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Abstract

We consider the L2-supercritical nonlinear Schrödinger equation with a repulsive Dirac delta potential 
in one dimensional space. In a previous work, we clarified the global dynamics of even solutions with the 
same action as the high-frequency ground state standing wave solutions. In that case, there are obvious 
non-scattering global solutions, i.e., the standing waves. In this paper, we show a scattering and blow-up 
dichotomy for threshold even solutions in the low-frequency case. We emphasize that this dichotomy still 
holds at the critical frequency between high and low.
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1. Introduction

1.1. Motivation

We consider the Schrödinger equation with a repulsive Dirac delta potential and a focusing 
power type nonlinearity in one dimension:{

i∂tu + ∂2
xu + γ δu + |u|p−1u = 0, (t, x) ∈ I ×R,

u(0, x) = u0(x) x ∈R,
(δNLS)

where γ < 0, δ is the Dirac delta with the mass at the origin, and p > 5. Though the equation 
is not scaling invariant, the condition p > 5 means that the nonlinearity is L2-supercritical. The 
Schrödinger operator −�γ := −∂2

x − γ δ0 is defined by

−�γ f := −f ′′ for f ∈D(−�γ ),

D(−�γ ) := {f ∈ H 1(R) ∩ H 2(R \ {0}) : f ′(0+) − f ′(0−) = −γf (0)},

where f ′ denotes the spatial derivative of f . The condition γ < 0 means that the potential is 
repulsive. In the repulsive case, it is known that the operator −�γ is non-negative and self-adjoint 
on L2(R) (see [2, Chapter I.3]) and thus the linear Schrödinger propagator eit�γ is unitary on 
L2(R) by the Stone theorem. We may also define the operator −�γ through the quadratic form
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q(f,g) :=
∫
R

f ′(x)g′(x)dx − γf (0)g(0)

for f, g ∈ H 1(R) (see [32] and [44, Example 10.7]). It is well-known that the equation (δNLS)
is locally well-posed in H 1(R), and the mass and the energy, defined respectively by

M(f ) := ‖f ‖2
L2,

Eγ (f ) := 1

2
‖f ′‖2

L2 − γ

2
|f (0)|2 − 1

p + 1
‖f ‖p+1

Lp+1 ,

are conserved. See [15, Section 3], [6, Theorem 3.7.1], and [14, Proposition 1] for the local 
well-posedness.

Global dynamics of nonlinear Schrödinger equations has attracted a lot of interest after the 
pioneering work by Kenig and Merle [33]. Global dynamics below the ground state for the 
Schrödinger equation with mass supercritical and energy subcritical nonlinearity, but without 
potential, are well-studied (see [25,8,26,11,1,16,17]), as are the global dynamics at the ground 
state level (see [10,5]). See also [40] for the global dynamics above the ground state. More re-
cently, dynamics of nonlinear Schrödinger equations with potential have been considered: see 
[23,7,27] for general potentials and [45,34,36] for the inverse square potential. The authors have 
considered the global dynamics of the equation (δNLS). To explain the known results, we first 
give some notations and definitions. For a frequency ω > 0, we define the action Sω,γ by

Sω,γ (f ) := Eγ (f ) + ω

2
M(f )

and the virial functional Kγ by

Kγ (f ) := ‖f ′‖2
L2 − γ

2
|f (0)|2 − p − 1

2(p + 1)
‖f ‖p+1

Lp+1 .

The scaling critical regularity index is

sc := 1

2
− 2

p − 1
.

Definition 1.1 (scattering). We say that a solution u scatters in the positive (resp. negative) time 
direction if the solution exists at least on [0, ∞) (resp. (−∞, 0]) and there exists u+ ∈ H 1(R)

(resp. u− ∈ H 1(R)) such that

‖u(t) − eit�γ u+(−)‖H 1 → 0 as t → ∞ (resp. −∞).

We only say that a solution u scatters if the solution scatters in both time directions.

Remark 1.1.
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(1) Mizutani [39] shows that, if a solution scatters in the positive time direction, then there exists 
ũ+ ∈ H 1(R) such that

‖u(t) − eit∂2
x ũ+‖H 1 → 0 as t → ∞.

This means the solution of the nonlinear equation behaves freely at time infinity.
(2) For the defocusing nonlinear Schrödinger equation with repulsive Dirac equation, Banica 

and Visciglia [4] show that all solutions scatter.

Definition 1.2 (blow-up, grow-up).

(1) We say that a solution u blows up in positive time if the solution exists until finite T > 0 and 
does not extend beyond T . By the blow-up alternative, if u blows up in positive time, then 
‖u′(t)‖L2 → ∞ as t goes to maximal positive existence time.

(2) We say that a solution u grows up in positive time if it exists on [0, ∞) and
lim supt→∞ ‖u′(t)‖L2 = ∞.

We define blow-up (resp. grow-up) in negative time in a similar way. We say that a solution u
blows up if it blows up in both time directions. We say a solution blows up or grows up if the 
solution blows or grows up in positive time and blows or grows up in negative time.

To study the global dynamics, minimization problems related to the ground state play an 
important role. We consider the following two:

nω,γ := inf{Sω,γ (f ) : f ∈ H 1(R) \ {0},Kγ (f ) = 0},
rω,γ := inf{Sω,γ (f ) : f ∈ H 1

even(R) \ {0},Kγ (f ) = 0},

where H 1
even(R) denotes the even functions in H 1(R). We have:

Proposition 1.1 ([13,28]). Let γ < 0.

(1) For all ω > 0, nω,γ = nω,0 and nω,γ is not attained.
(2) nω,γ < rω,γ and

rω,γ

{
= 2nω,0 if 0 < ω ≤ γ 2

4 ,

< 2nω,0 if ω >
γ 2

4 .

(3) If 0 < ω ≤ γ 2/4, then rω,γ is not attained. If ω > γ 2/4, then rω,γ is attained by

Qω,γ (x) := cpω
1

p−1

[
2 cosh

{
p − 1

2

√
ω|x| + tanh−1

(
γ

2
√

ω

)}]− 2
p−1

,

where cp := {2(p + 1)} 1
p−1 . The function Qω,γ is the unique (up to a complex phase) solu-

tion of
761
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−Q′′
ω,γ − γ δQω,γ + ωQω,γ = |Qω,γ |p−1Qω,γ .

Remark 1.2. Let

Q(x) := cp

{
2 cosh

(
p − 1

2
x

)}− 2
p−1

,

known as the ground state of the equation

−Q′′ + Q = Qp. (1.1)

Then Qω,γ is given by a translation, reflection, and scaling as follows:

Qω,γ (x) := ω
1

p−1 Q

(√
ω|x| + 2

p − 1
tanh−1

(
γ

2
√

ω

))
for ω > γ 2/4.

Remark 1.3. Fukuizumi and Jeanjean [13] show the instability of the ground state standing 
waves if p ≥ 5. Le Coz et al. [35] obtained the strong instability of the standing waves. In their 
papers [13] and [35], the stability of the ground states in the case 1 < p < 5 is also investigated 
(see also [41] for the degenerate case). For the attractive Dirac delta potential (γ > 0), the orbital 
stability of the standing waves is studied by Fukuizumi, Ohta, and Ozawa [14] (see also [15]) in 
the non-degenerate case and Ohta [41] in the degenerate case. See Ohta and Yamaguchi [43] and 
Fukaya and Ohta [12] for the strong instability (see also [42] for a review). Recently, Masaki, 
Murphy, and Segata [37] proved the asymptotic stability of small solitary waves for p > 5 under 
a suitable spectral condition. See also [31,43].

The function eiωtQω,γ is a non-scattering global solution to (δNLS) if ω > γ 2/4. In the 
non-even case, nω,γ = nω,0 = Sω,0(Qω,0) gives a threshold for a dichotomy result even though 
eiωtQω,0 is not a solution to (δNLS):

Theorem 1.2 (Global dynamics below Qω,0 (Ikeda–Inui [28])). For ω > 0, we define the poten-
tial well set PWω,γ := {f ∈ H 1(R) : Sω,γ (f ) < nω,γ }. Assume that u0 ∈ ∪ω>0PWω,γ . Then the 
following hold for (δNLS):

(1) If Kγ (u0) ≥ 0, the solution scatters.
(2) If Kγ (u0) < 0, the solution blows up or grows up.

Remark 1.4.

(1) Here (and in Theorem 1.4 below) Kγ (u0) = 0 implies u0 = 0.
(2) By scaling, we can re-express Theorem 1.2 by replacing the assumption u0 ∈ ∪ω>0PWω,γ

with the mass-energy condition Eγ (u0)M(u0)
1−sc
sc < E(Q)M(Q)

1−sc
sc .

We also have a dichotomy result at the threshold:
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Theorem 1.3 (Global dynamics on the threshold (Ardila–Inui [3], Inui [29])). Assume that u0 ∈
H 1(R) satisfies Eγ (u0)M(u0)

1−sc
sc = E(Q)M(Q)

1−sc
sc . Then the following hold for (δNLS).

(1) If Kγ (u0) > 0, the solution scatters.
(2) If Kγ (u0) < 0 and xu0(x) ∈ L2(R), the solution blows up.

Remark 1.5.

(1) Kγ (u0) = 0 does not occur since there is no ground state on the threshold.
(2) The dichotomy results Theorems 1.2 and 1.3 are optimal in this sense: for any ε > 0, 

there exists a non-scattering, global moving one-soliton solution u with Eγ (u)M(u)
1−sc
sc <

E(Q)M(Q)
1−sc
sc + ε (see [22]).

(3) In Theorems 1.2 and 1.3, the condition on the sign of Kγ (u0) at the initial time can 
be replaced by the sign of K0(u0), or ‖Q1,0‖1−sc

L2 ‖Q1,0‖sc

Ḣ 1 − ‖u0‖1−sc
L2 ‖√−�γ u0‖sc

L2 , or 

‖Q1,0‖1−sc
L2 ‖Q1,0‖sc

Ḣ 1 − ‖u0‖1−sc
L2 ‖u0‖sc

Ḣ 1 . That is the solution scatters (e.g.) if one of them 
(therefore all of them) is positive. See e.g. [24]. It is notable that functionals not involving 
the potential term also determine the global behavior.

For even solutions, we have the following global dynamics result below rω,γ , which is strictly 
larger than nω,γ by Proposition 1.1:

Theorem 1.4 (Global dynamics of even solutions below rω,γ (Ikeda–Inui [28])). For ω > 0, 
we define the potential well set PW even

ω,γ := {f ∈ H 1
even(R) : Sω,γ (f ) < rω,γ }. Assume that u0 ∈

∪ω>0PW even
ω,γ .

(1) If Kγ (u0) ≥ 0, the solution scatters.
(2) If Kγ (u0) < 0, the solution blows up or grows up.

If ω > γ 2/4, the ground state Qω,γ is a non-scattering, global, even solution on the threshold. 
We also have solutions converging to the ground state as follows:

Theorem 1.5 (Existence of special solutions (Gustafson–Inui [18])). Let ω > γ 2/4 be fixed. 
There exist two even solutions U± to (δNLS) such that

• M(U±) = M(Qω,γ ), Eγ (U±) = Eγ (Qω,γ ), U± exist at least on [0, ∞) and there exists 
c > 0 such that

‖U±(t) − eiωtQω,γ ‖H 1 � e−ct for t ≥ 0.

• Kγ (U+(0)) < 0 and U+ blows up in finite negative time.
• Kγ (U−(0)) > 0 and U− scatters backward in time.

Moreover, we have a global dynamics result in the high frequency case:

Theorem 1.6 (Global dynamics on the threshold (Gustafson–Inui [18])). Let ω > γ 2/4. Assume 
that u0 ∈ H 1(R) is even and satisfies the mass-energy condition
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M(u0) = M(Qω,γ ) and Eγ (u0) = Eγ (Qω,γ ).

Then the following are true for (δNLS).

(1) If Kγ (u0) > 0, the solution u scatters, or else u = U− up to symmetry.
(2) If Kγ (u0) = 0, then u = eiωtQω,γ up to symmetry.
(3) If Kγ (u0) < 0 and 

∫
R |xu0(x)|2dx < ∞, the solution u blows up, or else u = U+ up to 

symmetry.

Our aim in the present paper is to classify the threshold dynamics of even solutions in the low 
frequency case 0 < ω ≤ γ 2/4. Since there is no ground state, one can expect a scattering and 
blow-up dichotomy.

1.2. Main result

We show the following scattering and blow-up dichotomy result at the threshold in the low 
frequency case, for even solutions:

Theorem 1.7. Let 0 < ω ≤ γ 2/4. Assume that u0 ∈ H 1
even(R) satisfies Eγ (u0) = 2E(Qω,0) and 

M(u0) = 2M(Qω,0). Then we have the following:

(1) If Kγ (u0) > 0, the solution u scatters.
(2) Assume in addition that xu0 ∈ L2(R). If Kγ (u0) < 0, the solution u blows up.

Remark 1.6.

(1) The mass-energy conditions Eγ (u0) = 2E(Qω,0) and M(u0) = 2M(Qω,0) come from the 
fact that rω,γ = 2nω,0 = 2Sω,0(Qω,0) (see Proposition 1.1) if 0 < ω ≤ γ 2/4. By using the 
scaling property of Qω,0, we can re-express Theorem 1.7 by replacing these mass-energy 

conditions with the ω-independent conditions Eγ (u0)M(u0)
1−sc
sc = 2

1
sc E(Q)M(Q)

1−sc
sc and 

M(u0) ≥ 2M(Qγ 2/4,0), where the additional mass condition ensures the low frequency.
(2) We note that Kγ (u0) = 0 does not occur on the threshold in the low frequency case since 

there is no ground state.
(3) The dichotomy results Theorems 1.4 and 1.7 are optimal in this sense: for any ε > 0, there ex-

ists a non-scattering, global, even, moving two-soliton solution u with Eγ (u0)M(u0)
1−sc
sc <

2
1
sc E(Q)M(Q)

1−sc
sc + ε (see [22]).

(4) The condition on the sign of Kγ (u0) may be replaced by the sign of 
√

2‖Q1,0‖1−sc
L2 ‖Q1,0‖sc

Ḣ 1

− ‖u0‖1−sc
L2 ‖u0‖sc

Ḣ 1
γ

in Theorem 1.4 (in the low frequency case ω ≤ γ 2/4) and Theorem 1.7. 

The latter condition is related to the Nehari functional as seen in Section 2.4. See Appendix A
for the proof.

(5) In [19], even, logarithmic two-solitons with action 2nω,0 are constructed for higher frequen-
cies. Theorem 1.7 shows that no such solutions can exist at lower frequency.

We give a summary of global dynamics results for (δNLS) in Appendix B.
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1.3. Idea of proof

The basic idea to show the scattering result relies on the work by Duyckaerts, Landoulsi, and 
Roudenko [9] (see also [38,3,20]). Their argument is by contradiction, based on concentration 
compactness and modulation. First of all, it is enough to consider the case ω = 1 by a scaling 
argument. We suppose there exists a threshold, even, non-scattering solution to (δNLS) satisfy-
ing the mass and energy condition M(u) = 2M(Q) and Eγ (u) = 2E(Q) and Kγ (u) > 0. This 
solution has a compactness property: there exists x : [0, ∞) → [0, ∞) such that for any ε > 0
there exists R = Rε > 0 such that ∫

{|x−x(t)|>R}∩{|x+x(t)|>R}
|u′(t)|2 + |u(t)|2dx < ε

for any t > 0. If μγ (u) := 2‖Q′‖2
L2 − ‖u‖2

Ḣ 1
γ

> c for some c > 0, then we get a contradiction 

in a similar way to the case below the ground state. Indeed, when we calculate the localized 
virial identity, the error term can be estimated using the compactness, and can be absorbed by the 
virial functional Kγ , which does not go to zero by μγ (u) > c. On the other hand, if μγ (u) → 0, 
we need a more careful modulation argument. In particular, we need to exploit the effect of the 
repulsive potential. Indeed, if γ = 0, we have a non-scattering solution converging to the ground 
state (see [5]). The repulsive effect appears through an estimate like

0 ≤
(

1 − 2

|γ |
)

e−2y(t) � |μγ (u)|, (1.2)

where y(t) is the translation parameter of the modulation (for γ < −2; see below for γ = −2). 
This shows that if μγ (u(t)) → 0, then y(t) → ∞. On the other hand, we also have

|ẏ(t)| � |μγ (u)|

by the modulation analysis (this estimate holds in general for NLS and is not influenced by the 
repulsive potential), implying that y is bounded, giving a contradiction.

One difficulty of our problem is that we cannot remove the translation parameter by even 
symmetry. In the higher dimensional case, radial symmetry removes the translation parameter 
since the radial Sobolev embedding H 1

rad(R
d) ⊂ Lq(Rd), where 2 < q < 2d/(d − 2) and d ≥ 3, 

is compact. In one dimension, however, the embedding is not compact.
A second difficulty is that the scaling of Ḣ 1 and of the delta interaction is different. Indeed, 

letting fλ(x) = λαf (λβx), we have

‖f ′
λ‖2

L2 = λ2α+β‖f ′‖2
L2, |fλ(0)|2 = λ2α|f (0)|2.

This means that the virial functional Kγ differs from the functional μγ , which corresponds to the 
Nehari functional under the mass-energy condition (while they are equivalent for NLS without 
potential). However, we can show that there exists c > 0 such that |μγ (u)| ≤ c|Kγ (u)| under the 
assumption, by using a variational argument based on more general functionals than the Nehari 
and virial ones.
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A third difficulty is to obtain the repulsive effect from the delta interaction. In the odd case 
(see [20]), we use the odd function Q(x − y) − Q(−x − y) as the imaginary ground state and 
we could show an estimate like e−2y � |μ(u)|. In our problem, the key point to use Q(|x| − y). 
While it is not smooth, it is more natural than Q(x − y) + Q(−x − y), since the ground state 
of (δNLS) is given by Q(|x| − ξ) for some ξ when ω > γ 2/4 (see Remark 1.2). In this way, we 
obtain an estimate like (1.2). The e−2y here comes from the decay order e−x of the ground state 
Q(x). When γ = −2, however, the coefficient of e−2y vanishes. In this degenerate case, we need 
a more careful calculation, using the next order in the decay of Q, which is e−px . In this way, 
we get

e−(p+1)y � |μγ (u)|,

which allows for a contradiction in the same way as for γ < −2.
The proof of the blow-up result is based on the contradiction argument of Duyckaerts and 

Roudenko [10]. Suppose that u is global in the positive time direction. Then, by the virial identity 
and a Cauchy–Schwarz type inequality, which can be shown by using a Gagliardo–Nirenberg 
type inequality related to the delta potential, we know that u blows up in finite negative time 
and satisfies 

∫ ∞
t

|μγ (u(s))|ds ≤ Ce−ct . The estimate implies that y(t) converges to a positive 
constant as t → ∞. This contradicts the divergence of y, which follows from e−2y � |μγ (u)| (or 
e−(p+1)y � |μγ (u)|).

1.4. Notation

For a function f , we denote the spatial derivative by f ′ and the time derivative by ḟ .
We set norms

‖f ‖2
H 1

ω,γ
:= ‖f ′‖2

L2 + |γ ||f (0)|2 + ω‖f ‖2
L2

and

‖f ‖2
Ḣ 1

γ
:= ‖√−�γ f ‖2

L2 = ‖f ′‖2
L2 + |γ ||f (0)|2.

In what follows, we denote Qω,0 by Qω and Q1,0 by Q for simplicity. Let χ ∈ C∞(R) be a 
cut-off function satisfying

χ(x) :=
{

1 (|x| > 1),

0 (|x| < 1/2).

For R > 0, we set

χR(x) := χ
( x

R

)
.

We also use the following notations:

χc
R(x) := 1 − χR(x), χ+

R (x) := 1(0,∞)χR, and χ−
R (x) := 1(−∞,0)χR.
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We define

μγ (f ) = 2‖Q′‖2
L2 − ‖f ‖2

Ḣ 1
γ
.

For a function f and y > 0, we set Tyf (x) := f (x − y) and

GR,yf (x) := χ+
R (x)Tyf (x) + χ−

R (x)T−yf (x).

.

2. Preliminaries

2.1. Variational structure

We revisit the variational argument not only for the virial and Nehari functionals but also for 
more general functionals Kα,β

ω,γ , defined by

Kα,β
ω,γ (f ) := ∂λSω,γ (eαλf (eβλ·))|λ=0

= 2α + β

2
‖∂xf ‖2

L2 − αγ |f (0)|2 + ω
2α − β

2
‖f ‖2

L2 − (p + 1)α − β

p + 1
‖f ‖p+1

Lp+1

for α, β ∈ R. By definition, (α, β) = (1/2, 1) gives the virial functional, i.e., Kγ (f ) =
K

1/2,1
ω,γ (f ), and (α, β) = (1, 0) gives the Nehari functional

Iω,γ (f ) := K1,0
ω,γ (f ) = ‖∂xf ‖2

L2 − γ |f (0)|2 + ω‖f ‖2
L2 − ‖f ‖p+1

Lp+1 .

If (α, β) satisfies

α > 0, 2α − β ≥ 0, 2α + β ≥ 0, (2.1)

we obtain the following lemma by [28, Lemmas 2.7–2.10].

Lemma 2.1. Let 0 < ω ≤ γ 2/4 and (α, β) satisfy (2.1). We have

2Sω,0(Qω,0) = inf{Sω,γ (f ) : f ∈ H 1
even(R) \ {0},Kα,β

ω,γ (f ) = 0}.

For 0 < ω ≤ γ 2/4 and (α, β) satisfying (2.1), we define

Kα,β,+
ω,γ := {f ∈ H 1

even(R) : M(f ) = 2M(Qω,0),Eγ (f ) = 2E(Qω,0),K
α,β
ω,γ (f ) > 0},

Kα,β,−
ω,γ := {f ∈ H 1

even(R) : M(f ) = 2M(Qω,0),Eγ (f ) = 2E(Qω,0),K
α,β
ω,γ (f ) < 0}.

We note that there is no function satisfying M(f ) = 2M(Qω,0), Eγ (f ) = 2E(Qω,0), and 
K

α,β
ω,γ (f ) = 0.
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Lemma 2.2. Kα,β,+
ω,γ is independent of (α, β); that is, Kα,β,+

ω,γ = Kα′,β ′,+
ω,γ for (α, β) and (α′, β ′)

satisfying (2.1). A similar statement holds for Kα,β,−
ω,γ .

Proof. This can be proved in a similar way to [18, Lemma 2.2]. We omit the proof. �
This means that we may omit (α, β) from Kα,β,±

ω,γ . This variational structure gives us the 
invariant sets under the flow.

Lemma 2.3. Let 0 < ω ≤ γ 2/4. Assume that u0 ∈ H 1
even(R) satisfies Eγ (u0) = 2E(Qω,0) and 

M(u0) = 2M(Qω,0). Let u denote the solution to (δNLS) with u(0) = u0.

(1) If Kγ (u0) > 0, then u(t) ∈ K+
ω,γ as long as the solution exists. This gives a uniform H 1

bound of the solution and thus the solution is global.
(2) If Kγ (u0) < 0, then u(t) ∈K−

ω,γ as long as the solution exists.

Proof. This follows from the standard argument. See e.g. [28, Lemma 2.17]. �
2.2. The Gagliardo–Nirenberg inequality

By the characterization of the ground state Qω,0, we have the following Gagliardo–Nirenberg 
type inequality:

‖f ‖2
Lp+1 ≤ Cω,0‖f ‖2

H 1
ω,0

for H 1(R), where

C−1
ω,0 =

‖Qω,0‖2
H 1

ω,0

‖Qω,0‖2
Lp+1

=
{

2(p + 1)

p − 1
Sω,0(Qω,0)

} p−1
p+1 = ‖Qω,0‖p−1

Lp+1

is the best constant and it is attained by Qω,0. For the repulsive Dirac delta potential, we have 
the following inequality.

Lemma 2.4 (The Gagliardo–Nirenberg type inequality w.r.t. delta potential). Let 0 < ω ≤ γ 2/4. 
For any f ∈ H 1

even(R), the following estimate holds:

‖f ‖2
Lp+1 ≤ 2− p−1

p+1 Cω,0‖f ‖2
H 1

ω,γ
.

The constant is optimal, but it is not attained.

Proof. This follows from the minimizing problem:

2Sω,0(Qω,0) = inf{Sω,γ (f ) : f ∈ H 1
even(R) \ {0}, Iω,γ (f ) = 0}.

We omit the proof. �
Remark 2.1. When ω > γ 2/4, we have a different best constant. See [21].
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2.3. Reduction by scaling

By scaling, we can reduce our main theorem to the following for ω = 1:

Theorem 2.5. Let γ ≤ −2. Assume that u0 ∈ H 1
even(R) satisfies the mass-energy condition

M(u0) = 2M(Q) and Eγ (u0) = 2E(Q). (ME)

Then we have

(1) If Kγ (u0) > 0, then the solution scatters in both time directions.
(2) Assume in addition that xu0 ∈ L2(R). If Kγ (u0) < 0, then the solution blows up in finite 

time.

Indeed, Theorem 1.7 can be shown by assuming Theorem 2.5.

Proof of Theorem 1.7 from Theorem 2.5. Let u0 ∈ H 1
even(R) satisfy Eγ (u0) = 2E(Qω,0), 

M(u0) = 2M(Qω,0), and Kγ (u0) > 0. By the scaling structure of Qω,0, we obtain

ω
− p+3

2(p−1) Eγ (u0) = 2E(Q) and ω
p−5

2(p−1) M(u0) = 2M(Q).

Let u0,ω−1(x) := ω−1/(p−1)u0(ω
−1/2x). Then we get

E
ω

− 1
2 γ

(u0,ω−1) = 2E(Q) and M(u0,ω−1) = 2M(Q).

We also have

K
ω

− 1
2 γ

(u0,ω−1) = ω
p+3

2(p−1) Kγ (u0) > 0

By Theorem 2.5, if ω−1/2γ ≤ −2, which is equivalent to 0 < ω ≤ γ 2/4, then we find that the 
solution uω−1 with the initial data u0,ω−1 scatters. By rescaling, the behavior of the solution u
with u(0) = u0 is same as that of uω−1 . Thus u scatters. This argument also works for the case 
that Kγ is negative. �

Thus, in what follows, it is enough to consider ω = 1 under the assumption γ ≤ −2.

2.4. Relation between virial functional and μγ

We define

μγ (f ) := 2‖Q′‖2
L2 − ‖f ‖2

Ḣ 1
γ
.

This is nothing but the Nehari functional under the mass-energy condition (ME), that is, 
I1,γ (u(t)) = p−1

2 μγ (u(t)). Thus this sign is invariant under the flow by Lemma 2.3. Since the 
scaling ratio between Ḣ 1-norm and δ-interaction is different, there is a difference between the 
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virial functional Kγ and μγ . However, we have Proposition 2.9 below. The proof is similar to 
that in [18]. We set Kα,β

γ := K
α,β
1,γ

Lemma 2.6. Let u be the solution to (δNLS) with u(0) = u0 satisfying (ME). Then

Kα,β
γ (u(t)) = (p − 1)α − 2β

2
2‖Q′‖2

L2

−
(

(p − 1)α − 2β

2
‖∂xu(t)‖2

L2 + (p − 1)α − β

2
|γ ||u(t,0)|2

)
for any t .

Proof. This follows from a direct calculation using (ME) and Kα,β
0 (Q) = 0. �

Lemma 2.7. We have Kγ (f ) − cμγ (f ) = K
1
2 − 2c

p−1 ,1
γ (f ) for c ∈ R and f ∈ H 1 satisfying (ME).

Proof. This follows from direct calculation and Lemma 2.6. �
We note that ( 1

2 − 2c
p−1 , 1) does not satisfy (2.1). However, the functional K

1
2 − 2c

p−1 ,1
γ can be 

used as the functional of the minimizing problem by taking c small depending on p.

Lemma 2.8. Let 0 < c < (p − 5)/4. There is no function f ∈ H 1
even satisfying (ME) and 

K
1
2 − 2c

p−1 ,1
γ (f ) = 0.

Proof. The proof is same as in [18, Lemma 2.7]. We note that there is no ground state if γ ≤
−2. �
Proposition 2.9. We have the following statements.

(1) If Kγ (u0) > 0, then there exists c = c(p, u0) > 0 such that Kγ (u(t)) ≥ cμ(u(t)) > 0 for 
t ∈R.

(2) If Kγ (u0) < 0, then there exists c = c(p, u0) > 0 such that Kγ (u(t)) ≤ cμ(u(t)) < 0 as far 
as the solution exists.

Proof of Proposition 2.9. The proof is same as in [18, Proposition 2.5]. �
2.5. Virial identity

Let u be a solution to (δNLS). We define

J (u(t)) = J∞(u(t)) :=
∫
R

|x|2|u(t, x)|2dx.

Direct calculations give the virial identity:
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d

dt
J (u(t)) = 4 Im

∫
R

xu′(t, x)u(t, x)dx,

d2

dt2 J (u(t)) = 8Kγ (u(t)).

Let ϕ be an even function in C∞
0 (R) satisfying

ϕ(x) :=
{

x2 (|x| < 1),

0 (|x| > 2).

For R > 0, we define

JR(u(t)) :=
∫
R

R2ϕ
( x

R

)
|u(t, x)|2dx.

Then we have the localized virial identity:

d

dt
JR(u(t)) = 2R Im

∫
R

ϕ′ ( x

R

)
u′(t, x)u(t, x)dx

and

d2

dt2 JR(u(t)) := 8Kγ (u(t)) + AR(u(t)),

where

AR(u(t)) := −4
∫

|x|>R

{
2 − ϕ′′ ( x

R

)}{
|u′(t, x)|2 − p − 1

2(p + 1)
|u(t, x)|p+1

}
dx

− 1

R2

∫
R<|x|<2R

ϕ(4)
( x

R

)
|u(t, x)|2dx.

We set

FR(f ) := 8Kγ (f ) + AR(f )

for f ∈ H 1(R). We set F∞(f ) := 8Kγ (f ).

Lemma 2.10. For any y > 0 and θ ∈R, we have

AR(eiθQ(| · | − y)) = 0

and so

FR(eiθQ(| · | − y)) = 8Kγ (eiθQ(| · | − y)) = F∞(eiθQ(| · | − y)).
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Proof. Let v(t) := eit eiθQ(| · | − y). Then the function v satisfies

i∂t v + ∂2
xv + γyδv + |v|p−1v = 0,

where γy := −2Q′(−y)/Q(−y) (in fact v is the ground state soliton of (δNLS) with γ = γy ∈
(−2, 0)). Thus

d

dt
JR(v(t)) = 2R Im

∫
R

ϕ′ ( x

R

)
Q′(|x| − y)Q(|x| − y)dx = 0.

This shows that

F
y
R(v) := AR(v) + 8Kγy (v) = 0.

By the Pohozaev identity for Q(| · | − y), we see that Kγy (v) = 0, which implies that AR(v) = 0
(noting that AR is independent of the delta potential), and the lemma follows. �
2.6. Coercivity

We define

�(f,g) := Re
∫
R

f ′(x)g′(x) + f (x)g(x) − Q(x)p−1(pf1(x)g1(x) + f2(x)g2(x))dx,

where f, g ∈ H 1(R), f1, g1 denote the real parts of f, g, and f2, g2 denote the imaginary parts 
of f, g, respectively.

For y > 0, we also define

By(f,g) := Re

∞∫
0

f ′(x)g′(x) + f (x)g(x) − Q(x − y)p−1(pf1(x)g1(x) + f2(x)g2(x))dx

and we denote By by B for short.
The following coercivity property for � is obtained by [5].

Lemma 2.11 (Campos–Farah–Roudenko [5, Lemma 3.5]). There exists c > 9 such that if f ∈
H 1(R) satisfies the following orthogonality:

Im
∫
R

f (x)Q(x)dx = Re
∫
R

f (x)Q′(x)dx = Re
∫
R

f (x)Q(x)pdx = 0,

then

�(f,f ) ≥ c‖f ‖2
H 1 .

By using this coercivity, we get the following.
772



S. Gustafson and T. Inui Journal of Differential Equations 412 (2024) 758–796
Lemma 2.12 (Coercivity). Let y > 2R and R > 1. There exist c, C > 0 such that if h ∈ H 1
even(R)

satisfies the following orthogonality:

Im
∫
R

h(x)χ+
R (x)TyQ(x)dx = Re

∫
R

h(x)(χ+
R (x)TyQ(x))′dx

= Re
∫
R

h(x)χ+
R (x)TyQ(x)pdx = 0,

then

�(T−y(χRh),T−y(χRh)) ≥ c‖χRh‖2
H 1 − C

R
‖h‖2

H 1 .

Proof. We can show this in the same way as in [21, Lemma 24]. We omit the proof. �
2.7. Strichartz estimates and linear profile decomposition

We define some function spaces as follows.

Definition 2.1. Let I be a (possibly unbounded) time interval. We define function spaces by

S(I) := L

2(p2−1)
p+3

t L
p+1
x (I ), W(I) := L

2(p2−1)

p2−3p−2
t L

p+1
x (I ), X(I) := L

p−1
t L∞

x (I ).

Moreover, W ′ denotes the dual space of W , that is, W ′(I ) = L

2(p2−1)
p(p+3)

t L

p+1
p

x (I ).

Then we have the Strichartz estimates.

Lemma 2.13 (Strichartz estimates). The following estimates are valid:

‖eit�γ f ‖S(I) + ‖eit�γ f ‖X(I) � ‖f ‖H 1

‖
t∫

t0

ei(t−s)�γ F (s)ds‖S(t0,t1) + ‖
t∫

t0

ei(t−s)�γ F (s)ds‖X(t0,t1) � ‖F‖W ′(t0,t1),

where I is a (possibly unbounded) time interval and t1 > t0.

Proof. See [4, Section 3.1]. �
Lemma 2.14. Let u0 ∈ H 1(R) and u be the solution to (δNLS) with u(0) = u0. The solution u
scatters in the positive time direction iff u ∈ S(0, ∞).

Proof. See [4, Proposition 3.2]. �
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3. Modulation argument

Lemma 3.1. There exists μ0 > 0 and a function ε : (0, μ0) → (0, ∞) with ε(μ) → 0 as μ → 0
such that the following holds. For any μ < μ0 and for all f ∈ H 1

even(R) satisfying Eγ (f ) =
2E(Q), M(f ) = 2M(Q) and μγ (f ) < μ, there exist (θ, y) ∈R × [0, ∞) such that

‖f − eiθQ(| · | − y)‖H 1 ≤ ε(μ).

Proof. We use a contradiction argument. We suppose that the statement fails. Then there ex-
ists ε0 > 0 such that for any n ∈ N , there exist μn with μn → 0 and fn ∈ H 1

even(R) satisfying 
Eγ (fn) = 2E(Q), M(fn) = 2M(Q) and μ(fn) < μn such that infθ∈R infy≥0 ‖fn − eiθQ(| ·
| − y)‖H 1 > ε0. Since μγ (fn) → 0 as n → ∞ and Eγ (fn) = 2E(Q), we have ‖fn‖p+1

Lp+1 →
2‖Q‖p+1

Lp+1 and thus

Sγ (fn) → 2S(Q) and Iγ (fn) → 2I (Q) = 0.

By Fukuizumi and Jeanjean [13, Lemma 20], we get

‖fn − eiθn(Q(· − yn) + Q(− · −yn))‖H 1 → 0,

where yn → ∞. Now

‖(Q(· − yn) + Q(− · −yn)) − Q(| · | − yn)‖H 1

= ‖Q(− · −yn)‖H 1(0,∞) + ‖Q(· − yn)‖H 1(−∞,0)

→ 0.

This is a contradiction. �
Lemma 3.2 (Modulation). Let R > 0 be sufficiently large. There exist μ0 > 0 and a function 
ε : (0, μ0) → (0, ∞) with ε(μ) → 0 as μ → 0 such that the following holds. For any μ < μ0
and for all f ∈ H 1

even(R) satisfying E(f ) = 2E(Q), M(f ) = 2M(Q) and μ(f ) < μ, there exist 
(θ̃ , y) ∈ R × (2R, ∞) such that

‖e−iθ̃ f − Q(| · | − y)‖H 1 < ε(μ)

and

Im
∫
R

g(x)χ+
R (x)Q(x − y)dx = 0, Re

∫
R

g(x)∂x(χ
+
R (x)Q(x − y))dx = 0, (3.1)

where g = e−iθ̃ f − Q(| · | − y).
774



S. Gustafson and T. Inui Journal of Differential Equations 412 (2024) 758–796
Proof. We define

J (θ̃ , y, v) =
(

J1(θ̃ , y, v)

J2(θ̃ , y, v)

)

:=
(

Im
∫
R(e−iθ̃ v − Q(| · | − y))χ+

R TyQdx

Re
∫
R(e−iθ̃ v − Q(| · | − y))∂x(χ

+
R TyQ)dx

)

for θ̃ ∈ R, y > 2R, v ∈ H 1
even. Then J (0, y, Q(| · | − y)) = 0. We have

∂J1

∂θ̃
(0, y,Q(| · | − y)) = −

∫
R

Q(|x| − y)χ+
R TyQdx

= −
∫
R

|TyQ|2dx + O(e−2y)

= −‖Q‖2
L2 + O(e−4R)

and

∂J2

∂y
(0, y,Q(| · | − y)) =

∫
R

Q′(|x| − y)∂x(χ
+
R TyQ)dx

= ‖∂xQ‖2
L2 + O(R−1 + e−4R).

We also have ∂J1
∂y

(0, y, Q(| · | − y)) = ∂J2

∂θ̃
(0, y, Q(| · | − y)) = 0. These imply that the Jacobian 

of J near (0, y, Q(| · | − y)) is invertible for large R. The statement follows from the implicit 
function theorem. �

Let u be an even solution satisfying (ME). We denote μγ (u(t)) by μγ (t) for short. We set 
Iμ0 := {t ∈ Imax : |μγ (t)| < μ0}, where Imax denotes the maximal existence time interval of 
the solution. By Lemma 3.2, we have C1 functions θ̃ = θ̃ (t) and y = y(t) for t ∈ Iμ0 . We set 
θ := θ̃ − t . We also have orthogonality conditions (3.1). We set

u(t, x) = eiθ(t)+it (Q(|x| − y(t)) + g(t, x)) (3.2)

= eiθ(t)+it (Q(|x| − y(t)) + ρ(t)GR,y(t)Q(x) + h(t, x)),

where

ρ(t) := Re
∫

gχ+
R (Ty(t)Q)pdx∫

(χ+
R )2(Ty(t)Q)p+1dx

. (3.3)

Then it follows from (3.1), (3.2) and (3.3) that

Im
∫

hχ+
R Ty(t)Qdx = Re

∫
h(χ+

R Ty(t)Q)′dx = Re
∫

hχ+
R (Ty(t)Q)pdx = 0. (3.4)
R R R
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4. Modulation parameters

4.1. Properties of the ground state

To give estimates for the modulation parameters ρ, y and the remainder terms g, h, the func-
tion Q defined by

Q(y) := −
0∫

−∞
|Q′(x − y)|2dx −

0∫
−∞

|Q(x − y)|2dx + |γ |
2

Q(−y)2

− 1

2|γ | {|γ |Q(−y) − 2Q′(−y)}2

plays an important role. In this subsection, we compute its function large-y asymptotics. The 
ground state Q is given by

Q(x) = cp

{
2 cosh

(
p − 1

2
x

)}− 2
p−1 = cp{eαx + e−αx}− 1

α ,

where cp := (2(p + 1))
1

p−1 and α = (p − 1)/2. By Taylor expansion, we have

Q(x) = cpe−|x| − cp

α
e−p|x| + o(e−p|x|), (4.1)

and

Q′(x) = −cp

x

|x|e
−|x| + pcp

α

x

|x|e
−p|x| + o(e−p|x|). (4.2)

Lemma 4.1. We have

−
0∫

−∞
|Q′(x − y)|2dx = −c2

p

2
e−2y + 2pc2

p

α(p + 1)
e−(p+1)y + o(e−(p+1)y).

Proof. By the Taylor expansion (4.2) of Q′, we get

−
0∫

−∞
|Q′(x − y)|2dx = −

0∫
−∞

| − cpex−y + pcp

α
ep(x−y)|2dx + o(e−(p+1)y)

= −
0∫

−∞
(−cpex−y)2 + 2(−cpex−y)

pcp

α
ep(x−y)dx + o(e−(p+1)y)

= −c2
pe−2y

0∫
e2xdx + 2

pc2
p

α
e−(p+1)y

0∫
e(p+1)xdx + o(e−(p+1)y)
−∞ −∞
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= −c2
p

2
e−2y + 2pc2

p

α(p + 1)
e−(p+1)y + o(e−(p+1)y). �

Lemma 4.2. We have

−
0∫

−∞
|Q(x − y)|2dx = −c2

p

2
e−2y + 2c2

p

α(p + 1)
e−(p+1)y + o(e−(p+1)y).

Proof. Using the Taylor expansion (4.1) of Q, this is a similar calculation to Lemma 4.1. �
Lemma 4.3. We have

|γ |
2

Q(−y)2 = |γ |
2

c2
pe−2y − |γ |c2

p

α
e−(p+1)y + o(e−(p+1)y).

Proof. This is an immediate consequence of (4.1). �
Lemma 4.4. We have

− 1

2|γ | {|γ |Q(−y) − 2Q′(−y)}2

= − 1

2|γ | (|γ | − 2)2c2
pe−2y − |γ | − 2

|γ |
2p − |γ |

α
c2
pe−(p+1)y + o(e−(p+1)y).

Proof. By (4.1) and (4.2), we have

{|γ |Q(−y) − 2Q′(−y)}2

=
{
|γ |

(
cpe−y − cp

α
e−py

)
− 2

(
cpe−y − pcp

α
e−py

)}2 + o(e−(p+1)y)

=
{
(|γ | − 2)cpe−y + 2p − |γ |

α
cpe−py

}2

+ o(e−(p+1)y)

= (|γ | − 2)2c2
pe−2y + 2(|γ | − 2)

2p − |γ |
α

c2
pe−(p+1)y + o(e−(p+1)y)

and their result follows. �
Combining all the above estimates, we obtain the following.

Corollary 4.5. We have

Q(y) =
(

1 − 2

|γ |
)

c2
pe−2y − 4p(|γ | − 2)

|γ |(p − 1)
c2
pe−(p+1)y + o(e−(p+1)y).

Remark 4.1. So when γ < −2, the leading term of Q is e−2y with positive coefficient. When 
γ = −2, we will simply regard Q as an error term with Q = o(e−(p+1)y).
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For γ = −2, the following estimate provides our main term:

Lemma 4.6. It holds that

2

p + 1

0∫
−∞

|Q(x − y)|p+1dx = 4c2
p

(p + 1)
e−(p+1)y + o(e−(p+1)y).

Proof. We have

2

p + 1

0∫
−∞

|Q(x − y)|p+1dx = 2

p + 1

0∫
−∞

|cpex−y |p+1dx + o(e−(p+1)y)

= 2c
p+1
p

p + 1
e−(p+1)y

0∫
−∞

e(p+1)xdx + o(e−(p+1)y)

= 2c
p+1
p

(p + 1)2 e−(p+1)y + o(e−(p+1)y)

Since cp = {2(p + 1)} 1
p−1 we have

c
p+1
p = c2

pc
p−1
p = 2(p + 1)c2

p.

Thus, we get

2c
p+1
p

(p + 1)2 = 4(p + 1)c2
p

(p + 1)2 = 4c2
p

(p + 1)
. �

4.2. Estimates of the modulation parameters

We set

eγ (y) :=
{

e−2y (γ < −2),

e−(p+1)y (γ = −2).

Let u be an even solution satisfying (ME), and modulated as in (3.2).

Lemma 4.7. It holds that

|ρ| � ‖g‖L2,

‖g‖H 1 � |ρ| + ‖h‖H 1,

‖h‖H 1 � |ρ| + ‖g‖H 1 � ‖g‖H 1 .

Proof. These estimates follow from the definition of ρ and g = χRQ(| · | − y) + h. �
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By using the mass condition, we have the following:

Lemma 4.8. We have

4 Re

∞∫
0

Q(x − y)h(x)dx = 2

0∫
−∞

|Q(x − y)|2dx − 4ρ Re

∞∫
0

χR(x)Q(x − y)2 − ‖g‖2
L2 .

Proof. This follows from direct calculation using M(u) = 2M(Q) and (3.2). �
Using the functional μγ , we have the following:

Lemma 4.9. We have

|ρ| � |μγ (u)| + ‖g‖2
H 1 + eγ (y) + o(e−(p+1)y) + O(e−pR‖h‖H 1).

Proof. We have

μγ (u) = 2‖Q′‖2
L2 − ‖Q(| · | − y) + g‖2

Ḣ 1
γ

= 2‖Q′‖2
L2 − 2

∞∫
0

|Q′(x − y)|2dx − 4 Re

∞∫
0

Q′(x − y)g′(x)dx −
∫
R

|g′(x)|2dx

− |γ ||Q(−y) + g(0)|2

Now,

2‖Q′‖2
L2 − 2

∞∫
0

|Q′(x − y)|2dx = 2

0∫
−∞

|Q′(x − y)|2dx.

By equation (1.1) for Q and integration by parts, we get

Re

∞∫
0

Q′(x − y)g′(x)dx = Re[Q′(x − y)g(x)]x=∞
x=0 − Re

∞∫
0

Q′′(x − y)g(x)dx

= −Q′(−y)Reg(0) − Re

∞∫
0

(Q(x − y) − Q(x − y)p)g(x)dx.

Since g = ρχRQ(· − y) + h on (0, ∞), we get

Re

∞∫
(Q(x − y) − Q(x − y)p)g(x)dx
0
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= ρ

⎛⎝ ∞∫
0

χR(x)Q(x − y)2dx −
∞∫

0

χR(x)Q(x − y)p+1dx

⎞⎠
+ Re

∞∫
0

Q(x − y)h(x)dx − Re

∞∫
0

Q(x − y)ph(x)dx

By the above equations and Lemma 4.8, we obtain

μγ (u) = 2

0∫
−∞

|Q′(x − y)|2dx

+ 2

0∫
−∞

|Q(x − y)|2dx + 4Q′(−y)Reg(0) − |γ ||Q(−y) + g(0)|2

− 4ρ

∞∫
0

χR(x)Q(x − y)p+1dx − ‖g‖2
H 1 − 4 Re

∞∫
0

Q(x − y)ph(x)dx

= −2Q(y) − 2Err − 4ρ

∞∫
0

χR(x)Q(x − y)p+1dx − ‖g‖2
H 1

− 4 Re

∞∫
0

Q(x − y)ph(x)dx,

where we set

Err := 1

2|γ | {|γ |Q(−y) − 2Q′(−y)}2 + {|γ |Q(−y) − 2Q′(−y)}Reg(0) + |γ |
2

|g(0)|2.

Now, we have

Re

∞∫
0

Q(x − y)ph(x)dx = O(e−pR‖h‖H 1).

Indeed, by (3.4) and y > 2R, we∣∣∣∣∣∣Re

∞∫
0

TyQ
phdx

∣∣∣∣∣∣ =
∣∣∣∣∣∣Re

∞∫
0

χ+
R TyQ

phdx + Re

∞∫
0

χc
RTyQ

phdx

∣∣∣∣∣∣
=

∣∣∣∣∣∣Re

∞∫
χc

RTyQ
phdx

∣∣∣∣∣∣

0
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≤
⎛⎝ R∫

0

TyQ
2pdx

⎞⎠
1
2

‖h‖L2

� e−py+pR‖h‖L2

� e−pR‖h‖H 1 .

Therefore, we obtain

−4ρ

∞∫
0

χR(x)Q(x − y)p+1dx = μγ (u) + ‖g‖2
H 1 + 2Q(y) + 2Err + O(e−pR‖h‖H 1).

By the Young inequality, (4.1), and (4.2), we have

0 ≤ Err � eγ (y) + ‖g‖2
H 1 .

We also have | ∫ ∞
0 χR(x)Q(x − y)p+1dx| ≥ C. Thus, by Corollary 4.5, we get

|ρ| � |μγ (u)| + ‖g‖2
H 1 + eγ (y) + o(e−(p+1)y) + O(e−pR‖h‖H 1).

The desired estimate is obtained. �
We next give an estimate using the action. By the mass-energy condition, we have

0 = Sγ (u) − 2S(Q)

= S(u) − S(Q(| · | − y)) + S(Q(| · | − y)) − 2S(Q) + |γ |
2

|u(0)|2.

We set

S(0,∞)(f ) := 1

2
‖f ′‖2

L2(0,∞)
+ 1

2
‖f ‖2

L2(0,∞)
− 1

p + 1
‖f ‖p+1

Lp+1(0,∞)

Lemma 4.10. We have

S(u) − S(Q(| · | − y)) = −2Q′(−y)Reg(0) + B(g,g) + o(‖g‖2
L2),

where B = By is defined in Section 2.6.

Proof. By the symmetry and u = eiθ+it (Q(| · | − y) + g), we have

S(u) − S(Q(| · | − y)) = S(Q(| · | − y) + g) − S(Q(| · | − y))

= 2{S(0,∞)(Q(· − y) + g) − S(0,∞)(Q(· − y))}.

By Taylor expansion, we get
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S(0,∞)(Q(· − y) + g) − S(0,∞)(Q(· − y))

= 〈S′
(0,∞)(Q(· − y), g〉 + 1

2
〈S′′

(0,∞)(Q(· − y))g, g〉 + o(‖g‖2
L2).

Now, by (1.1), we have

〈S′
(0,∞)(Q(· − y)), g〉 = Re

∞∫
0

(−Q′′ + Q − Qp)(x − y)g(x)dx − Re{Q′(−y)g(0)}

= −Q′(−y)Reg(0).

Moreover, for ϕ = ϕ1 + iϕ2 ∈ H 1
even(R), ψ = ψ1 + iψ2 ∈ H 1

even(R), we also have

〈S′′
(0,∞)(Q(· − y))ϕ,ψ〉 = Re

∞∫
0

ϕ′(x)ψ ′(x) + ϕ(x)ψ(x)dx

−
∞∫

0

Q(x − y)p−1(pϕ1(x)ψ1(x) + ϕ2(x)ψ2(x))dx

= B(ϕ,ψ).

This gives the statement. �
Lemma 4.11. We have

S(Q(| · | − y)) − 2S(Q) = −
0∫

−∞
|Q′(x − y)|2 + |Q(x − y)|2dx + 2

p + 1

0∫
−∞

|Q(x − y)|p+1dx.

Proof. By the symmetry, we have

S(Q(| · | − y)) − 2S(Q) = 2{S(0,∞)(Q(· − y)) − S(Q)}.
For a function f and α > 0, we have

∞∫
0

|f (x − y)|αdx = ‖f ‖α
Lα −

0∫
−∞

|f (x − y)|αdx.

Thus we get

S(0,∞)(Q(· − y)) − S(Q)

= −1

2

0∫
−∞

|Q′(x − y)|2 + |Q(x − y)|2dx + 1

p + 1

0∫
−∞

|Q(x − y)|p+1dx.
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This gives us the statement. �
Combining Lemmas 4.10 and 4.11, we get the following.

Corollary 4.12. We have

Sγ (u) − 2S(Q) ≥ Q(y) + 2

p + 1

0∫
−∞

|Q(x − y)|p+1dx + B(g,g) + o(‖g‖2
L2).

Proof. By Lemmas 4.10 and 4.11, we have

Sγ (u) − 2S(Q) = S(u) − S(Q(| · | − y)) + S(Q(| · | − y)) − 2S(Q) + |γ |
2

|u(0)|2

= −
0∫

−∞
|Q′(x − y)|2 + |Q(x − y)|2dx − 2Q′(−y)Reg(0) + |γ |

2
|u(0)|2

+ 2

p + 1

0∫
−∞

|Q(x − y)|p+1dx + B(g,g) + o(‖g‖2
L2)

= Q(y) + Err + 2

p + 1

0∫
−∞

|Q(x − y)|p+1dx + B(g,g) + o(‖g‖2
L2),

where Err is defined in the proof of Lemma 4.9. As shown in that proof, Err ≥ 0 by the Young 
inequality. Thus, the desired estimate is obtained. �
Lemma 4.13. There exist c, C > 0 such that we have

B(g,g) ≥ c‖h‖2
H 1 − C|ρ|2

for sufficiently large R > 0.

Proof. Since we have g = ρχRQ(| · | − y) + h, we get

B(g,g) = |ρ|2B(χRQ(| · | − y),χRQ(| · | − y)) + 2ρB(χRQ(| · | − y),h) + B(h,h).

We have

|ρ|2|B(χRQ(| · | − y),χRQ(| · | − y))| ≤ C|ρ|2,

where C is independent of R. By the Young inequality, we also have

|2ρB(χRQ(| · | − y),h)| ≤ C|ρ|‖h‖H 1 ≤ ε‖h‖2
H 1 + Cε|ρ|2,
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where ε > 0 is a sufficiently small number.
We will estimate B(h, h).

B(h,h) = B(χRh + χc
Rh,χRh + χc

Rh)

= B(χRh,χRh) + 2B(χRh,χc
Rh) + B(χc

Rh,χc
Rh)

First, we consider B(χRh, χRh). By a direct calculation, we have

B(χRh,χRh) = Re
∫
R

|(χ+
R h)′(x)|2 + χ+

R (x)2|h(x)|2dx

−
∫
R

Q(x − y)p−1(pχ+
R (x)2h1(x)2 + χ+

R (x)2h2(x)2)dx

= �(T−y(χ
+
R h)).

Since we have �(T−y(χ
+
R h)) ≥ c‖χRh‖2

H 1 − CR−1‖h‖2
H 1 by the coercivity Lemma 2.12, we 

have

B(χRh,χRh) ≥ c‖χRh‖2
H 1 − C

R
‖h‖2

H 1 .

Next we consider B(χRh, χc
Rh). Now we have

∞∫
0

(χRh)′(x)(χc
Rh)′(x)dx =

∞∫
0

χR(x)χc
R(x)|h′(x)|2dx + O(R−1‖h‖2

H 1),

and ∣∣∣∣∣∣
∞∫

0

TyQ
p−1(pχRχc

R|h1|2 + χRχc
R|h2|2)dx

∣∣∣∣∣∣ ≤ C

∣∣∣∣∣∣
R∫

0

TyQ
p−1dx

∣∣∣∣∣∣‖h‖2
L∞

≤ Ce(p−1)Re−(p−1)y‖h‖2
H 1

≤ Ce−(p−1)R‖h‖2
H 1

Thus we get

B(χRh,χc
Rh) = Re

∞∫
0

(χRh)′(x)(χc
Rh)′(x) + χR(x)h(x)χc

R(x)h(x)dx

−
∞∫

Q(x − y)p−1(pχR(x)χc
R(x)|h1(x)|2 + χR(x)χc

R|h2(x)|2)dx
0
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=
∞∫

0

χR(x)χc
R(x)(|h′(x)|2 + |h(x)|2)dx + O(R−1‖h‖2

H 1) + O(e−(p−1)R‖h‖2
H 1)

= 1

2

∫
R

χR(x)χc
R(x)(|h′(x)|2 + |h(x)|2)dx + O(R−1‖h‖2

H 1)

+ O(e−(p−1)R‖h‖2
H 1)

In a similar way, we have

B(χc
Rh,χc

Rh) = 1

2

∫
R

χc
R(x)χc

R(x)(|h′(x)|2 + |h(x)|2)dx

+ O(R−1‖h‖2
H 1) + O(e−(p−1)R‖h‖2

H 1).

Therefore, we obtain

B(h,h) ≥ c‖χRh‖2
H 1 − C

R
‖h‖2

H 1

+
∫
R

χR(x)χc
R(x)(|h′(x)|2 + |h(x)|2)dx

+ 1

2

∫
R

χc
R(x)χc

R(x)(|h′(x)|2 + |h(x)|2)dx

+ O(R−1‖h‖2
H 1) + O(e−(p−1)R‖h‖2

H 1).

Here, it holds that

c‖χRh‖2
H 1 +

∫
R

{χRχc
R + 1

2
(χc

R)2}(|h′|2 + |h|2)dx ≥ c‖h‖2
H 1 − C

R
‖h‖2

H 1 .

This implies

B(h,h) ≥ c‖h‖2
H 1 − C

R
‖h‖2

H 1 + O(R−1‖h‖2
H 1) + O(e−(p−1)R‖h‖2

H 1) (4.3)

≥ c‖h‖2
H 1 − C

R
‖h‖2

H 1 .

By combining (3.2)–(4.3), we get

B(g,g) ≥ c‖h‖2
H 1 − C

R
‖h‖2

H 1 − C|ρ|2 − ε‖h‖2
H 1 − Cε|ρ|2.

Taking ε > 0 sufficiently small and R > 0 sufficiently large, we obtain
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B(g,g) ≥ c‖h‖2
H 1 − C|ρ|2.

This completes the proof. �
Lemma 4.14. We have

eγ (y) + ‖h‖2
H 1 � |ρ|2.

Proof. By Corollaries 4.5 and 4.12 and Lemmas 4.6 and 4.13, we get the desired estimate. �
Corollary 4.15. It holds that

|ρ| � |μγ (u)|.

In particular, we have

eγ (y) + ‖h‖2
H 1 � |μγ (u)|2.

Proof. By Lemmas 4.7, 4.9, and 4.14, we have

|ρ| � |μγ (u)| + ‖g‖2
H 1 + eγ (y) + e−R‖h‖H 1 � |μγ (u)| + |ρ|2 + e−R|ρ|.

This shows that

|ρ| � |μγ (u)|

by taking R large and |ρ| small. The second estimate follows from this and Lemma 4.14. �
4.3. Estimates for time derivatives of modulation parameters

We have estimates for the time derivatives of the modulation parameters as follows.

Lemma 4.16. We have

|ẏ| + |ρ̇| + |θ̇ | � |μγ (u)|.

Proof. By a direct calculation, we have

iḣ + h′′ + γ δh

= θ̇Q(| · | − y) + θ̇ρχRQ(| · | − y) + (θ̇ + 1)h + γyδQ(| · | − y)

+ |Q(| · | − y)|p−1Q(| · | − y) − |Q(| · | − y) + g|p−1(Q(| · | − y) + g)

− iρ̇χRQ(| · | − y) + iẏ(1 + ρχR)Q′(| · | − y)

− ρχ ′′
RQ(| · | − y) − 2ρ

x

|x|χ
′
RQ′(| · | − y) + ρχRQ(| · | − y)p − γ δQ(| · | − y),
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where γy := −2Q′(−y)/Q(−y) and we used the fact that Q(| · | − y) satisfies the equation

−{Q(| · | − y)}′′ + Q(| · | − y) = γyδQ(| · | − y) + |Q(| · | − y)|p−1Q(| · | − y).

We have delta interactions in the equation of h. However, we take couplings with the equation 
and functions including χ+

R . Thus they do not appear in the following calculations. By testing 
the equation of h with χ+

R iQ(· − y), the orthogonality condition implies that

|θ̇ | � |ρ| + ‖h‖H 1 + ‖g‖H 1 + ‖h‖H 1 |ẏ| � |μγ (u)| + ‖h‖H 1 |ẏ|, (4.4)

where we also use Lemma 4.7 and Corollary 4.15. Testing the equation with iχ+
R Q(· − y)p and 

using the orthogonality, we get

|ρ̇| � (|θ̇ | + 1)‖h‖H 1 + ‖g‖H 1 + (1 + |ρ|)e−R|ẏ| + |ẏ|‖h‖H 1

� |μγ (u)| + (e−R + ‖h‖H 1)|ẏ|. (4.5)

Testing the equation with iχ+
R Q′(· − y) and using the orthogonality, we obtain

|ẏ| � |ρ| + ‖h‖H 1 + ‖g‖H 1 + e−R|ρ̇| + ‖h‖H 1 |ẏ| � |μγ (u)| + e−R|ρ̇| + ‖h‖H 1 |ẏ|. (4.6)

These estimates (4.4)–(4.6) imply that

|θ̇ | + |ẏ| + |ρ̇| � |μγ (u)| + (e−R + ‖h‖H 1)|ẏ| + e−R|ρ̇|

By taking R large and ‖h‖H 1 small, we get

|θ̇ | + |ẏ| + |ρ̇| � |μγ (u)|.

The proof is complete. �
5. Proof of scattering

The proof is very similar to [20], so we only give an outline here.
Suppose that statement (1) of Theorem 2.5 does not hold. Then there exists a global solution 

u ∈ C(R : H 1
even(R)) with

Eγ (u) = 2E(Q), M(u) = 2M(Q), Kγ (u(t)) > 0,

and

‖u‖S(R) = ∞.

We may assume that ‖u‖LaLr ((0,∞)×R) = ∞. We call this solution a (forward) critical element.

t x
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Lemma 5.1 (Compactness of a critical element). Let u ∈ C(R : H 1
even(R)) be a solution with

Eγ (u) = 2E(Q), M(u) = 2M(Q), Kγ (u(t)) > 0,

and

‖u‖S(0,∞) = ∞.

Then there exists a function x : [0, ∞) → [0, ∞) such that for any ε > 0 there exists R = R(ε) >
0 such that

∫
{|x−x(t)|>R}∩{|x+x(t)|>R}

|u′(t, x)|2 + |u(t, x)|2dx < ε

for any t ∈ [0, ∞).

Proof. The proof is based on linear profile decomposition and long time perturbation. See [4,28]
for these. The statement can be shown in a similar way to [20, Proposition 35]. We omit the 
proof. �

The compactness also holds for

X(t) :=
{

x(t) (t ∈ [0,∞) \ Iμ0),

y(t) (t ∈ Iμ0).
(5.1)

See [20, Lemma 38]. That is, for any ε > 0 there exists R = R(ε) > 0 such that

∫
{|x−X(t)|>R}∩{|x+X(t)|>R}

|u′(t, x)|2 + |u(t, x)|2dx < ε

for all t ∈ [0, ∞).

Lemma 5.2. Let {tn} be an arbitrary time sequence in [0, ∞). We have the following.

(1) If |X(tn)| is unbounded, then by taking a subsequence of {tn}, still denoted by {tn}, there is 
ψ ∈ H 1(R) such that u(tn) − (ψ(· − X(tn)) + ψ(− · −X(tn))) → 0 in H 1(R).

(2) If |X(tn)| is bounded, then by taking a subsequence of {tn}, still denoted by {tn}, there is 
ψ ∈ H 1(R) such that u(tn) → ψ in H 1(R).

Proof. See Lemma 39 in [20]. �
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5.1. Elimination of the critical element

5.1.1. X(t) is bounded

Lemma 5.3. Let u ∈ C(R : H 1
even(R)) be a solution with

Eγ (u) = 2E(Q), M(u) = 2M(Q), Kγ (u(t)) > 0.

Assume that there exists a function x : [0, ∞) → [0, ∞) such that for any ε > 0 there exists 
R = R(ε) > 0 such that ∫

{|x−X(t)|>R}∩{|x+X(t)|>R}
|u′(t, x)|2 + |u(t, x)|2dx < ε

for any t ∈ [0, ∞), where X is defined in (5.1). Then X is bounded.

To show this, we prepare the following lemmas.

Lemma 5.4. There exists Cε > 0 such that

t2∫
t1

μγ (t)dt ≤ Cε(1 + sup
t∈[t1,t2]

|X(t)|)(μγ (t1) + μγ (t2))

for any t2 > t1 > 0.

Proof. We use Lemma 2.10 in this proof. See [20, Lemma 41] �
Lemma 5.5. Let {tn} be a sequence such that tn → ∞ as n → ∞. Then X(tn) → ∞ if and only 
if μγ (tn) → 0.

Proof. See [20, Lemma 42]. Here, we use Corollary 4.15. �
Lemma 5.6. There exists C > 0 such that

|X(t) − X(s)| ≤ C

for all t, s ≥ 0 satisfying |t − s| ≤ 1.

Proof. See [20, Lemma 43]. �
Lemma 5.7. There exists a constant C > 0 such that

|X(t1) − X(t2)| ≤ C

t2∫
t1

μγ (t)dt

for all t1, t2 ≥ 0 satisfying t1 + 1 ≤ t2.
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Proof. We use the estimate of ẏ in Lemma 4.16 to show this statement. See [20, Lemma 44]. �
Combining these lemmas, we get Lemma 5.3. See the proof of Proposition 40 in [20].

5.1.2. Contradiction if X(t) is bounded
Since X is bounded, it holds that for any ε > 0 there exists R = R(ε) > 0 such that

∫
|x|>R

|u′(t, x)|2 + |u(t, x)|2dx < ε

for all t ∈ [0, ∞).

Lemma 5.8. We have

lim
T →∞

1

T

T∫
0

μγ (t)dt = 0.

Proof. See [20, Lemma 45]. �
Corollary 5.9. There exists a time sequence {tn} such that limn→∞ μγ (tn) = 0.

Proof. See [20, Corollary 46]. �
Let {tn} be a time sequence such that limn→∞ μγ (tn) = 0. Then X(tn) must diverge by 

Lemma 5.5. This is a contradiction to the boundedness of X. The conclusion is Theorem 2.5.

6. Proof of blow-up

The proof of Statement (2) of Theorem 2.5 is similar to [20], and so we omit details.

Lemma 6.1. Let ϕ ∈ C1
even(R) be a real-valued function with ϕ(0) = 0 and f ∈ H 1

even(R). We 
assume that they satisfy 

∫
R |ϕ′|2|f |2dx < ∞, M(f ) = 2M(Q), and Eγ (f ) = 2E(Q). Then it 

holds that ∣∣∣∣∣∣Im
∫
R

ϕ′(x)∂xf (x)f (x)dx

∣∣∣∣∣∣ � μγ (f )2
∫
R

|ϕ′(x)|2|f (x)|2dx.

Proof. This can be shown in a similar way to [20, Lemma 47] by using the Gagliardo–Nirenberg 
inequality, Lemma 2.4. See also [18, Lemma 4.13] We omit the proof. �
Corollary 6.2. Let u0 ∈ H 1

even(R) satisfy Kγ (u0) < 0, xu0 ∈ L2(R), M(u0) = 2M(Q), and 
Eγ (u0) = 2E(Q). Then we have
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∣∣∣∣∣∣Im
∫
R

xu′(t, x)u(t, x)dx

∣∣∣∣∣∣ � |Kγ (u(t))|2
∫
R

|x|2|u(t, x)|2dx.

Proof. This follows from Lemma 6.1 with ϕ(x) = x2 and μγ (u) � |Kγ (u(t))|, which is shown 
in Proposition 2.9. �
Lemma 6.3. Let u satisfy the conditions in Theorem 2.5 (2). Assume that u is global in positive 
time. Then it holds that

Im
∫
R

xu′(t, x)u(t, x)dx > 0

for any t . Furthermore, there exists c > 0 such that

∞∫
t

|μγ (s)|ds � e−ct

for all t > 0.

Proof. See [20, Proposition 49]. �
Corollary 6.4. Under the same assumption in Theorem 2.5 (2), u blows up in negative time.

Proof. See [20, Corollary 50]. �
As a consequence, we get Theorem 2.5 (see the proof of Proposition 14 (2) in [20]). Here 

we remark that we use the estimates of ẏ and ρ̇ in Lemma 4.16, which imply y converges to 
a constant by combining with Lemma 6.3, and thus the convergence contradicts the estimate of 
eγ (y) in Corollary 4.15.
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Appendix A. Sign condition

We show the following in this appendix.
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Proposition A.1. If f ∈ H 1
even(R) satisfies Eγ (f )M(f )

1−sc
sc ≤ 2

1
sc E(Q)M(Q)

1−sc
sc and M(f ) ≥

2M(Qγ 2/4,0), then the following are equivalent.

(1) Kγ (f ) > 0.

(2)
√

2‖Q‖1−sc
L2 ‖Q‖sc

Ḣ 1 > ‖f ‖1−sc
L2 ‖f ‖sc

Ḣ 1
γ

.

Lemma A.2. If f ∈ H 1
even(R) satisfies Eγ (f )M(f )

1−sc
sc ≤ 2

1
sc E(Q)M(Q)

1−sc
sc and M(f ) ≥

2M(Qγ 2/4,0), then there exists ω ∈ (0, γ 2/4] such that M(f ) = 2M(Qω,0) and Eγ (f ) ≤
2E(Qω,0).

Proof. By the monotonicity of 2M(Qω,0) for ω, there exists a unique ω ∈ (0, γ 2/4] such that 
M(f ) = 2M(Qω,0). Then the mass-energy condition implies Eγ (f ) ≤ 2E(Qω,0). �
Proof of Proposition A.1. By Lemma A.2, we have ω ∈ (0, γ 2/4] such that M(f ) = 2M(Qω,0)

and Eγ (f ) ≤ 2E(Qω,0). First we show 
√

2‖Q‖1−sc
L2 ‖Q‖sc

Ḣ 1 > ‖f ‖1−sc
L2 ‖f ‖sc

Ḣ 1
γ

if Kγ (f ) > 0. 

Then, by Proposition 2.15 in [28] and Lemma 2.2, we see that Iω,γ (f ) > 0. By the similar 
calculation to Lemma 2.6, we get

0 < Iω,γ (f ) ≤ μω,γ (f ) := 2‖Q′
ω,0‖2

L2 − ‖f ‖2
Ḣ 1

γ

since we have M(f ) = 2M(Qω,0), Eγ (f ) ≤ 2E(Qω,0), and Iω,0(Qω,0) = 0. This and M(f ) =
2M(Qω,0) gives us that

‖f ‖1−sc
L2 ‖f ‖sc

Ḣ 1
γ

<
√

2‖Qω,0‖1−sc
L2 ‖Qω,0‖sc

Ḣ 1 = √
2‖Q‖1−sc

L2 ‖Q‖sc

Ḣ 1

by the scaling structure of Qω,0. Next, we prove that 
√

2‖Q‖1−sc
L2 ‖Q‖sc

Ḣ 1 > ‖f ‖1−sc
L2 ‖f ‖sc

Ḣ 1
γ

if 

Kγ (f ) < 0. Then we see that Iω,γ (f ) < 0 by Proposition 2.15 in [28] and Lemma 2.2. By the 
Gagliardo–Nirenberg type inequality, Lemma 2.4, we get

0 > Iω,γ (f ) ≥ ‖f ‖2
Ḣ 1

ω,γ
− (2− p−1

p+1 Cω,0)
p+1

2 ‖f ‖p+1
Ḣ 1

ω,γ

.

Thus we have

‖f ‖p−1
Ḣ 1

ω,γ

> 2
p−1

2 C
− p+1

2
ω,0 = 2

p−1
2

{
2(p + 1)

p − 1
Sω,0(Qω,0)

} p−1
2

and thus

‖f ‖2
Ḣ 1

ω,γ
> 2

{
2(p + 1)

p − 1
Sω,0(Qω,0)

}
= 2ω1−sc

2(p + 1)

p − 1
S1,0(Q).

Substituting ω = (M(Q)/M(f ))1/sc , which comes from M(f ) = M(Qω,0) = ω−scM(Q) into 
this, we get
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M

Eγ

0

ω → ∞

ω → 0

ω = γ 2
4

2M(Q
γ 2/4,0

)

2E(Q
γ 2/4,0

)

M(Qω,γ )

Eγ (Qω,γ )

2M(Qω,0)

2E(Qω,0)

∃log-soliton

∃GS

S or B

S or B

Fig. 1. The figure of the global dynamics result on (M,Eγ )-coordinate.

‖f ‖2
Ḣ 1

γ
+

(
M(Q)

M(f )

) 1
sc

M(f ) > 2

(
M(Q)

M(f )

) 1−sc
sc 2(p + 1)

p − 1
S1,0(Q).

By a direct calculation and the Pohozaev identities for Q, we obtain

‖f ‖2
Ḣ 1

γ
M(f )

1−sc
sc > 2M(Q)

1−sc
sc ‖Q′‖2

L2 .

This implies 
√

2‖Q‖1−sc
L2 ‖Q‖sc

Ḣ 1 < ‖f ‖1−sc
L2 ‖f ‖sc

Ḣ 1
γ

. At last, we note that 
√

2‖Q‖1−sc
L2 ‖Q‖sc

Ḣ 1 =
‖f ‖1−sc

L2 ‖f ‖sc

Ḣ 1
γ

does not occur under the assumption. This follows from the above argument and 

the fact that Iω,γ (f ) = 0 does not occur. �
Remark A.1. By the similar argument to the above, we can show that Kγ (f ) > 0 is equivalent 
to ‖Qω,γ ‖1−sc

L2 ‖Qω,γ ‖sc

Ḣ 1
γ

> ‖f ‖1−sc
L2 ‖f ‖sc

Ḣ 1
γ

under the assumptions Sω,γ (f ) ≤ rω,γ and M(f ) =
M(Qω,γ ) for some ω > γ 2/4. However, it is difficult to remove ω from the condition unlike the 
low frequency case. In this sense, Kγ (f ) is more useful.

Appendix B. Concluding remark

We summarize known global dynamics results for (δNLS) in Fig. 1. The dashed curve is 

Eγ M
1−sc
sc = 21+ 1−sc

sc E(Q)M(Q)
1−sc
sc and the dotted curve is Eγ M

1−sc
sc = E(Q)M(Q)

1−sc
sc . The 

explicit formula of the black curve is not known. However, it is connected at M = 2M(Qγ 2/4,0)

with the dashed line, below the dashed line and above the dotted line on the mass interval 
793



S. Gustafson and T. Inui Journal of Differential Equations 412 (2024) 758–796
(0, 2M(Qγ 2/4,0)), and approaches to the dotted line as M → 0.1 We remark that Eγ = −ωM +
Sω,0(Qω,0) is the tangent line of the dotted curve, whose tangent point is (M(Qω,0), E(Qω,0)), 
and Eγ = −ωM + Sω,γ (Qω,γ ) is the tangent line of the connected curve with the black curve 
and the dashed curve at M = 2M(Qγ 2/4,0), whose tangent point is (M(Qω,γ ), E(Qω,γ )) if 
ω > γ 2/4 and (2M(Qω,0), 2E(Qω,0)) if 0 < ω ≤ γ 2/4. Moreover, Eγ = −ωM + 2Sω,0(Qω,0)

is the tangent line of the dashed curve, whose tangent point is (2M(Qω,0), 2E(Qω,0)). These 
curves are envelopes of their tangent lines. See [18, Section A] for the formula of the curves.

In the general case, the scattering and blow-up dichotomy result (S or B) holds below and 
on the dotted curve (see [28,3,29]). Above the dotted curve, we have one-solitons, whose center 
moves away from the origin and which are non-scattering global solutions (see [22]). This means 
that the dotted curve is the threshold for the dichotomy result in the general setting.

Under the odd assumption, we do not have influence from the Dirac delta potential at the 
origin since the value of odd functions at the origin is zero. In this case, the dashed curve is the 
threshold of the dichotomy result. That is, the scattering and blow-up dichotomy result holds 
below and on the dashed curve (see [30] and [20]). This is optimal in the sense that we have 
two-solitons above the dashed curve.

Under the even assumption, the connected curve with the black curve and the dashed curve at 
M = 2M(Qγ 2/4,0) are a threshold of the dichotomy result. That is, the dichotomy result is valid 
below the curve (see [28]). On the black curve, there is no dichotomy result since the ground 
state Qω,γ exists on the black curve. We also have two solutions (up to symmetries) converging 
exponentially to the ground state (see [19] for detail). On the other hand, we have the dichotomy 
result on the dashed curve on the mass interval [2M(Qγ 2/4,0), ∞). We note that the endpoint 
M = 2M(Qγ 2/4,0) is included. This is shown by the paper. Above the dashed curve, we have 
two-solitons, which are non-scattering global solutions (see [22]). We also have a logarithmic 
two-solitons on the dashed curve for smaller mass M (see [19]).
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