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Introduction

The canonical map of a nonsingular variety X of dimension n, X ?ﬁ‘» Pps—1,
is the rational map given by = — (s1(2),- - -, sp, (x)) where (s;)i=1,... p, is a basis of
H°(X,0x(Kx)) and where K, the so called canonical divisor, is a divisor such
that Ox (K x) is the sheaf of holomorphic n-forms. Let ¢k, (X) = X be the image.
If we assume dim ¥ = n then there is a natural number d = deg ¢, associated to
Kx.

If n =1 then d can only be 1 or 2 and d = 1 is the general case. The special
case d = 2 occurs, and, by this feature, admits a very explicit description: in fact
d = 2 if and only if X is a hyperelliptic curve.

If n = 2 Castelnuovo proved that if K% < 3p, —7 then d = 2 and T is a
ruled surface, while if K§( =3p, —7thend = 1ord =2 and ¥ is a ruled
surface. He also classified surfaces with K% = 3p, — 7 and d = 1, (see [1] for a
modern reference). Since then the theory of the canonical map of surfaces has been
extensively studied by several authors; here we can quote [20], [18], [9], [3], [21],
[15]. However, the case d = 3 is not yet well understood. The initial idea, due to
Castelnuovo, to study the case d = 3 was to consider a fibration of X on a smooth
curve B, f : X — B, such that the canonical linear system | Kx | induces a g3
on the fibers of f. In fact, following this idea, Pompilj proved that if d = 3 and
K?% = 3p, — 6 then ¢ = dimc H}(X,0x(Kx)) =0 and (py, K%) = (3,3),(4,6) or
(5,9). He also classified these surfaces completely ([18]). In the seventies Horikawa
rediscovered these surfaces except for the case p, = 5 ([12], [13]). In [14] Konno
gives a detailed classification of surfaces with K% = 3p, — 6. In particular he
considers the case d = 3 and p, = 5. We also know that if d = 3 and ¢ > O then
K% > 3py, — 4 [7, Proposition 5.1]. Moreover by [21, Theorem 2] we know that
py < 9if K? = 3p, — 5 and d = 3. Thus the problem of classifying surfaces with
K% = 3p, — 5 and d = 3 arises very naturally. In this paper we show that the
line K2 = 3p, — 5 gives rise to two families which we completely described. One
of them (K? = 7, p; = 4, degg|ky| = 3) is of a certain interest for two reasons:
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(i) it was considered by F. Enriques in [8, Cap.VIII, p.280] who claimed its non
existence, (ii) the result of [5, Theorem 5.19], our main theorem and a forthcoming
article by I. Bauer show the non trivial result that the moduli space of surfaces with
K? =17, py =4, ¢ =0 is irreducible and unirational. In fact we can consider the
3-fold P = P(Op1(1) ® Op2(2) ® Op1(4)) and let T be a tautological divisor on
P, 11 a fiber of the natural projection P = P!, Xy, € H°(P,0p(T — 1)), X; €
HO(P,0p(T — 211)), X, € H°(P,Op(T — 41I1)) sections which give a projective
coordinate system on II, (to,t;) a basis of H°(P,Op(II)), y the fibre coordinate of
the line bundle [2T — 6II] on P then we have:

Main Theorem

S is a minimal surface with p; = 4, K% = 7 and deg¢ k| = 3 if and only if there
exists a sublinear system | F' | in | K | which is a rational pencil of non-hyperelliptic
curves of genus 3 with a simple base point P’ and such that the relative canonical
model of the fibration induced on the blowing up S of S in P’ is the complete
intersection in the total space of [2T — 61| of the following two hypersurfaces:

toy = XoX2
ay? + Qy+ Xt + XoP = 0;

where o € H°(P,0p(411)), ajtp=0 # 0, c1 € C\ {0}. Moreover Q €| 2T — 211 |
and Q = C()Xg + a1 Xo X1 + azXlz + oy X1 X2 + a6X22 where cg € C \ {0}, o; €
HO(P,0p(ill)); P €| 3T —4Il |, P = 51X} + B2 X?X2 + B3 X1X2 + Ba X3 where
Bi € HO(P, Op(2in)).

For lack of reference we include the classification of surfaces with p; = 3, K? =
4 and d = 3. Let T be a tautological divisor on P = P(Op1(1)®O0p:(2)®O0p:1(3)),
II a fiber of the natural projection P 5 P!, X, € H(P,0p(T — 1)), X, €
H(P,0p(T —21I)), Xy € H(P,0p(T - 311)), (to,t1) a basis of H°(P,0p(II)),
y the fibre coordinate of the line bundle [2T — 5II] on P then we have:

Theorem 1. S is a minimal surface with p, = 3, K% = 4 and deg¢|ks| = 3
if and only if there exists a sublinear system | F | in | Kgs | which is a rational
pencil of non-hyperelliptic curves of genus 3 with a simple base point P’ and such
that the relative canonical model of the fibration induced on the blowing up S’ of
S in P’ is the complete intersection in the total space of [2T — 5I1] of the following
two hypersurfaces:

toy = XoX2
ay? + Quy+ B Xt + chon + XoP = 0;

where o € H*(P,Op(311)), oyge=0 # 0, 51 € H*(P,Op(11)) and ¢; € C. Moreover
Q Gl 2T —2I1 I and Q = c0X§+a1X0X1 +a2X12+a3X1X2+a4X22 with Cco € C\{O},
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a; € HO(P, OP(ZH)), P GI 3T —4I1 I, P= ,BQX?+,B3X12X2 +ﬂ4X1X22+ﬂ5X§ with
B; € HO(P,0p(iIl)).

These surfaces are probably known (see added in proof[13, §2 p.110]). However
we can classify them by the same technics used in the case p, = 4.

I would like to thank prof. Fabrizio Catanese for his constant interest in this
work and the referee for his enlightening suggestions.

CONVENTIONS AND GENERAL REMARKS

Let R R’ be divisors on a nonsingular variety X. Then [R] is the line bundle
associated to R, Ox(R) the sheaf of sections of [R], h*(X, R) is the dimension of
the i-th cohomological space;

R = R denotes rational equivalence of divisors,

R ~ R’ denotes numerical equivalence of divisors,

R’ < R denotes that R’ is a subdivisor of R,

| R| is the projective space of divisors R = R,

dir| : X— — PP°(X:B)=1 i5 the rational map associated to | R |.

If Kx is a canonical divisor 0 — Ox(Kx) — Ox(Kx + R) — Or(Kgr) — 0 is
called adjunction sequence for R; if dimX = 2 then 2p, — 2 = R? + RKx is called
adjunction formula, where p, = 1 — x(OR) is the arithmetical genus of R.

If n € Z is positive we put F,, = P(Op1 & Op1(n)), A and I' are respectively
a section with A2 = n and a fiber of the natural projection F, — P1; F,,_,; C P"
is the cone on the normal rational curve of degree n — 1 in P"~ 1,

We recall that if £ is a locally free sheaf of rank r on X, P(£) = X is
the associated projective bundle and T is the tautological divisor then Kp() =
Ope)(—=rT + m*(det(£) + Kx)) and Pic(P(£)) = 7*(Pic(X)) & TZ.

If S is a non singular projective surface over C, then p, = h%(S, Kg) is the
geometric genus and g = h!(S, Ks) is the irregularity. If f : S — B is a fibration on
a smooth curve B then Kgp = Ks—f*(Kp) and A(f) = degf«(Ks|p). The relative
canonical algebra is R(S/B) = @,,5o Rn Where R, = fu(K§/y), ProjpR(S/B)
is the relative canonical model and the image of S in P(f.(Kg/p)) is the relative
canonical image.

1. K2=3p;-5,d=3 = p;,=3o0rp; =4

We know by [21, Theorem 2] that p; < 9 where K 2 = pg — 5 and d = 3; more
precisely we can show:

Proposition 1.1. If'S is a minimal surface with K* = 3p, —5 and d = 3 then
q(S) =0, and p, = 3 or p; = 4. Moreover if p, = 4 then the canonical image
F, C P38 is the cone on the non singular conic of P2.
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Proof. By [7, Proposition 5.1] we have ¢(S) = 0.
Let M and Z be respectively the mobile part and the fixed part of | Kg |, in
particular Kg = M + Z and ¢k, = ¢)um)- Since ¥ C Prs—1 is an nondegenerate
irreducible 2-dimensional variety and deg(¢) = 3 then M? > 3degZ > 3(py — 2).
If Z#0, by [4, lemma 1], MZ > 2 and by

3pg—5=K*=M>*+MZ+KZ>3(p;—2)+2+KZ

we obtain KZ < —1: a contradiction since S is minimal of general type. Let
S 2 S be a minimal composition of quadratic transformations among those with
the property that the variable part | L | of | o*K | is free from base points. Since
K =M,M?>L?and 3p,—5 = K2 > L? = 3deg¥ > 3(p,—2) we get L? = 3(py,—2)
which implies: deg¥ = p, — 2, | Kg | has an unique base point P and o is the
blowing up of P. Now by Del Pezzo’s theorem, for a modern reference see [17],
these ¥ are well known:

Del Pezzo’s Theorem. If ¥ C P™ is a nondegenerate surface of degree n — 1
then X is one of the following surfaces:
i) P?n=2
ii)  The Veronese surface in P5, n =5,
iii) F, immersed in P™ by | A + 2=3=4T | with n —3 —d >0,
iv) The image Fi,_; C P" of F,_; by | A|.

We put n = p, — 1, and we consider the four cases separately.

i)  This case is mentioned in [13, §2 pg.109-110]. See also the last section of
this paper.

To deal with the remaining cases we will use that if E = 0~!(P) is the excep-
tional curve in S then LE = 1.

ii) If = (P?,0(2)) there exists C such that L = 2C: a contradiction.

iii) If ¥ is Fy immersed by | Ao+ 2=3=4T" | there exist two divisors C and F on
S such that L = C + %F‘ Moreover, since deg¢| = 3, F is irreducible and by
adjunction formula we have the following contradiction: 2g(F)—2 = F(Kz+F) =
FKg=F(L+2F)=3+2FE.

iv) In this case X is the cone on the rational normal curve of degree n — 1.
By [12, Lemmal] we have L = (n — 1)F + G where | F | is a rational pencil, the
generic F is irreducible and G is the divisor associated to the ideal sheaf generated
by the pull-back of the ideal of the vertex of the cone. In particular LG =0, LF = 3
and FG > 0. Now by adjunction we have 2p,(F)—2 = 3+2EF + F?, then F2 > 1
and F? is odd. Since 3 = LF = (n— 1)F%2 + FG > n — 1 there are only two
possibilities: ) p, =5, F? =1 and FG=0or lI) p, =4, F? =1 and FG = 1.
The case 1) is impossible. In fact LG = FG = 0 implies G = 0, thus, by Hodge
index theorem, G ~ 0 and then we get 1 = LE = 3FE. O
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We now collect some facts which easily follow by the proof of 1.1.

Lemma 1.2. If S is a minimal surface with K* =7, p; = 4 and degd|x,| = 3
then q(S) =0, | Kg | is without fixed part and it has an unique base point P. If
S 2 S is the blowing up of P, E = o~ '(P) and L is the mobile part of | K3 | then
L =2F + G where:

i) | F| is a rational pencil of curves of genus 3 with a simple base point Q,

ji) G is an effective divisor with EG = 1, po(G) = 1, EX G and GK F for the
generic F' €| F |. Moreover the following identities are true: FG = 1, FE = 0,
G? = —2. In particular 0(Q) = P’ # P.

2. Surfaces with K> =7,p, =4 andd =3

In this section we will prove the main theorem (see the Introduction). Firstly
a remark on the form of the equation; we call elementary a monomial of the form
XiX]XE. Looking at Q and P in the statement of the theorem we see that in
Q the elementary monomial XZXZ does not appear and X, does not occur in P,
nevertheless we will say that Q and P are generic if the coefficients «; and (; are
generic in the usual sense and consequently we will say that the surface is generic
if @ and P are generic.

We briefly outline the proof. By 1.2 S has a rational pencil of curves of genus
3 with a transversal point P'. We blow-up P,o¢ :S — S and we get a relatively
minimal fibration f : §'—P! with K§’|P1 = 3A(f) + 1. By [16] we know that
f has a special fiber F(;. We will describe the structure of F(; which gives useful
informations on | Kg |. Then we will be able to write down the equation of the
relative canonical model and of the relative canonical image. In particular we will
see that in the generic case S is isomorphic to its relative canonical model.

Proof of the Theorem. The proof is divided into two parts. In the first one we
will construct the relative canonical model of S* which is a complete intersection
of two hypersurfaces. In the second one we will show that the minimal model of
the complete intersection is a surface S with ¢(S) =0, p;, =4, K2 =7 and d = 3.

First part.
Let S be a surface with py, =4, K 2 =7,¢q=0and d = 3. We use the notations
of 1.2.

Lemma 2.1. i) Q € supp(G)
i) 3Fp €| F | such that G < Fy.

Proof. i) If supp(G) is irreducible then, by 1.2 jj), G is also reduced and
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FG = 1. If Q ¢ supp(G) then the rational map S — P! induced by | F | gives
an isomorphism G — P1: a contradiction since p,(G) = 1. We suppose now
that supp(G) is reducible and Q ¢ supp(G). We decompose G = Go + G; where
FGy =1, Gy # 0 and FG; = 0; in particular GoK F. Since LGy = 0 by Hodge
index theorem we have G2 < 0 and then by adjunction we have 0 < p,(Go) < 1.
As above we exclude that p,(Go) = 1. If p,(Go) = 0 by LGy = LG; = 0 we have
the following relations:

0 { GEZ+G1Go=-2
GoG1+G? =0.

If EGo = 0 then G2 = —2 and G? = GGy = 0. In particular by Hodge index
theorem we have G; ~ 0. This is impossible because G1E = 1. If EGy = 1
then EG; = 0, G1Go = 2 and G, is a chain of (—2)-rational curves. Moreover
if G; is decomposable then it is 1-connected. In fact let G, and G3 be two non
zero effective divisors such that G; = G5 + G3 and G2G3 = 0. Since GoG1 = 2
we can also suppose that GoG3z < 1. Now we put My = 0,(2F + Go + G2) and
M; = 0,(Gs). Since Kg = 0, L = 0,(2F + Go + G2 + G3) we have Kg = My + M3
with M M3 < 1 contradicting the 2-connectedness of K.
Claim: There exists Fy €| F' | such that G; < Fp.

In fact since G is 1-connected then by (cf.[2, Corollary 12.3)) H°(G;,0g,) = C
and by duality H'(G;,wg,) = C. In particular since g(S) = 0 by the adjunction
sequence for G; we have H'(S,05(K5 + G1)) = 0. The claim is now an easy
consequence of the cohomology of the following sequence:

0 — O3(=G1) = Og(F — G1) = Op(Q) — 0.

We now put D = Fy — G;. Since Gy F then DGy > 0. Since G1Go = 2 we obtain
the desired absurd: 1 = FGo = (D + G1)Gg > 2.

ii) By 1.2 in the generic F' there is not any component of G. Since FG =1
there exists an unique irreducible reduced component Gg < G such that FGy = 1
and we can decompose G: G = Go+ G; with FG; = 0. In particular by (i) Q € Go
and by 1.2 (j), 3Fp €| F | with Go < Fy. We will show that G < F,. We are
reduced to prove h%(S, O5(F — Q)) = 1. Since Fir = Q, G|r = Gojr = Q then
Op(F — G) = Op, and by uppersemicontinuity (cf.[ 10, Proposition 12.8]) we have
hO(F,Op(F — G)) > 1 VF. By the cohomology of the following sequence

0—-05(—-G) = 0z(F-G)— Op —0
and by Serre’s duality it remains to prove:

Claim: H'(S,05(K5+ G)) =0.
We notice that this is rather obvious if G; = 0. In fact, in this case, Gg = G then
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G is a reduced irreducible curve and by 1.2 jj) we have p,(G) = 1. Since ¢(S) =0
our claim easily follows by the exact sequence of adjunction for G: 0 — Kz —
Ks+ G — Kg — 0. Suppose that G; # 0.

We can prove as in (i) that G2 < —1; and we can use the two last lines of 1).
Moreover by 1.2 jj) E{ Go, EX G and since EG = 1 we have 0 < EGp < 1. In
particular by adjunction formula we have: p,(Go) < 1. For reader’s convenience
we collect the previous results in the following table:

Kf) G% + 2GOE +2= 2,0a (Go)
G:<-1and 0<EGo <1

We can distinguish the two cases: p,(Go) = 1,0.

If pa(Go) = 1 then, by 1), GZ = —2 and GoE = 1. Thus by 1) we have
G? = GoG; = 0 and from EG = 1 we have G;E = 0. By the 2-connectedness of
Ks we have G; = 0: a contradiction.

If po(Go) = 0 and EGo = 0 we obtain a contradiction as in the analogous
case of (i). If p,(Go) = 0 and EGy = 1, by 1) we have G3 = —4. Then by I)
GoG1 = 2, G? = —2. Since EG; = 0 then supp(G1) is a union of (—2)-rational
curves. Moreover if G; is decomposable then as in (i) it is 1-connected and then
hl(wg,) = 1. From the cohomology of the adjunction sequence for G; we easily
obtain that h'(S,0z(Kz + G1) = 0. Finally, since G is a smooth rational curve,
the cohomology of the sequence

0 05(Ks+Gy) » O5(Kg+ G+ Go) = Og, — 0
proves the claim and the lemma follows. ]
We put 0(Q) = P € 8.

Lemma 2.2. We use the notations of 1.2.

Let 0 : S — S be the blowing up of P\ E' =o' (P') and " (Ks)=L'. In S

the following relations hold:

) or/*o'*(F) = F + E, F'E' = 1 and the rational pencil | F' | induces a
non-hyperelliptic genus-3 fibration f : s — Pl

(i) 0 0.(G)=G +E whereG’ =-2, E' kG, E'G =1 and p,(G') = 1.

(ili)) Kg = 2F +G +4E'. Moreover the restriction map H(S', O (Kg +2F")) —
HO(F',0p (K )) is surjective.

(iv) There exists Fy €| F' | such that F, = G' + H where p,(H) =1, HG' = 2,
H? = -2 and HE' = 0.

Proof. (i) is a straight consequence of 1.2 (j). (ii) is a straight consequence
of 1.2 (jj) and 2.1 (i).
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(iii) The first assertion follows easily from (i), (ii) and 1.2. Since q(S') = 0 by the
adjunction sequence for F' we have KOS, 0y (Kg + F')) =17, k(S ,04 (Kg +
F')) = 0. Thus we have h°(S', 0y (Ky + 2F)) = 10 and the surjectivity of the
restriction map.

(iv) By 2.1(ii) H = ¢ 0,(Fy—G) is an effective divisor and by (i) we have E' & H
and FFH =0. Since 0=F = F (G +H)=G” +HG' + F'H= -2+ HG' then
HG' =2. Nowby FFH =0 we have H2 = —2. Since 1 = FF'E =G E + HE we
have HE' = 0. Then by adjunction and (iii) we obtain p,(H) = 1. O

In the next lemma we construct a basis of H(S', Oy (K 1p1))-

Lemma 23. We use the notations of 2.2. If ( € H°(S ,04(E)), g €
HO(S',04(G")), he HY(S',04 (H)) and if (to,t) is a basis of H°(S',Oy (F
with to = hg then there exist x € H°(S',04 (L)) and n € H°(S',04 (K¢ + G
such that: ’

’
’

)
)
(toxoC, tit1mo, t3t2zol, totzol, tizol, tazC, tot12¢, tax¢, tohm, t1 hn)

is a basis of H°(S',04 (Kg/\p1)) where zo = g¢®. Moreover if Ry = div(x),
Ro = div(n) then E'\F'4 R, for every F'; E',G'£ Ry and E'R, = 0, E'Ry = 0,
G' Ry =0.

Proof. Since P # P’ and L' = 0 K then 3z € H*(S',04 (L)) such that
E'# div(x) = R; and E'R; = 0. In particular by 2.2 (i) we have F'4 R;. Now
we split Fy, in its two component G', H and by 2.2 (iii) we have K¢ + F' — H =
Ky +G =L +E +G.

Claim: h°(S',04 (K¢ +G')) = 5.

In fact by 2.2 (ii) we have L' + E' + G =0 (K5 + 0,(G)) and by 1.2 (jj) o*(Ks +
0+(G)) = K5+ G. Then by the second claim in the proof of 2.1, we have:

5=h0(5,05(K5+G)) = h%(S,05(Ks + 0,(G))) = k(S , 04 (Kg + G)).

Since h%(S', Oy (L')) =4 from the inclusion HO(S', 04 (L)) 25 HO(S', 0 (K¢ +
G')) we see that there exists n € H(S', 04 (Ky +G')) with E',G'4 div(n) = Ro
such that:

(t3gz0(; tot192oC, 13 g0, 9¢T, )
is a basis of H(S', Og/ (K¢ +G')). It also easy to check that E'Ry = 0, G’ Ry = 0.
By the proof of 2.2 (iii) we know that h°(S", Oy (K¢ + F')) = 7 then since to = gh
by the inclusion H(S', 04 (Kg +G')) & HO(S',04 (K4 + F')), we have that

(tazoC, tat1z0C, totizoC, t3x0C, tol, tr{x, hn)
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is a basis of H(S',0g (Kg + F')). Since h°(S',04 (Kg + 2F')) = 10 by the
inclusion HO(S',0g (Ky + F')) 2 HY(S', 04 (Kg + 2F’)) the lemma follows.
O

Corollary 2.4. ¢, K +2F| is a birational morphism.
Proof.  Since Kg'IP‘ = 22 and degf*stlpl = 7 it is a special case of [16,

Theorem 3.2] where it is shown that the relative canonical map is a morphism if
f : S — B is a non-hyperelliptic fibration of genus 3 with K§|B =3A(f)+1. |

We conclude the proof of the first part. By [16, Theorem 3.2] and [19, p.6] we
know that the relative canonical algebra is generated in degrees < 2.

Put & = hn, & = z(, & = g¢* and 7 = ¢t Then {&), &1, €2} induces a
basis of HO(F', Oy (K ) for any F' and 7 € H°(S',04 (2Kg — 2F")). Since
hO(S',KgiﬁPl) = 35 it is easy to see that the 34 products of ¢;, £;* and tSn¢* are a
basis of H(S', K?izlpl ). In particular it easily follows that &g, &1, &2, 77 are generators
of the relative canonical algebra. Furthermore, we have a relation:

to) = oé2-

In H°(S',04 (4K g )), which is 47-dimensional, we can find 41 products of t;, {; s
and 6 elements of the form (quadrics in the &;) 77 modulo the above relation. It is
easy to see that these are independent. Therefore, ¢7% can be expressed as a linear
combination of them, that is, we get another relation:

Ozﬁ2 + Q7+ leil + &P =0.

Obviously we have no further relations. Let y be the fibre coordinate of [27"—6II] on
P. By 2.4 the relative canonical map (X; = §;, ¢ = 0,1, 2) is a birational morphism
and it can be lifted to a holomorphic map into [2T — 6II] by putting y = 7, and the
image is nothing but the relative canonical model:
*) { toy = XoX2

Oéy2 + Qy + ClXil + XQP =0.

By eliminating y we obtain the equation of the relative canonical image Y. It is now
easy to see that Y has a double locus along o = XoX2 = 0 and that o, @, ¢; and
P are as in the statement of the main theorem. Moreover it is an easy computation
(see 2.5) that for generic @ and P the relative canonical model is smooth, that is, it
is isomorphic to S’.
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Second part.
We now prove that the minimal model of the surface given by (x) has K% = 7,
pg = 4 and d = 3. In the proof the following rational curves:
Lo = {z € P | to(z) = Xo(z) = 0}, Ly = {x € P | to(z) = Xa(z) = 0},
L2 = {z € P| X;(z) = X5(z) = 0} and the relative quartic:

Y ={z € P|aX{X]+ QtoXoXs + (a1 X] + Xo P)t] = 0},

will play the central role. In fact S lives in the 3-fold obtained by the blowing up
of P with center LoU Lo and it is the proper transform of Y, while E’ is the proper
transform of L;2. We consider the fiber IIy = {x € P | to(z) = 0} and let Qo be
the singular conic with support on Lo U Lo. It is easy to see that Y is singular on
Qo. We can say more:

REMARK 2.5. Let A C H°(P,Op(4T —611)) be the sublinear system of relative
quartics having Qo as a double conic and Y € A a generic element. If Sing(Y) is
the support of the singular locus of Y then Sing(Y) = Lo U L, and Y has equation
as above.

Proof. We need only to produce an element of A which satisfies the as-
sertion. Now in the equation defining Y we put Q@ = X2 and P = BX3 where
B € H°(P,Op(8I1)) is without multiple roots; an easy computation shows that for
these elements our assertion is true. O

We attain the proof of the second part through the resolution of the singularities
of Y. We need some more notations. We put V = [2T — 6II]. Let H be the
tautological divisor of the 4-fold P(V) = P(Op & Op(2T — 611)), p : P(V)—P
the canonical projection, yo € H°(P(V),O0pv(H)), yoo € H’(P(V),Op(v)(H —
p* (2T — 61I1))). Obviously V' = {yo = 1} and y = yo|{y..=1}- We define P’ to be
the singular 3-fold in | H + p*II | given by the equation:

P’ ={z € P(V) | p*(to)(z)yo(z) — 4" (XoX2)(x)yoo (x) = O}.

We denote 1~ 1(Lo) =det Sg, 1 (L2) =det Ly and let S’ be the proper transform
of Y. It is easy to see that S’ has equation given by (). Let ' : P* — P’ be the
b}owing up of P’ in its singular point, v =gef pps © i, ¥ the exceptional locus of
u, X; the proper transform of E; where ¢« = 0,2. Since the singular point of P’
is not on S" we will not distinguish between S ¢ P’ and ' ¢ P". In particular
S NY = 0. We remark that on S” we have the fibration f = 7 o Vg =TO g

Key Lemma
The following conditions hold.
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a) S is a smooth surface.
b) H'(S',04(Kg))~ HO(P,0p(T—2I1)), q(S') =0, pg(S') = 4 and K%, =6.
c) |Kg|= L' + E' where L' is the mobile part and E' is a (—1)-rational curve.

Proof.

a) By abuse of notation we put p*(z) = = for each variable on P. By 2.5
we know that ' N {to = 1} is smooth. We put ¢t = :—‘11 and, by abuse of notation,
z; = Xj){x,z0} fori#j,i=0,1,2 and j = 0 or j = 2. A simple computation on
Ct,20,21,y and on C; 4, z, , shows that if a, Q and P are generic then the system (x)
gives a nonsingular surface on each affine chart.

b) To show that H%(S',Oy (Kg)) ~ HO(P,Op(T — 2II)) we need the fol-

lowing

Lemma 2.6. If II, is the v-proper transform of Tl, then
(i) O (*(T)) = O (1)
(i) Opy(Ig) = Oy (-2),
(iii)) MynS =0.

Proof. (i) is obvious. Let HZ) be the u-proper transform of Ily. In particular
I, = { € P | yoo(z) = 0}. Then Il; = x'~!(II;) and II, N £ = §. Now (iii) is
obvious and (ii) is a direct consequence of the following relations: u*(l’[)lng =0,
v*(Ilo) = Iy + o + 5 + 2% and Oy (i) = Oy (1) for i = 0,2. O

We consider K. Since Kpr = v*(Kp) + Xo + X2 + 3% and S = (4T —
6II) — 2¥y — 2%, — 4% then, by adjunction Ky = (W*(Kp +Y) — Xp — ¥ —
Y)sg = (T — 1) — Eo — X3 — ¥)|sr. Then by the proof of 2.6 (ii) we have
Kg = (v*(T —2I) + T + X)¢ and by 2.6 (iii) Kg = (v*(T — 2II))¢. In
particular, since the fundamental relation in Pic(P) is T2 = 7IIT, then Kg, =
(v (T - 2I0))2(v*(Y) — 280 — 283 — 4%) = (T — 211)%(4T — 6II) = 6. Moreover

0 — Opr (V*(T — 2I) + Iy — Opn (V*(T — 2II) + 1T, + £) — Ox(E) — 0.
By 2.6 (i), (ii) we have
0 = Opr (V*(T = 210)) = Opr (V*(T = 211) + 1) — O (=1) — 0.
The cohomology of these sequences combined with that of the adjunction sequence
for ' ¢ P” and the previous result, that is Op (Kpr +S') = Opn (v* (T — 2I1) +
I, + %), implies py(S') = 4, ¢(S') = 0 and H°(S', Kgy) ~ H(P,T — 2II).

c¢) We now show that Ky = L' + E with (E')2 = —1. From now on we
consider S’ C P’
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Lemma 2.7. We consider T; = {z € P | X;(z) =0} withi=0,1,2, IoNT; =
L; withj=0,2 and Ly, =T1NT,. Let p: P’ — P be the blowing up with center
Lo U Ly, let S, 2'2, T; be respectively the proper transform of Y, Ly and T,. We
put T, = p*(Th), 2’2|S, =G, Tl’,s’ = H; and Télsl = H, and let F,, F, be two

different fibers of my o g = f: S" — P!. Then
(Hy, 2Fy+ Hy+G ,Fy+ F, + Hy+ G ,2F, + Hy + G')

represents a basis of H 0(S',K s’ ). Moreover let E' be the p-proper transform of
Lo, then E' < Hy, E' < Hy and the Sfollowing identities hold:

(i) Hy=4E

(i) G is, generically, a smooth elliptic curve and G E = 1.

(ii) Hy = E + R, where F' & Ry, YF €| Fy |, E'X R, and E'R; = 0. Moreover
Ry, and G’ do not have any common component and RiG = 1.

Proof. By b) of the Key-lemma the first part is obvious.
(i) It is easy to see that u~'(Lis) = E' + f} where f} = {x € 55 | X; = 0}.
We note that f} is not contained in S'. Moreover since

E ={zeP(V)|y =X = X, =0}

and T, = {z € P(V) | yo = X = 0} then H, = div(Xf),Sf.

(i) Since G = {z € =, | a(0)y2 + QuoYoo + c1 X2y2 = 0} we easily see that
G’ is smooth and it can be realized as a double cover of L, branched on the four
points given by Q7 — 4a(0)c1 X7 = 0. Then pa(G') = 1. By the proof of (i) we
have G'E’ = 1.

(iii) By definition E < H,. Put Ry = H; — E  and P = - It is easy to
see that p : T1' — T is the blowing-up of the two points Py = {t; = Xo = 0} and
P, = {to = X2 = 0}. On P, p is given by toyo = X2y and in the affine chart
Wigwo = {& € T} | Yoo = t1 = Xo = 1} we have:

Ry N Wiy 4o = {z € Wiy, | co + ago + astdys + Batoys = 0}

Since Wy, 40 NE ={z¢ Wiowo | Yo = 0} we easily see that E'kRyand E'R; =0.
Finally since R; is not contained in ¥, while G’ C ¥ it is obvious that they does
not have common components. Furthermore they have an ordinary intersection in
the point a € Wy, 4, given by to = 0 and yo = co/(0). U

Now we can prove c). By b) of the Key-lemma and 2.7 we have Kg/ = E +R;.
Now by adjunction and 2.7 (iii) we have E” = —1. Morever by 2.7 (iii) there is
not any other fixed component. This completes the proof of the Key lemma. O
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End of the proof of the main theorem.
Let o' : S — S be the contraction of E'. By the Key-lemma we only have to show
that degp x| = 3; but ¢ | is the map induced on S by ¢|T_2n|[y Y — i‘z C Ps3,
which is of degree 3. In fact when restricted to the generic plane quartic it is the
projection from the point of the quartic given by: Xy = X; = 0.

Moduli of surfaces with K2 =7,p, =4 and d =3
We end this section with an easy computation of the number M3 , of moduli of
surfaces with K2 = 7, p, = 4 and d = 3. By [5, Theorem 5.19] we know that regular
surfaces with K2 =7, p, = 4 and | K | free from base points form an irreducible
unirational open set of their moduli space. By our theorem we easily see that the
locus M3, of surfaces with K? =7, p, = 4 and d = 3 (in this case | K | has a base
point) is irreducible and unirational. We can say more:

Corollary 2.8. M3}, = 35.

Proof. We have seen in the proof of the theorem that the family of all surfaces
with K2 = 7, p, = 4 and d = 3 is parametrized by an open set U C P*¢. Let S;, S,
be two minimal surfaces with K2 =7, p; =4, d = 3 and Y3,Y> € U be respectively
their non normal models in P. Since S;, Sz are minimal of general type then Sy,
Sy are isomorphic if and only if Yj, Y, are isomorphic. Since two nonsingular
plane quartics are isomorphic if and only if they differ by an automorphism of P?
and the fibration on Y; induced by the canonical projection of P is not isotrivial
we see that there exists a morphism U — M3 ,, whose fibers are images of the
group of the following transformations of P: X, = aoX(/) + bl(t)X; + b3(t)X',
X = alXi -I—bz(t)X;, X = G.QX; where a; € C* and b; € HO(P,OP(’LH)) for
i = 1,2,3. Since the vector space of all this transformations has dimension 12 we
have M3, = 46 — 11 = 35. O

3. Surfaces with K? =4, p, =3 andd =3

Surfaces with p, = 3, K? = 4 and d = 3 are probably known (see added
in proof [13, §2 p.110]). However for lack of reference we include their complete
classification. The proof of the theorem 1 in the introduction is similar to that of the
main theorem. In particular the desingularization process is a verbatim translation
of the previous one and given the relative canonical image Y we obtain S in the
same way as before. We only show how to reconstruct Y by S. Also in this case the
strategy of the proof is to find a rational pencil of genus-3 non-hyperelliptic curves
with a simple base point.

Lemma 3.1. Let S be a minimal surface with p, = 3, K% = 4 and deg¢ i ;| =
3. Then q(S) =0, | Ks | has not fixed part and it has an unique base point P. Let
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o : S8 — S be the blowing up of P, E = c~'(P) and L the mobile part of | Ks |.
Then the morphism ¢, : : § — P2 is not finite. Moreover there exists © € P? such
that the sublinear system A c H°(S, OS(L)) induced on S by the lines which pass
on z are of the following form: L, = G + F', where G is the fixed part of A and F
is a rational pencil of genus-3 curves with a simple base point Qd& E. In particular
the following numerical identities hold:

(i) LG=0,LF=3FG=2F"=1andG*=—

(i) EF=0EG=1.

Proof.  The first part is shown in 1.1. If we suppose that there exists an
effective divisor G on S such that EG > 0 and ¢12(G) is a point of P? then the
lemma is an easy consequence of the index theorem of Hodge. We now prove,
by contradiction, the existence of such divisor G. Since d = 3 the generic L is
a nonhyperelliptic curve of genus 5 (cf[13, p.109]). Since LE = 1 we can put
Py = LN E. By adjunction wy, = (2L +2E)| = 2L|;, + 2P, then by the sequence
0 — Oz(L) — 05(2L) — Op(wr — 2Py) — 0 we have: h%(S,05(2L)) = 6 and
R'(S,04(2L)) = 1. Since x(Os(3L)) = 10 by the cohomology of 0 — Og(2L) —
O5(3L) — OL(3L) — 0 we have h°(S,05(3L)) = 100r11.

Claim: h°(S,05(3L)) = 10.

By contradiction we suppose that h%(S, O5(3L)) = 11 and h!(S,04(3L)) = 1. By
[6, Theorem 4.1] we know that the bicanonical linear system on S is without base
points: in our case this implies that h°(S, O3z(2L+ E)) = 7. By (cf[11, p.45]) we
know that ¢||(E) is a line in P? then we can put (¢|1)*(¢L|(E)) = E+Co = L.
Since | Kg | is 2-connected then Cj is a 1-connected effective divisor. Moreover since
1=LFE and L? = 3 then CoE = 2 and C§ = 0. By adjunction 3Lc, = (2L + E +
Co)ico = (L+2E+2Co)|c, = wc,+Co,c,- Now by the cohomology of 0 — Og(2L+
E) — 05(3L) — wg, + Co\p, — 0 we have: h'(Co,wg, + Co o ) = 1 that is, by the
duality of Serre, h'(Co, — —Co\,) = 1. By the assumptions that there is not a divisor
G on S such that EG > 0, that é1|(G 7)) is a point of P? and by an easy analysis on
the possible form of Cyy we easily see that Co H = 0 for each irreducible component of
Co. In particular by (cf.[2, Proposition 12.2]) we have Co , = Oc,. Since a(8§)=0
this is a contradiction with the cohomology of the following exact sequence: 0 —
O — 05(Co) = O¢,(Co) — 0. We can finish now the proof of the lemma. By the
claim we have H%(S,05(3L)) = (¢1))*HO(P?,Op2(3)). Let ¢ € HO(S,05(E))
and ¢y € H°(S,05(Cy)). Since h°(S,05(2L)) = 6 and h%(S,05(2L + E)) = 7
there exists ¥ such that H°(S,05(2L + E)) = {(¢||)* H°(P?,0p2(2)) ® %C. Thus
by the inclusion H(S,05(2L + E)) 8 H°(S,05(3L)) we have

a) copp = ) cujkTh T Tk

where i + j +k = 3 and (zo, z1,z2) is a basis of H°(S,Oz(L)). If we now suppose
that there exists no component G < Cp such that = ¢|1|(G) is a point and EG =1
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then there exists H < Cp such that ¢|;(H) = ¢|1|(E) and there exists t € EN H
such that (zo,z;) is a basis of the sublinear system of H°(S, O5(L)) induced on $
by the lines passing on ¢z(z). In particular xq = co¢ and z3(z) # 0. Since h | ¢o
and h(z) = 0 by a) we obtain agps = 0. Since h does not divide z; we can repeat
the above argument and we obtain ag,;; = 0 if 2 + j = 3. Thus by a) we obtain:

b) coty = coC Y oujry wlzh
where i + j + k = 3 that is ( | ¢: a contradiction. O

Lemma 3.2. We use the notation of 3.1. We put G = 0,(G), F = 0,(F).
Then:
(G) F?=1,FG=2,G?=—1 and P € supp(G).
(i) | F|is a genus-3 rational pencil with a simple base point P’ = 7,(Q). Moreover
P #P.
(Gij) G = Go + G1 where FGy = FG, = 1, G, is a chain of (—2)-rational curves
and P’ € supp(Gy).

Proof.  (j) and (jj) follow immediately by (i) and (ii) of 3.1.
(jjj) We first prove that G is reducible. By contradiction we suppose that G is
irreducible. By 3.1 we know that p,(G) = 1; in particular if G is a rational curve
with a node then by 3.1 P is not the node. Let g € H°(S,0s(G)) and (to,t1)
be a basis of H°(S,0s(F)) where P € supp(to). Since p, = 3, 3z, such that
(20,21,%2) is a basis of H°(S,05(Kg)) where zy = tog, 23 = t;g. Since g(S) =
0 then by adjunction sequence for G we obtain h°(S,Os(Ks + G)) = 4. Thus
by the inclusion H(S,0s(Ks)) & HO(S,0s(Ks + G)), we obtain that Ju such
that (tog?,t192, 229, u) is a basis of H°(S,05(Ks + G)). Since P € supp(G) and
(Ks 4+ G)G = 0 then {u = 0} NG = 0. We need to show that P' € G. Since
x(2G) = 1 then H'(S,05(2G)) = 0. Thus by the cohomology of the sequence:
0 — 035(2G) — Og(Ks+G) — Op(Ks+G) — 0 we obtain that | Ks+G | cuts on
F a complete linear series and since degOr(Ks+G) = 5 we see that ¢p = P Ks+Glir
is a birational morphism. On the other hand | K5 + G || p= wr — P + G|, and if
P'¢ G then | Ks + G ||p is without base points. Thus G N F = P} + P and ¢p
contracts the three points P, PL, PZ. In particular ¢ (F) is a plane quintic with
a triple point; that is F is an hyperelliptic curve: a contradiction since wg — P is
a g1 without base points. Since P €Gand FG=2then GNF = P + Pr. We
distinguish two cases.
i) If G is smooth then P = Pr VF. In particular if Fy, F; €| F | then Fy, F, are
tangent in P': a contradiction since 1 = Fi F5.
ii) If G is singular then P’ is the node thus 3F, €| F | such that G < Fy: a
contradiction since 1 = F2 = F(G + (Fp — G) > 2. This shows that G is reducible.

Since G is reducible then | Kg + G | has a fixed part. In fact in the opposite
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case we can show as before that P' € supp(G). Let Gy be an irreducible reduced
component such that P e Gp. By 3.1 we have 0 < K5Go < 1 and by adjunction
—2 < G% < —1. As in the previous case we obtain that (Ks+ G)Gg = 0 thus by the
Euler-Poincaré formula we see that h' (S, O5(G+Gy)) = 0. Sincewr < (Ks+Go)|r
by the cohomology of 0 — Og(G + Go) — Og(Ks + Go) — Op(Kg + Gg) —
0 we obtain that h°(S,O0s(Ks + Go)) = 4 that is G — Gy is in the fixed part.
Moreover G cannot be the fixed part of | Kg + G |. In fact in this case we have
3 =ho(S,0s(Ks)) = h°(S,Os(Ks+G)) = 4. Thus there exists a non trivial proper
component G; < G such that G, is the fixed part of | Ks + G | and G = Gy + G1.
In particular by KsG = 1 we have two possibilities: KsGo =1 and KgG; = 0 or
KsGo =0 and KsG; = 1. Now we consider | Ks+Go|- Obviously | Ks + Go | is
without fixed part, we will show that it is without base point and from this we will
obtain easily the assert. Let go € H°(S, 05(Gy)), g1 € H°(S,035(G;)) and u = gyv.
Then (toggo,t1990, 2290, v) is a basis of H?(S,05(Ks + Gy)). Since FGo > 0 and
G1Go > 1 by KsGy < 1 we obtain G2 < 0. Since (Ks + G¢)Go > 0 we then have
KsGo =1, G3 = —1. In particular KsG; = 0 and G, is a chain of (—2)-rational
curves. Since (Kg + Go)Go = 0 then div(v)Gp = 0, thus supp(div(v)) N Gy = 0.
From this fact it follows easily that if P; is a base point then P, = P; in particular
P € supp(div(v)) thus P € supp(G1): a contradiction since KsG; = 0. Thus there
are not base points. Since Ks = F + Go + Gy by 1 = KsGo, 0 = KsG; and
G2 = —1 we obtain:

FGo+G1Gg =2
FG; + GyG, + G2 = 0.

Since FGo > 0, FG; > 0, GoG1 > 1 and FG =2, if FGy = 0 then (K5 + Go)|r =
W — P'; thus ¢|K5+G0|(F) is a straight line: a contradiction. Then FGog = 1,
GoG1 =1, FG, =1and G? = -2. If Gop # P’ we have a contradiction as above.
Then P’ € supp(Go). O

We then have the analogous of 2.2. In the following lemma Gg plays the role
of G in 2.2.

Lemma 3.3. We use the notations of 3.2.
Let o' : S — S be the blowing up of P, E' =0 (P'), 0" (Ks) =L and F' the
proper transform of F. In S’ the following relations hold:
@) a/*(F) = F + E, F'E =1 and the rational pencil | F' | induces a non-
hyperelliptic genus-3 fibration f : S — P!,
(i) o (Go) = Gy+ E where Gy = -2, E X Gy, EGy =1, F Gy = 0 and
pa(Gy) = 1. Moreover if we put 0" (Gy) = G, then G, =-2,FG, =1
(iii) Kg = F + Gy + G, + 3E', and the restriction map H°(S' | Ky + 2F') —
HO(F' ,0p (Kp)) is surjective.
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(iv) There exists F, €| F' | such that Fy = Go+ H where HGy = 2, and HE' = 0.

Proof. The same as 2.2. U
Now we have the analogous of 2.3.

Lemma 3.4. We use the notation of 3.3. If ¢ € H(S',04(E"), go €
HO(S',04/(Gy)), 91 € HY(S',04(G)), h € H'(S',04 (H)) and (to,t,) is a ba-
sis of HO(S', Oy (F')) where to = hgo, then there exist x € H°(S', Oy (L)) and
neHY(S 04 (Kg + Gy)) such that:

(tazoC, tit1z0(, totiwol, tizo(, tax(, tot12¢, t3a(, tohn, t1hn)

is a basis of H°(S',04 (Kg + 2F')) where ©o = gogiC2. Moreover if we put
Ry = div(x), Ry = div(n) then E'|F'4 Ry for every F'; E',C# Ry where C < G
is any component; E'R, = 0, E'Ro =0, G;Ro =0.

Proof. It is equal to the proof of 2.3. O

We now conclude the proof of theorem 1 in a slight different way with respect
to the proof of the main theorem. We can define ¢ : S — P: ¢*(Xo) = hn,
¢*(X1) = x¢ and ¢*(X2) = gogi¢3. By the numerical identities of 3.4 and by
3.3 (iv) ¢ is a morphism, and by 3.3 (iii) it is birational onto the image. Since
¢*(T) = Ky + 2F then ¢*(4T — 511) = 4Ky + 3F . In H°(S', 0y (4Kg + 3F))
we consider the sublinear system A given by the sections which vanish on 2F(;+3E'.
Since 4Kg + 3F — (2Fy+3E') = 3L + F' + Ky then A" =~ H%(S',04 (3L +
E' + Kg)) and dimc.A* = 39. On the other hand in A’ there are the pulls-back of
the following 40 sections: aXZX2 with o € H(P,Op(3Il)); tocXoX2Q with Q =
C0X§+a1X0X1+Q2X12+0L3X1X2+Q4X§ andcg € C, ; € HO(P, OP(ZH)), 61)(())({3
with ¢; € C; t%ﬂlXil and t(z)XQP with P = ,32X%+53X12X2 -}-[34)(1)(22+,35)(é3 where
B; € HO(P,Op(ill)). Now it is obvious that ¢(S") = Y. If y is the fibre coordinate
of [2T — 5I1) on P then ¢ can be lifted to a holomorphic map v : §" — [2T — 5II]
and the image is nothing but the relative canonical model:

toy = XoX2
ay2 +Qy + ,8le + Cl)(())(i3 + XoP =0.
This completes the proof of theorem 1. U

As in the case py = 4 we see that the locus M3, of surfaces with K? = 4, p; = 3
and d = 3 is irreducible and unirational. Moreover the same proof of 2.8 shows
that M3, = 29.
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