peak on the sur-
face states. By employing statistical analysis considering the data
variance in big data obtained by an AI-assisted measurement ap-
proach to extend the I-V curve to a datasets, our method has
shown a demonstration of room temperature measurement with
reliability and validity.

4. Discussion

Our research demonstrates that the AI-SPM system has the po-
tential to revolutionize room-temperature SPM by overcoming
long-standing challenges and opening new avenues for materi-
als characterization. This implementation can be used in both
variable temperature STM and cryogenic STM, and it can be ex-
tended to other instruments in the SPM family, such as NC-AFM.
The thermal correction will be less relevant for the cryogenic en-
vironment, but the automation part still enables a completely
automatic acquisition of the highest quality SPM data. Even in
cryogenic environments, thermal drift can occur in experiments
conducted over several days, and the tip apex can change.[58] For
atomic resolution experiments conducted over long periods, AI-
SPM will be a powerful tool, not limited to different types of SPM
or temperature conditions.

At room temperature, various heat-assisted processes, includ-
ing diffusion, crystal growth, dislocation motion, and chemical
reactions, occur at the nano- to atomic scale. Precise site-specific
measurements could potentially open up new areas of science if
local conditions are accurately assessed. However, thermal drift
and tip apex change in SPM often hinder accurate measure-
ments. Additionally, the need to collect and statistically analyze
large datasets in heat-present environments is a significant chal-
lenge that is often beyond the capacity of manual operations. In
the past, researchers have achieved excellent results with diffu-
sion and atomic manipulation using SPM at room temperature,
but it required patience, time, and luck.

To overcome these difficulties at room temperature, we have
demonstrated that a deep learning-based AI-SPM system can be
used to autonomously collect real-time data at room temperature.

A neural network is trained for comprehensive Si(111)-(7 × 7) to-
pography assessment, achieving an impressive accuracy of about
90% thanks to our two-phase data acquisition scheme, which can
automatically collect training datasets in real-time measurement.
Moreover, this data acquisition routine can be applied to various
surfaces, allowing users to collect datasets with diversity in tip
states and scanning areas, and train their own AI models for ex-
periments.

This transformation is evident not only in its ability to as-
sist humans in performing complex and time-consuming opera-
tions, thus enabling automated experiments, but also in the ex-
tension of SPM to big data, aiming to unlock deeper physical dis-
coveries as we delve into the analysis of a vast amount of data.
In the future, it could be effectively used for SPM analysis at
the atomic to nanometer level in materials with high tempera-
tures and temperature variations, such as vanadium dioxide and
thermoelectric materials. To achieve this vision, we need higher
bandwidth automated SPM systems coupled with AI and real-
time data analysis algorithms to provide intelligent data that is di-
rectly relevant to experimental conditions and scan results. How-
ever, our current system has a limitation: it requires preliminary
experiments to run the automated data acquisition routine and
collect the training datasets necessary for the automated AI. In
future developments, the training of large models such as Vi-
sion Transformer,[59] capable of covering a wide range of mate-
rial structures, would enable the use of neural networks for the
analysis of general SPM data.

This manuscript has introduced the concept of a self-driving
lab, paving the way for the development of innovative approaches
in atomic technology. These include the automation and opti-
mization of manufacturing processes, and the operation, self-
replication, and self-repair of molecular machines. These ad-
vances align closely with Drexler’s anticipated integration of nan-
otechnology and AI.[1]

5. Conclusion

In summary, we have demonstrated that the advanced AI-SPM
system significantly improves atomic-scale measurements by au-
tonomously identifying atomic positions with high accuracy. The
AI-SPM’s ability to detect and adopt to surface defects, manage
positional drift, and cope with tip apex variations under room
temperature conditions demonstrates its robustness and relia-
bility. Successful applications on the Si(111)-(7 × 7) surface, in-
cluding defect-free region identification and extensive current–
voltage spectroscopy measurements, underscore the system’s
ability to enhance data acquisition for reliable material charac-
terization. The integration of AI into SPM marks a decisive step
toward more effective, precise, and reliable surface analysis at
the atomic level, setting a new standard in materials character-
ization methods.

6. Experimental Section
Sample Preparation and Experiment Environment: All experiments were

performed with a home-built STM operated at room temperature under ul-
trahigh vacuum conditions (< 1.0 × 10−8 Pa). Experiments were repeated
in multiple sessions with different Pt/Ir STM tips to ensure reproducibility.
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Table 1. The detail of the neural network models.

Model type Hyperparameter

Name Architecture Task Output type Learning rate Training epoch Batch size

Net1 Custom CNN tip and sample classification scalar 5 × 10−4 720 16

Net2 YOLOv8s adsorption detection bounding boxes 2 × 10−3 150 16

Net3 YOLOv8l atomic site detection bounding boxes/key points 1 × 10−3 300 16

An n-type Si(111) substrate (𝜌 ⩽ 0.02Ωcm) was used in this research.
Atomically flat and clean Si(111)-(7 × 7) surfaces were prepared with the
standard cleaning procedure and used for data acquisition and experimen-
tal demonstration.

For data acquisition, an SPM system augmented with a deep learn-
ing model explicitly designed to facilitate autonomous measurements was
built, as shown in Figure 1. The STM implementation combines an SPM
instrument with a server that contains an “AI Inference” subsystem for
deep learning prediction and a real-time operating subsystem with “Scan
Module” blocks that remotely control the SPM hardware (Figure 1). The
control unit of the SPM instrument was built on an FPGA with remote
access from a PC. The system was developed using LabVIEW, LabVIEW
FPGA, and Python. The scanning and data acquisition methods were writ-
ten in Python. NI PXIe-7857r was used as the measurement board. The
Scan Module block in the server contains SPM automation functions to
optimize the measurement environment. It includes the scan operation
with custom external scripts in Python that automated SPM measurement
routines and incorporate scan functions to optimize the experimental en-
vironment. The OpenCV[60] and SPMUtil[61] Python packages were used
for data processing and image processing. The communication between
the AI inference subsystem and the SPM instrument uses a TCP protocol
connection. The AI Inference subsystem runs on Python, and PyTorch[62]

is adopted as a machine learning framework to perform training and infer-
ence, which is accelerated by the RTX 4090 GPU for tensor computation.

Thermal Drift Compensation: Real-time thermal drift compensation is
based on an algorithm that extracts and matches feature points across
consecutive scanned images.[49] By calculating the pixel shifts between
successive scanned images, the scan area is adjusted to track the origi-
nal region corresponding to the first image. Furthermore, the drift velocity
along x, y, and z axes was calculated from the inter-image shifts and the
data acquisition time and used as the real-time drift compensation ve-
locity using a feed-forward technique.[19,20] The compensation process is
iterative, acquiring images and compensating for drift until the measured
drift falls below a threshold of 0.2 nm. Drift compensation is configured
to update the drift velocity at intervals of 10 minutes after the previous
compensation is completed.

Tip Apex Optimization: A tip apex optimization protocol is imple-
mented to modify and evaluate tip apex conditions through controlled
mechanical impacts.[38] The bad tip is intentionally made to poke toward
the surface, inducing apex changes. As a model case, the tip is indented
0.9 nm toward the surface relative to the 1.5 V sample bias and 200 pA
tunneling current setpoint. After poking, the subsequent scanned image
is input to Net1 for tip quality determination. Unsatisfactory tip condi-
tions based on the network output triggered additional pokes. If a poke
does not result in a change in the tip apex, the next poke moves the tip an
additional 0.15 nm closer to the surface. In this work, the Ki(i = 0, 1, 2, 3)
label in Figure 2b is considered a desired tip state for further experiments.
The effectiveness and reliability of this automated optimization routine at
room temperature are demonstrated previously.

Training the Deep Learning Model: The neural network types and hy-
perparameters for training Net1, Net2, and Net3 used in this work are
listed in Table 1. Net1 uses a custom convolutional network structure pre-
sented in the previous study.[38] Net2 and Net3 use the YOLOv8-small
and YOLOv8-large structures,[63] and the initial trainable parameters in
the network were loaded from the pre-trained model. The YOLOv8-large
in Net3 had more trainable parameters than YOLOv8-small, and this larger

model was chosen to improve the positioning accuracy when locating the
atomic key points.

In the first stage of training Net1, Net2, and Net3, the input images
were resized to 256 × 256 pixels. The training dataset could be automati-
cally labeled by the trained model. The labeled dataset was then exported to
CVAT for manual validation. Among more than 10 000 images from experi-
ments, the data were selected with different appearances and balanced the
number of each category to build the training dataset. Within this dataset,
2082 samples were designated for training Net1, 1105 samples from 255
images for training Net2, and 29 145 samples from 545 images for train-
ing Net3. These data sets were divided into 80% for training and 20%
for validation. Then, data augmentation,[64] which included random affine
transform, image cropping, and contrast change, was applied separately
to the training and validation datasets, expanding the datasetsby a factor
of 5. The three networks (Net1, Net2, and Net3) were trained using the
AdamW[65] optimizer.

I − V Curves Similarity Metric and Selection: To extract the high consis-
tency tendens from a group of I − V curves, the cosine similarity metric
ϕ is used for statistical analysis. The similarity ϕ of two I − V curves Ii,
Ij (i, j = 1, 2, ⋅⋅⋅, m) each containing n count data points in one curve is
calculated by the following equation.

𝜙(Ii, Ij) =
Σn

k=1
Ii[k] ⋅ Ij[k]

√
Σn

k=1
Ii[k]2 ⋅ Σn

k=1
Ij[k]2

(1)

In particular, ϕ(I1, I2) ranges from –1 to 1, where ϕ(I1, I2) = 1 indicates
that the two curves are identical. By calculating ϕ among all I − V curves,
a group of curves could be obtained that can represent the most common
data of the whole data. The main group selection method can be applied in
two ways, based on the whole data (overall selection) or based on selected
data (reference data-based selection). As for the overall selection method,
given the whole I − V curve data as I1, I2, ⋅⋅⋅, Il, ⋅⋅⋅, Im, the mean value of
the cosine similarity (ϕmean[Il]) was calculated for each I − V curve relative
to all other curves.

𝜙mean(Il) =
i∑

m

𝜙(Il, Ii)
m

(2)

The ϕmean([Il]) for Il represents the common property for all I−V curves,
so a threshold T1 is then applied with the condition ϕmean([Il]) > T1 to se-
lect all Il curves that satisfy this condition as a main group. The reference
data-based selection method involves selecting a group of data similar to
the reference data, which is one of the I − V curves from the I − V curve
group, as the reference data Iref. For an I − V curve Il, a threshold T2 is
specified and the condition ϕ(Iref, Il) > T2 is used to determine whether Il
can be added to the main group based on Iref. Before comparing the rela-
tionship between the I − V curves, the measurement noise is reduced us-
ing Savitzky–Golay[66] and mean filters. After the main group is extracted,
the most suitable tendency in the group could be extracted by taking the
average value in the I − V curves and smoothing with a 1D spline function.

Statistical Analysis: This study preprocessed all SPM image data using
plane fit subtraction and Gaussian–Hann filters. For the I–V curve data,
Savitzky–Golay[66] and mean filters were applied, followed by smoothing
with a 1D spline function to minimize noise. The data processing and
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analysis methods proposed in this paper are implemented in Python.
Scripts for all methods are available as open-source resources.[67]

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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