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Experimental and theoretical energetics of walking molecular 
motors under fluctuating environments

Takayuki Ariga1、Michio Tomishige2、Daisuke Mizuno3

Abstract:

Molecular motors are nonequilibrium open systems that convert chemical energy to mechanical work. Their energetics are essential for 
various dynamic processes in cells, but largely remain unknown because fluctuations typically arising in small systems prevent 
investigation of the nonequilibrium behavior of the motors in terms of thermodynamics. Recently, Harada and Sasa proposed a novel 
equality to measure the dissipation of nonequilibrium small systems. By utilizing this equality, we have investigated the nonequilibrium 
energetics of the single-molecule walking motor kinesin-1. The dissipation from kinesin movement was measured through the motion 
of an attached probe particle and its response to external forces, indicating that large hidden dissipation exists. In this short review, 
aiming to readers who are not familiar with nonequilibrium physics, we briefly introduce the theoretical basis of the dissipation 
measurement as well as our recent experimental results and mathematical model analysis and discuss the physiological implications of 
the hidden dissipation in kinesin. In addition, further perspectives on the efficiency of motors are added by considering their actual 
working environment: living cells.

Keywords Nonequilibrium energetics / Single molecule manipulation / Molecular motor / Kinesin / Fluctuation Dissipation Theorem

Introduction

"Molecular motors work efficiently by using fluctuations." 

You may have heard this phrase, but is it really true? 

Indeed, in the case of kinesin-1 (hereafter referred to as 

kinesin), one of the molecular motors that carry vesicles 

along microtubules in cells (Hirokawa et al. 2009; Vale 

2003) (Fig. 1), its fluctuating movement was directly 

observed (Isojima et al. 2016). On the other hand, the 

efficiency remains undetermined due to the existence of 

the same fluctuations.

Kinesin is an energy transducer that converts chemical 

free energy into mechanical motion. Kinesin is a dimer 

protein about 50 nm long and composed of two catalytic 

sites (head), cargo binding sites (tail) and an elastic stalk 

region connecting the head and tail. The two heads 

cooperatively hydrolyze ATP by alternating the nucleotide 

binding states and binding to the microtubule rail (Mori et 

al. 2007). The kinetic mechanism of kinesin has been 

clarified through progressive single-molecule 

measurement technologies (Dogan et al. 2015; Isojima et 

al. 2016; Matsuzaki et al. 2019; Milic et al. 2014). 

However, the energetics, which are fundamental to 

understanding and improving the performance of energy 

transducers, are poorly understood for kinesin.

The problem on the energetics of kinesin stems from that 

they operate in nonequilibrium, small systems, whereas 

conventional thermodynamics typically focuses on 

macroscopic equilibrium systems. Recently, a novel 

nonequilibrium theory has been proposed that allows 

estimation of energy flows in such small systems; the 

Harada-Sasa equality (Harada and Sasa 2005). Using this 

theory, we have investigated the nonequilibrium energetics 

of kinesin both experimentally and analytically (Ariga et 

al. 2018). However, because these original papers were 

written for readers specialized in physics, understanding 

these works required a lot of knowledge in nonequilibrium 

statistical physics. Therefore, it was hard to access these 

studies for readers who specialize in biology, especially 

interested in molecular motors.

In this short review, we aim to introduce the published 

works for readers who are not familiar with physics. First, 

the problems in conventional energetics on kinesin are 
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Fig. 1 The molecular motor kinesin. Kinesin walks on a 

microtubule rail like a bipedal human, whereas the floating 

head fluctuates wildly (Isojima et al. 2016).
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presented, and then we briefly explain the physical 

meaning of the novel equality that overcomes the problem 

(Harada and Sasa 2005). Then, we outline our recent work 

on kinesin’s energetics using this theory with 

experimental and analytical approaches (Ariga et al. 2018). 

Finally, we give further perspectives on the efficiency of 

motors by considering their working environment: living 

cells.

Conventional energetics of kinesin

The energetics of molecular motors have been discussed 

mainly through the measurement of the stall force 

(maximum traction force at zero velocity). Kinesin exerts 

a maximum force of about 7 pN, and its maximum work is 

estimated to be about 56 pNnm because the displacement 

per ATP is 8 nm. This value is about half that of the free 

energy change per ATP in vivo (Δμ = 80 -100 pNnm). Thus, 

the efficiency is estimated to be around 50% (Howard 

2001).

However, it is not appropriate to discuss the efficiency 

of kinesin in terms of the stall force for several reasons. 

First, under stall conditions, kinesin does not stop, but 

instead proceeds back and forth in 8 nm steps (Carter and 

Cross 2005; Nishiyama et al. 2002; Taniguchi et al. 2005). 

During the back steps, it can hydrolyze ATP, but not 

synthesize it. This means that, under the stall force 

condition, input chemical energy is continuously 

consumed without performing work, and the time-

averaged efficiency becomes zero. Another point is that 

kinesin is a motor that transports vesicles within the cell, 

where the input free energy is fully dissipated through 

friction to the viscous fluid of the cytoplasm, rather than 

work in response to a conservative force such as optical 

tweezers. In the case of macroscopic motors, it may not be 

necessary to distinguish between work and viscous 

dissipation. However, in microscopic systems, the motion 

of motors is always agitated by thermal fluctuations and, 

in the case of kinesin, by kinesin's own steps. Thus, to 

discuss the efficiency of kinesin, it is essential to separately 

measure the viscous dissipation consumed against viscous 

drag and the nonequilibrium dissipation generated by 

kinesin's own stochastic steps. The Harada-Sasa equality 

enables the measurement of the two dissipations separately, 

which will be explained in the next section.

Theoretical basis of the nonequilibrium 
energetics: the Harada-Sasa equality

The Harada-Sasa equality has been proposed to evaluate 

energy dissipation in nonequilibrium small systems, as 

typified by molecular motors such as kinesin (Harada and 

Sasa 2005):
2

( ) 2 ( ) .x BJ C f k T f dfv R 


−
 = + −   (1)

Here, Jx is the dissipation per unit time through the degrees 

of freedom of the motion of interest (x), γ is the viscous 

drag, v is the velocity, and   denotes average. C   is 

the autocorrelation function of the velocity, indicating the 

velocity fluctuations, and R   is the real part (′) of the 

response function, which means the degree of change of 

the velocity when a tiny external force is applied. ( )C f  

and ( )R f   are Fourier transformed (~) to become 

functions of the frequency, f. This equality is complicated 

and requires knowledge of nonequilibrium physics to 

understand. In this section, for biological readers, we 

briefly describe the physical meaning of the Harada-Sasa 

equality by looking back at the history of its discovery.

[Brownian motion and Einstein relation] 

Since the invention of early microscopes, it has been 

known that small objects in water move randomly. Robert 

Brown, a botanist in the early 19th century, observed the 

random motion of granules sprang out of pollens and 

initially believed that the motion was powered by the 

activity of life. However, he later discovered that small 

particles could cause the stochastic motion universally, 

even if not derived from living organisms. This motion has 

since been renamed Brownian motion. Because Brownian 

motion is due to the thermal motion of water molecules. 

Thus, it is also called thermal fluctuation. However, until 

the early 20th century, the existence of molecules was still 

controversial.

Albert Einstein theoretically predicted the statistical 

properties of random motion without knowing that it had 

already been observed (Einstein 1905). J. Perrin used 

Einstein’s theory to demonstrate the existence of  

molecules by measuring Avogadro's number (Perrin 1909). 

In the “Einstein relation”, the diffusion coefficient D of a 

particle is expressed with temperature T and its mobility μ:

,BD k T=  (2)

where kB is the Boltzmann constant. The mobility μ 

appearing on the right side is a coefficient proportional of 

the velocity change when a force is applied to the small 

particle. Thus, μ represents the response function of the 

particle. At the same time, Einstein also derived that the 

diffusion coefficient D on the left side is directly related to 

the magnitude of the fluctuation of the particle 

(
2 2 ,x Dt= where x is the particle displacement). That is, 

equation (2) represents the relationship between 

fluctuations and responses.

[Fluctuation dissipation theorem] 

Ryogo Kubo extended this relationship to a more general 

medium that contains elastic elements but not a pure 

viscous fluid such as water. He showed that the following 

equation holds for the fluctuation of a system placed in 

equilibrium or where the response to a tiny external force 

does not change the state of the system (Kubo 1957):



Biophys Rev

3

( ) 2 ( ).BC f k TR f=  (3)

Here, the left side corresponds to the power spectral 

density of the velocity fluctuation according to the 

Wiener–Khinchin theorem, meaning the magnitude of the 

fluctuation in the frequency domain. The response function 

on the right side is a complex quantity in a general medium. 

In a pure viscous fluid like water, it becomes a real quantity 

that corresponds to the mobility, μ. Because μ is the inverse 

of the viscous drag, γ, and is strongly coupled to the 

dissipation of energy through friction with the medium, 

this relationship between fluctuations and responses is 

termed the “fluctuation dissipation theorem”. 

Note that Kubo’s original derivation for the general 

theorem (3) was starting from the basis of statistical 

physics. Einstein relation (2) can be derived by integrating 

equation (3). Readers interested in the derivations should 

refer to the textbook (Kubo et al. 1991).

[Violation of the fluctuation dissipation theorem] 

The arguments so far are only valid at equilibrium or when 

just a tiny force is applied (linear response range). When 

the system is in a nonequilibrium state, far away from 

equilibrium, the right and left sides of equation (3) 

generally do not coincide with each other. The degree of 

this violation is considered a measure of the degree of 

nonequilibrium (Mizuno et al. 2007). In this case, besides 

thermal fluctuation (Brownian motion), an additional 

contribution such as active fluctuation or non-thermal 

fluctuation should consume energy. Harada and Sasa 

proposed that the dissipation from the system can be 

measured from the violation through equation (1), i.e., the 

Harada-Sasa equality (Harada and Sasa 2005).

[Harada–Sasa equality]

Let us now consider a small particle that is powered by a 

motor in water. The particle is driven by both the motor’s 

driving force and thermal fluctuations. All of the 

mechanical energy injected into the particle by the motor 

is dissipated into the water through the friction with water 

(viscous drag). However, the observed motion of the 

particle includes contributions from Brownian motion 

without dissipation. Therefore, to obtain the dissipation per 

unit time, Jx, it is necessary to remove the contribution of 

Brownian motion. Theoretically, by describing the motion 

of small particles in water with the Langevin equation, the 

total dissipation from the system can be determined as

,( )xJ v v  −   where ξ is the thermal fluctuating 

force that is assumed to be Gaussian white noise (Sekimoto 

1997). Since ξ cannot be measured directly, Jx has not been 

experimentally obtained. However, it should be 

emphasized that all quantities on the right side of equation 

(1) can be measured experimentally. Thus, the Harada-

Sasa equality is suitable for dissipation measurements in 

small stochastic systems such as molecular motors. A 

detailed derivation of equation (1) is given elsewhere 

(Deutsch and Narayan 2006). 

The first term on the right side of equation (1) is the 

dissipative component of a particle moving at a constant 

velocity (viscous dissipation). The second term is a 

component in which the particles disturb the medium in a 

random way (nonequilibrium dissipation). For kinesin, the 

former dissipation can be regarded as the energy used to 

carry a cargo in the proper direction, whereas the latter 

seems to be wasteful energy dissipation. Thus, the 

components of each dissipation separately obtained by 

using equation (1) could be used as a new measure to 

describe the energy conversion efficiency of molecular 

motors such as kinesin. In fact, Harada’s first motivation 

to invent the equality was to elucidate the efficiency of 

kinesin molecules (Harada 2005; Harada and Sasa 2006), 

because he had been fascinated by the stochastic 

movement of kinesin motors (personal communications). 

In the following sections, we review our recent works 

on the dissipation measurement of kinesin by utilizing the 

Harada-Sasa equality (Ariga et al. 2018). The obtained 

dissipation was a completely unexpected result, so that 

theoretical analysis with a mathematical model was also 

required to understand the energetics.

Measuring Dissipation of Kinesin

To measure the dissipation of kinesin, we developed a 

single-molecule manipulation microscope equipped with 

high-speed feedback-controlled optical tweezers. Optical 

tweezers are a tool in which a laser beam is focused at a 

certain point to add an attractive force toward the focal 

point to a micron-size small particle (Neuman and Block 

2004). The 2018 Nobel Prize in Physics was awarded to Dr. 

Ashkin for his invention of optical tweezers. To manipulate 

kinesin movement, a small particle is attached to the end 

of the kinesin molecule with antibodies as a glue, and the 

intrinsic tail domain is truncated to eliminate 

autoinhibition (Aoki et al. 2013). The kinesin is allowed to 

walk on a microtubule rail while the probe particle is 

trapped with the optical tweezers (Fig. 2a). Since the 

trapping force is proportional to the distance between the 

particles and the focal point in the vicinity of the focal 

point, the force applied to the probe bead is changed by the 

kinesin walking. To overcome this effect, by recording the 

position of the particle with a quadrant photodiode (QPD) 

and making the focal point follow the movement of the 

particle through an acousto-optic deflector (AOD), it is 

possible to apply a constant external force (Force Clamp) 

(Fig. 2b). 

We achieved high speed control of the focal point by 

using a field-programmable gate array (FPGA) for the 

feedback-loop circuit. By utilizing the property of the 

FPGA such that the electric circuit can be freely changed 

only by programming, arbitrarily external forces can be 
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applied to the probe particle. To obtain the frequency 

spectrum of the response function, the change in velocity 

is measured by applying a tiny sinusoidal external force of 

various frequencies in addition to a constant external force. 

Velocity fluctuations can be determined from the power 

spectrum of the velocity under a constant external force. 

From the discrepancy between these two quantities, the 

total dissipation rate, Jx, can be obtained by using equation 

(1). Note that the focused degree of freedom, x, is not the 

position of the kinesin molecule, but of the probe particle.

Fig. 2c shows the relationship between fluctuations and 

responses measured via the probe particle while the 

attached kinesin is walking on a microtubule. The input 

energy to the system sets the free energy change (Δμ ~ 85 

pNnm) associated with ATP hydrolysis under conditions 

close to the physiological environment. However, under 

conditions of high ATP concentration (~1 mM), which 

approximates the concentration in cells, it is difficult to 

measure the low frequency range because kinesin moving 

at high speed passes the detectable range of the QPD within 

1 s. Thus, by reducing both the ATP and ADP 

concentrations without changing the ratio of the two (10 

μM ATP, 1 μM ADP, 1 mM Pi), we reduced the velocity of 

kinesin without changing the input Δμ. In addition, a 

constant external force of F0 = -2 pN is constantly applied 

so that the output power is approximately maximized. The 

violation of the relationship between the velocity 

fluctuation and the response was clearly observed in the 

frequency range below about 20 Hz (Fig. 2c). From this 

area, the nonequilibrium dissipation per unit time was 

determined to be ~2.7 pNnm/s, and the viscous dissipation 

as ~1.4 pNnm/s. Both values are two orders of magnitude 

smaller than the power (~400 pNnm/s) for a constant 

external force.

The relationship between the free energy change input 

per unit time and the power and dissipation, Jx, is taken as 

follows:

0 ./ x All othersF J Jv  = − + +  (4)

Here, the suffixes of J denote the degrees of freedom of 

interest, where x denotes the degree of freedom in the 

motion of the particle along the microtubule and All others 

denotes all other degrees of freedom. τ is the average time 

required for kinesin to hydrolyze one ATP molecule. The 

dissipation obtained in the experiment (Jx) was orders of 

magnitude smaller than the power ( 0F v−  ), and when 

they were added together, the sum was only about 20% the 

rate of the input free energy change (Δμ/τ ~ 2200 pNnm/s). 

Similar results are obtained for 1 mM ATP, which is close 

to physiological conditions. These results suggest that 

~80% of the input chemical energy is consumed as hidden 

dissipation (JAll others) through the other degrees of freedom, 

rather than dissipation through the motion of the particle 

being measured.

Mathematical model analysis

To investigate the origin of the hidden dissipation 

observed experimentally, we constructed a mathematical 

model of kinesin and performed numerical simulations and 

theoretical analysis. Although theoretical physicists have 

proposed a myriad of mathematical models for kinesin, we 

did not choose any of them for the following reasons. Most 

of the models assume a Brownian particle rolling over a 

one-dimensional potential, and as a result, the back step of 

kinesin is set to be the reverse path of the forward step. 

Experimentally, however, it is known that kinesin 

hydrolyzes ATP in the backward step (or by slippage 

Fig. 2 Single-molecule dissipation measurements of kinesin. (a) Schematic diagram of the measurement system. A probe particle is 
attached to a single-molecule kinesin via an antibody. The image of the particle is projected to quadrant photodiodes (QPD). The 
position signals are processed in a field-programable gate array (FPGA) circuit and feedbacked to the focal point of the optical tweezers 
via an acousto-optic deflector (AOD). (b) A typical time-trace of the particle position and the focal point of the optical trap. When the 
kinesin does not interact with microtubules, the particle shows Brownian motion centered on the trap focus (Waiting). When it begins 
to interact with a microtubule, kinesin begins to walk. The motion is automatically detected, and feedback is initiated to keep the 
distance between the particle and the focal point constant (Force clamp). When the kinesin walks to the edge of the detectable range of 
the QPD, it is forcibly pulled back to the waiting position. (c) Relationship between kinesin’s fluctuation (red squares) and response 
(blue circles). The region of the difference between these two (green area) exhibits the violation of the fluctuation dissipation theorem 
(nonequilibrium dissipation).
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without ATP hydrolysis), indicating that the back step is 

not the reverse path of the forward step (Hyeon et al. 2009). 

On the other hand, experimental biophysicists have 

proposed complex kinetic transition models by extracting 

the elementary transition rates mainly from single-

molecule observations. However, the elementary process 

of the back step has not been clarified in detail (Clancy et 

al. 2011). Therefore, we adopted the most simple but 

branched model in which the intricate elementary 

processes of kinesin are degenerated into a transition 

between two states (Taniguchi et al. 2005) (Fig. 3a).

The transition between the two kinesin states is divided 

into transitions with and without steps, where the former is 

further divided into forward and backward steps. The rate 

constants for the transitions with steps kf, and kb have a load 

dependency described as

   

 ,

, ,

0( ) exp ,
f b

f b f b

B

d F
k F k

k T

 
=  

 
 

 (5)

where F is the external force, kf
0 and kb

0 are the reaction 

rates when the external force is 0, and df and db are the 

response parameters to the external force having the 

dimension of distance. The five parameters, kf
0, kb

0, kc, df 

and db, required for the kinesin model can be obtained 

directly from the experiment (Taniguchi et al. 2005). To 

make the condition agree with the dissipation measurement, 

these parameters are obtained from fitting the force-

velocity relationship of kinesin measured under the same 

conditions as the dissipation measurement with the 

theoretical equation in (Ariga et al. 2018).

The physical quantity measured in the experiment is the 

position of the particle pulled by kinesin. Thus, the motion 

of the particle is combined with the kinesin model 

described above (Fig. 3b). Assuming kinesin as a point 

(position: xm) jumping back and forth with a step size d = 

8 nm, the position of the particle (xp) connected by a linear 

spring with a spring constant, k, can be described by the 

Langevin equation as

( ) ,p m p

d
x k x x F

dt
 = − + +  (6)

where the spring constant, k, and viscous drag, γ, are 

experimentally determined from the fluctuation analysis of 

kinesin-tethered particles immobilized on microtubules 

using ATP analogs (Gittes and Schmidt 1997).

Simulation results of the relationship between the 

fluctuation and the response of the kinesin model are 

shown in Fig. 3c circles and squares. Despite the highly 

simplified model, the shape reproduced the experimental 

results very well, and quantitative agreement was also 

found for each physical quantity calculated from the 

mathematical model. This model can also be solved 

analytically (Fig. 3c solid lines), and it was confirmed that 

the Harada-Sasa equality (1) holds in this model (see 

Supplemental Material in (Ariga et al. 2018) for 

derivations). However, the origin of the ~80% hidden 

dissipation is still unknown.

What is hidden dissipation?

In the case of kinesin, the dissipation through the probe 

particle is more than two orders of magnitude smaller than 

the input Δμ and the work for a constant external force, 

indicating a hidden dissipation of ~80%. On the other hand, 

similar dissipation measurements have been carried out by 

Toyabe et al. for the rotary motor F1-ATPase (Toyabe et al. 

2010). They found that the sum of viscous dissipation and 

nonequilibrium dissipation from the rotation probe 

attached to F1-ATPase is almost equal to the input Δμ, 

indicating that no hidden dissipation exists. To explain the 

different dissipations between the walking motor kinesin 

and rotary motor F1-ATPase, we consider two candidate 

reasons: reversibility of the motor and softness of the linker.

First, we consider the reversibility of the motor. F1-

ATPase is a reversible motor that also acts as a power 

generator for ATP synthesis through the reverse reaction 

path when it is rotated backward by an external force. In 

Fig. 3 A mathematical model for kinesin. (a) A two-state transition model for kinesin. (b) Langevin dynamics including a particle. (c) 
Relation between the fluctuation and response of kinesin reproduced by the mathematical model. The dashed lines show fluctuations 
and responses derived from kinesin molecules.
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contrast, the backward step of kinesin is not through the 

reverse path of the forward step, but rather through an 

alternative pathway that consumes ATP or through a state 

transition that does not involve ATP hydrolysis (slippage), 

meaning that kinesin is irreversible. However, in our 

measurement condition of physiologically high Δμ and low 

external force, the frequency of backsteps and slippage is 

estimated to be less than a few percentage points (Sumi 

2017). Considering this point, wasteful ATP hydrolysis 

pathways cannot account for the ~80% hidden dissipation. 

Thus, the irreversibility of kinesin is not considered the 

main cause of the hidden dissipation. 

The second candidate is the softness of the linker, which 

links the motor to the particle. In the experimental system 

of F1-ATPase, the probe particles are attached directly to 

the rotation axis, so that the motion is totally transmitted. 

On the other hand, in the case of kinesin measurements, 

since the probe particle is connected via an elastic rod 

domain (stalk), it is possible that the motion of kinesin is 

not fully transmitted to the particles due to the softness of 

the stalk. However, by analyzing the violation of the 

fluctuation and response of the kinesin molecule with the 

mathematical model (Fig. 3c dotted lines), we found that 

the area almost agrees with the amount of the violation 

measured through the particle. This result indicates that the 

non-thermal motion of the kinesin molecule is properly 

transmitted to the particle. In other words, the softness of 

the linker has no artificial effect on the measurement of the 

nonequilibrium dissipation.

It should be noted that the dissipation discussed here is 

only from the degree of freedom, x, along the microtubule. 

We have performed the dissipation measurement for the y 

direction, but no difference between fluctuations and 

responses was observed within the error range. Although 

z-axis displacement cannot be measured with our 

equipment, we expected there to be almost no dissipation 

because no motion other than thermal fluctuation has been 

reported in that direction. Another degree of freedom is 

rotation. It has been reported that kinesin generates torque 

and spins cargo (Ramaiya et al. 2017). However, since we 

focus on the dissipation at low load condition with freely 

rotating probe particles, which is similar to the condition 

for vesicle transport, the dissipation associated with the 

rotation of the probe particle was estimated to be much 

smaller than the hidden dissipation due to the slow 

rotational velocity reported previously (Ramaiya et al. 

2017). 

Several other verifications have indicated that walking 

kinesin dissipates very little energy through the motion of 

the probe particle, meaning that as much as 80% of the 

input free energy is not used to transport the cargo. The 

experimental results of the dissipation measurements and 

the verification using a mathematical model suggest that 

the origin of the hidden dissipation is the internal 

dissipation that dissipates from inside the kinesin molecule 

(Ariga et al. 2018).

Efficiency in living cells

The above conclusion that most of the input free energy 

is dissipated from the interior of the kinesin molecule 

seems to be that kinesin is an inefficient motor (Hendricks 

2018). However, this is unlikely when considering that 

kinesin has evolved over hundreds of millions of years. 

Instead, the above analysis may ignore the actual working 

environment of kinesin: living cells.

Unlike experimental conditions in vitro, the intracellular 

environment is extremely crowded with macromolecules 

and thereby has high viscosity (Ellis 2001; Goodsell 1991). 

It is easy to expect that higher viscosity increases the 

contribution of viscous dissipation [the first term in 

equation (1)] and thus the apparent efficiency of motors 

too. So, how crowded is the inside of a cell? Surprisingly, 

when cellular constituents are extracted from a cell, the cell 

extract shows remarkably high viscosity; as the extract 

approaches the intracellular concentration, the viscosity 

approximates divergence (Nishizawa et al. 2017b). If the 

viscosity diverges, the environment freezes, such that the 

motors cannot move. In living cells, however, molecular 

motors are always moving. Currently, this behavior is 

explained by the cell’s metabolic activity fluidizing the 

crowded intracellular environment (Parry et al. 2014). 

The intracellular environment is not only crowded, but 

it is also actively (non-thermally) fluctuating (Guo et al. 

2014; Nishizawa et al. 2017a). Generally, when colloidal 

particles in solution are highly crowded, they become a 

solid state by undergoing a glass transition (Hunter and 

Weeks 2012). It has been proposed that frozen (jammed) 

colloidal particles can be fluidized by applying a load or 

shaking (Liu and Nagel 1998). In fact, such systems under 

shear stress can fluidize through rearrangements of the 

particles (Petekidis et al. 2002). Similar fluidization has 

been observed in living cells (Nishizawa et al. 2017b; 

Parry et al. 2014), in which the cytosol was agitated by 

active fluctuations (Guo et al. 2014; Nishizawa et al. 

2017a). Since fluidization and active fluctuations in cells 

exhibit a similar metabolism dependency, these results 

suggest that the intracellular environment is fluidized by 

active fluctuations.

On the other hand, it has long been proposed that 

molecular motors such as kinesin move by utilizing 

thermal fluctuations (Vale and Oosawa 1990), and recently 

fluctuating kinesin heads were directly visualized (Isojima 

et al. 2016). Molecular motors that operate with thermal 

fluctuations may also utilize non-thermal (active) 

fluctuations to optimize their performance in the 

intracellular environment. That vesicles transported by 

kinesin in cells move faster than in vitro is an example of 

"the dark matter of biology" (Ross 2016). More study of 

kinesin in living cells is necessary to evaluate its efficiency.
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In addition to the kinesins reviewed here, various 

molecular motors, such as myosin and dynein, also operate 

in cells. These motors move many organelles not only 

directionally but also randomly. For example, the position 

of mitochondria in cells is always fluctuating (del Álamo 

et al. 2008), but the physiological role of this fluctuation is 

unclear. Active fluctuations in cells are unlikely to be noise, 

but have physiological significance for living beings 

(Oosawa 2007). Quantitative dissipation measurements of 

walking molecular motors and analytical methods with 

mathematical models will help clarify the energetics of 

these motors to understand how they operate efficiently in 

a fluctuating world. 
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