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Abstract

We consider the L2-supercritical nonlinear Schrodinger equation with a repulsive Dirac delta potential
in one dimensional space. In a previous work, we clarified the global dynamics of even solutions with the
same action as the high-frequency ground state standing wave solutions. In that case, there are obvious
non-scattering global solutions, i.e., the standing waves. In this paper, we show a scattering and blow-up
dichotomy for threshold even solutions in the low-frequency case. We emphasize that this dichotomy still
holds at the critical frequency between high and low.
© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC
license (http://creativecommons.org/licenses/by-nc/4.0/).
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1. Introduction
1.1. Motivation

We consider the Schrodinger equation with a repulsive Dirac delta potential and a focusing
power type nonlinearity in one dimension:

i+ 92u+ydu+|ulPlu=0, (t,.x)elxR, (SNLS)
u(0,x) =uo(x) xeR,

where y < 0, § is the Dirac delta with the mass at the origin, and p > 5. Though the equation
is not scaling invariant, the condition p > 5 means that the nonlinearity is L>-supercritical. The
Schrodinger operator —A,, := —8% — y & is defined by

—A, fi=—f"for f e D(—A,),
D(—Ay):={f e H' R)NH* R\ {0} : f'(0+) — f'(0-) = —yf(O)},
where f’ denotes the spatial derivative of f. The condition y < 0 means that the potential is
repulsive. In the repulsive case, it is known that the operator — A, is non-negative and self-adjoint

on L?(R) (see [2, Chapter 1.3]) and thus the linear Schrodinger propagator ¢'27 is unitary on
L?(R) by the Stone theorem. We may also define the operator —A, through the quadratic form
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q(f.8):= | fl(x)g(x)dx —yf(0)g(0)
R

for f, g € H'(R) (see [32] and [44, Example 10.7]). It is well-known that the equation (§NLS)
is locally well-posed in H'!(R), and the mass and the energy, defined respectively by

M(f) = £l
1 / Y 1 1
Ey(f):= 5112 = SIFOF = m||f||§j+l,

are conserved. See [15, Section 3], [6, Theorem 3.7.1], and [14, Proposition 1] for the local
well-posedness.

Global dynamics of nonlinear Schrodinger equations has attracted a lot of interest after the
pioneering work by Kenig and Merle [33]. Global dynamics below the ground state for the
Schrodinger equation with mass supercritical and energy subcritical nonlinearity, but without
potential, are well-studied (see [25,8,26,11,1,16,17]), as are the global dynamics at the ground
state level (see [10,5]). See also [40] for the global dynamics above the ground state. More re-
cently, dynamics of nonlinear Schrédinger equations with potential have been considered: see
[23,7,27] for general potentials and [45,34,36] for the inverse square potential. The authors have
considered the global dynamics of the equation (6NLS). To explain the known results, we first
give some notations and definitions. For a frequency w > 0, we define the action S, ,, by

Sy (f) == E,(f) + %M(f)

and the virial functional K, by

o nm2 o o_ _ p+1
Ky (f) =117z |f(0)| 20 Jrl)IIfIILp+|-

The scaling critical regularity index is

Definition 1.1 (scattering). We say that a solution u scatters in the positive (resp. negative) time
direction if the solution exists at least on [0, 0o0) (resp. (—oo, 0]) and there exists uy € H L(R)
(resp. u_ € H'(R)) such that

llu(t) — €27 uy (|| g1 — 0 as t — 0o (resp. —o0).
We only say that a solution u scatters if the solution scatters in both time directions.

Remark 1.1.
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(1) Mizutani [39] shows that, if a solution scatters in the positive time direction, then there exists
. € H'(R) such that

s a2
lu(t) — "%y || y1 — 0 as 1 — oo.

This means the solution of the nonlinear equation behaves freely at time infinity.
(2) For the defocusing nonlinear Schrodinger equation with repulsive Dirac equation, Banica
and Visciglia [4] show that all solutions scatter.

Definition 1.2 (blow-up, grow-up).

(1) We say that a solution u# blows up in positive time if the solution exists until finite 7 > 0 and
does not extend beyond 7. By the blow-up alternative, if u blows up in positive time, then
|’ (£)|| 2 — oo as ¢ goes to maximal positive existence time.

(2) We say that a solution u grows up in positive time if it exists on [0,00) and
limsup,_ oo 1/ ()]l 12 = c0.

We define blow-up (resp. grow-up) in negative time in a similar way. We say that a solution u
blows up if it blows up in both time directions. We say a solution blows up or grows up if the
solution blows or grows up in positive time and blows or grows up in negative time.

To study the global dynamics, minimization problems related to the ground state play an
important role. We consider the following two:

Ny i=i0f{S, , (f): f € H'(R)\ {0}, K, (f) =0},
Fo.y =i0f{Su., (f) 1 f € Hayen(R) \ {0}, Ky, (f) =0},

where H! _(R) denotes the even functions in H'(R). We have:

even

Proposition 1.1 ([/3,28]). Let y <O.

(1) Forall > 0, ny,, =ny o and n , is not attained.
(2) e,y <Trw,y and

2

2
=2ny.0 if0<a)§yT,

Toy . y
<240 ifo>T.

(3) If0 < w < y?/4, then Tw,y 1s not attained. If o > v2/4, then Tw,y is attained by

2

Qp.y(x):= cpwﬁ |:2cosh {pT_lﬂ|x| + tanh™! (%) ”—,;1

1
where cp, :={2(p + 1)} 7T The function Q. is the unique (up to a complex phase) solu-
tion of
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—0 , —¥800y +©0uwy =100y " Qu.y.

Remark 1.2. Let

2

Qx):=cp {ZCosh <p; lx)}_p_l ,

known as the ground state of the equation

-0"+0=0" (1.1)

Then Q,, is given by a translation, reflection, and scaling as follows:

1 2 _
Qu.y(x) =71 Q (Jc_o|x| + = tanh ! (ﬁ))

for w > y2/4.

Remark 1.3. Fukuizumi and Jeanjean [13] show the instability of the ground state standing
waves if p > 5. Le Coz et al. [35] obtained the strong instability of the standing waves. In their
papers [13] and [35], the stability of the ground states in the case 1 < p < 5 is also investigated
(see also [41] for the degenerate case). For the attractive Dirac delta potential (y > 0), the orbital
stability of the standing waves is studied by Fukuizumi, Ohta, and Ozawa [14] (see also [15]) in
the non-degenerate case and Ohta [41] in the degenerate case. See Ohta and Yamaguchi [43] and
Fukaya and Ohta [12] for the strong instability (see also [42] for a review). Recently, Masaki,
Murphy, and Segata [37] proved the asymptotic stability of small solitary waves for p > 5 under
a suitable spectral condition. See also [31,43].

The function ¢'®* Qu,y 1s a non-scattering global solution to (SNLS) if w > y2/4. In the
non-even €ase, N,y = Nw,0 = S0.0(Qw.0) gives a threshold for a dichotomy result even though
€'’ Q.0 is not a solution to (SNLS):

Theorem 1.2 (Global dynamics below Q,, o (Ikeda—Inui [28])). For w > 0, we define the poten-
tial well set PW,, , :={f € H! (R) : S,y (f) <ng,y}. Assume that ug € UysoP W . Then the
following hold for (SNLS):

(1) If Ky, (uo) = O, the solution scatters.
(2) If Ky (o) < O, the solution blows up or grows up.

Remark 1.4.

(1) Here (and in Theorem 1.4 below) K, (u0) = 0 implies uo = 0.
(2) By scaling, we can re-express Theorem 1.2 by replacing the assumption ug € Uys0P W

1—s¢ 1—s¢
with the mass-energy condition E, (uo) M (ug) s < E(Q)M(Q) * .
We also have a dichotomy result at the threshold:
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Theorem 1.3 (Global dynamics on the threshold (Ardila—Inui [3], Inui [29])). Assume that ug €
1—s¢ 1—s¢
H'(R) satisfies E, (uo)M(ug) s« = E(Q)M(Q) s . Then the following hold for (SNLS).

(1) If K, (uo) > 0O, the solution scatters.
(2) If Ky (o) < 0 and xup(x) € L2(R), the solution blows up.

Remark 1.5.

(1) K, (up) = 0 does not occur since there is no ground state on the threshold.
(2) The dichotomy results Theorems 1.2 and 1.3 are optimal in this sense: for any € > 0,
1—s¢
there exists a non-scattering, global moving one-soliton solution u with E, (u)M (u) 5 <
1—s¢
E(Q)M(Q) * + € (see [22]).
(3) In Theorems 1.2 and 1.3, the condition on the sign of K, (uo) at the initial time can

H - c 4 1- 4 4
be replaced by the sign of Ko(uo). or [ Q1.0ll}5*1Q1.0l%, — luoll}>* /=&y uoll 5. or

I Q1,0||;S‘ I Q1,0||;31 — ||u0||;S“ ||u0||;31. That is the solution scatters (e.g.) if one of them

(therefore all of them) is positive. See e.g. [24]. It is notable that functionals not involving
the potential term also determine the global behavior.

For even solutions, we have the following global dynamics result below r,, ,,, which is strictly
larger than n, ,, by Proposition 1.1:

Theorem 1.4 (Global dynamics of even solutions below v, , (lkeda—Inui [28])). For w > 0,
we define the potential well set PW;‘:;“ ={fe Helven (R) : 8w,y (f) < Fo,y}. Assume that ug €
Uw>0 P Wg'om

(1) If K, (uo) = 0O, the solution scatters.
(2) If Ky (o) < O, the solution blows up or grows up.

If w > y?/4, the ground state Qw,y 1s a non-scattering, global, even solution on the threshold.
We also have solutions converging to the ground state as follows:

Theorem 1.5 (Existence of special solutions (Gustafson—Inui [18])). Let w > y2/4 be fixed.
There exist two even solutions U* to (SNLS) such that

o« M(U*) = M(Quw,y), Ey(Ui) =E,(Qo,y) U= exist at least on [0, 00) and there exists
¢ > 0 such that

IUE@) = " Quy g1 S e fort > 0.

e K, (UT(0)) <0and U™ blows up in finite negative time.
o K, (U (0)) >0and U™ scatters backward in time.

Moreover, we have a global dynamics result in the high frequency case:

Theorem 1.6 (Global dynamics on the threshold (Gustafson—Inui [18])). Let w > y? /4. Assume
that ug € H'(R) is even and satisfies the mass-energy condition
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M (up) = M(wa) and Ey (o) = E)/(Qa),y)-
Then the following are true for (SNLS).

(1) If Ky (uo) > 0, the solution u scatters, or else u = U™ up to symmetry.

(2) If K, (uop) =0, then u = €' Q, ,, up to symmetry.

(3) If Ky (o) < 0 and [g |xuo(x)|*dx < oo, the solution u blows up, or else u=U" up to
symmetry.

Our aim in the present paper is to classify the threshold dynamics of even solutions in the low
frequency case 0 < w < y2/4. Since there is no ground state, one can expect a scattering and
blow-up dichotomy.

1.2. Main result

We show the following scattering and blow-up dichotomy result at the threshold in the low
frequency case, for even solutions:

Theorem 1.7. Let 0 < w < y2/4. Assume that ug € Helven(]R) satisfies E, (ug) =2E(Qy,0) and
M (uo) =2M(Qw.0). Then we have the following:

(1) If K, (uo) > 0O, the solution u scatters.
(2) Assume in addition that xug € L*(R). If Ky, (up) < 0, the solution u blows up.

Remark 1.6.

(1) The mass-energy conditions Ey, (ug) = 2E(Q,0) and M (uo) =2M(Q,0) come from the
fact that r, , = 2n4,0 = 254,,0(Qw,0) (see Proposition 1.1) if 0 < w < y2/4. By using the
scaling property of O, 0, we can re-express Theorem 1.7 by replacing these mass-energy

conditions with the w-independent conditions E, (1) M (u0) 1% = 2$ E(Q)YM(Q) % and
M(uo) = 2M(Q,2 /4 o), where the additional mass condition ensures the low frequency.

(2) We note that K, (1) = 0 does not occur on the threshold in the low frequency case since
there is no ground state.

(3) The dichotomy results Theorems 1.4 and 1.7 are optimal in this sense: for any € > 0, there ex-
ists a non-scattering, global, even, moving two-soliton solution u with E,, (ug) M (uo)% <

1—s¢

1
25 E(Q)M(Q) ¢ + € (see [22]).
(4) The condition on the sign of K, (o) may be replaced by the sign of v/2[| Q1 || 125110 1.0 ||SI§,l

L2
— ||u0||]1;s" ||u0||‘;31 in Theorem 1.4 (in the low frequency case w < y2/4) and Theorem 1.7.

The latter condition is related to the Nehari functional as seen in Section 2.4. See Appendix A
for the proof.

(5) In [19], even, logarithmic two-solitons with action 2n,, ¢ are constructed for higher frequen-
cies. Theorem 1.7 shows that no such solutions can exist at lower frequency.

We give a summary of global dynamics results for ({NLS) in Appendix B.

764



S. Gustafson and T. Inui Journal of Differential Equations 412 (2024) 758-796

1.3. Idea of proof

The basic idea to show the scattering result relies on the work by Duyckaerts, Landoulsi, and
Roudenko [9] (see also [38,3,20]). Their argument is by contradiction, based on concentration
compactness and modulation. First of all, it is enough to consider the case w = 1 by a scaling
argument. We suppose there exists a threshold, even, non-scattering solution to (SNLS) satisfy-
ing the mass and energy condition M (u) =2M(Q) and E, (u) =2E(Q) and K, (u) > 0. This
solution has a compactness property: there exists x : [0, 00) — [0, oo) such that for any ¢ > 0
there exists R = R, > 0 such that

' (O + |u())?dx < e

{lx—x(@®)|>R}N{|x+x(¢)|>R}

for any t > 0. If u, (1) := 2||Q’||2L2 - ||u||i.11 > ¢ for some ¢ > 0, then we get a contradiction

in a similar way to the case below the grouynd state. Indeed, when we calculate the localized
virial identity, the error term can be estimated using the compactness, and can be absorbed by the
virial functional K, which does not go to zero by u,, (u) > c. On the other hand, if u,, (u) — 0,
we need a more careful modulation argument. In particular, we need to exploit the effect of the
repulsive potential. Indeed, if ¥ = 0, we have a non-scattering solution converging to the ground
state (see [5]). The repulsive effect appears through an estimate like

2
0< <1 - —) e PO <y W, (1.2)
|yl
where y(¢) is the translation parameter of the modulation (for y < —2; see below for y = —2).

This shows that if 1, (u(¢)) — 0, then y(#) — oo. On the other hand, we also have

YOS Lty )]

by the modulation analysis (this estimate holds in general for NLS and is not influenced by the
repulsive potential), implying that y is bounded, giving a contradiction.

One difficulty of our problem is that we cannot remove the translation parameter by even
symmetry. In the higher dimensional case, radial symmetry removes the translation parameter
since the radial Sobolev embedding H! (R?) C LY(R?), where 2 < g <2d/(d —2) and d > 3,
is compact. In one dimension, however, the embedding is not compact.

A second difficulty is that the scaling of H' and of the delta interaction is different. Indeed,
letting f3 (x) = A% f (AP x), we have

LA, =22 1125, | f0)F = 22| £ ().

This means that the virial functional K, differs from the functional 1, , which corresponds to the
Nehari functional under the mass-energy condition (while they are equivalent for NLS without
potential). However, we can show that there exists ¢ > 0 such that |, (u)| < c|K, (u)| under the
assumption, by using a variational argument based on more general functionals than the Nehari
and virial ones.
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A third difficulty is to obtain the repulsive effect from the delta interaction. In the odd case
(see [20]), we use the odd function Q(x — y) — Q(—x — y) as the imaginary ground state and
we could show an estimate like e =2 < | (). In our problem, the key point to use Q(|x| — y).
While it is not smooth, it is more natural than Q(x — y) + Q(—x — y), since the ground state
of (SNLS) is given by Q(|x| — &) for some & when w > y?/4 (see Remark 1.2). In this way, we
obtain an estimate like (1.2). The e~%" here comes from the decay order ¢ ™ of the ground state
Q(x). When y = —2, however, the coefficient of e~2 vanishes. In this degenerate case, we need
a more careful calculation, using the next order in the decay of Q, which is e 7*. In this way,
we get

e PHDY <y ),
which allows for a contradiction in the same way as for y < —2.

The proof of the blow-up result is based on the contradiction argument of Duyckaerts and
Roudenko [10]. Suppose that u is global in the positive time direction. Then, by the virial identity
and a Cauchy—Schwarz type inequality, which can be shown by using a Gagliardo—Nirenberg
type inequality related to the delta potential, we know that u blows up in finite negative time

and satisfies ftoo ey (u(s))|ds < Ce™“". The estimate implies that y(r) converges to a positive
constant as  — 0o. This contradicts the divergence of y, which follows from e S iy ()] (or

e~ PEDY <y, (u)]).

1.4. Notation

For a function f, we denote the spatial derivative by f’ and the time derivative by f .
We set norms

11 =172 + V1L OF + @l 117
and
||f||§y1 = V=4, FlII5 = 1£' 17 + Iy Il £ O
In what follows, we denote Q. 0 by Q. and Q19 by Q for simplicity. Let x € C*°(R) be a

cut-off function satisfying

O RN CIE
XZN0 0 (e < 172).

For R > 0, we set

x)=xl=).
XR X R
We also use the following notations:

X () i=1—xr(xX), x5 *x):=1000)xr, and xx (x):=L(—o0,0)XR-
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We define

1y (1) =210 = £ I
For a function f and y > 0, we set 7, f(x) := f(x — y) and

gR,yf(x) =Xr (x)ﬁf(x) + Xr x)T- y f ().

2. Preliminaries
2.1. Variational structure

We revisit the variational argument not only for the virial and Nehari functionals but also for
more general functionals K> w ,,, defined by

KB (f) 1= 880,y (€ (")) 10

20+ B ﬁ (p+Da—-8
= o £117, — ay | £ (O +w 1£13, - Tllfllppﬂ

for a, 8 € R. By definition, (a, 8) = (1/2,1) gives the virial functional, i.e., K, (f) =
l/ 2, 1( f),and (o, ) = (1, 0) gives the Nehari functional

Loy (f) == KES(H = 10 fI22 = v I FO P + ol £172 = 1 FIEEL
If («, B) satisfies
a>0,2a0—B>0,2a0+p>0, 2.1)
we obtain the following lemma by [28, Lemmas 2.7-2.10].

Lemma 2.1. Let 0 < w < )/2/4 and (a, B) satisfy (2.1). We have

250.0(Qw.0) =inf{Su,, (f) 1 f € Hyen(R) \ {0}, K& () =
ForO <w < y2/4 and (o, B) satisfying (2.1), we define
KZET = {f € Hyou(R) : M(f) =2M (Q0.0). Ey (f) =2E(Qu.0). K& () > 0},
KB~ = {f € Hl\ey(R) : M(f) =2M(Q0.0). Ey (f) =2E(Qu.0). K&E(f) <0}

We note that there is no function satisfying M (f) = 2M(Qu,0), Ey(f) = 2E(Qw,0), and
ap
Kw,y(f) =0.
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Lemma 2.2. ICZ’/‘;},’Jr is independent of («, B); that is, ICZ’,’)S/’+ = ICgi’,’,g Lt for (a, B) and (o', B)
satisfying (2.1). A similar statement holds for ICz)’f,’_

Proof. This can be proved in a similar way to [18, Lemma 2.2]. We omit the proof. O

This means that we may omit (¢, 8) from ICff;f,’i. This variational structure gives us the
invariant sets under the flow.

Lemma 2.3. Let 0 < w < )/2/4. Assume that ug € HelVen (R) satisfies E, (ug) = 2E(Qw,0) and
M (uo) =2M(Qw.0)- Let u denote the solution to (SNLS) with u(0) = uo.

(1) If Ky (uo) > 0, then u(t) € ICZ;’V as long as the solution exists. This gives a uniform H!
bound of the solution and thus the solution is global.

(2) If K, (uo) <O, then u(t) € IC;’), as long as the solution exists.

Proof. This follows from the standard argument. See e.g. [28, Lemma 2.17]. O

2.2. The Gagliardo—Nirenberg inequality

By the characterization of the ground state Q,, o, we have the following Gagliardo—Nirenberg
type inequality:

2 2
AT per = Cw,ollfllHol0

for H'(R), where
2
”Q““ﬂuzz{ﬂp+1)

c =
,0 2
O 1QwollF p p—1

—1
5 .
Sw,O(Qa),O) = ||Qw,0”Lp+1

is the best constant and it is attained by Q,, ¢. For the repulsive Dirac delta potential, we have
the following inequality.

Lemma 2.4 (The Gagliardo-Nirenberg type inequality w.rt. delta potential). Let 0 < w < y? /4.
Forany f € H}.,(R), the following estimate holds:

2 —b 2
”f”Lp-H S 2 pHl Cw,0||f||H(Ly-

The constant is optimal, but it is not attained.
Proof. This follows from the minimizing problem:
255,0(Q0,0) = nf{Sy, , (f) : [ € Hoyen(R) \ {0}, Ly 5, () = O}.
We omit the proof. O
Remark 2.1. When o > y2/4, we have a different best constant. See [21].
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2.3. Reduction by scaling
By scaling, we can reduce our main theorem to the following for v = 1:
Theorem 2.5. Let y < —2. Assume that ug € Helven(]R) satisfies the mass-energy condition
M (uo) =2M(Q) and Ey (uo) =2E(Q). (ME)
Then we have
(1) If K, (uo) > O, then the solution scatters in both time directions.
(2) Assume in addition that xug € LZ(R). If Ky, (ug) <0, then the solution blows up in finite
time.

Indeed, Theorem 1.7 can be shown by assuming Theorem 2.5.

Proof of Theorem 1.7 from Theorem 2.5. Let ug € Helven(]R) satisfy E, (ug) = 2E(Qw,0),
M (up) =2M(Qw,0), and K, (up) > 0. By the scaling structure of Q,, o, we obtain

+3 s
o D ., (ug) = 2E(Q) and w275 M (ug) = 2M(Q).

Let g 1 (x) := 0~ /P~Dy(0~1/2x). Then we get

E | (g, 1) =2E(Q) and M(ug,-1) = 2M(Q).
o 2y
We also have
p+3
K _1 (uy,-1)=w?P-DK,(up) >0
w 2y ’

By Theorem 2.5, if @~ !/?y < —2, which is equivalent to 0 < @ < y2/4, then we find that the
solution u,,-1 with the initial data u ,-1 scatters. By rescaling, the behavior of the solution u
with u(0) = up is same as that of u,-1. Thus u scatters. This argument also works for the case
that K, is negative. O

Thus, in what follows, it is enough to consider w = 1 under the assumption y < —2.

2.4. Relation between virial functional and .,

We define
iy ()= 200" = I1f -
This is nothing but the Nehari functional under the mass-energy condition (ME), that is,
Iy (u(®) = ?uy(u (t)). Thus this sign is invariant under the flow by Lemma 2.3. Since the

scaling ratio between H!-norm and $-interaction is different, there is a difference between the
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virial functional K, and w, . However, we have Proposition 2.9 below. The proof is similar to
that in [18]. We set K}‘f”s = Kff

Lemma 2.6. Let u be the solution to (SNLS) with u(0) = ug satisfying (ME). Then
(p—Da—-28
200l
~ ((p ~ Do —28

KSP ) =

(p—Da—p

loxu®)7, + 5

5 |y||u(r,0>|2>

forany t.

Proof. This follows from a direct calculation using (ME) and K, g P Q)=0. O

1 2c

5—25.1
Lemma 2.7. We have K, (f) —cpy (f) =K, """ (f) forc €eR and f € H' satisfying (ME).

Proof. This follows from direct calculation and Lemma 2.6. O

1_ 2c
We note that (% — p2f1, 1) does not satisfy (2.1). However, the functional K,f r=t

used as the functional of the minimizing problem by taking ¢ small depending on p.

can be

Lemma 2.8.Let 0 < ¢ < (p — 5)/4. There is no function f € He1

ven
1_ 2

27511
K, " (f)=0.

satisfying (ME) and

Proof. The proof is same as in [18, Lemma 2.7]. We note that there is no ground state if y <
-2. O

Proposition 2.9. We have the following statements.

(1) If Ky, (uo) > 0, then there exists ¢ = c(p,up) > 0 such that K, (u(t)) > cu(u(t)) > 0 for

(2) ;feK]Ri-(uo) < 0, then there exists ¢ = c(p, ug) > 0 such that K, (u(t)) < cu(u(t)) <0 as far
as the solution exists.

Proof of Proposition 2.9. The proof is same as in [18, Proposition 2.5]. O

2.5. Virial identity

Let u be a solution to ({NLS). We define

J () = Joo (u(t)) := / lx 2 u(r, x)2dx.
R

Direct calculations give the virial identity:
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%J(u(t))=4Imfxu’(t,x)u(t,x)dx,
R

2

d
T3 () = 8Ky ().

Let ¢ be an even function in C3°(R) satisfying

() i x? (x| <D,
P00 (x> 2).

For R > 0, we define

Tru(®)) :=fR2<p (%) u(t, x)2dx.
R

Then we have the localized virial identity:

%JR(u(t)) =2RIm/<p’(%) u'(t, X )u(t, x)dx
R

and
d2
ﬁJR(M(I)) =8K, (u(t)) + Ar(u(t)),
where
—1
ARu() :=—4 /‘{2—¢"(%)}bMOJN2—25%+DhML@w+qu
|x|>R
1
- / o9 (%) lutt. 0 dx.
R<|x|<2R
We set

Fr(f):=8K,(f)+ Ar(f)
for f € H'(R). We set Foo(f) := 8K, (f).
Lemma 2.10. For any y > 0 and 6 € R, we have
AR’ Q(-|—y) =0
and so
Fr(e” Q(l-| =) =8Ky (e Q|- | = y)) = Fao (" Q(| - | = ).
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Proof. Let v(r) :=e¢'’¢!? Q(| - | — y). Then the function v satisfies
iojv+ va + v+ P~ v =0,

where y, := —20Q'(—y)/Q(—y) (in fact v is the ground state soliton of (SNLS) with y =y, €
(—=2,0)). Thus

, — 2RI (XY o dx =0
Gntwe) =281 [ () 0'Gx1 = ) 00x| = =0,
R

This shows that
Fp(v) := Ag(v) +8K,, (v) =0.

By the Pohozaev identity for Q(] - | — y), we see that K},y(v) =0, which implies that Ag(v) =0
(noting that A is independent of the delta potential), and the lemma follows. O

2.6. Coercivity

We define

d(f,g):=Re / F0)g @) + f()gl) — Q)P (pfi(x)gr(x) + fr(x)g2(x))dx,
R

where f,g € H'(R), f1, g1 denote the real parts of f, g, and f>, g» denote the imaginary parts
of f, g, respectively.
For y > 0, we also define

By(f,8):=Re / F @) + fF)glx) — 0(x — P N (pfitx)gr1(x) + fr(x)ga(x))dx
0

and we denote By by B for short.
The following coercivity property for @ is obtained by [5].

Lemma 2.11 (Campos—Farah—Roudenko [5, Lemma 3.5]). There exists ¢ > 9 such that if f €
H'(R) satisfies the following orthogonality:

Im / F()0()dx = Re / F(0)Q (x)dx = Re / FEO@) dx =0,
R R R

then
O(f, ) =l f1I5-
By using this coercivity, we get the following.
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Lemma 2.12 (Coercivity). Let y > 2R and R > 1. There exist ¢, C > 0 such that if h € Helven (R)
satisfies the following orthogonality:

Im / h(x) x5 (x)Ty Q(x)dx =Re / h(x)(x g () Ty Q(x)) dx
R R

=Re / h()xg )Ty Q(x)Pdx =0,
R

then
O(Ty (xrh), Ty (X&) = cllxrhl%) — %uhui,].
Proof. We can show this in the same way as in [21, Lemma 24]. We omit the proof. O
2.7. Strichartz estimates and linear profile decomposition
We define some function spaces as follows.

Definition 2.1. Let / be a (possibly unbounded) time interval. We define function spaces by

2p%-1) 2p?—1)

S(:=L, "7 LYY, wa) =L/ L, x() =L LR ).

2021 ptl
Moreover, W’ denotes the dual space of W, that is, W'(I) = L,"?™ L,” (I).

Then we have the Strichartz estimates.

Lemma 2.13 (Strichartz estimates). The following estimates are valid:
e 27 Flisany + €™ Fllxay S I lan

t t
I [ eI F(5)ds | s + | / IR F(9)dslx o) S IF lw g
1 1

0 0

where I is a (possibly unbounded) time interval and t| > 1.
Proof. See [4, Section 3.1]. O

Lemma 2.14. Let ug € H'(R) and u be the solution to (SNLS) with u(0) = ug. The solution u
scatters in the positive time direction iff u € §(0, 00).

Proof. See [4, Proposition 3.2]. O
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3. Modulation argument

Lemma 3.1. There exists 1o > 0 and a function ¢ : (0, uo) — (0, 00) with e(u) - 0as u — 0
such that the following holds. For any u < po and for all f € Helven(R) satisfying E, (f) =
2E(Q), M(f)=2M(Q) and j1,, (f) < u, there exist (6, y) € R x [0, 00) such that

If =€ Q-1 =yl <e().

Proof. We use a contradiction argument. We suppose that the statement fails. Then there ex-

ists &9 > 0 such that for any n € N, there exist u, with u, — 0 and f, € Helven(]R) satisfying

Ey(fa) = 2E(Q), M(f,) =2M(Q) and 11(f,) < jtn such that infyeg infy=o || f — ¢ O(| -
| =)y > &o. Since py (fn) — 0 as n — oo and E, (f,) = 2E(Q), we have ||fn||’£j:, —

2[1Q|I7, and thus

p+

Sy (fn) = 28(Q) and I, (fp) — 21(Q) =0.

By Fukuizumi and Jeanjean [13, Lemma 20], we get

Lfu = € (QC = y) + Q(= - =yl g1 = O,
where y, — oco. Now

Q¢ = yn) + Q(=-=yu)) = Q- | = y) I g1
=1Q2(==y)llg10.00) + 1QC = ¥l 1 (~c0,0)

— 0.
This is a contradiction. O
Lemma 3.2 (Modulation). Let R > 0 be sufficiently large. There exist puo > 0 and a function
€ : (0, uo) = (0,00) with e(u) — 0 as u — 0 such that the following holds. For any (. < g

and forall f € Helven(]R) satisfying E(f) =2E(Q), M(f) =2M(Q) and u(f) < u, there exist
(é, y) € R x (2R, 00) such that

le ™ f — Q1= Yl < &)

and

Im/ g xg () Q(x — y)dx =0, Re/g(x)ax(xﬁ(X)Q(x —y)dx=0, 3.1
R R

where g =e™i0 f — O(|- | — y).
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Proof. We define

A@yw)

J6.y.v= (J(e v, v)

_ ImfR@“'év—Qu |- y))XRTdex
~\Re [pe™v— Q- | =y (X3 Ty Q)dx

ford €eR,y>2R,ve H._.Then J(0,y, Q(|-| —y)) =0. We have

even

aJ
a—g(O,y,Q(l |=y)=— /Q(IXI Vg Ty Qdx

- / 7,01 dx + O(e™™)
R

=—)0l3, 4 0™

and

0J
520,500 1= = / 0'(Ix| — )as (T, Q)dx
R

=0:Ql7, + O(R™" +e*F).

We also have ‘”l 0,5, (- =y)= 312 (0 v, Q(] - | — y)) =0. These imply that the Jacobian
of J near (0, y Q(| | —y)) is mvertlble for large R. The statement follows from the implicit
function theorem. 0O

Let u be an even solution satisfying (ME). We denote ., (u(t)) by i, () for short. We set
Ly = {t € Imax : |1y ()] < o}, where Iyax denotes the maximal existence time interval of
the solution. By Lemma 3.2, we have C! functions 6 = 6(¢) and y=y() fort € I,,,. We set
6 := 6 — t. We also have orthogonality conditions (3.1). We set

u(t, x) =" OHQ(x| — y (1)) + g1, %) (32)
= OQ(x] = y () + PGk y) () + A(t, X)),

where

Re [ gx3 (Ty Q)P dx
SO Ty Q)P tdx

Then it follows from (3.1), (3.2) and (3.3) that

p(1) = (3.3)

Im/hngy(,)de=Re/h(X;Ty(,)Q)/dx=Re/th (T3 Q)Pdx =0.  (3.4)
R R R
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4. Modulation parameters
4.1. Properties of the ground state

To give estimates for the modulation parameters p, y and the remainder terms g, &, the func-
tion Q defined by

0 0
Qy) i=— / 10 (x — y)|Pdx — / 1Q(x — y)*dx + %Q(—yﬁ

1
— —{lyl0(=y) =20/ (—y)}*
2ly|

plays an important role. In this subsection, we compute its function large-y asymptotics. The
ground state Q is given by

2

o p—l T _ ax —ax -1
O(x) =cp2cosh 7 X =cple™ +e "} e,

1
where ¢, := (2(p + 1)) 7T and a = (p — 1)/2. By Taylor expansion, we have

0(x) = cpe ™ — %ﬂefpm +o(e PR, 4.1)
and
X Cp X
Q') =—eproe %me—f“‘“ +o(e~P). 4.2)
Lemma 4.1. We have
0
2 2
c 2pc
— "x = y)Pdx ==L 2 TP ,=(p+Dy 4 5= (P+Dyy.
fIQ( Y > TESY ( )
—00

Proof. By the Taylor expansion (4.2) of Q’, we get

0 0
— [10a=pPar== [ 1= cper 4 ELere o a4 o7ty
. . a
0
=— / (—cl,e)‘_y)2 + 2(—C[,ex_y)pa&ep(x_y)dx +o(e~PHDY)
—0o0

2

0 0
= e / 2y +27P o~y / (DR gy (e
o
—00 —00
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2 2
=L 2pie_(pﬂ)y—Fo(e_("”“l)y). ]
2 a(p+1)
Lemma 4.2. We have

0

a f 1O = y)|2dx = _ée—Zy + ie_(”“)y +o(e Py,

2 a(p+1)

—0o0

Proof. Using the Taylor expansion (4.1) of Q, this is a similar calculation to Lemma 4.1. 0O
Lemma 4.3. We have

2
ly| 2 vl o oy ey iy —(p+1D)y
TQ(—y) =S T T e +o(e )-

Proof. This is an immediate consequence of (4.1). O
Lemma 4.4. We have
1 / 2
- >—Aly1Q(=y) =20 (—=»)}

2|y
1 —22p—
=——(lyl - 2)2012)6—2y - Lwcge—(wl)y +o(e~ Py,

20y | 171 o

Proof. By (4.1) and (4.2), we have

{y1Q(=y) =20 (=)

= {Iyl (c,,e*y — %”e*Py) -2 (cpeﬂ' — %67”)}2 +o(e=PthY)

= {(Iyl —2)cpe™ + wcpe—l’y}z + o(e=(P+DY)

=(yl - 2)2C?7€_2y +2(ly| =2) 2p—lvl ; b4 C?]e—(PH)y + o(e~ Py
and their result follows. O

Combining all the above estimates, we obtain the following.

Corollary 4.5. We have

2 C 4p(lyl—2) 5 _ B
Q0= (1= ) e 7 = iy e e

Remark 4.1. So when y < —2, the leading term of Q is e~ %Y with positive coefficient. When
y = —2, we will simply regard Q as an error term with Q = o(e’(l’*l)y).
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For y = —2, the following estimate provides our main term:
Lemma 4.6. It holds that
/ 10— P = D e
p+1 (P+D°

Proof. We have

p+1 f |Q(x—y)|”+ldx—— f lepe™ Y [PHdx 4 o(e=PHDY)
20" 0
— 2P ,—(p+Dy [ e(p+1)xdx+0(e*(P+1)y)
+1
p —0o0
2CP+1

_ —(p+1)y —(p+Dy
=——e¢ + o(e )
(p+1)?

1
Since ¢, ={2(p + 1)} »~T we have

+1 1
CZ = cch; =2(p+ l)cf,.

Thus, we get

2570 Ap+De, 4 -

(P+D2 (p+12  (p+1D

4.2. Estimates of the modulation parameters
We set

e (y <-2),
ey()’) = e_(P+1)y (y :_2)

Let u be an even solution satisfying (ME), and modulated as in (3.2).

Lemma 4.7. It holds that
ol S llgl .2,
gyt S ol + lIAllgr,
IRl g Slel+lgha S gllgr-
Proof. These estimates follow from the definition of p and g = g Q(|- | —y)+h. O
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By using the mass condition, we have the following:

Lemma 4.8. We have
00 0 o0
4Re/ Q(x — y)h(x)dx =2 / 10(x — y)[Pdx — 4p Ref XR(X)Q(x — ) —llgll .
0 —00 0

Proof. This follows from direct calculation using M (1) =2M(Q) and (3.2). O
Using the functional ., , we have the following:

Lemma 4.9. We have

ol S iy @]+ 11813, + ey, () +o(e™ Py + O (e PR h| ).

Proof. We have

iy @) =207 = 1001+ 1= ») + ¢l
=2|10'7, -2 / |Q'(x — y)[’dx — 4Re / Q'(x — y)g'(x)dx — / g/ (x)[dx
0 0 R

—Iy110(=y) + g0

Now,
00 0
2012, — 2/ 10/t — y)Pdx =2 f 10'(x — y)ldx.
0 —00
By equation (1.1) for Q and integration by parts, we get

Re / 0/ (x — g/ (X)dx = Re[Q/(x — Vg1 =F — Re / 0"(x — y)g()dx
0 0

— —Q'(~y)Reg(0) —Re / (Q(x — y) — Ox — y)P)g(x)dx.
0
Since g = pxrQ( —y) + h on (0, 00), we get

Re/(Q(x =) = Q(x —y)")gx)dx
0
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=p (/XR(X)Q(X—)’)ZCZX—/XR(X)Q(X—y)p+]dx)

0 0

+Re/Q(x—y)h(x)dx—Re/Q(x—y)ph(x)dx
0 0

By the above equations and Lemma 4.8, we obtain

0
i@ =2 [ 10/t~ P

0
+2 / 10 (x — y)|Pdx +40'(—y)Re g(0) — |y [|Q(—y) + g(0)?

—00

- 4p/xR(x>Q(x — )P dx — gl - 4Re/ O(x — y)Ph(x)dx
0 0

o0

=-2Q0(y) — 2Efr—4p/XR(X)Q(x —yPHdx — gl
0

- 4Re/ Q(x — y)Ph(x)dx,
0

where we set

{y10(=y) =20 (=P + {I¥1Q(=y) = 2Q'(=y)}Reg(0) + %llg(o)lz-

1
Emr = —
2|y|

Now, we have
o
Re[ Q(x — y)Ph(x)dx = O(e PR ||| ).
0
Indeed, by (3.4) and y > 2R, we

o o
Re/’TyQphdx = |Re X;’Y}Q”hdx+Re/X1‘é’TyQphdx
0 0

=|Re [ xz7,0Q"hdx

[
[
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L
2

R
< / T,0%dx | |hll,2
0
Se P PR |n) .
Se PRnl g

Therefore, we obtain

e ¢]

—4p/xR(x>Q<x — )P dx =y ) + 18131 +2Q () + 2Err + O(e PR [ ).
0

By the Young inequality, (4.1), and (4.2), we have
0<Err e, () + gl
We also have | [;° xg(x) Q(x — y)PTdx| > C. Thus, by Corollary 4.5, we get
0] S 11ty @] + 118150 + €, () + 0(e™ PTDY) 4 0 (e PR ||| ).
The desired estimate is obtained. O
We next give an estimate using the action. By the mass-energy condition, we have
0=35,(m) —25(0)
d

=5u) =S 1=y)+SQ(-|-y)—25(0) + 7|u(0)|2.

We set

e 1 2 1 p+l1
S(0,00)(f) = EHf ”LZ(O,OO) + E”f”Lz(0,00) - m”f“l/’*'l(o,oo)

Lemma 4.10. We have
Sw) —S(Q( | =) =—-20'(—=y)Re g(0) + B(g, &) +o(llgl72),
where B = By is defined in Section 2.6.

Proof. By the symmetry and u = ¢!/ (Q(| - | — y) + g), we have

Sw) =S 1=yN)=SQ(-|=y)+g—SQU-1=y)
=2{50,00)(QC = ¥) + &) — 50,00)(Q(- — ¥)}.

By Taylor expansion, we get
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S0,00)(QC¢ —¥) + &) — S0,00)(Q(- — ¥))
1
= <S20,oo)(Q(' -y, 8+ E(Séf),oo)(Q( -y)g. 8+ 0(||g||iz)~
Now, by (1.1), we have
(S(0.00)(Q(- — ), ) =Re / (—0"+ 0 — 0P)(x — y)g(x)dx —Re{Q'(—y)g(0)}
0

=—0'(—y)Reg(0).

Moreover, for ¢ = @1 +igy € HY oy (R), ¥ = ¥ + iV € HL ., (R), we also have

(80,00 (QC = )@, ¥) Reffp ()Y'(x) + o) ¥ (x)dx
0

0(x — P pp1 () Y1 (x) + @2 (X) P2 (x))dx

0\

=B(p, V).

This gives the statement. O

Lemma 4.11. We have
0
1 2 2 2 p+1
S(Q(I-I—y))—ZS(Q)=—/IQ(x—y)I +10(x —y)| dx+m/IQ(x—y)l dx.

Proof. By the symmetry, we have

S 1=¥) —=28(Q) =2{S0,00)(Q(- — ¥)) — S(Q)}.

For a function f and o > 0, we have

00 0
/If(x—y)l‘”dx=llf||%a— / f (x — y)|¥dx.
0 —00

Thus we get

$0,00(Q( = ¥) = S(Q)

0
1
:—5f|Q’(x—y>|2+|Q<x y>|2dx+—/|Q(x Pz,
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This gives us the statement. O
Combining Lemmas 4.10 and 4.11, we get the following.

Corollary 4.12. We have

S (u)—ZS(Q)>Q(y)+— / 1Q(x — )P dx + B(g, 8) +o(lgl72).

Proof. By Lemmas 4.10 and 4.11, we have

Sy ) —28(Q) =Sw) = SQ(|- [ =y) +SQ(-[ = y) =28(Q) + %llu(o)l2

—/ |Q/<x—y>|2+|Q<x—y)|2dx—2Q’<—y>Reg(0)+m| 0)?

+— / 10 — WIPHdx + B(g. ) +o(lg]12,)

—Q(y)+151‘r+—/|Q()C NIPTdx + B(g, &) +o(lgl7.).

where Err is defined in the proof of Lemma 4.9. As shown in that proof, Err > 0 by the Young
inequality. Thus, the desired estimate is obtained. O

Lemma 4.13. There exist ¢, C > 0 such that we have

B(g.8) > cllhll3, — Clpl*
for sufficiently large R > 0.
Proof. Since we have g =pxrQ(]-|—y) + h, we get

B(2,8) =IpPBURQ(- | =), xr Q- | = ) +20B(xr Q(| - | = y), h) + B(h, h).

We have

IoPIBXRQ( -1 =), xr Q(I - | = )| < Clpl,

where C is independent of R. By the Young inequality, we also have
20B(RQ( - | =), W) < Clpllkll g1 < ellhly + Celol?,
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where ¢ > 0 is a sufficiently small number.
We will estimate B(h, h).

B(h,h) = B(xrh + xgh, xrh + xzh)
= B(xrh, xrh) + 2B(xrh, xgh) + B(xgxh, xzxh)

First, we consider B(xgh, xgh). By a direct calculation, we have

B(xrh, xrh) =Re f IOe ) ()% + x5 (0% h(x)*dx
R

- / O(x — )P (pxt ()2 h1(0)* + x5 (0)*ha(x)?)dx
R

= O(T-y(xzg h).-

Since we have ®(T_y(xzh) > cllxrhl?, — CR™"||h||7,, by the coercivity Lemma 2.12, we
have

C
B(xrh, xxh) = cllxrhlz = Sl

Next we consider B(xgh, xph). Now we have

o0 o0
/ (trh) () OXGRY (Vdx = / YR COXG () () Pdx + OR™ A2,
0 0
and
[e%e) R
f”ryQ”—l(pxRx;mlF + xrXglhaH)dx| < C /TyQ”—ldx 172013
0 0
< Ce(p—l)Re—(p—l)y”h”il]
<Ce PR3,
Thus we get

B(xrh, xzgh) = Re/(XRh)’(X)(X,‘;h)’(x) + xr(X)h(x) x5 (x)h(x)dx
0

—~ f O — )P M PRGN 4 xr () x5 1h2(x)|P)dx
0
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o0
= / XRO) X R O)1 + [h@)[Ddx + OR™A3,) + 0™ P~ DR a2 )
0

1 c 1 2 2 -1 2
=§/XR(x)XR(X)(Ih " +1h(0)1)dx + O(R|Ihll71)

R
+ 0@ PR n|3 )

In a similar way, we have

1
B(xigh. xih) = 5 f Xe () X&) (R () 4 1h(x)[P)dx

R
+OR A%, + 0™ P VR|R)% ).

Therefore, we obtain
C
B(h, h) = cllxrhll G — = Ikl
- / XR) X )R () * + 17 (x)[P)dx
R

1
+5 / Xe () xg (R () + 1h(x)[P)dx

R
+ OR™ R0 + 0™ P VR k)30,

Here, it holds that

1 C
clxrhl?, + /{m,a + 5 OMNUR' P+ 1hP)dx = ellhliz = IRl
R

This implies

C _ —(p—
B(h,h) = cllhll = Z IR 130 + OR™ ) + 0™ P~V X Al ) (4.3)

C
> ki3 — Al

By combining (3.2)—(4.3), we get

C
B(g.8) = cllhlly = — kI3 — Clol® = ellhllg, = Celpl.
Taking ¢ > 0 sufficiently small and R > O sufficiently large, we obtain
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B(g.¢) = cllhllz; —Clol*.
This completes the proof. O
Lemma 4.14. We have

ey () + 1Al < 1ol
Proof. By Corollaries 4.5 and 4.12 and Lemmas 4.6 and 4.13, we get the desired estimate. O
Corollary 4.15. It holds that
lol < Ty W)l

In particular, we have

ey () + 130 S Iy @)
Proof. By Lemmas 4.7, 4.9, and 4.14, we have

1] S ity ] + l1gl50 + e, 0) + e Rkl S liy )]+ 101> + e Kol
This shows that
lol < 1y (W)
by taking R large and |p| small. The second estimate follows from this and Lemma 4.14. O
4.3. Estimates for time derivatives of modulation parameters
We have estimates for the time derivatives of the modulation parameters as follows.
Lemma 4.16. We have
191+ 161 + 161 < liy @)].
Proof. By a direct calculation, we have
ih+h" +ysh
=60(- | =) +0pxr Q| =y + @+ Dh +7,80(1 - | =)
HOU-[=IPed- 1=» =13 1= +elP Q- | = +8)
—ipxRQ(-1=y)+iy(1+pxr)Q'(I- 1= ¥)
—pxgQ(-1=) —ZPli—lxﬁeQ'(I A=+ pxrQ(- 1= =ys0( |-,
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where y, := —20Q'(—y)/Q(—y) and we used the fact that Q(| - | — y) satisfies the equation

—0U- =Y + 02U 1= =100 | = +12(- =N |- .
We have delta interactions in the equation of . However, we take couplings with the equation

and functions including X;{. Thus they do not appear in the following calculations. By testing
the equation of 2 with X;{i Q(- — y), the orthogonality condition implies that

101 S ol + Wl g+ gl g + 1Al 13] S Ly @1+ TN 11, 4.4)

where we also use Lemma 4.7 and Corollary 4.15. Testing the equation with i X; Q(—y)? and
using the orthogonality, we get

161 S 101+ DIkl g + gl g + (L [pDe™ 15|+ [F11A] 41
Sy @+ R+ 1hl 1. 4.5)

Testing the equation with i X;{ Q’(- — y) and using the orthogonality, we obtain
IS 1oL+ IAllg + gl + e 11+ 1l 131 S iy @]+ e R 6]+ hll 1131 (4.6)
These estimates (4.4)—(4.6) imply that
161+ 131+ 161 S iy @]+ @ + 1Al )91+ e
By taking R large and ||A]| ;1 small, we get
161+ 131+ 161 S Ity @)].
The proof is complete. O
5. Proof of scattering

The proof is very similar to [20], so we only give an outline here.
Suppose that statement (1) of Theorem 2.5 does not hold. Then there exists a global solution
ueCR: HL. (R)) with

Ey(u) =2E(Q), M(u) =2M(Q), Ky (u(1)) >0,
and
lullsw) = 00.
We may assume that [|u|| Lo 11 (0,00)xR) = 00. We call this solution a (forward) critical element.

787



S. Gustafson and T. Inui Journal of Differential Equations 412 (2024) 758-796

Lemma 5.1 (Compactness of a critical element). Let u € C(R : HelVen (R)) be a solution with

Ey(u) =2E(Q), M(u)=2M(Q), K, (u()) >0,

and

llell 50,00) = 00.

Then there exists a function x : [0, 00) — [0, 00) such that for any € > 0 there exists R = R(¢) >
0 such that

|/ (¢, %)% + |u(t, x)|Pdx < e
{lx—=x(@®)|>R}N{|x+x(t)|> R}
forany t € [0, 00).
Proof. The proof is based on linear profile decomposition and long time perturbation. See [4,28]

for these. The statement can be shown in a similar way to [20, Proposition 35]. We omit the
proof. 0O

The compactness also holds for

X {x(t) (t €10,00)\ Is,). )

y(t) (€ lyy).
See [20, Lemma 38]. That is, for any ¢ > 0 there exists R = R(¢) > 0 such that
lu' (2, %)% + |u(t, x)|?dx <&
{lx—X (1)|> R}N{|x+X (1)|>R}
for all ¢ € [0, 00).

Lemma 5.2. Let {t,,} be an arbitrary time sequence in [0, 00). We have the following.

(1) If | X(t,)| is unbounded, then by taking a subsequence of {t,}, still denoted by {t,}, there is
v € H'(R) such that u(ty,) — (Y (- — X (t,)) + ¥ (— - —X(1,))) = 0 in H'(R).

(2) If | X (ty)| is bounded, then by taking a subsequence of {t,}, still denoted by {t,}, there is
v € HY(R) such that u(t,) — ¥ in H'(R).

Proof. See Lemma 39in [20]. O
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5.1. Elimination of the critical element
5.1.1. X(t) is bounded
Lemma 5.3. Let u € C(R : H),,,(R)) be a solution with
Ey(u) =2E(Q), M(u)=2M(Q), K, (u()) >0.

Assume that there exists a function x : [0, 00) — [0, 00) such that for any € > 0 there exists
R = R(¢) > 0 such that

|/ (¢, )% + Ju(t, x)|Pdx < e
{lx=X(®|>R}IN{|lx+X (1)|>R}
forany t € [0, 00), where X is defined in (5.1). Then X is bounded.
To show this, we prepare the following lemmas.

Lemma 5.4. There exists Cy > 0 such that
9]

/My(t)dtfcs(H- sup [ X () (y (t1) + 1y (12))

teln,n]
n

forany t) > t; > 0.
Proof. We use Lemma 2.10 in this proof. See [20, Lemma 41] O

Lemma 5.5. Let {t,,} be a sequence such that t, — oo as n — oo. Then X (t,) — o0 if and only
ifﬂy (t,) — 0.

Proof. See [20, Lemma 42]. Here, we use Corollary 4.15. O
Lemma 5.6. There exists C > 0 such that

1X() - X)) =C
forallt,s > 0 satisfying |t —s| < 1.
Proof. See [20, Lemma 43]. O

Lemma 5.7. There exists a constant C > 0 such that

n

X (1) — X (1) SC/My(t)dt

n

forallt, t, > 0 satisfying t1 + 1 < to.
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Proof. We use the estimate of y in Lemma 4.16 to show this statement. See [20, Lemma 44]. O
Combining these lemmas, we get Lemma 5.3. See the proof of Proposition 40 in [20].

5.1.2. Contradiction if X (t) is bounded
Since X is bounded, it holds that for any ¢ > 0 there exists R = R(¢g) > 0 such that

|/ (£, )% + u(t, x)|?dx < &
|x|>R
for all r € [0, 00).
Lemma 5.8. We have

T
1
lim — t)dt =0.
Timoo T /My()
0

Proof. See [20, Lemma 45]. O
Corollary 5.9. There exists a time sequence {t,} such that lim,_ oo 1y, (t,) = 0.

Proof. See [20, Corollary 46]. O

Let {#,} be a time sequence such that lim,_, o i) (t;) = 0. Then X (#,) must diverge by
Lemma 5.5. This is a contradiction to the boundedness of X. The conclusion is Theorem 2.5.

6. Proof of blow-up
The proof of Statement (2) of Theorem 2.5 is similar to [20], and so we omit details.

Lemma 6.1. Let ¢ € CL . (R) be a real-valued function with ¢(0) =0 and f Helven(R). We

even

assume that they satisfy [ |¢'|?| f|?dx < 0o, M(f) =2M(Q), and E,(f) = 2E(Q). Then it
holds that

Im / ¢ (08 f () f()dx| Sy (f)? / @' ()21 () dx.
R R
Proof. This can be shown in a similar way to [20, Lemma 47] by using the Gagliardo—Nirenberg
inequality, Lemma 2.4. See also [18, Lemma 4.13] We omit the proof. O

Corollary 6.2. Let ug € H).,(R) satisfy K, (uo) <0, xug € L>(R), M(up) = 2M(Q), and
E, (uo) =2E(Q). Then we have
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Im/xu’(t,x)u(z,x)dx < |Ky(u(t))|2/|x|2|u(t,x)|2dx.
R R

Proof. This follows from Lemma 6.1 with ¢(x) = x2 and my () S |IK, (u(t))|, which is shown
in Proposition 2.9. O

Lemma 6.3. Let u satisfy the conditions in Theorem 2.5 (2). Assume that u is global in positive
time. Then it holds that

Im/xu’(t,x)u(t,x)dx >0
R

for any t. Furthermore, there exists ¢ > 0 such that

00
/ ity ()lds S e
t

forallt > 0.
Proof. See [20, Proposition 49]. O
Corollary 6.4. Under the same assumption in Theorem 2.5 (2), u blows up in negative time.
Proof. See [20, Corollary 50]. O

As a consequence, we get Theorem 2.5 (see the proof of Proposition 14 (2) in [20]). Here
we remark that we use the estimates of y and p in Lemma 4.16, which imply y converges to
a constant by combining with Lemma 6.3, and thus the convergence contradicts the estimate of
ey (v) in Corollary 4.15.
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Appendix A. Sign condition

We show the following in this appendix.
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Sc 1—sc
Proposition A.1. If f € even(R) satisfies E (f)M(f) e < 2é EQYM(Q) s« and M(f) >
2M(Q,2)4,), then the following are eqmvalent

(1) Ky(f)>0.
) V3ol QNG > DI NI,

Lemma A.2.If f € HL  (R) satisfies E (f)M(f) RS < 2% E(Q)M(Q) %" and M(f) >
2M(Qyz/4’0), then there exists w € (0, )/2/4] such that M(f) = 2M(Qw,0) and E,(f) <
2E(Qw,0)-

Proof. By the monotonicity of 2M (Q,,.0) for w, there exists a unique w € (0, y2 /4] such that
M(f)=2M(Qw,0). Then the mass-energy condition implies E, (f) <2E(Qy,0). O

Proof of Proposition A.1. By Lemma A.2, we have w € (0, y2/4] such that M (f) = 2M(Qy.0)
and E, (f) < 2E(Qy.0). First we show ~2[[ Q11,5 1QI1%5, > I3 I FI%, if Ky (f) > 0.
V4

Then, by Proposition 2.15 in [28] and Lemma 2.2, we see that I, , (f) > 0. By the similar
calculation to Lemma 2.6, we get

<oy (f) = oy (f) =200, ol> - ||f||";,yl

since we have M (f) =2M (Qu,0), E,(f) <2E(Qw,0), and 1, 0(Qw,0) =0. This and M(f) =
2M(Q.0) gives us that

17121y < V21 Q,0ll2 " 1 w0l = V21012 12,

by the scaling structure of Q,, . Next, we prove that \/—||Q||l Se ||Q||S‘1 > ||f||1 Se ||f||jf['l if

K, (f) <0. Then we see that I, ,(f) < 0 by Proposition 2.15 in [28] and Lemma 2.2. Byythe
Gagliardo—Nirenberg type inequality, Lemma 2.4, we get

= Loy (D21 =@ CL0 A1

Thus we have

p—1

;1 ot =t [2(p+1) K
A1, =2 C, ) =2 {p—lsw,o(Qw,o)}
a)y —
and thus
2p+1) 2p+1)
113, =21 =L, 00000 | =20 22, (0).
.y p—l p— 1

Substituting w = (M(Q)/M (f))'/*, which comes from M(f) = M(Q,.0) = @~ **M(Q) into
this, we get
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Ey

Ey(Qu.y)

2B, )

2E(Q4.0) T

SorB ......................... wﬁo

0 M(Qw,y) ZM(Qy2/4,0) 2M(Q4,0) M

Fig. 1. The figure of the global dynamics result on (M, E}, )-coordinate.

l—s¢

. (M(Q)\* M(Q)\ % 2(p+1)
IIfIIHy.+<W) M(f)>2(M(f)) ~=510(0).

By a direct calculation and the Pohozaev identities for Q, we obtain

1—s¢

= > 2M(Q)

1—s¢
s

||f||§,y1M<f) < 19117,

PO . 1— c ¢ 1— c ¢ 1— c c
This implies v2[1 Q11,1 Q1% < I 1" 115, - At last, we note that v/2][ Q11,5 ™ 1011, =
v

Wall ILES" Il f ||j3 , does not occur under the assumption. This follows from the above argument and
Y
the fact that /1, ,, (f) = 0 does not occur. O

Remark A.1. By the similar argument to the above, we can show that K, (f) > 0 is equivalent
1—s¢ c 1—s¢ e 3
to ”Qw,y”Lzs 1Qw.y II;-,I > IIfIILZS ”f”sH] under the assumptions Sy, (f) <7y, and M(f) =
Y Y

M(Qew,y) for some w > y2 /4. However, it is difficult to remove w from the condition unlike the
low frequency case. In this sense, K, (f) is more useful.

Appendix B. Concluding remark

We summarize known global dynamics results for ({NLS) in Fig. 1. The dashed curve is
I=sc L=sc

1—s¢ 1—s¢ 1—s¢ -
E,M s = 2+ E(Q)M(Q) s and the dotted curve is E, M 5« = E(Q)M(Q) . The
explicit formula of the black curve is not known. However, it is connected at M =2M (Q,24 o)
with the dashed line, below the dashed line and above the dotted line on the mass interval
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o, 2M(Qyz/4’0)), and approaches to the dotted line as M — 0." We remark that E, =—oM +
S0.0(Qw.0) is the tangent line of the dotted curve, whose tangent point is (M (Qw.0), E(Qw.0)),
and E, = —wM + Sy, (Qw,y) is the tangent line of the connected curve with the black curve
and the dashed curve at M = 2M(Q,24 ), whose tangent point is (M(Qw,y), E(Qw,y)) if
w > y?/4and 2M (Qy.0), 2E(Qw.0)) if 0 < @ < y2/4. Moreover, E;, = —oM + 254,.0(Qw.0)
is the tangent line of the dashed curve, whose tangent point is (2M (Qy.0). 2E(Qw.0)). These
curves are envelopes of their tangent lines. See [18, Section A] for the formula of the curves.

In the general case, the scattering and blow-up dichotomy result (S or B) holds below and
on the dotted curve (see [28,3,29]). Above the dotted curve, we have one-solitons, whose center
moves away from the origin and which are non-scattering global solutions (see [22]). This means
that the dotted curve is the threshold for the dichotomy result in the general setting.

Under the odd assumption, we do not have influence from the Dirac delta potential at the
origin since the value of odd functions at the origin is zero. In this case, the dashed curve is the
threshold of the dichotomy result. That is, the scattering and blow-up dichotomy result holds
below and on the dashed curve (see [30] and [20]). This is optimal in the sense that we have
two-solitons above the dashed curve.

Under the even assumption, the connected curve with the black curve and the dashed curve at
M =2M (Q,2/40) are a threshold of the dichotomy result. That is, the dichotomy result is valid
below the curve (see [28]). On the black curve, there is no dichotomy result since the ground
state O, , exists on the black curve. We also have two solutions (up to symmetries) converging
exponentially to the ground state (see [19] for detail). On the other hand, we have the dichotomy
result on the dashed curve on the mass interval [2M (Qyz /4,0), 00). We note that the endpoint
M =2M(Q,2,4) 1s included. This is shown by the paper. Above the dashed curve, we have
two-solitons, which are non-scattering global solutions (see [22]). We also have a logarithmic
two-solitons on the dashed curve for smaller mass M (see [19]).
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