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SUMMARY

Myasthenia gravis (MG) is etiologically associated with thymus abnormalities, but its pathology in the thymus
remains unclear. In this study, we attempt to narrow down the features associated with MG using spatial tran-
scriptome analysis of thymoma and thymic hyperplasia samples. We find that the majority of thymomas are
constituted by the cortical region. However, the small medullary region is enlarged in seropositive thymomas
and contains polygenic enrichment and MG-specific germinal center structures. Neuromuscular medullary
thymic epithelial cells, previously identified as MG-specific autoantigen-producing cells, are enriched in
the cortico-medullary junction. The medulla is characterized by a specific chemokine pattern and immune
cell composition, including migratory dendritic cells and effector regulatory T cells. Similar germinal center
structures and immune microenvironments are also observed in the thymic hyperplasia medulla. This study
shows that the medulla and junction areas are linked to MG pathology and provides insights into future MG
research.

INTRODUCTION muscular junctions are available, underscoring the need for the

development of novel, less-invasive treatments that act up-

Myasthenia gravis (MG) is an autoimmune disease that causes
systemic muscle weakness due to the production of autoanti-
bodies that target the neuromuscular junction. Similar to other
autoimmune diseases, genome-wide association studies
(GWASSs) have identified MG as a polygenic disease, with vari-
ants associated with T cell and B cell functions."> MG is also
associated with thymoma and thymic hyperplasia. Currently, a
thymectomy is the first choice of treatment for MG with thy-
moma, and the effectiveness of this treatment underscores the
role of the thymus in disease pathogenesis.®* However, a thy-
mectomy is an invasive surgical procedure that can adversely
affect the immune system.® In addition to thymectomy, only
symptomatic treatments targeting the immune system or neuro-

stream of the disease pathway. Therefore, the identification of
thymic abnormalities related to MG is urgently needed.

The thymus is the primary lymphoid organ responsible for
T cell education; it eliminates autoreactive T cells and induces
regulatory T cells (Tregs), which serve as the site of central toler-
ance. However, due to the complexity of thymic function and
structure, its physiological role and involvement in MG remain
unclear. We previously identified the abnormal expression of
neuromuscular-related molecules in MG-specific medullary
thymic epithelial cells (nTECs) and germinal center (GC) forma-
tion in MG-associated thymomas using single-cell RNA
sequencing (scRNA-seq) analysis.® However, spatial interpreta-
tion using scRNA-seq remains challenging. Therefore, there has

o Cell Reports 43, 114677, September 24, 2024 © 2024 The Authors. Published by Elsevier Inc. 1
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been no spatial prioritization to determine the areas within the
complex thymic tissue that are truly related to the disease thus
far. Although our scRNA-seq results suggested interactions be-
tween mTECs and immune cells, their spatial proximity has not
been elucidated. Furthermore, a comprehensive understanding
of the immune cells that form niches within the thymus is lacking.

Additionally, MG is associated not only with thymomas but
also with thymic hyperplasia in younger patients.” Thymic hyper-
plasia is a benign condition characterized by the enlargement of
the normal thymus and, similar to thymomas, is reported to
involve the formation of lymphoid follicles with GCs.® Although
both thymomas and thymic hyperplasia are thymic abnormalities
associated with MG, whether there is a pathogenic link between
the two remains controversial.

In recent years, spatial transcriptomics technology has
evolved, greatly advancing our spatial understanding of disease
processes.” ' Spatial transcriptomics has enabled significant
improvements in the interpretation of cellular niches compared
to observational methods with fewer parameters, such as H&E
staining or immunohistochemistry (IHC). However, despite the
significant amount of information it provides, assigning patho-
logical significance and considering causality using spatial
transcriptomics alone have been challenging. By integrating
scRNA-seq data from the corresponding tissue, we can extract
more information and estimate the cellular composition of each
spot for a more detailed interpretation.’® Nonetheless, there is
currently no consensus on how to appropriately prioritize sus-
ceptible regions.

In this study, we conducted a spatial evaluation of MG thymo-
mas using spatial transcriptome analysis to identify disease-
related niches and characterize distinctive gene expression.
We developed a method, single-cell disease-relevance score
(scDRS)-spatial. This method leverages polygenic enrichment
to identify disease-relevant spatial localizations by integrating
single-cell spatial transcriptomics with disease GWAS, extend-
ing an existing method, scDRS,'® that analyzes scRNA-seq
data. In particular, scDRS-spatial considers physical contact be-
tween multiple cells, in addition to cell-type-specific polygenic
enrichment, by assessing spatial niches rather than single cells.
Furthermore, we reconstructed the largest single-cell atlas of
thymomas by integrating data from previous reports.®'* By inte-
grating this atlas with spatial transcriptomic data, we were able
to estimate the detailed spatial interactions between cell popula-
tions. Through these integrated analyses, we attempted to iden-
tify hotspots of MG pathology in MG thymomas and the immune
responses at these sites. Finally, we conducted a spatial tran-
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scriptome analysis of MG-associated thymic hyperplasia and
discussed the similarities between the immune microenviron-
ments of MG thymomas and hyperplasia.

RESULTS

Spatial-transcriptome profiling of thymoma,

hyperplasia, and normal thymus

To investigate the spatial characteristics of thymuses associated
with MG, we conducted a spatial transcriptome analysis. We
previously reported a stronger association between thymomas
and the presence of anti-acetylcholine receptor antibodies
(AChR-Abs) than with the presence of MG-related symptoms.
In this study, we primarily profiled thymomas (the World Health
Organization [WHO] classification type B1 or B2) in patients pos-
itive for AChR-Ab (seropositive) as MG-type thymomas. We pro-
filed the thymomas of four seropositive patients, two of whom
exhibited MG symptoms, yielding five samples. Additionally,
three samples were obtained from three seronegative patients
(AChR-Ab™, WHO type B1 or B2), and two thymic hyperplasia
samples were obtained from two seropositive patients with
MG symptoms. Formalin-fixed and paraffin-embedded sections
were profiled using the 10x Genomics Visium platform (Figure 1A;
Table S1). For comparison with normal thymuses, we integrated
the Visium data of 11 samples from 11 individuals with normal
fetal and pediatric thymuses. After quality control, 59,796 spots
were retained for downstream analyses. Because each Visium
spot is estimated to contain approximately 1-10 cells, each
spot can be considered to represent a niche. Initially, the Leiden
algorithm was used to define 18 clusters (Figures 1B, S1A, and
S1B). Based on these 18 Leiden clusters, we defined 6 anno-
tated clusters: the cortex, medulla, junction, stroma, and 2 me-
dulla-specific clusters characterized by FN7 expression (medul-
la_FN1) and a high concentration of GCs (medulla_GC)
(Figures 1B and 1C). For instance, the distinct expression of che-
mokine-receptor pairs, such as CCR9-CCL25 and CCR7-
CCL19, significantly differentiated the cortex from the medulla
(Figures 1D and S1C). The transcriptome profiles of the medulla
and cortex were maintained, even in tumors (Figure 1D). We also
investigated the expression of AIRE, a master regulator involved
in self-antigen expression in mTECs, and found that in thymo-
mas, its expression was lower compared to normal or thymic hy-
perplasia and was limited to the medulla (Figures S1D and S1E).
Spatially, in normal thymuses, the cortex typically formed an
outer layer with the medulla inside, whereas in thymomas, small
medullary structures (on average, 9.77% in thymoma and 19.8%

Figure 1. Spatial transcriptomic analysis revealed histological structures in MG thymoma
(A) Schematic representation of the spatial transcriptomic analysis and enrolled sample numbers.

(
(
(
(E) Distribution of disease status on UMAP plots.
(
(

100 pm.

B) Unsupervised clusters (Leiden) and annotation (annotated niche) of spots on uniform manifold approximation and projection (UMAP) plots.
C) Heatmap showing mean expression of marker genes in annotated niche groups. Also see Figure S1A for automatically extracted marker genes.
D) Representative spatial gene expression of normal thymus and thymoma samples.

F) Comparison of the proportion of annotated niches in thymoma samples. Statistical analysis was performed using scCODA.®.
G) H&E staining, Leiden clusters, and annotated niche groups of representative samples. The arrowheads indicate a lymphoid follicle. The scale bars indicate

(H) IHC staining of CCR7 in MG and non-MG thymoma. GC was found in the medulla region (arrowhead). The scale bar represents 500 pm.
() The proportion of CCR7* area in thymoma was quantified using microscopic images (MG: WHO type B1, n = 5; non-MG: n = 5, and WHO type B2, MG: n = 5;
non-MG: n = 5). Statistical analysis was performed using a two-sided Welch’s t test.

Cell Reports 43, 114677, September 24, 2024 3




¢ CellPress

OPEN ACCESS

in normal thymus) were interspersed predominantly within
cortical structures (on average, 80.6% in thymoma and 73.9%
in normal thymus) (Figures S1B and S2), as previously sug-
gested."'® The junction area was positioned both transcriptomi-
cally and spatially between the medulla and cortex (Figures 1C
and S1F-S1H). Examination of the regional proportions of thy-
momas between seropositive and seronegative cases revealed
no significant differences at the Leiden cluster level. However,
the cortical region exhibited a significant decrease in seroposi-
tive cases (Figures 1TE-1G and S1l). We further performed IHC
staining for medulla-specific CCRY7 to validate the medulla and
cortex bias in MG thymoma. While no difference was observed
in WHO type B2, we found that in type B1, the proportion of
the CCR7* area was significantly larger in seropositive MG
compared to seronegative non-MG (Figures 1H and 1l). The
expression of an MG-specific gene set (“yellow module”)® was
highest in the junction (Figures S1J and S1K). We conducted a
transcriptome comparison between seropositive and seronega-
tive samples. The analysis revealed a relatively shared upregula-
tion of pathways associated with acquired immune responses,
particularly in the B cell lineage, interferon-y signaling, major
histocompatibility complex class Il antigen presentation, and
respiratory electron transport in both the medulla and cortex.
Additionally, we observed an increase of the expressions of pre-
viously identified MG thymoma-specific genes, such as NEFM,
KRT6A, and KRT15 in seropositive thymomas (Figure S3).°
Thus, by clustering the spatial transcriptome data of the thymus,
we identified the predominant cortical and interspersed medul-
lary structures in thymomas and revealed a reduction in the pro-
portion of the cortex in MG-associated thymomas.

Prioritization of pathogenic niche in MG thymoma

Similar to other autoimmune diseases, MG is polygenic. We hy-
pothesized that identifying the niches with genetic susceptibility
to MG accumulation would allow us to prioritize these niches
(Figure S4A). To this end, we extended scDRS'® to spatial
data, namely, the scDRS-spatial framework. scDRS integrates
scRNA-seq data with GWAS to identify cell types with polygenic
enrichment. scDRS-spatial goes beyond the cellular level by
further assessing the polygenic enrichment of spatial niches
that are hotspots of physical intercellular contact. We conducted
null simulations using random gene sets and confirmed that
scDRS-spatial was well calibrated for spatial transcriptome
data (Figure S4B). Specifically, an imputation using Markov affin-
ity-based graph imputation of cells (MAGIC)'” produced conser-
vative estimates (Figure S4B). Based on these findings, we
imputed spatial data using MAGIC to reduce technical noise
and estimated polygenic enrichment at each spot using
scDRS-spatial. Furthermore, we added Visium data from various
tissues across the human body as controls (Table S3). At the tis-
sue level, the spots in the thymus were significantly associated
with MG (Figure S4C). At the level of Leiden clusters, niche 8
(corresponding to the medulla) was significantly associated
with a false discovery rate (FDR) of <0.2 (Figure S4D). Across
all regions, the medulla was significantly associated with MG
(FDR < 0.2; Figure S4E). Moreover, when stratified by condition,
the proportion of associated niches and the heterogeneity in the
medulla, especially niche 8, were higher in seropositive thymo-
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mas than in seronegative thymomas and the normal thymus
(Figures 2A-2C). These results suggest that genetic susceptibil-
ity accumulates in the medullary regions of thymomas.

Cellular composition in MG-thymoma niche

To elucidate the cellular composition of MG-thymoma niches,
we performed cell deconvolution by integrating scRNA-seq
data. For deconvolution, we created a single-cell reference for
thymomas by adding our data to the single-cell data reported
by Xin et al.’* After quality control, 113,948 cells were retained,
defining 50 clusters, including immune, epithelial, and stromal
cells (Figures 3A, 3B, and S5A-S5F). Notably, we achieved a
higher-precision annotation of the TEC population, which was
less represented in our previous study.® The mTECs were char-
acterized by the expression of CLDN4 (Figure S5A). Within the
mTECs, several sub-clusters were defined, including AIRE™"
mTECs (MTEC AIRE), KRT14"9" mTECs (mTEC KRT14), and
neuromuscular mTECs (hnmTECs), which were characterized by
a high yellow module and GABRA5 expression (Figure S5B). In
CD4* T cells, we identified CXCL13-producing T follicular helper
cells (CD4 Tfh CXCL13). This population expressed Tfh-related
functional genes CXCR5, PDCD1,IL21, and BCL6 (Figure S5G),
suggesting the active help of GC reaction by CD4* T cells in MG
thymoma.'®'° The dendritic cell (DC) fraction also included plas-
macytoid DCs (pDC), conventional DCs type 1 (cDC1), type 2
(cDC2), and migratory DCs (migDCs), which were characterized
by CCR7 and LAMP3 expression. migDCs expressed both
CD274 (PD-L1) and CD80, suggesting the involvement of T cell
activation®® (Figure S5H). We then assessed MG-specific fea-
tures in the references to confirm their consistency. Deconvolu-
tion using bulk RNA-seq data of thymomas generated by The
Cancer Genome Atlas (TCGA)*" consortium revealed that the
frequency of nmTECs was the most significantly associated
with MG (Figure S6A, adjusted p value = 6 x 107°), similar to a
previous result.° In addition, the expression of yellow module
genes was highest in nmTECs (Figure S6B). This observation in-
dicates that nmTECs were the most associated cell type at the
single-cell level, even in the updated single-cell reference, which
elaborated on the TEC populations.

Next, we leveraged the single-cell reference to analyze the
spatial transcriptome data at cell-type resolution. By integrating
the single-cell reference with Visium data using cell2location,'?
we estimated the cellular composition of each spot (Figures 3C
and 3D). As in the normal thymus, immature T cells such as
CD4~ CD8 double-negative cells and CD4* CD8" double-pos-
itive T cells were concentrated in the cortical region, whereas
mature T cells and mTECs were abundant in the medullary region
(Figures 3C and 3D). GC B cells (B GC) and CD4 Tfh CXCL13
were also enriched in the medullary GC region (Figures 3C and
3D). The stroma and medulla_FN1 regions were characterized
by high numbers of endothelial cells, fibroblasts, and vascular
smooth muscle cells (Figures 3C and S7A). In the seropositive
cases, an increase in nmTECs and immune cells, such anti-
body-secreting cells (ASCs), switched memory B cells (B SM),
B GC, migDCs, and effector T regs (Treg Eff), and reduced
cortical TECs (cTECs) were confirmed (Figures 3E and S7B).
Next, we explored the co-localization patterns of constituent
cells using non-negative matrix factorization (NMF), defining
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Figure 2. scDRS-spatial unveiled polygenic enrichment in the medulla in MG thymoma
(A and B) Heatmaps show disease association in Leiden clusters (A) and annotated niche (B). Samples were stratified with disease conditions. Heatmap colors
depict the proportion of significant cells (FDR < 0.2) evaluated using scDRS."® Squares denote significant disease associations (FDR < 0.05), and cross symbols

denote significant heterogeneity in association (FDR < 0.05).
(C) scDRS scores on representative Visium slides.

eight co-localization factors (factors 0-7) (Figures 3F-3H and
S7C). By analyzing the cellular contributions and enriched re-
gions of each factor, we found that certain factors were predom-
inantly associated with specific regions: factors 0, 2, and 4 with
the cortex; factor 5 with the medulla; factors 1 and 3 with the
stroma; and factor 7 with both the junction and GCs. Factor 7,
composed of B GC, was localized within GCs, while CD4 Tth
CXCL13 was present both inside and around GCs in the medul-
lary region, forming the GC niche (Figures 3F-3H and S7C). Fac-
tor 5, composed of mature immune cells, such as Treg Eff,
migDCs, and B SM, constituted an immune microenvironment
in the medulla (Figures 3F-3H and S7C). Factor 6, comprising
nmTECs, cDC1, and migDCs, was particularly abundant at the
junction area (Figures 3F-3H and S7C). The ASC niche was not
identified within the cortex or medulla, but it was present in the
stromal region (Figures 3C and S7A). Endothelial cells were
concentrated in the medulla and stroma, highlighting a lower
vascular density in the cortex (Figures 3C and S7A). In summary,
cell deconvolution identified eight co-localizing communities
and their constituent cells.

Cell-cell interaction analysis reveals niche-specific
chemokine profiles

Next, we analyzed cell-cell interactions (CCls) within the cell
groups constituting the niches. Using CellphoneDB,** we
explored CCls by considering the co-localizing communities
identified by cell2location analysis. Numerous CCls were identi-
fied, among which chemokines were particularly cell specific

and appeared to be involved in niche-specific cell migration
(Figures S8A, S8B, and S9). In both tumor and normal tissues,
CCL25-CCR9 and CCL19-CCRY7 interactions were specific to
the cortex and medulla, respectively (Figures 4A and 4B). Previ-
ously, we reported that nmTECs have an intermediate profile be-
tween that of mTECs and c¢TECs,® and indeed, they expressed
both CCL25 and CCL19 (Figure 4A). Interestingly, in thymomas,
both single-positive T cells and migDCs expressed CCR7, sug-
gesting that the medullary characteristics of thymomas facilitate
the mobilization of migDCs. Ligands for CCR4 specific to Treg
Eff, such as CCL17 and CCL22, were expressed by migDCs in
thymomas, suggesting their role in maintaining Treg Eff in the
medulla®® (Figures 4A and 4B). Similarly, CXCL16, the ligand
for CXCR6 specific to Treg Eff, was expressed in cDC1, cDC2,
and migDCs (Figures 4A and 4B). migDCs also expressed
CXCL10, which potentially interacts with CXCR3* effector
T cells (Figures 4A and 4B). We previously demonstrated that
mature infiltrating T/B cells in the thymus specifically express
CXCRA4.° The CXCL12 ligand was expressed by nmTECs,° sug-
gesting its role in maintaining the medullary niche (Figures 4A
and 4B). Finally, CXCL13, a key chemokine for the maintenance
of the GC, was expressed by CD4 Tth CXCL13 (Figure 4A). The
expression of CCR4, CXCL16, and CXCR5-CXCL13 was lower in
the normal thymus than in the thymoma, suggesting their thy-
moma-specific roles in maintaining niches (Figure 4A). In
contrast, chemokines such as CCL25, CCL19, and CXCL12
and their receptors were expressed in both the normal thymus
and thymoma, suggesting that some factors might be
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synchronized with normal conditions and MG thymoma (Fig-
ure 4A). Taken together, we identified spatially characteristic
chemokine ligand-receptor pairs in thymomas, supporting the
involvement of these niches in the pathogenesis of thymoma-
associated MG.

Extrapolation of thymoma niche to thymic hyperplasia
Finally, we verified whether our findings were consistent with
those in thymic hyperplasia. Histologically similar to the normal
thymus, the structure with the cortex on the outside and the me-
dulla on the inside was maintained (Figure 5A). GCs are present
in the medulla, similar to thymomas, suggesting that the micro-
environment supporting GC formation is common in both thymo-
mas and thymic hyperplasia (Figure 5A). Polygenic signals iden-
tified by scDRS-spatial analysis were generally more enriched in
thymoma samples and were particularly observed in the me-
dulla, similar to our findings in thymomas (Figures 5B, 5C,
S10A, and S10B). Although there is no scRNA-seq reference
for thymic hyperplasia, application of the thymoma reference re-
vealed that the eight-cell communities identified in thymomas
were consistently formed in accordance with histological fea-
tures (Figure 5D). Furthermore, the expression of chemokines
and their receptors was consistent with thymomas, and CCR4,
CXCL16, and CXCR5-CXCL13, which had lower expressions in
the normal thymus, were abundantly expressed in hyperplasia
(Figures 5E and 5F). These findings indicate that an immune
microenvironment supporting GCs is present in the medulla in
thymic hyperplasia as well as thymoma.

DISCUSSION

In this study, spatial transcriptomics was used to identify the
niche involved in the pathogenesis of MG thymoma and to
explore its molecular characteristics. We successfully identified
the MG-associated niche and its constituents in both thymomas
and thymic hyperplasia. Our analysis revealed that cortical-like
areas, medullary-like areas, and immune hotspots coexisted
within a single patient, highlighting the heterogeneity of the tu-
mor environment within an individual. A relative enlargement of
medulla was observed in seropositive thymoma. In line with
these results, genetic and phenotypic associations of the me-
dulla were also suggested. Furthermore, we identified the forma-
tion of ectopic lymphoid structures in the MG thymus and the
chemokines that support these structures.

The significance of the medulla has been frequently dis-
cussed, including in our previous single-cell analyses.®?*=°
mTECs play a crucial role in negative selection by eliminating au-
toreactive T cells through self-antigen production.>’*° The ab-
normalities in this process in MG highlight that negative selection
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has a potential risk of inducing autoimmunity. In particular, the
expression of neuromuscular-related antigens by nmTECs in
MG thymomas has been suggested to feed on autoreactive
T cells.® These nmTECs were localized at the junction of the me-
dulla and cortex, suggesting that the origin of these nmTECs in
tumor development was at this junction. Additionally, our anal-
ysis demonstrated the accumulation of migDCs in the medulla.
migDCs expressing CCR7 migrate to tertiary lymphoid struc-
tures or lymph nodes with high concentrations of CCL19 and
play an important role in T cell priming.*°*" The medulla, due
to mTEC-induced CCL19 expression, may physiologically trap
migDCs and mediate T cell help. Furthermore, CCl between
migDCs and mTECs has been noted, even in the normal
thymus,?® and this collaboration may be attributed to normal
thymic function.

Furthermore, our analysis provides insights into the role of
specific immune cells in the pathogenesis of MG. A concurrent
abundance of CXCL13" IL21" Tfh cells within the lymphoid folli-
cles and accumulation of migDCs in the medulla were observed.
These findings suggest that follicle formation in the thymus in-
duces potent affinity maturation and B cell proliferation, possibly
contributing to the pathogenesis of MG.**** CXCR5~ PDCD1* T
peripheral helper (Tph) cells, observed at inflammatory sites in
rheumatoid arthritis, systemic lupus erythematosus, and Sjégren
syndrome,®*~*¢ were not clearly identified as distinct cell popula-
tions in our single-cell analysis. In contrast, other studies and
ours have reported an increase in circulating Tph cells in MG,
highlighting the need for further investigation on Tfh and Tph
cells in relation to the progression of MG.?>*” Additionally,
effector Tregs were observed to be abundant in the medulla of
MG thymoma. Although the accumulation of GWAS signals in
Tregs®® and their dysfunction in MG patients®® have been sug-
gested, whether normalizing their function could lead to thera-
peutic effects remains an important subject for future research.

Notably, as MG is an antibody-mediated disease, it has been
reported that ASCs are increased in MG thymoma.®® However,
the niche for ASCs was not found within the thymic cortex or me-
dulla but was rather abundant in the stromal region. Even after
thymectomy, the circulation of autoreactive B cell clones in the
periphery has been reported,’’ suggesting that extrathymic
niches, such as the bone marrow,*' may harbor ASCs. Neverthe-
less, it was suggested that the immune microenvironment within
the medulla primarily contributes to B cell maturation.

This study also profiled MG-associated thymic hyperplasia.
Because there are no single-cell datasets specific to thymic hy-
perplasia, a detailed comparison of thymic epithelial cell profiles
was not possible. Nonetheless, our analysis revealed notable
similarities in immune cells, chemokine profiles, and polygenic
signals in the medulla of MG thymomas. Consequently, this

Figure 3. Cell deconvolution analysis revealed cellular composition in MG thymoma
A) Schematic of scRNA-seq reference construction and cell deconvolution analysis.

B) Cell clusters of the reference scRNAseq data on UMAP plot.

C) Cellular decomposition in each annotated niche group. Deconvolution was performed using cell2location.'?

E) Normalized cellular decomposition in each disease condition.

F) Cell compartments identified using NMF. The normalized NMF weights of cell types across NMF components are shown.

¢
(
(
(D) Normalized cellular decomposition and H&E staining of representative Visium slides. The scale bars indicate 100 pm.
(
(
(

G and H) Distributions of cell compartments across Leiden clusters (G) and annotated niche groups (H). The abundance was normalized for each column.
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Figure 4. Niche-specific cytokine organization identified by CCI analysis

(A) Dot plot showing cytokine expressions across annotated niche groups in the normal thymus (top) and thymoma (center), and across major cell types (bottom).
Gene expressions for annotated niche groups were from the Visium dataset, and those for the cell types were from scRNAseq.

(B) Representative cytokine expression of a thymoma sample. Ligands (left) and receptors (right) are shown correspondingly per line.

study offers an invaluable resource for understanding the patho-
genesis of MG by presenting a comprehensive overview of thy-
momas and thymic hyperplasia.

In summary, using spatial transcriptomic analysis, we suc-
cessfully identified the immune microenvironment in the medulla,
revealing that many of its characteristics resonate with the phys-
iological features of the thymus. Current treatments for MG,
aside from thymectomy, are mainly supportive and target the im-
mune system and neuromuscular junctions. We hope that this

8 Cell Reports 43, 114677, September 24, 2024

study will contribute to a complete understanding of MG patho-
genesis and the development of novel treatments targeting up-
stream pathological processes.

Limitations of the study

There are several limitations worth noting. First, the limited sam-
ple size should be acknowledged. In our previous study,® the
scarcity of samples in scRNA-seq analysis of MG thymoma
prompted the integration of large-scale bulk RNA-seq data,
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revealing the significance of nmTECs and immune cell interac-
tions. This study is consistent with these findings and provides
further insights. Second, the constraints of spatial transcriptom-
ics technology, such as the 50-um scale of Visium, necessitated
cell deconvolution due to the inclusion of multiple cells per spot.
Recent advancements in subcellular resolution techniques* and
in situ single-nucleus barcoding®® offer potential improvements
in this regard. Lastly, our study focuses on observations from
post-onset samples, limiting our ability to show the causality of
pathogenesis. Furthermore, we were unable to elucidate the
temporal sequence of disease onset. Ultimately, establishing
natural onset models and conducting intervention experiments
will be essential.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be
directed to and will be fulfiled by the lead contact, Yoshiaki Yasumizu
(yoshiaki.yasumizu@yale.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

o Raw sequence data have been deposited at Japanese Genotype-
phenotype Archive (JGA) under accession number JGAS000672. Micro-
scope images and Space Ranger output files are available at Genomic
Expression Archive (GEA) under accession number E-GEAD-747.

@ The code is available on GitHub (https://github.com/yyoshiaki/MG
Visium_2023). The processed spatial transcriptome and scRNA-seq
data are available in figshare (https://doi.org/10.6084/m9.figshare.
25052546).

o Any additional information required to reanalyze the data reported in this
paper is available from the lead contact upon request.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-CCR7 antibody [EPR23192-57] Abcam Cat# ab253187, RRID: AB_2922673

Critical commercial assays

Visium Spatial for FFPE Gene Expression

Kit, Human Transcriptome, 16 rxns

10x Genomics

Cat# 1000336

DNBSEQ-G400RS High-throughput MGl Tech Cat# 1000016994
Sequencing Set (App-A FCL PE100)

MGiIEasy Universal Library MGI Tech Cat# 1000004155
Conversion Kit (App-A)

EnVision FLEX TARGET RETRIEVAL DAKO Cat# DM828/K8023
SOLUTION HIGH pH(50x)

EnVision FLEX PEROXIDASE- DAKO Cat# SM801/K8023
BLOCKING REAGENT

EnVision FLEX/HRP DAKO Cat# SM802/K8023
EnVision FLEX SUBSTRATE DAKO Cat# DM803+DM82
BUFFER + EnVision FLEX DAB+ 7/K8023

Deposited data

Spatial transcriptome data This paper Raw data: JGAS000672, Processed

Spatial transcriptome data
(Healthy thymus)

scRNA-seq data from MG thymoma
scRNA-seq data from thymoma
GWAS for MG

Gene locations (MAGMA)
Reference data (MAGMA)

Heimli et al.** and Suo™®

Yasumizu et al.®
Xin et al.™
Chia et al.
De Leeuw et al.*®

De Leeuw et al.*®

data: E-GEAD-747 and
https://doi.org/10.6084/m9.figshare.25052546

GSE207205 and
https://developmental.cellatlas.io/fetal-immune

JGAS000482

HRA002334

GCST90093061
https://ctg.cncr.nl/software/MAGMA/aux_files/NCBI37.3.zip
https://ctg.cncr.nl/software/MAGMA/ref_data/g1000_eur.zip

Software and algorithms

Code and algorithms for analysis

Space Ranger
Scanpy
scvi-tool
Squidpy
scCODA
clusterProfiler
ReactomePA
scDRS
MAGMA
Scrublet
Harmony
Cell2location
Scaden
TCGAbiolinks

statsmodels

This paper

10x Genomics
Wolf et al.”’
Lopez et al.*®
Palla et al.*®

Bittner et al.’®

Yu et al.*°

Yu et al.””

Zhang et al.™®
De Leeuw et al.*®

Wolock et al.*”

Korsunsky et al.*®
Kleshchevnikov et al.'?
Menden et al.>

Colaprico et al.>®

Seabold et al.*®

https://github.com/yyoshiaki/MG_Visium_2023
(https://doi.org/10.5281/zenodo.13161044)

V2.0.1
https://scanpy.readthedocs.io/en/stable/
https://scvi-tools.org/
https://squidpy.readthedocs.io/en/stable/
https://sccoda.readthedocs.io/en/latest/
https://github.com/YuLab-SMU/clusterProfiler
https://github.com/YuLab-SMU/ReactomePA
https://martinjzhang.github.io/scDRS/
https://cncr.nl/research/magma/
https://github.com/swolock/scrublet
https://github.com/immunogenomics/harmony
https://github.com/BayraktarLab/cell2location
https://scaden.readthedocs.io/en/latest/

https://bioconductor.org/packages/release/
bioc/html/TCGAbiolinks.html

https://github.com/statsmodels/statsmodels

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CellphoneDB Garcia-Alonso et al.”’ https://github.com/ventolab/CellphoneDB

ktplotspy Troulé et al.”® https://ktplotspy.readthedocs.io/en/latest/index.html
Fiji Schindelin et al.”® https://imagej.net/software/fiji/

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human samples

This study was reviewed and approved by the Research Ethics Committee of Osaka University and was conducted in accordance
with the guidelines and regulations. Human samples were collected with the approval of Osaka University’s review board (protocol:
ID 10038-13. Detailed information on the participants is provided in Table S1.

METHOD DETAILS

Spatial transcriptomics (CytAssist Visium)

Formalin-fixed, paraffin-embedded (FFPE) thymoma samples were used. The samples were sliced into 8-um-thick sections using a
microtome. RNA quality was examined using DV200, and samples with DV200 > 25% were used for all subsequent analyses. Li-
braries were then constructed using the Visium workflow with CytAssist, according to the manufacturer’s guidelines (CG000518,
10x Genomics, Pleasanton, CA, USA). Sequencing was performed at the Research Institute for Microbial Diseases, Osaka Univer-
sity. Libraries were sequenced using an MGl DNBSEQ-G400RS (MGl Tech Co., Shenzhen, China) system. The generated data were
processed using Space Ranger v2.0.1 software, using GRCh38-2020-A as a reference.

Visium data analysis

For the assessment of normal thymus tissues, data from eight pediatric thymuses** and three fetal thymuses*® were downloaded
(GSE207205 and https://developmental.cellatlas.io/fetal-immune) and processed using Scanpy (1.9.5)." Briefly, the data were
loaded as anndata objects and concatenated. Spots classified as “in tissue” were retained. Thereafter, we performed normalization
(sc.pp.normalize_total), log transformation (sc.pp.log1p) and extraction of HVGs (sc.pp.highly_variable_genes with the options,
n_top_genes = 3000, flavor = ’seurat_v3’, batch_key = 'sample_id’). We then applied the variational inference model implemented
in the scvi-tool (1.0.4)."® Sample IDs and Projects were specified as categorical covariates and total counts per cell were used as
continuous covariates. The model (n_layers = 2, n_latent = 30) was trained using the default parameters and latent space for the
UMAP embeddings and Leiden clustering using Scanpy. Marker genes were extracted using the scvi.model.differential_expression
function. Gene scores were calculated using the sc.tl.score_genes function implemented in Scanpy with default parameters. Spatial
neighborhood enrichment analysis was performed using the sq.gr.spatial_neighbors function implemented in Squidpy (1.3.1).%° Cell
proportions were compared using the Bayesian framework implemented in scCODA.® The mixed effect model was implemented
using the Python package, statsmodels (v0.14.0). The gene expression comparison between seropositive and seronegative samples
was conducted in the medulla and cortex regions where there were sufficient spot numbers. Differences in gene expression were
calculated using the sc.tl.rank_genes_groups function (with method = 't test_overestim_var’). Pathway enrichment analysis was per-
formed using the gsePathway function from the R package ReactomePA,*° targeting genes with a mean corrected expression of 0.1
and log2foldchange. The results were visualized using the dotplot function from the clusterProfiler package.®®

scDRS-spatial

The GWAS summary statistics deposited at GCST90093061 ' were used for analysis. These summary statistics describe the meta-
analysis results for MG. The cohort included 1,873 cases and 36,370 controls from the US and Italy, respectively. Gene scores were
computed using MAGMA“® (v1.10) software as described by Zhang et al.’® First, we performed single nucleotide polymorphism
(SNP) annotation with gene locations (NCBI37.3, https://ctg.cncr.nl/software/MAGMA/aux_files/NCBI37.3.zip) and the reference
data created from 1000 genomics Phase3 (g1000_eur, https://ctg.cncr.nl/software/MAGMA/ref_data/g1000_eur.zip) using magma
—annotate (with the option, window = 10,10). Next, we calculated the gene scores from the p-values using MAGMA. To include a
variety of cell types in the dataset, we downloaded public Visium data (Table S3) and created a Visium control dataset. We then
combined these with the thymus datasets. We pre-processed the dataset by normalizing the total counts to the median of the total
counts (scanpy.pp.normalize_total), log transformation (scanpy.pp.logip), and imputing gene expression using MAGIC'’
(scanpy.external.pp.magic). Thereafter, the polygenic enrichment for each cell was evaluated using scdrs compute-score (v1.0.3,
options: —flag-filter-data True —flag-raw-count False —-n-ctrl 1000); the number of genes for each cell was used as the covariate.
Group-level statistics were calculated using scdrs perform-downstream and visualized using scdrs.util.plot_group_stats.
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A null simulation was performed as described by Zhang et al."®> We randomly selected 1000 genes 100 times, and the enrichment

for the Visium control dataset was evaluated using scdrs compute-score (-flag-filter-data True —flag-raw-count False —n-ctrl 1000 for
imputed data, —flag-filter-data True —flag-raw-count True —n-ctrl 1000 for raw data).

Single-cell RNA-seq analysis

We pre-processed the scRNA-seq data of thymomas generated by Xin et al.’ First, doublets were removed using Scrublet® with
default parameters, and cells with >200 and <8000 genes and <20% mitochondrial RNA were retained. The data were then merged
with the thymoma and PBMC datasets generated by Yasumizu et al.° To remove the effect of immune receptors on highly variable
genes, genes related to T cell receptors and B cell receptors were removed. The retained expression was normalized (sc.pp.norma-
lized_total with the option target_sum = 1e4) and transformed (sc.pp.log1p), and highly variable genes were assessed (sc.pp.high-
ly_variable_genes with the options flavor = 'seurat_v3’, batch_key = ’'project’). Cell cycle was inferred using the sc.tl.score_genes_
cell_cycle function following a tutorial (https://nbviewer.jupyter.org/github/theislab/scanpy_usage/blob/master/180209_cell_cycle/
cell_cycle.ipynb). The total UMI counts, percentage of mitochondrial genes, S score, and G2M score were regressed using sc.tl.re-
gress_out and scaled using sc.tl.scale. The principal components were then computed using sc.tl.pca. The batch effect of the sam-
ples was eliminated using the Harmony algorithm.>® Neighbors were calculated using sc.pp.neighbors with the options n_neighbors =
30 n_pcs = 50. Cells were embedded in UMAP using sc.tl.umap (spread = 2) and clustered using sc.tl.leiden. The initial layer clusters
(cluster L1) were manually defined based on Leiden clusters. For Layer 2 clustering, we recursively extracted cells from a population
and performed the same procedures with manually optimized parameters (number of highly variable genes: 1000-3000, number of
neighbors: 15-30, n_pcs: 10-50, spread of UMAP: 1). Doublets assigned in subcluster analysis were removed, and the final embed-
ding was generated following the same procedures. For marker gene detections, sc.tl.rank_genes_groups(method = ’wilcoxon’)
were used.

Cell deconvolution of Visium samples using Cell2location

Cell deconvolution of the Visium samples using Cell2location' was performed according to the tutorial guidelines (https://
cell2location.readthedocs.io/en/latest/notebooks/cell2location_tutorial.html). The combined scRNA-seq reference without doublets
(described below) was filtered (cell2location.util.filtering.filter_genes with the options cell_count_cutoff =5, cell_percentage_cutoff2 =
0.03, nonz_mean_cutoff = 1.12) and prepared (cell2location.models.RegressionModel.setup_anndata with the options batch_key =
'sample’, labels_key = 'clusterL2’). A regression model was created using cell2location.models.RegressionModel and trained (model
training with max_epochs = 250). Cell proportions were inferred for each Visium sample at each time point. In the inference step, a
model for the Visium sample was created using cell2location.models.Cell2location(N_cells_per_location = 30, detection_alpha = 20)
and trained (max_epochs = 30000). Co-localization analysis was performed using cell2location.run_colocation(model_name = 'Co-
LocatedGroupsSklearnNMF’), and the optimal number of factors was manually selected.

Cell deconvolution of TCGA bulk RNA-seq samples using scaden

Cell deconvolution of TCGA samples was performed using a neural-net-based algorithm, Scaden (v1.1.1), as described by Yasumizu
et al.® We created 30,000 simulation datasets using a scaden simulate. The count matrices of our single-cell dataset and the TCGA
thymoma dataset quantified by HTseq and downloaded from TCGADbiolinks were pre-processed using the scaden process com-
mand. Thereafter, the network was trained using the command, scaden train with the option, —steps 5000. Finally, the bulk RNA-
seq matrix was deconvoluted using scaden predict. The deconvoluted cell proportion was tested using a multiple linear regression
provided as the formula.api.ols function using the Python package statsmodels (0.12.0) with a model, cells ~ MG + WHO + days_to_
birth + Gender + 1.

Cell-cell interaction analysis by CellphoneDB

CCl inference was performed using the CellphoneDB?? framework. Cells with a loading of 0.1 or higher in the NMF-based cell co-
localization analysis of Cell2location were used as the microenvironments. CCl inference was performed using the cellphonedb.src.
core.methods.cpdb_statistical_analysis_method.call (score_interactions = True, threshold = 0.1) function. The results were visual-
ized using ktplotspy and Scanpy software.

Immunohistochemistry staining and quantification

We randomly selected 10 cases for each group, MG seropositive thymoma and non-MG seronegative thymoma (comprising 5 B1
and 5 B2 cases for each group). Immunohistochemical staining was performed using the DAKO Autostainer Link 48 system (Agilent
Technologies, Inc. Santa Clara, CA, USA). Antigen retrieval was performed with EnVision FLEX TARGET RETRIEVAL SOLUTION
HIGH pH (Agilent Technologies). Blocking was performed using EnVision FLEX PEROXIDASE-BLOCKING REAGENT (Agilent Tech-
nologies). The sections were incubated with an anti-CCR7 antibody (1:800 dilution, clone EPR23192-57, Abcam plc, Trumpington,
Cambridge, UK). Then, the sections were incubated with EnVision FLEX/HRP Diaminobenzidine (Agilent Technologies) and treated
with EnVision FLEX SUBSTRATE BUFFER + EnVision FLEX DAB+ (Agilent Technologies). SLIDEVIEW VS200 (Evident, Shinjuku, To-
kyo, Japan) was utilized to scan the samples at 40x magnification. Subsequently, ImageJ FIJI software was employed to manually
remove non-thymoma regions and isolate the tumor areas. The green channel images obtained were subjected to thresholding in the
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range of 0-220 to measure the tumor area. Additionally, the red and blue channel images underwent subtraction using Image calcu-
lator, followed by thresholding in the range of 10-255 to measure the CCR7+ area.
QUANTIFICATION AND STATISTICAL ANALYSIS
All statistical analyses were performed in R (4.1.2) and Python (3.8.0). FDR was obtained by the Benjamini-Hochberg procedure im-

plemented by a Python package statsmodels (0.12.0). All other statistical analyses are detailed in the respective sections of the
article.
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