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Abstract

Nicotine, an addictive compound found in tobacco, functions as an agonist of nicotinic
acetylcholine receptors (nAChRs) in the brain. Interestingly, nicotine has been reported
to act as a cognitive enhancer in both human subjects and experimental animals.
However, its effects in animal studies have not always been consistent, and sex differ-
ences have been identified in the effects of nicotine on several behaviors. Specifically,
the role that sex plays in modulating the effects of nicotine on discrimination learning
and cognitive flexibility in rodents is still unclear. Here, we evaluated sex-dependent
differences in the effect of daily nicotine intraperitoneal (i.p.) administration at various
doses (0.125, 0.25, and 0.5mg/kg) on visual discrimination (VD) learning and reversal
(VDR) learning in mice. In male mice, 0.5 mg/kg nicotine significantly improved perfor-
mance in the VDR, but not the VD, task, while 0.5mg/kg nicotine significantly wors-
ened performance in the VD, but not VDR task in female mice. Furthermore, 0.25mg/
kg nicotine significantly worsened performance in the VD and VDR task only in female
mice. Next, to investigate the cellular mechanisms that underlie the sex difference in
the effects of nicotine on cognition, transcriptomic analyses were performed focusing
on the medial prefrontal cortex tissue samples from male and female mice that had
received continuous administration of nicotine for 3 or 18 days. As a result of pathway
enrichment analysis and protein-protein interaction analysis using gene sets of differ-
entially expressed genes, decreased expression of postsynaptic-related genes in males
and increased expression of innate immunity-related genes in females were identified
as possible molecular mechanisms related to sex differences in the effects of nicotine
on cognition in discrimination learning and cognitive flexibility. Our result suggests
that nicotine modulates cognitive function in a sex-dependent manner by alternating

the expression of specific gene sets in the medial prefrontal cortex.

Abbreviations: i.p., intraperitoneal injection; nAChRs, nicotinic acetylcholine receptors; PFC, prefrontal cortex; P-Pl, protein-protein interaction; RNAseq, RNA sequencing; RRIDs (see
scicrunch.org), Research Resource Identifier; TF, transcription factor; VD task, visual discrimination; VDR task, reversal.
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1 | INTRODUCTION

Nicotine, a highly addictive alkaloid contained in tobacco
(Gould, 2023; Jarvik, 1991; Mcgrath-Morrow et al., 2020; Zeidler
etal., 2007), has been known to induce various physiological changes
via its agonistic effect to nicotinic acetylcholine receptors (nAChRs),
heterogeneous cationic channels expressed widely in both neural
and non-neuronal tissues such as grail and peripheral cells (Gotti
et al., 2006; Hollenhorst & Krasteva-Christ, 2021; Zoli et al., 2018).
Exogenous nicotine primarily binds at nAChRs expressed at the pre-
synaptic and preterminal axonal shaft of the neurons in the central
nervous system, and this promotes the release of excitatory, inhibi-
tory, and neuromodulatory neurotransmitters.

It has been known that the intake and administration of nic-
otine have significant impacts on our cognitive and emotional
functions (Benowitz, 2008; Kim & Picciotto, 2023). Importantly,
previous studies in humans and rodents have demonstrated that
nicotine can improve cognitive function. For example, a meta-
analysis study focusing on human subjects reported facilitative
effects of nicotine treatment or smoking on attention, as well as
short-term episodic and working memory (Heishman et al., 2010).
Supporting this, several other human studies have also reported
enhanced cognitive functions such as sustained attention,
computational processing, and memory by nicotine treatment
(DeVito et al., 2014; Myers et al., 2008; Warburton et al., 1992).
Furthermore, in rodent studies, nicotine improved initial learn-
ing in the visual discrimination (VD) task in both rats and three
strains of mice (Bovet-Nitti, 1966, 1969), and facilitated the re-
versal learning in the probabilistic reversal learning tasks in mice
(Milienne-Petiot et al., 2018). However, conversely, nicotine has
also been reported to impair the reversal learning in VD tasks, sug-
gesting that the effect of nicotine on cognitive function largely
depends on the type of cognitive tasks (Cole et al., 2015; Ortega
et al., 2013).

It should be noted that sex differences in the effects of nic-
otine have also been reported in the previous studies. In human
studies, compared to males, females typically develop nicotine de-
pendence more easily. Females show a depressive tendency during
the dependence more often, and they have a stronger negative
affective response during its withdrawal (Hogle & Curtin, 2006;
Komiyama et al., 2018; Pogun et al., 2017). In preclinical studies,
female rats have exhibited greater nicotine self-administration
behavior (Chaudhri et al., 2005) and nicotine-induced locomotor
sensitization (Booze et al., 1999; Harrod et al., 2004). Moreover,
it has been reported that female rats and mice showed a stron-

ger anxiolytic behavioral response immediately after the acute

nicotine administration (Cheeta et al., 2001) and during nicotine
withdrawal (Caldarone et al., 2008). Although these previous stud-
ies have shown the important sex difference of nicotine's effect on
animal behaviors, possible sex differences of the effect on cogni-
tive functions, such as discriminative learning and its reversal, have
not been tested.

Among nAChR subunits, the o7 subunit is known to have an
essential role for the effect of nicotine to facilitate discrimination
learning, and treatment of positive allosteric modulation of the
o7 subunit itself is sufficient for enhancing recognition memory
and cognitive flexibility at least in male rats and mice (Milienne-
Petiot et al., 2018; Nikiforuk et al., 2015). On the other hand, it
has also been reported that nicotine impaired cognitive flexibil-
ity through the activation of the p2 subunit (Cole et al., 2015).
Interestingly, other studies have shown that repeated nicotine in-
jections increased the nAChR binding only in male rats but not in
female rats (Koylu et al., 1997; Moen & Lee, 2021). Furthermore,
the downstream gene expression of nAChRs is also known to be
sex-dependent, especially in the brain regions that have been asso-
ciated with cognitive control, such as the frontal cortices (Friedman
& Robbins, 2022). For example, chronic nicotine administration
induced an upregulation of the sphingolipid metabolism-related
gene CERKL in the frontal lobe of male rats, although this gene
was downregulated in the female (Vargas-Medrano et al., 2023).
Similarly, gestational nicotine exposure increased and decreased
the expression of major myelin genes in the prefrontal cortex (PFC)
in male and female mice, respectively (Cao et al., 2013). Although
these previous studies have identified sex-dependent changes of
the expressions of individual genes by nicotine, it is important to
investigate more general changes in nicotine-induced gene expres-
sions and compare between male and female by taking advantage
of large-scale and unbiased analysis.

Here, we investigate the effects of subchronic intraperitoneal
nicotine administration on visual discrimination learning and cogni-
tive flexibility in male and female mice. VD learning and VD reversal
(VDR) learning tasks in the Bussey-Saksida touch screen chamber
were chosen as behavioral tests, because of its ability to measure
complex cognitive functions with minimal researcher interference
and its high translational potential between rodent and human
studies (Horner et al., 2013; Macpherson & Hikida, 2018; Nishioka
et al., 2023). Furthermore, we also investigate gene expression
changes in the PFC induced by short-term or long-term subchronic
administration of nicotine in both male and female mice, in order to
elucidate the molecular mechanisms that may underlie the ability of
nicotine to modulate cognitive performance and its difference be-

tween the sexes.
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2 | MATERIALS AND METHODS
2.1 | Animals

Male (n=40) and female (n=44) C57BL6/JJcl mice obtained from
CLEA Japan Inc (Tokyo, Japan) and aged between 8 and 10 weeks
were used for all experiments. No sample size calculations were
performed. The sample size was determined based on previous
studies (Festing, 2018). Mice were housed on a 12-h light/dark
cycle (Light: 0800-2000, Dark: 2000-0800) in a quiet environ-
ment with room temperature maintained at 24 +2°C and 50+5%
humidity. Mice were housed according to sex and in groups of be-
tween 2 and 5 mice with ad libitum access to food and water until
behavioral experiments. The experiment was conducted without
aligning the estrus cycles in the females. All animal experiments
complied with institutional guidelines set by Osaka University
Institute for Protein Research Animal Research Committee (29-
02-1 and R04-01-0).

2.2 | Drugs

The nicotine solution was prepared by dissolving nicotine hy-
drogen tartrate salt (cat. no. SML1236, Sigma-Aldrich, Missouri,
USA) in saline (cat. no. 035081517, Otsuka normal saline, Otsuka
Pharmaceutical Factory, Inc., Tokushima, Japan). 0.5 mg/kg solution
was prepared by dissolving 0.5 mg of nicotine hydrogen tartrate salt
in 10mL of saline; 0.25 and 0.125mg/kg solutions were prepared
by diluting the 0.5 mg/kg solution two and fourfold with saline. The
solutions were i.p. administered to mice at a volume of 0.1 mL per
gram of mouse weight. Doses of nicotine were selected based on
those previously reported to facilitate VD in mice and rats (Bovet-
Nitti, 1966, 1969). Four mice were group-housed in each cage. The
dose of nicotine to be administered was determined according to
stratified randomization.

2.3 | Touchscreen operant chambers

Pretraining and testing were conducted in touchscreen operant
chambers (Model 80614, Campden Instruments Ltd., Loughborough,
UK). A partition plate with two square holes (W:7cm, H:7.5¢cm) in
the center separated by a 5mm space in between was fitted in front
of an infrared touch screen to create two distinct panels for touch
responses. A reward tray connected to the polyvinyl tube and a peri-
staltic pump for liquid reward delivery was placed on the opposite
side of the chamber. The chamber was always kept dark during ex-
periments, with only three light sources: a touch screen light (panel
lights), a light on the top of the reward presentation dish (dish light),
and a house light. The touchscreen operant chambers were con-
trolled using ABET Il (Lafayette Instrument Co., Indiana, USA) and
Whisker (Cambridge University Technical Services Ltd., Cambridge,

JNC =—W1 LEY-

UK) software. Between each task session, the chamber was cleaned
with 70% ethanol.

Neurochemistry

2.4 | Pretraining

Visual discrimination (VD) Tasks in the Touchscreen Operant
System were conducted as previously described with minor modi-
fication (Horner et al., 2013; Morita et al., 2016). It consisted of
six phases: pretraining (Initial touch training, Must touch training,
Must initiate training, Punish incorrect training), followed by two
test periods (VD task, VD Reversal (VDR) task). Mice were indi-
vidually housed at least 7 days prior to the start of the experiment
(Figure 1a). Food consumption was restricted to maintain mice at
85-90% of their initial free-feeding body weight. Mice were fed
every day after the completion of the task session. Food was given
immediately after the end of the task, that is, all mice were re-
moved from the chamber and had access to food as soon as they
returned to their home cages. Water was always available in the
home cage.

In Initial touch training, during each trial, a visual stimulus was
randomly presented on only one panel (Figure 1b). If the mouse
did not touch the panel for 30s, a “regular” reward (7 uL, 20% con-
densed milk, Morinaga Milk Industry Co. Ltd., Tokyo, Japan) was
delivered. if the mouse touched the panel within 30s, a “tripled”
reward (21 pL) was delivered immediately. Rewards were delivered
with panel lights off, reward tray lights on, and with an auditory
cue (3kHz, 1s). When the mouse nose-poked into the reward tray
to collect the reward, the reward tray light was turned off and a
20-s interval (ITI) period was initiated. At the end of the ITI, the
next trial was initiated. The stimulus was displayed no more than
four times consecutively in the same position (left or right panel).
Sessions were terminated after the completion of 30 trials or after
60 min. Mice progressed to Must touch training following the com-
pletion of 30 trials in 60 min.

In Must touch training, rewards (7 uL) were delivered only when
the mouse touched the visual stimulus panel. Other conditions were
the same as in Initial touch training. Mice progressed to Must initiate
training following the completion of 30 trials in 60 min.

In Must initiate training, an additional requirement was added,
where the mouse was required to make a nose-poke entry into the
reward tray to initiate the trial after the completion of a 20-s ITI.
Other conditions were the same as in Must touch training. Mice pro-
gressed to Punish incorrect training following the completion of 30
trials in 60 min.

In the Punish incorrect training, when the mice were exposed
to the incorrect stimulus, the house light was turned on for 5s to
indicate the wrong response. After the house lights were turned
off and 20s of ITI, a correction trial (image shape and left-right
position were the same as in the previous trial) was initiated, and
the correction trial was repeated until the mouse touched the cor-

rect stimulus. Other conditions were the same as in Must initiate
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FIGURE 1 Experimental paradigm. (a) In 1week, mice were confined to a diet that limited their body weight to 85%-90% of their initial
weight at dayO. IP: Intraperitoneal administration. (b) The schematic diagram of the Bussey-Saksida touchscreen operant chamber and

example visual stimuli in the pre-training and each task. (c) Task design for the Visual Discrimination (VD) task and the Reversal (VDR) task.
Correct response latency is the time period indicated by blue arrows and reward collection latency is the period indicated by green arrows.

training. Mice progressed to the VD task following the comple-
tion of 30 trials in 30 min and achieved at least 23/30 correct re-
sponses (76.7%) on two consecutive days (excluding the number
of correction trials).

2.5 | Visual discrimination (VD) task

Two different visual stimuli, a dot array pattern and a star pattern,
were assigned as either the correct or the incorrect stimulus in a
counterbalanced manner among mice and kept consistent through-
out VD sessions (Figure 1b). The position (left or right panel) of the
correct and incorrect visual stimuli was randomized across trials,
with the same stimulus displayed no more than four times con-
secutively in the same position. Other conditions were the same
as in Punish incorrect training (Figure 1c). The criterion was defined
as the completion of 30 trials in 60 min and the achievement of at
least 24/30 correct answers (80.0%) on two consecutive days. In
order to compare learning curves between all individuals, all mice
performed the task for 8days before progressing to the Reversal
task, regardless of how fast they reached the criterion. Nicotine at

different doses (0.125, 0.25, and 0.5 mg/kg), or saline as a control,
were administered via intraperitoneal (i.p.) injection to separate
experimental groups 5min prior to each VD session. It should be
noted that plasma concentrations of nicotine reach its peak within
5 min after the injection and significantly elevated nicotine level is
sustained at least for 1 h. (Jung et al., 1999; Siu & Tyndale, 2007).
One female was excluded from the data because it had health
problems before the end of the VD task period, and the experi-
ment was terminated.

2.6 | Reversal (VDR) task

In the VDR task, the correct and incorrect stimuli from the previ-
ous stage (VD task) were inverted (i.e., if the star pattern stimulus
had been correct during the VD task, the dot array pattern stimulus
was now correct during the VDR task, and vice versa for the incor-
rect stimulus; Figure 1b). Other conditions were the same as in the
VD task. The criterion was defined as the completion of 30 trials
in 60min and the achievement of at least 24/30 correct answers
(80.0%) on two consecutive days. All mice performed this task
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for 10days regardless of how fast they reached the criterion. As
with the previous stage, 5min prior to each VDR session, nicotine
at different doses (0.125, 0.25, and 0.5mg/kg), or saline as a con-
trol, were administered via i.p. injection to the same experimental
groups as had received them during the VD task. One male was
excluded from the data because it had health problems before the

end of the VDR task period, and the experiment was terminated.

2.7 | Tissue sampling

Male (n=6) and female (n=6) mice housed under identical condi-
tions to mice used for behavioral experiments were administered
daily with a 0.5mg/kg dose of nicotine or saline as a control. This
dose of nicotine was selected because of its largest facilitative or
inhibitory effects on the discriminatory behaviors on VD and VDR
tasks in male and female, respectively. After 3 and or 18 days, mice
were dissected 65min after nicotine or saline administration, be-
cause in the behavioral experiment, we injected nicotine (i.p.) 5 min
before the start of VR and VDR training and these training took 60
min on average. After deep anesthesia with isoflurane (3%) and
cervical dislocation, brains were removed and immediately cooled
and washed in 4°C saline. Brains were sliced into 1-mm thick cor-
onal sections using a brain matrix (cat. no. of BrainSience-idea.
CO., Ltd. MBS-S1C, Aster Industries, USA). The medial prefron-
tal cortex (mPFC; centered on AP=2.5mm on anterior side,
ML=0mm, DV=2mm on ventral side, based on bregma (George
& Keith, 2019)) was harvested with a 2-mm biopsy punch, imme-
diately placed in 200puL of RNAlater (Thermo Fisher Scientific,
Massachusetts, USA), and stored at 4°C for 24 h, after which time
excess RNAIlater solution was removed and samples were frozen at

-80°C. Three samples were prepared for each condition.

2.8 | Transcriptome analysis (RNAseq)

RNA was extracted from cells using RNeasy plus mini kit (cat. no.
74136, QIAGEN, Venlo, The Netherlands) according to the manufac-
turer's protocol. Library preparation for RNA sequencing (RNAseq)
was performed using a TruSeq stranded mRNA sample prep kit
(lllumina, California, USA) according to the manufacturer's instruc-
tions. Sequencing was performed on an lllumina NovaSeq 6000
sequencer (RRID:SCR_016387, lllumina) in the 101-base single-end
mode. Sequenced reads were mapped to the mouse reference ge-
nome sequences (NCBI-RefSeq-GCF_000001635.27 GRCm39)
using STAR-2.7.11b. The fragments per kilobase of exon per mil-
lion mapped fragments (FPKMs) was calculated using RSEM-1.3.3
and TCC-GUI (Su et al,, 2019). In TCC-GUI, DEseg2 was used to
normalize counts and detect differential expression among genes
(p<0.05, |FC|<1.1). Pathway analysis was performed using Enrichr
(RRID:SCR_001575; Chen et al., 2013; Kuleshov et al., 2016; Xie
et al., 2021). Protein-protein interaction (P-PI) networks and
cluster enrichment were analyzed using STRING version 12.0

Neurochemistry
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(RRID:SCR_005223) (Szklarczyk et al., 2023; von Mering et al., 2003,
2005). Transcription Factor (TF) analysis was performed using
WPGSA (Kawakami et al., 2016). All results are collected in the sup-
plementary tables (TCC-GUI: Table S2, Enrichr pathway analysis:
Table S3, STRING cluster enrichment analysis: Table S4, wPGSA TF
analysis: Table S5).

2.9 | Statistical analysis

GraphPad Prism software (RRID:SCR_002798, v.10.2.0, GraphPad
Software Inc., California, USA) was used for all statistical analyses.
A repeated-measures two-way ANOVA was used for analyzing the
percentage of correct responses, the correct response latency, and
the reward collection latency. A one-way ANOVA was used to ana-
lyze sessions-to-criterion. For all ANOVAs, post-hoc Dunnett's mul-
tiple comparisons tests were used for comparisons between nicotine
and saline groups. All results of ANOVA are collected in the supple-
mentary table (Table S1). Data were not assessed for normality and

no test for outliers was conducted.

3 | RESULTS

3.1 | Nicotine impairs discrimination learning in
female, but not male, mice

To examine the effects of nicotine administration on discrimina-
tion learning, an important cognitive skill for decision-making, we
evaluated the task performance of mice in the VD task. In each ses-
sion, mice were i.p. administered nicotine or saline 5min before the
start of the task. Male mice administered saline or low (0.125mg/
kg), medium (0.25mg/kg), or high (0.5mg/kg) doses of nicotine
did not significantly differ in the percentage of correct responses
in the VD task (Dose, F(3, 288)=0.1402, p=0.9358; Dose x Days,
F(21, 288)=0.9014, p=0.5896; Figure 2a), or in the number of ses-
sions taken to reach the criterion (Dose; F=0.5833, p=0.6299;
Figure 2b). Similarly, no significant difference was found between
groups in the correct response latency, a measure of locomotion,
and in the reward collection latency, a measure of the motivation
for the food reward (Figure S1).

In contrast, in female mice, medium and high doses, but not a
low dose, of nicotine significantly decreased the percentage of
correct responses compared to those administered saline (Dose,
F(3, 312)=5.992, p=0.0006; DosexDays, F(21, 312)=0.5884,
p=0.9256; Figure 2c). In addition, high-dose nicotine significantly
increased the number of sessions to reach the criterion (Dose,
F=2.744, p=0.056; post hoc, saline vs high dose, AdjP=0.0269;
Figure 2d). Similar to male mice, no significant differences were
found between groups in the correct response latency and the re-
ward collection latency (Figure S1).

These findings indicate that nicotine impairs VD learning in fe-
male mice without affecting locomotion or motivation.
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3.2 | Nicotine increases cognitive flexibility in male
mice but decreases it in female mice

Next, to explore the effect of nicotine i.p. administration on cogni-
tive flexibility, and the ability to adaptively shift mental strategies
based upon the changing demands of the environment, mice were
tested in the VDR task. In this test of reversal learning, the correct
and incorrect images from the previous VD task were reversed.

In male mice, high-dose nicotine significantly increased the per-
centage of correct responses when compared with saline (Dose, F(3,
230)=4.579, p=0.0039; Dose x Days, F(27, 230)=0.4542, p=0.9916;
Figure 3a), while low and medium doses of nicotine had no signifi-
cant effect. Additionally, high-dose nicotine significantly decreased
the number of sessions to reach the criterion when compared with
saline (Dose, F=2.432, p=0.0909; post hoc, saline vs high dose,
AdjP=0.0378; Figure 3b). No significant differences were found be-
tween groups in the correct response latency and the reward collec-
tion latency (Figure S1).

In contrast, in female mice, medium-dose nicotine significantly
decreased the percentage of correct responses when compared
with saline, while low and high doses nicotine dose had no signifi-
cant effect (Dose, F(3, 390)=5.321, p=0.0013; Dose x Days, F(27,
390)=0.5004, p=0.9840; Figure 3c). No significant effect of nic-
otine dose was observed on sessions to reach the criterion (Dose;

F=0.9865, p=0.4091; Figure 3d). Similarly, no significant differ-
ences were found between groups for the correct response latency
and the reward collection latency (Figure S2).

Taken together, these results reveal that high-dose nicotine ad-
ministration increases cognitive flexibility in a VDR task in male mice,
while medium-dose nicotine decreases cognitive flexibility in female
mice.

3.3 | Genes upregulated after 3 days of nicotine
administration

To elucidate cellular alterations resulting from repeated nicotine i.p.
administration, as well as their differences in males and females,
RNAseq was performed on brain tissue from nicotine-treated mice.
Two different time periods were chosen for RNAseq experiments
at distinct durations of nicotine treatments. The first time period
selected was 3days of nicotine administration, which served as the
short-term treatment condition. This time point was deemed suit-
able for inducing cognitive impairment in VD performance in female
mice. The second time period chosen was days of nicotine adminis-
tration, which represented the longest duration of nicotine exposure
in behavioral experiments. This time period was chosen as the long-
term treatment condition. As the high dose (0.5mg/kg) of nicotine
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produced the greatest changes in performance in VD and VDR tasks,
this dose was chosen for RNAseq experiments. Finally, the mPFC
was chosen as a target for analysis as this brain region has previously
been implicated in several cognitive abilities, including discrimina-
tion learning and cognitive flexibility (Brigman & Rothblat, 2008;
Friedman & Robbins, 2022; Salazar et al., 2004; Wulaer et al., 2020).
Thus, differential gene expression in the mPFC was analyzed in four
groups, on days 3 and 18 in both males and females. Subsequently,
using gene sets with altered expression, P-PI network analysis, path-
way analysis, and TF analysis were performed.

P-PI network analysis on the gene set upregulated after 3-day
nicotine treatment in male mice generated one large network of six
clusters and four small networks. The largest cluster identified by
cluster (cluster-by-cluster) enrichment analysis included genes re-

»n o«

lated to “oligodendrocyte differentiation,” “axon sheath,” and “my-
elin.” The second largest cluster was related to the “PI3K-Akt-mTOR
signaling pathway” (Figure 4a, Table S3). No terms were significantly
enriched in the pathway analysis when using the two databases
(Figure 4b,c). In the female mice, P-Pl network analysis generated
one large network of three clusters and six smaller networks. In
cluster enrichment analysis, “Collagen-containing extracellular ma-
trix” and “PI3K-Akt-mTOR signaling pathway” were enriched in the
components of the largest cluster component, “AP-1 transcription

factor” and “MAP kinase activation” in the second cluster, and “MHC
class Il protein complex” in the third cluster (Figure 4d, Table S3).
Pathway analysis showed significant enrichment of “Oncostatin M,”
“Beta-1 integrin cell surface interaction,” “BDNF signaling pathway,”
“Integrins in angiogenesis,” and “FRA pathway” in the BioPlanet2019
database, as well as “Integrins in angiogenesis,” and “FRA pathway”
in Reactome2022 (Figure 4e,f). The female gene set had more sig-

nificantly enriched terms compared to the male set.

3.4 | Genes upregulated after 18 days of nicotine
administration

Using the gene set upregulated after 18-day nicotine treatment in
male mice, P-Pl network analysis generated two large networks
of four clusters and fourteen small networks. Components of the
largest clusters were genes related to “AP-1 transcription fac-
tor” and “MAP kinase activation” by cluster enrichment analysis
(Figure 5a, Table S3). No significant terms were enriched in path-
way analysis (Figure 5b,c). In the female mice, the P-Pl network
analysis generated one large network of twelve clusters and two
smaller networks. In cluster enrichment analysis, “Integrin bind-
ing,” “Growth factor activity,” “PI3K-Akt signaling pathway,” and
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FIGURE 4 Analysis of the gene set upregulated after 3-day nicotine treatment. Results of the P-Pl network cluster analysis and pathway
analysis in male (a-c) and female (d-f) mice. Cluster and enriched terms for the largest (green), second (yellow), and third (orange) clusters
of the P-Pl network. The Blue dashed line indicates p=0.05 in the pathway analysis. The results of the cluster enrichment and pathway
analyses are summarized in the Tables S3 and S4 (Male; Saline 3days n=3, Nicotine 0.5mg/kg 3 days n=3, Female; Saline 3days n=3,

Nicotine 0.5mg/kg 3days n=3).

“TGF-beta signaling pathway” were enriched in components of
the largest cluster, “Cell Cycle,” “Checkpoints,” and “Mitotic” in the
second cluster, “MHC class Il protein complex” in the third cluster,
“Innate immune response” in the fourth cluster, and “Myelination”
in the fifth cluster (Figure 5d, Table S3). In addition, a small cluster
of Fos and Junb, which are AP-1 transcription factors, was found
to interact with 6 clusters. Pathway analysis showed significant
enrichment of “Interleukin-4 regulation of apoptosis,” “BDNF
signaling pathway,” “Neural crest differentiation,” “Transport of

» o«

glucose and other sugars,” “bile salts and organic acids,” “metal
ions and amine compounds,” and “TGF-beta regulation of extracel-
lular matrix” in BioPlanet 2019 (Figure 5e,f). Across all upregulated
gene sets, there were more significantly enriched terms in female
sets than in the male sets, and an increase of enriched terms as a

result of long-term administration was seen only in females.

3.5 | Genes downregulated after 3 days of nicotine
administration

Using the gene set downregulated after 3-day nicotine treatment
in male mice, P-Pl network analysis generated one large network of

three clusters and eight small networks. Components of the larg-
est clusters were genes related to “Glutamatergic synapse and
Postsynaptic density” and the second cluster included genes related
to “Transmembrane receptor protein tyrosine kinase signaling path-
way” (Figure 6a, Table S3). “Neural System” was only significantly
enriched in Reactome2022 (Figure 6b,c). In the female mice, the
P-PI network analysis generated five small networks (Figure éd,
Table S3), and no significant terms were enriched in the pathway
analysis (Figure 6e,f). These findings indicate that nicotine has no
significant suppressing effect on gene expression in female mice.

3.6 | Genes downregulated after 18 days of
nicotine administration

Using the gene set upregulated after 18-day nicotine treatment in
male mice, P-Pl network analysis generated one large network of
nineteen clusters and twelve small networks. In cluster enrichment
analysis, “Glutamatergic synapse,” “Neurexins and neuroligins,” and
“Cell junction,” “Postsynapse,” were enriched in components of the
largest cluster, “Transmembrane receptor protein tyrosine kinase
signaling pathway” and “Focal adhesion” in the second cluster, and
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FIGURE 5 Analysis of the gene set upregulated after 18-day nicotine treatment. Results of the P-PI network cluster analysis and pathway
analysis in male (a-c) and female (d-f) mice. Cluster and enriched terms for the largest (green), second (yellow), third (orange), fourth (red),
and fifth (pink) clusters of the P-PI network. The Blue dashed line indicates p=0.05 in the pathway analysis. The results of the cluster
enrichment and pathway analyses are summarized in the Tables S3 and S4 (Male; Saline 18 days n=3, Nicotine 0.5mg/kg 18days n=3,

Female; Saline 18 days n=3, Nicotine 0.5mg/kg 18days n=3).

“Histone deacetylase binding” and “Negative regulation of transcrip-
tion by RNA polymerase 1I” in the third cluster (Figure 7a, Table S3).
Pathway analysis revealed several pathways that were significantly
enriched, including “Neuronal system,” “L1CAM interactions,”
“Interaction between L1-type proteins and ankyrins,” “PGC-1a regu-
lation,” “Endocytosis,” “Neurexins and Neuroligins,” “Protein-protein
Interactions at Synapses,” “Transmission Across Chemical Synapses,”
and “Activation of NMDA Receptors and Postsynaptic Events”
(Figure 7b,c). In the female mice, P-Pl network analysis generated
only one small network (Figure 7d, Table S3), And no significant
terms were enriched in the pathway analysis (Figure 7e,f). Therefore,
regardless of the number of doses, nicotine has very little suppress-
ing effect on gene expression in female mice. On the other hand, far
more enriched terms were found in the male gene set, and the size of
the networks and the number of enriched terms increased as a result

of long-term nicotine administration.

4 | DISCUSSION

Here, we investigated the sex-dependent effects of nicotine on dis-
crimination learning and cognitive flexibility in mice for the first time.

As a result, we found that nicotine treatment significantly facilitated

performance in the VDR task in male mice, while it significantly im-
paired performance in both VD and VDR task in female mice.

Our finding of the pro-cognitive effect of nicotine in male mice is
supported by the previous study, which showed a similar facilitative
effect of nicotine on reversal learning in probabilistic tasks in male
rats (Milienne-Petiot et al., 2017). However, nicotine's pro-cognitive
effects in the male contrast with other previous studies using male
mice, in which chronic nicotine administration with osmotic pumps
facilitated performance in VD task, but inhibited performance in
VDR task (Cole et al., 2015; Ortega et al., 2013). Although the reason
for this inconsistency remains unclear, it could be due to differences
of the route (i.p. injection vs. oral vs. osmotic pump) and the dura-
tion (acute vs. chronic) of nicotine administration. Furthermore, even
if the same visual discrimination tasks were used, the difference in
the experimental procedures deriving from the specifications of be-
havioral apparatus might result in the difference in cognitive abili-
ties required for behavioral performance. For example, the effect
of nicotine in VD and VDR tasks in previous studies has largely
been assessed in the “classic” operant chambers where a single vi-
sual cue light located above either correct or incorrect lever guides
the choice behaviors (Cole et al., 2015; Milienne-Petiot et al., 2018;
Ortega et al., 2013). In this case, animals could earn the reward ei-
ther by simply approaching or avoiding from single cue (i.e., light
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FIGURE 6 Analysis of the gene set downregulated after 3-day nicotine treatment. Results of the P-Pl network cluster analysis and
pathway analysis in male (a-c) and female (d-f) mice. Clusters and enriched terms for the largest (green) and second (yellow) clusters of the
P-PI network. The Blue dashed line indicates p=0.05 in the pathway analysis. The results of the cluster enrichment and pathway analyses
are summarized in the Tables S3 and S4 (Male; Saline 3days n= 3, Nicotine 0.5mg/kg 3days n=3, Female; Saline 3days n=3, Nicotine

0.5mg/kg 3days n=3).

ON or OFF). However, in our touchscreen chambers, both correct
and incorrect visual cues are presented simultaneously. The perfor-
mance in this task might require greater attentional control to make
a correct decision because mice had to discriminate two different
visual cues depending on their shape at the same time to guide their
choice behavior.

Importantly, in our experiments, nicotine treatment consistently
impaired performance in the VD task in female mice, suggesting that
the previously reported pro-cognitive effects of nicotine might be
limited to male mice, and rather nicotine might have opposite inhibi-
tory effects in females. A previous study using rats reported that the
effect of nicotine to increase impulsive choice was much greater in

females compared to males (ibias & Nazarian, 2020), suggesting that
nicotine might worsen the discriminative performance in female by
increasing short-latency impulsive response in our study. However,
this might not be the case, because in our study, there was no signif-
icant effect of nicotine on correct response latency in female mice
(Figures S1 and S2).

Previous studies have suggested that nicotine affects motivation
for food intake. For example, acute and chronic nicotine increased
the motivation for sucrose reward in rats (Grimm et al., 2012; Jias
& Ellison, 1990; Lacy et al., 2012). On the other hand, other studies
have reported that acute self-administration of nicotine or exposure
to cigarette smoke decreases the motivation for or intake of sucrose
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FIGURE 7 Analysis of the gene set downregulated after 18-day nicotine treatment. Results of the P-Pl network cluster analysis and
pathway analysis in male (a-c) and female (d-f) mice. Clusters and enriched terms for the largest (green), second (yellow), and third (orange)
clusters of the P-PIl network. The Blue dashed line indicates p=0.05 in the pathway analysis. The results of the cluster enrichment and
pathway analyses are summarized in the Tables S3 and S4 (Male; Saline 18 days n=3, Nicotine 0.5mg/kg 18 days n=3, Female; Saline

18days n=23, Nicotine 0.5mg/kg 18days n=3).

in rats and mice (Bunney et al., 2016; Chen, Vlahos, et al., 2005; Hart
et al., 2021). Furthermore, it has also been reported that nicotine
pre-exposure did not influence the effects of sucrose to reinforce
their seeking behavior in rats (Schwartz et al., 2018). Thus, although
the effects seem to be inconsistent, it is possible that nicotine af-
fected discriminative performance by affecting motivation for food
in our study. Regarding this point, the analysis of the reward collec-
tion latency in our VD and VDR tasks revealed no changes in the
motivation for food rewards following nicotine administration in

both males and females, suggesting that nicotine-induced changes

in performance in VD and VDR tasks in the present study are not
attributed to altered motivation (Figures S1 and S2).

To explore the possible alteration in nicotine-induced gene ex-
pression underlying the nicotine's sex-dependent effect on cogni-
tive performance, we conducted transcriptomic analysis focusing
on the mPFC, a brain region linked with discrimination learning
and cognitive flexibility (Brigman & Rothblat, 2008; Friedman &
Robbins, 2022; Salazar et al., 2004; Wulaer et al., 2020), in male and
female mice treated with nicotine over 3days or 18days. Our anal-
yses, specifically the P-Pl and pathway analysis, uncovered three
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TABLE 1 Three different types of gene sets, whose expressions were distinctively regulated by nicotine administration, and enriched

words. The typical genes are hub genes in the P-Pl network and cluster.

Gene group Term Cluster enrichment analysis Pathway analysis Typical genes Functions
Upregulated in 3days and Regulation of response to PI3K-Akt signaling pathway =~ Ccn2, DCN Sex independent
both sex 18days external stimulus effect (early cellular
AP-1 transcription factor BDNF signaling pathway JunB, Fos, Npas4 responses)
Downregulated  3days and Modulation of chemical Neurexins and neuroligins Shank1, Shank2, Increased
in male 18days synaptic transmission Shank3, Dig4 performance in the
Protein phosphorylation Transmembrane receptor Src, Shc3, Fmnl1, VDR task
protein tyrosine kinase Vegfa, Pik3r2
signaling pathway
Upregulated in 3days and MHC class Il protein complex  Antigen processing and Cd74, Cxcr4, Impaired
female 18days presentation histocompatibility 2 performance in the
18days Nuclear chromosome Cell cycle Checkpoints, Mki6é7, Cdkl, Bubilb, VD and VDR task

segregation Mitotic

Innate immune response

Complement and

Ccna2
C2, C4b, Serpingl

coagulation cascades

Myelination

distinct types of gene sets that were regulated by nicotine admin-
istration in a sex-specific manner (Table 1). First, there was a gene
set whose expressions were upregulated by nicotine across both
sexes. Second, there was a gene set whose expressions were down-
regulated by nicotine specifically in males. Lastly, there was a gene
set whose expressions were upregulated by nicotine specifically in
females. Our categorization of expressed genes into three groups is
also supported by our transcription factor analysis, called wPGSA,
which estimates the activities of transcription factors controlling
gene expressions (Figure S3). This analysis revealed that more than
30% of the top 30 enriched transcriptional factors in each exper-
imental group were common among all groups. Furthermore, the
other 30% of the top 30 enriched transcriptional factors in males
and females were specific to each sex.

The first gene set includes the genes upregulated in both sexes
by nicotine treatment. Cluster enrichment analysis on the P-Pl net-
work showed that nicotine increased the expression of PI3K-Akt
signaling pathway-related genes and/or AP-1 transcription factors
such as Fos and Junb, regardless of day and sex. Nicotine is known to
activate the PI3K-Akt signaling pathway via nAChRs, through which
it modulates glucose metabolism, cell cycle progression, and apop-
tosis (He et al., 2024; West et al., 2003). Nicotine is also known to
induce the expression of immediate early genes such as c-fos and
junB in various brain regions (Emilio Merlo Nisell et al., 1997; Pich
et al., 1997; Schilstréom et al., 2000). Our results are consistent with
these findings. These results indicate that nicotine promotes the
PI3K-Akt signaling pathway at downstream of nAChRs, and then ac-
tivates transcription factors such as Fos and JubB in both males and
females. Although activities of these pathways might be involved in
some general effect of nicotine, the sex-dependent effect of nico-
tine on visual discrimination in the current study is not explained.

The second gene set includes the genes downregulated by the
nicotine treatments only in males. P-Pl network cluster analysis

showed that nicotine treatment downregulates specific gene set

Neural crest differentiation

Gfap, Mbp, Mobp, Mag

typified by two large clusters specifically in males; the largest
cluster consisted of the genes associated with “glutamatergic syn-
apses” and the second largest cluster consisted of the genes asso-
ciated with “tyrosine kinase signaling pathway.” Pathway analysis
also revealed that downregulated genes in males are associated
with “neuronal system” supporting the above-mentioned results
of P-Pl interaction. Importantly, the sizes of these two clusters
associated with “glutamatergic synapses” and “tyrosine kinase sig-
naling pathway” were larger in 18-day nicotine treatment group
compared with that of the 3-day treatment group suggesting nic-
otine treatment decreased the expression of genes included in
these clusters according to dose or treatment-period dependent
manner. The hub genes of the cluster of “glutamatergic synapses”
are Shank family, Dlg4 (PSD-95), and Neuroligins. These proteins
have been known as the regulators of postsynaptic functions in
excitatory synapses, and their dysfunctions have also been known
as risk factors for autism (Berkel et al., 2010; Durand et al., 2007;
Michael Feyder et al., 2010; Pinto et al., 2010; Sato et al., 2012;
Stdhof, 2008). PSD-95, Shank, and Neuroligin complex have
been known as essential scaffold proteins that are necessary for
normal excitatory synaptic function as well as neural plasticity
by controlling receptor membrane trafficking and enlargement
of postsynaptic structure (Chen, Vinade, et al., 2005; Hayashi
et al.,, 2009; Sala et al., 2001; Stdhof, 2008). Mice deficient in
Shank, Neuroligin, or PSD-95 complex components have previ-
ously been evaluated as mouse models of autism, which showed
impaired learning and cognitive flexibility in the selective task,
communication, and social behaviors, especially in the context
of social interaction (Copping et al., 2017; Feyder et al., 2010;
Ponzoni et al.,, 2019; Qin et al., 2018; Radyushkin et al., 2009;
Winkler et al., 2018). Given the roles of these proteins for the
consolidation and/or maintenance of acquired memory (Coley &
Gao, 2019; Garrido et al., 2022; Xu et al., 2023), it is possible that
the nicotine treatment downregulated the expression of the genes
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coding these proteins that are important for the maintenance of
original associative memory about cue and behavioral response,
and then facilitated the acquisition of reversal learning in male
mice. Actually, there are previous studies showing that reduc-
tion of some components of the PSD-95 protein complex, such
a neuroligin-3 or Dlgap2, enhanced cognitive flexibility (Horner
et al., 2021). Taken together, our results suggest that the nicotine
treatment induces the reduction of scaffold proteins and their as-
sociated proteins in the mPFC to facilitate reversal visual discrim-
ination learning.

The third gene set includes the genes upregulated by the nico-
tine treatments specifically in females. P-Pl network cluster anal-
ysis showed that nicotine treatment upregulated the large cluster
of genes associated with major histocompatibility complex (MHC)
class Il protein complex in both 3-day and 18-day treatment condi-
tions. The MHC class Il protein complex is constitutively expressed
in antigen-presenting cells, and intracellular MHC class Il molecules
bind to antigen and facilitate full activation of adaptive immunity
(Liu et al., 2011; Wieczorek et al., 2017). Furthermore, the analy-
sis of the P-PI network in 18-day, but not 3-day, nicotine-treated
female mice showed enrichment of “Cell cycle, Checkpoints,
Mitotic,” “Myelination,” and “Innate immune response.” In previous
studies, nicotine suppressed inflammatory processes in immune
cells including microglia by its agonistic effect on the nAChR a7
subunit receptor in male and female mice (De Jonge & Ulloa, 2007,
Wang et al., 2003). However, previous studies focusing on female
mice showed that nicotine increased the expression of proinflam-
matory cytokines (Kumar et al., 2024). Importantly, in the present
study, the individual analysis of transcriptomics of the five de-
tectable nAChR subunits revealed that a7 subunit expression in
female mice was lower than that of males, and the expression in
female mice was further reduced after the 18-day nicotine treat-
ment (Figure S4). Taken together, previous studies and our results
suggest that nicotine functions as a proinflammatory regulator in
female mice that show lower expression level of anti-inflammatory
nAChR a7 subunit, and long-term nicotine exposure facilitates in-
flammation by further reducing nAChR o7 in female mice (Imamura
et al.,, 1994; Neumann et al., 1996). Supporting this, «7 nACHR-
deficient mice had higher expression of inflammatory cytokines
(Fujii et al., 2007; Zhang et al., 2016). Given that innate immune
responses could induce synaptic and circuit dysfunction which in-
crease the vulnerability to cognitive decline and neurodegenera-
tion by aging in humans (Cribbs et al., 2012; Haroon et al., 2017,
Turner et al., 2021), it is possible that nicotine inhibits VD perfor-
mance by activating immune responses in female mice. In addition,
our results also showed that long-term nicotine treatment in fe-
male mice increased the expression of a common astrocytic marker
(Gfap), the factors involved in myelin formation that are mostly
expressed in oligodendrocytes (Mbp, Mobp, Mag), and other fac-
tors regulating the mitotic cell cycle (Mkié7, Cdk1, Bublb, Ccna2).
Interestingly, it has been known that long-term nicotine exposure
disrupts cell cycle restriction machinery via the Ras pathway and
stimulates G1 cell cycle transition (Chu et al., 2005). Because the
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neuronal cell cycle is permanently arrested after mitosis (Deneris
& Hobert, 2014; Politis et al., 2007), upregulation of cell cycle-
related genes by nicotine in female mice might occur in glial cells.
These findings suggest that long-term nicotine administration fa-
cilitates the actives and cell cycles of glial cells, including microglia,
astrocytes, and oligodendrocytes, and impairs the visual discrimi-
nation learning in female mice.

In summary, in the present study, we found that subchronic
nicotine administration facilitated discrimination learning in male
mice, whereas it impaired discrimination and cognitive flexibility in
female mice. Furthermore, our transcriptome analysis focusing on
the mPFC revealed that nicotine treatment suppressed excitatory
postsynaptic-related genes in males but increased the expres-
sion of innate immunity-related genes in female mice suggesting
these sex-dependent changes in gene expression might underlie
the sex-dependent effect of nicotine on the performance of visual
discrimination learning. It should be noted that our results do not
necessarily guarantee the functional importance of altered gene ex-
pression. Therefore, further investigations on focusing intracellular
pathways of excitatory postsynaptic mechanism and immunity are
necessary to elucidate the actual molecular differences underlying
the sex-dependent differences in the effects of nicotine on cognitive
functions.
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