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Abstract
We consider a reliable decentralized diagnosis problem for discrete event systems in the
inference-based framework. This problem requires us to synthesize local diagnosers such
that the occurrence of any failure string is correctly detected within a finite number of steps,
even if local diagnosis decisions of some local diagnosers are not available. In the case
of single-level inference, we introduce a notion of reliable 1-inference-diagnosability and
show that reliable 1-inference-diagnosability is a necessary and sufficient condition for the
existence of a solution to the reliable decentralized diagnosis problem. Then, we show how
to verify reliable 1-inference-diagnosability effectively. When the system to be diagnosed is
reliably 1-inference-diagnosable, we compute the delay bound within which the occurrence
of any failure string can be detected. Local diagnosers can be constructed using the computed
delay bound.

Keywords Discrete event system · Decentralized failure diagnosis · Reliable
inference-diagnosability · Delay bound

Nomenclature
N Set of all nonnegative integers.

�≥m Subset of �∗ defined as �≥m = {s ∈ �∗ | |s| ≥ m}.
�≤m Subset of �∗ defined as �≤m = {s ∈ �∗ | |s| ≤ m}.

I Index set {1, 2, . . . , n} of local diagnosers.
I≥k Subset of the power set 2I of I defined as I≥k = {I ′ ∈ 2I | |I ′| ≥ k}.
Ik Subset of the power set 2I of I defined as Ik = {I ′ ∈ 2I | |I ′| = k}.
C Set {0, 1, φ} of diagnosis decisions.

GK Automaton that generates the language K ⊆ L(G).
˜GK Augmented automaton that generates �∗.
VF Finite automaton constructed for verifying ∀m ∈ N(F2(m) 	= ∅).

VNF Nondeterministic acyclic automaton constructed from VF .
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̂JF (pVNF ) Label of path pVNF of VNF defined as Eq. 74.
VH Finite automaton constructed for verifying ∀m ∈ N(H2(m) 	= ∅).

VNH Nondeterministic acyclic automaton constructed from VH .
̂JH (pVNH ) Label of path pVNH of VNH defined as Eq. 102.

m∗ Delay bound defined as Eq. 114.
m∗

F Minimum element of NF = {m ∈ N | F2(m) = ∅}.
m∗

H Minimum element of NH = {m ∈ N | H2(m) = ∅}.

1 Introduction

For discrete event systems (DESs), the language-based notion of diagnosability was intro-
duced in Sampath et al. (1995) for the centralized setting, where a single diagnoser diagnoses
the system so that the occurrence of any failure string is correctly detected within a finite
number of steps. In decentralized failure diagnosis (Cassez 2012; Chakib and Khoumsi 2012;
Debouk et al. 2000; Khoumsi 2020; Kumar and Takai 2009; Qiu and Kumar 2006; Su and
Wonham 2005; Takai and Kumar 2017; Viana and Basilio 2019; Wang et al. 2011, 2007;
Yin and Lafortune 2015), multiple local diagnosers locally diagnose the system. A decen-
tralized diagnoser consists of local diagnosers and issues the diagnosis decision based on the
local diagnosis decisions made by local diagnosers. The two kinds of decentralized diagnosis
architectures, called the disjunctive architecture (Debouk et al. 2000; Qiu and Kumar 2006)
and the conjunctive architecture (Wang et al. 2007), were developed. In the disjunctive archi-
tecture, the decentralized diagnoser issues the failure decision if and only if at least one local
diagnoser makes the local failure decision. On the other hand, in the conjunctive architecture,
the decentralized diagnoser issues the failure decision if and only if all local diagnosers make
the local failure decisions. The codiagnosability property plays an important role in character-
izing the class of systems which are diagnosable in the decentralized setting. The notions of
disjunctive-codiagnosability (Qiu andKumar 2006) and conjunctive-codiagnosability (Wang
et al. 2007) were introduced in the disjunctive and conjunctive architectures, respectively.
Interestingly, these two notions are incomparable (Wang et al. 2007).

Inference-based approaches were first introduced for DESs in the setting of decentralized
supervisory control (Kumar and Takai 2007; Ricker and Rudie 2007; Yoo and Lafortune
2004). In these approaches, each local supervisor makes a control decision based on infer-
ence, which means using the knowledge about control decisions of other local supervisors.
In particular, using the knowledge about control decisions issued by other local super-
visors unambiguously is referred to as single-level inference. Later, the inference-based
approaches were applied to decentralized diagnosis (Khoumsi 2020; Kumar and Takai
2009; Takai and Kumar 2017; Wang et al. 2007). The conditional architecture introduced in
Wang et al. (2007) involves single-level inference. The notions of conditional disjunctive-
codiagnosability and conditional conjunctive-codiagnosability, both of which are weaker
than disjunctive-codiagnosability and conjunctive-codiagnosability, were introduced in the
conditional disjunctive and conjunctive architectures, respectively (Wang et al. 2007). The
general inference-based frameworks developed in Kumar and Takai (2009); Takai andKumar
(2017) allow multi-level inference. In these general frameworks, a local diagnosis decision
is tagged with a nonnegative integer called an ambiguity level. The ambiguity level repre-
sents how ambiguous a local diagnoser is about its local diagnosis decision. To correctly
detect the occurrence of any failure string within a finite number of steps, any nonfailure
string should be distinguished from any sufficiently long failure string or vice versa. The
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local failure decision with the ambiguity level 0 is taken when a local diagnoser is certain
that a failure string has occurred. On the other hand, the local nonfailure decision with the
ambiguity level 0 is made when a local diagnoser certainly knows that a sufficiently long
failure string has not occurred. In addition, the local failure (respectively, nonfailure) decision
with the ambiguity level 1 is taken when a local diagnoser knows that, for any indistinguish-
able nonfailure (respectively, sufficiently long failure) string, another local diagnoser makes
the local nonfailure (respectively, failure) decision with the ambiguity level 0 so that the
local failure (respectively, nonfailure) decision with the ambiguity level 1 is overridden. The
failure/nonfailure decision with a higher ambiguity level can be similarly explained.

Reliability is a desirable property for safety-critical systems. In most previous work on
decentralized diagnosis, it is implicitly assumed that diagnosis decisions of all local diag-
nosers are available. However, it may be possible that some local decisions are not available,
due to some reasons including breakdown of local diagnosers and disconnection of the net-
work. A reliable decentralized diagnosis problem was considered in the disjunctive and
conjunctive architectures in Basilio and Lafortune (2009); Nakata and Takai (2013) and
Yamamoto and Takai (2014), respectively. Similar problems were considered for decen-
tralized supervisory control in Liu and Lin (2010); Takai and Ushio (2000, 2003) and
decentralized prognosis in Yin and Li (2016). Letting n be the number of local diagnosers,
the reliable decentralized diagnosis problem requires us to synthesize n local diagnosers such
that the occurrence of any failure string is correctly detected within a finite number of steps,
as long as at least k (2 ≤ k ≤ n) local diagnosis decisions are available. In other words, the
occurrence of any failure string is detected within a finite number of steps, even if diagnosis
decisions of at most n − k local diagnosers are not available. In this sense, the decentral-
ized diagnoser consisting of such local diagnosers is reliable. To characterize the existence
of a solution to the problem, the notions of (n, k)-reliable disjunctive-codiagnosability and
(n, k)-reliable conjunctive-codiagnosability were introduced in Nakata and Takai (2013) and
Yamamoto and Takai (2014), respectively.

In this paper, we consider the reliable decentralized diagnosis problem in the inference-
based framework of Takai and Kumar (2017). In order to characterize the existence of a
solution,wedefine anotionof (n, k)-reliable 1-inference-diagnosability,which isweaker than
(n, k)-reliable disjunctive-codiagnosability and (n, k)-reliable conjunctive-codiagnosability.
To do so, the iterative computations over languages introduced in Takai and Kumar (2017)
are generalized. We show that (n, k)-reliable 1-inference-diagnosability is a necessary and
sufficient condition for the existence of n local diagnosers that solve the reliable decentralized
diagnosis problem based on single-level inference. This result generalizes the existing ones
of Basilio and Lafortune (2009); Nakata and Takai (2013); Yamamoto and Takai (2014)
on reliable decentralized diagnosis without inference. In addition, we present how to verify
(n, k)-reliable 1-inference-diagnosability. When the system is (n, k)-reliably 1-inference-
diagnosable, we compute the delay bound within which the occurrence of any failure string
can be detected, even if diagnosis decisions of at most n−k local diagnosers are not available.
The computed delay bound is used to construct local diagnosers.

Recently, the reliable decentralized supervisory control problem has been solved using
single-level inference (Takai and Yoshida 2022). In supervisory control, a supervisor is
required to always issue a correct control decision for each feasible controllable event. The
purpose of failure diagnosis addressed in this paper is to detect the occurrence of a failure
string that cannot be directly observed. Due to unobservability of the occurrence of a failure
string, the requirement that it should be detected immediately is unrealistic. Therefore, the
notion of diagnosability introduced in Sampath et al. (1995) requires that the occurrence
of any failure string is correctly detected with a finite delay. Since a delay of detecting the
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occurrence of a failure string is allowed, the result of Takai and Yoshida (2022) cannot be
applied to the reliable decentralized diagnosis problem considered in this paper.

The present paper is an extended version of the authors’ conference papers (Hamada and
Takai 2022a) and Hamada and Takai (2022b). Its additional contributions are summarized as
follows:

• The proofs of the technical results are included
and

• how to compute the delay bound within which the occurrence of any failure string can
be detected is presented.

2 Preliminaries

A DES to be diagnosed is modeled as a finite automaton G = (Q, �, δ, q0), where Q is the
finite set of states, � is the finite set of events, a partial function δ : Q × � → Q is the state

transition function, and q0 ∈ Q is the initial state. A sequence q0
σ0−→ q1

σ1−→ · · · σl−1−−→ ql
(l ≥ 1) of transitions from the initial state q0 such that δ(qh, σh) = qh+1 for each h ∈
{0, 1, . . . , l − 1} is called a path of G. Let �∗ be the set of all finite strings of elements of �,
including the empty string ε. The function δ can be generalized to δ : Q × �∗ → Q in the
usual manner. For any q ∈ Q and any s ∈ �∗, δ(q, s)! denotes that δ(q, s) is defined. Let
N be the set of all nonnegative integers, that is, N = {0, 1, 2, . . . }. For any s ∈ �∗, |s| ∈ N

denotes its length and sm denotes m concatenations of s, where m ∈ N. Besides, for any
m ∈ N, we let �≥m = {s ∈ �∗ | |s| ≥ m} and �≤m = {s ∈ �∗ | |s| ≤ m}.

The generated language ofG, denoted by L(G), is defined as L(G) = {s ∈ �∗ | δ(q0, s)!}.
For each s ∈ L(G), the postlanguage of L(G) after s is defined as L(G)/s = {t ∈ �∗ | st ∈
L(G)}. For a string s ∈ �∗, pr(s) denotes the set of all prefixes of s, that is, pr(s) = {t ∈
�∗ | ∃u ∈ �∗(s = tu)}. For a language K ⊆ �∗, pr(K ) = {s ∈ �∗ | ∃t ∈ �∗(st ∈ K )} is
the set of all prefixes of strings in K . K is said to be (prefix-)closed if K = pr(K ).

In the setting of decentralized diagnosis, n local diagnosers diagnose the system G based
on local event observations. Let I = {1, 2, . . . , n} be the index set of local diagnosers. For
the i th local diagnoser (i ∈ I ), let �i,o ⊆ � be the set of locally observable events and
Pi : �∗ → �∗

i,o be the natural projection from �∗ to �∗
i,o, which is inductively defined as

follows:

• Pi (ε) = ε,
• ∀s ∈ �∗,∀σ ∈ �,

Pi (sσ) =
{

Pi (s)σ, if σ ∈ �i,o

Pi (s), otherwise.
(1)

If a string s ∈ L(G) is executed in G, then the locally observable event string Pi (s) is
observed by the i th local diagnoser. For any language K ⊆ �∗, let Pi (K ) = {Pi (s) ∈ �∗

i,o |
s ∈ K }. Two strings s, s′ ∈ L(G) are said to be indistinguishable (under Pi ) if Pi (s) = Pi (s′).
Then, the inverse projection P−1

i : �∗
i,o → 2�∗

is defined by P−1
i (ti ) = {s ∈ �∗ | Pi (s) =

ti } for any ti ∈ �∗
i,o. That is, P

−1
i (ti ) is the set of strings that are observed as ti by the i th

local diagnoser. We define the globally observable and unobservable event sets �o ⊆ � and
�uo ⊆ � as �o = ⋃

i∈I �i,o and �uo = � − �o, respectively.
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3 Problem formulation

In this section,we formulate a reliable decentralized diagnosis problem in the inference-based
framework of Takai and Kumar (2017).

The set of diagnosis decisions is C = {0, 1, φ}, where 0 and 1 represent the nonfailure
and failure decisions, respectively, while φ denotes the unsure decision. Due to local event
observations, a local diagnoser is possibly ambiguous whether a failure string has occurred.
To represent the degree of ambiguity of a local diagnosis decision, a nonnegative integer,
which is called the ambiguity level, is attached to it. If a local diagnoser is unambiguous about
its diagnosis decision, 0 is attached as its ambiguity level. For each i ∈ I , an inference-based
local diagnoser Di is defined as a function Di : Pi (L(G)) → C × N. For each s ∈ L(G),
Di (Pi (s)) is denoted by

Di (Pi (s)) = (ci (Pi (s)), ni (Pi (s))), (2)

where, for the locally observed event string Pi (s) ∈ Pi (L(G)), ci (Pi (s)) ∈ C denotes the
local diagnosis decision of Di and ni (Pi (s)) ∈ N is the ambiguity level of ci (Pi (s)).

In this paper, we consider a situation where diagnosis decisions of some local diagnosers
are not available with some reasons. Let k be a nonnegative integer such that 2 ≤ k ≤ n,
which represents the minimum number of local diagnosers whose diagnosis decisions are
available.

Remark 1 In the case of k = 1, it is possible that the diagnosis decision of only one local
supervisor is available. Therefore, each local diagnoser has to be synthesized as a centralized
diagnoser that works alone, and the reliable decentralized diagnosis problem considered in
this paper can be simply solved by the existing results on centralized diagnosis. This is the
reason why we exclude the case of k = 1.

We define two subsets I≥k and Ik of the power set 2I of I as I≥k = {I ′ ∈ 2I | |I ′| ≥ k}
and Ik = {I ′ ∈ 2I | |I ′| = k}. For each I ′ ∈ I≥k , it is possible that diagnosis decisions of
only local diagnosers Di with i ∈ I ′ are available. The decentralized diagnoser consisting
of local diagnosers Di with i ∈ I ′ is defined as a function DI ′ : L(G) → C such that, for
each s ∈ L(G), the diagnosis decision DI ′(s) is given as

DI ′(s) =
⎧

⎨

⎩

1, if ∀i ∈ I ′(ni (Pi (s)) = nI ′(s) ⇒ ci (Pi (s)) = 1)
0, if ∀i ∈ I ′(ni (Pi (s)) = nI ′(s) ⇒ ci (Pi (s)) = 0)
φ, otherwise,

(3)

where nI ′(s) is the minimum ambiguity level of local decisions, i.e.,

nI ′(s) = min{ni (Pi (s)) ∈ N | i ∈ I ′}. (4)

Unlike a local diagnoser Di : Pi (L(G)) → C × N, the decentralized diagnoser DI ′ :
L(G) → C issues the diagnosis decision DI ′(s) ∈ C for a string s ∈ L(G)without attaching
its ambiguity level. When a string s ∈ L(G) is executed inG, each local diagnoser makes the
local diagnosis decision ci (Pi (s)) with the ambiguity level ni (Pi (s)). Then, the diagnosis
decision DI ′(s) of the decentralized diagnoser DI ′ is taken to be the same as the local
diagnosis decision whose ambiguity level is minimal. The value nI ′(s) can be considered as
the ambiguity level of the diagnosis decision DI ′(s). Since the subject of failure diagnosis is
detecting the occurrence of a failure string, the value nI ′(s) is not issued by the decentralized
diagnoser DI ′ .

For the sake of simplicity, we assume in the remainder of the paper that the system G
to be diagnosed is deadlock free, that is, for any s ∈ L(G), there exists σ ∈ � such that
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sσ ∈ L(G). Besides, we assume that the nonfailure behavior of the system G is described by
a nonempty closed regular sublanguage K ⊆ L(G). That is, K is the set of all strings without
failures. For any s ∈ K , a failure is modeled by the occurrence of an event σ ∈ � such that
sσ ∈ L(G) − K . Any string in L(G) − K (respectively, K ) is called a failure (respectively,
nonfailure) string.

Remark 2 When the system G is not deadlock free, G has to be modified by adding a self-
loop transition by a new unobservable event σuo /∈ � at any deadlock state reached by a
string s ∈ L(G) such that sσ /∈ L(G) for any σ ∈ �. The modified system is deadlock free,
and the results of the paper are applicable to it.

Given a nonnegative integer k ∈ N with 2 ≤ k ≤ n and a nonnegative integer N ∈ N, a
notion of (n, k)-N -inferring local diagnosers is defined as follows:

Definition 1 Let k ∈ N be a nonnegative integer such that 2 ≤ k ≤ n, where n ∈ N is
the number of local diagnosers and k is the minimum number of local diagnosers whose
diagnosis decisions are available, and N ∈ N be a nonnegative integer that represents an
upper bound of the ambiguity level of a diagnosis decision. For a nonempty closed regular
sublanguage K ⊆ L(G), n local diagnosers Di : Pi (L(G)) → C ×N (i = 1, 2, . . . , n) are
said to be (n, k)-N-inferring if the following two conditions hold:

• It holds that

∀I ′ ∈ I≥k,∀s ∈ L(G) − K (DI ′(s) = 1 ⇒ nI ′(s) ≤ N ) (5)

or
∀I ′ ∈ I≥k,∀s ∈ K (DI ′(s) 	= 1 ⇒ nI ′(s) ≤ N ), (6)

• there exists m ∈ N such that

∀I ′ ∈ I≥k,∀s ∈ (L(G) ∩ (L(G) − K )�≥m) ∪ K (nI ′(s) ≤ N ⇒ DI ′(s) 	= φ). (7)

If n local diagnosers Di (i = 1, 2, . . . , n) are (n, k)-N -inferring, then, for any I ′ ∈ I≥k ,

• the ambiguity level of the failure decision of the decentralized diagnoser DI ′ for any
failure string or that of the nonfailure or unsure decision of DI ′ for any nonfailure string
is bounded by N , and

• for any nonfailure or sufficiently long failure string, the decision of DI ′ is not unsure if
its ambiguity level is less than or equal to N .

A reliable decentralized diagnosis problem considered in this paper is formulated as
follows:

Problem 1 (Reliable Decentralized Diagnosis Problem) Let k ∈ N be a nonnegative integer
such that 2 ≤ k ≤ n. A reliable decentralized diagnosis problem is a problem of synthesizing
(n, k)-N-inferring local diagnosers Di : Pi (L(G)) → C × N (i = 1, 2, . . . , n) that satisfy

∃m ∈ N,∀I ′ ∈ I≥k,∀s ∈ L(G) ∩ (L(G) − K )�≥m(DI ′(s) = 1) (8)

and
∀I ′ ∈ I≥k,∀s ∈ K (DI ′(s) 	= 1). (9)

The conditions Eqs. 8 and 9 guarantee that there exists a nonnegative integer m ∈ N

such that if diagnosis decisions of at least k local diagnosers are available, the occurrence of
any failure string can be correctly detected within m steps. In this sense, the decentralized
diagnoser consisting of local diagnosers Di (i = 1, 2, . . . , n) that satisfy the conditions
Eqs. 8 and 9 is reliable.
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4 Solvability of reliable decentralized diagnosis problem

We consider the reliable decentralized diagnosis problem formulated in the last section. For
the solvability of the problem, we focus on the case of N = 1 and present a necessary
and sufficient condition for the existence of (n, k)-1-inferring local diagnosers that solve the
problem.

4.1 Reliable 1-inference-diagnosability

To characterize the existence of (n, k)-1-inferring local diagnosers that solve the reliable
decentralized diagnosis problem, we introduce a notion of (n, k)-reliable 1-inference-
diagnosability.

For a nonempty closed regular sublanguage K ⊆ L(G) that models the nonfailure behav-
ior ofG, we introduce a sequence {(Fh(m), Hh(m))}h∈N of language pairs,wherem ∈ N is an
arbitrary nonnegative integer, to define a notion of (n, k)-reliable 1-inference-diagnosability
and synthesize (n, k)-1-inferring local diagnosers. Initially, F0(m) and H0(m) are defined
as

F0(m) = L(G) ∩ (L(G) − K )�≥m, (10)

H0(m) = K . (11)

F0(m) is the set of failure strings such that at leastm events have occurred after the occurrences
of the corresponding failures, while H0(m) is the set of all nonfailure strings. Then, for any
h ∈ N, Fh+1(m) and Hh+1(m) are defined as

Fh+1(m) = Fh(m) ∩
⎧

⎨

⎩

⋃

I ′∈Ik

(

⋂

i∈I ′
P−1
i Pi (Hh(m))

)

⎫

⎬

⎭

, (12)

Hh+1(m) = Hh(m) ∩
⎧

⎨

⎩

⋃

I ′∈Ik

(

⋂

i∈I ′
P−1
i Pi (Fh(m))

)

⎫

⎬

⎭

. (13)

By Eq. 12 (respectively, Eq. 13), Fh+1(m) (respectively, Hh+1(m)) is a sublanguage of
Fh(m) (respectively Hh(m)), which means that as the value of h increases, Fh(m) (respec-
tively Hh(m)) becomes smaller. For each string in Fh+1(m) (respectively, Hh+1(m)), there
exist an index set I ′ ∈ Ik and an indistinguishable string in Hh(m) (respectively, Fh(m)) for
each i ∈ I ′.

Remark 3 In the case of k = n, that is, diagnosis decisions of all n local diagnosers are
available, the languages Fh+1(m) and Hh+1(m) are given by

Fh+1(m) = Fh(m) ∩
(

⋂

i∈I
P−1
i Pi (Hh(m))

)

, (14)

Hh+1(m) = Hh(m) ∩
(

⋂

i∈I
P−1
i Pi (Fh(m))

)

(15)

for any h ∈ N, which are the same as those defined in Takai and Kumar (2017).

For each string in F0(m) − F1(m) (respectively, H0(m) − H1(m)), at least one local
diagnoser can distinguish it from strings in H0(m) (respectively, F0(m)) and make the failure
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(respectively, nonfailure) decision whose ambiguity level is 0, even if diagnosis decisions
of at most n − k local diagnosers are not available. We consider any string s ∈ F1(m) −
F2(m) (respectively, s ∈ H1(m) − H2(m)). There exists at least one local diagnoser that
can distinguish it from strings in H1(m) (respectively, F1(m)). In addition, for each string
in H0(m) − H1(m) (respectively, F0(m) − F1(m)), the nonfailure (respectively, failure)
decision is issued by another local diagnoser unambiguously. Therefore, based on single-
level inference, a local diagnoser that can distinguish s ∈ F1(m) − F2(m) (respectively,
s ∈ H1(m)− H2(m)) from strings in H1(m) (respectively, F1(m)) is able to make the failure
(respectively, nonfailure) decision whose ambiguity level is 1. Moreover, if F2(m) = ∅
(respectively, H2(m) = ∅), the failure (respectively, nonfailure) decision whose ambiguity
level is less than or equal to 1 can bemade for any string in F0(m) (respectively, H0(m)). This
observation motivates us to introduce a notion of (n, k)-reliable 1-inference-diagnosability
as follows:

Definition 2 Let k ∈ N be a nonnegative integer such that 2 ≤ k ≤ n. For a nonempty closed
regular sublanguage K ⊆ L(G), the system G is said to be (n, k)-reliably 1-inference-
diagnosable if

∃m ∈ N(F2(m) = ∅ ∨ H2(m) = ∅). (16)

Remark 4 When k = n, (n, k)-reliable 1-inference-diagnosability is reduced to the 1-
inference-diagnosability condition of Takai and Kumar (2017).

The two notions of reliable codiagnosability were defined in Nakata and Takai (2013);
Yamamoto and Takai (2014). For a nonempty closed regular sublanguage K ⊆ L(G), the
system G is

• (n, k)-reliably disjunctive-codiagnosable (Nakata and Takai 2013) if

∃m ∈ N,∀s ∈ L(G) ∩ (L(G) − K )�≥m(|ID(s)| ≥ n − k + 1), (17)

where ID(s) = {i ∈ I | P−1
i Pi (s) ∩ L(G) ⊆ L(G) − K },

• (n, k)-reliably conjunctive-codiagnosable (Yamamoto and Takai 2014) if

∃m ∈ N,∀s ∈ K (|IC (s)| ≥ n − k + 1), (18)

where IC (s) = {i ∈ I | P−1
i Pi (s) ∩ L(G) ⊆ K�≤m}.

By thedefinitionof F1(m) (respectively, H1(m)),G is (n, k)-reliably disjunctive-codiagnosable
(respectively, (n, k)-reliably conjunctive-codiagnosable) if and only if there exists m ∈ N

such that F1(m) = ∅ (respectively, H1(m) = ∅). Thus, the following proposition is obtained.

Proposition 1 Let k ∈ N be a nonnegative integer such that 2 ≤ k ≤ n. For a
nonempty closed regular sublanguage K ⊆ L(G), if the system G is (n, k)-reliably
disjunctive-codiagnosable or (n, k)-reliably conjunctive-codiagnosable, then it is (n, k)-
reliably 1-inference-diagnosable.

Proposition 1 shows that (n, k)-reliable 1-inference-diagnosability is weaker than (n, k)-
reliable disjunctive-codiagnosability and (n, k)-reliable conjunctive-codiagnosability. As
shown in Example 1 later, the reverse relation does not hold.
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4.2 Synthesis of local diagnosers

We assume that, for a nonempty closed regular sublanguage K ⊆ L(G), the system G
is (n, k)-reliably 1-inference-diagnosable. Then, there exists m ∈ N such that Fh(m) =
Hh(m) = ∅ for any h ∈ N with h ≥ 3. For such m ∈ N, according to the synthesis method
developed in Takai and Kumar (2017), we synthesize an inference-based local diagnoser
Di : Pi (L(G)) → C × N for each i ∈ I . Since Fh(m) = Hh(m) = ∅ for any h ∈ N

with h ≥ 3, the language pairs (Fh(m), Hh(m)) (h = 4, 5, 6, . . . ) are redundant. Therefore,
the four language pairs (Fh(m), Hh(m)) (h = 0, 1, 2, 3) are used for this purpose. For each
s ∈ L(G), n f

i (Pi (s)) ∈ N, which we call the ambiguity level of the failure decision, and
nhi (Pi (s)) ∈ N, which we call the ambiguity level of the nonfailure decision, are computed
by

n f
i (Pi (s)) = min{h ∈ {0, 1, 2, 3} | Pi (s) /∈ Pi (Hh(m))}, (19)

nhi (Pi (s)) = min{h ∈ {0, 1, 2, 3} | Pi (s) /∈ Pi (Fh(m))}. (20)

n f
i (Pi (s)) (respectively, nhi (Pi (s))) is the minimum integer h such that s can be distinguished

from strings in Hh(m) (respectively, Fh(m)) under Pi . It follows from F3(m) = H3(m) = ∅
that n f

i (Pi (s)) and nhi (Pi (s)) are well-defined. Using n f
i (Pi (s)) and nhi (Pi (s)), the local

diagnosis decision ci (Pi (s)) ∈ C and its ambiguity level ni (Pi (s)) ∈ N are determined as
follows:

ci (Pi (s)) =

⎧

⎪

⎨

⎪

⎩

1, if n f
i (Pi (s)) < nhi (Pi (s))

0, if nhi (Pi (s)) < n f
i (Pi (s))

φ, otherwise,
(21)

ni (Pi (s)) = min{n f
i (Pi (s)), n

h
i (Pi (s))}. (22)

The local diagnosis decision ci (Pi (s)) is determined by comparing n f
i (Pi (s)) and

nhi (Pi (s)). If n
f
i (Pi (s)) (respectively, nhi (Pi (s))) is smaller than nhi (Pi (s)) (respectively,

n f
i (Pi (s))), then the local failure (respectively, nonfailure) decision is made.
The following proposition is obtained in the same way as Lemma 2 of Takai and Kumar

(2017), which shows that if the system G is (n, k)-reliably 1-inference-diagnosable for a
given nonempty closed regular sublanguage K ⊆ L(G), then the n local diagnosers Di (i =
1, 2, . . . , n) synthesized by Eqs. 19–22 solve the reliable decentralized diagnosis problem in
the case of N = 1.

Proposition 2 Let k ∈ Nbe anonnegative integer such that2 ≤ k ≤ n.For a nonempty closed
regular sublanguage K ⊆ L(G), if the system G is (n, k)-reliably 1-inference-diagnosable,
then the n local diagnosers Di : Pi (L(G)) → C × N (i = 1, 2, . . . , n) synthesized by Eqs.
19–22 for any m ∈ N such that F2(m) = ∅ or H2(m) = ∅ are (n, k)-1-inferring and satisfy
the conditions

∀I ′ ∈ I≥k,∀s ∈ L(G) ∩ (L(G) − K )�≥m(DI ′(s) = 1) (23)

and Eq. 9.

Proposition 2 shows that the n local diagnosers Di : Pi (L(G)) → C×N (i = 1, 2, . . . , n)

synthesized by Eqs. 19–22 for m ∈ N with F2(m) = ∅ or H2(m) = ∅ can detect the
occurrence of any failure string correctly within m steps. How to compute such m ∈ N will
be presented in Section 6.
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4.3 Existence of solution

By Proposition 2, (n, k)-reliable 1-inference-diagnosability is a sufficient condition for the
existence of a solution to the reliable decentralized diagnosis problem in the case of N = 1.
In the following theorem, we show that this condition is also necessary.

Theorem 3 Let k ∈ N be a nonnegative integer such that 2 ≤ k ≤ n. For a nonempty
closed regular sublanguage K ⊆ L(G), there exist (n, k)-1-inferring local diagnosers Di :
Pi (L(G)) → C × N (i = 1, 2, . . . , n) that satisfy the conditions Eqs. 8 and 9 if and only if
the system G is (n, k)-reliably 1-inference-diagnosable.

Proof To prove the sufficiency part, we suppose that G is (n, k)-reliably 1-inference-
diagnosable. By Proposition 2, there exist (n, k)-1-inferring local diagnosers Di (i =
1, 2, . . . , n) that satisfy the conditions Eqs. 8 and 9.

We prove the necessity part. We consider arbitrary (n, k)-1-inferring local diagnosers Di

(i = 1, 2, . . . , n) that satisfy the conditions Eqs. 8 and 9. Since they satisfy Eq. 8, there
exists m ∈ N such that Eq. 23 holds. For the sake of contradiction, we suppose that G is not
(n, k)-reliably 1-inference-diagnosable. Then, we have F2(m) 	= ∅ and H2(m) 	= ∅. Since
Di (i = 1, 2, . . . , n) are (n, k)-1-inferring, the condition Eqs. 5 or 6 in the first condition of
Definition 1 holds for N = 1.

We first consider the case where Eq. 5 holds. For any s ∈ F2(m) 	= ∅, there exists I ′ ∈ Ik

such that

s ∈ F1(m) ∩
(

⋂

i∈I ′
P−1
i Pi (H1(m))

)

. (24)

Since s ∈ F1(m) ⊆ F0(m) = L(G) ∩ (L(G) − K )�≥m and I ′ ∈ Ik ⊆ I≥k , by Eq. 23,
we have DI ′(s) = 1. By Eq. 5, we have nI ′(s) ≤ 1. We consider any j ∈ I ′ such that
nI ′(s) = n j (Pj (s)). By DI ′(s) = 1, we have c j (Pj (s)) = 1. Since s ∈ P−1

j Pj (H1(m)) by
Eq. 24, there exists s′ ∈ H1(m) such that Pj (s) = Pj (s′). It follows from s′ ∈ H1(m) and
s′ ∈ P−1

j Pj (s) ⊆ P−1
j Pj (F0(m)) that there exists I ′′

j ∈ Ik such that

s′ ∈ H0(m) ∩
⎛

⎜

⎝

⋂

i∈I ′′
j

P−1
i Pi (F0(m))

⎞

⎟

⎠
(25)

and j ∈ I ′′
j . Since s′ ∈ H0(m) = K and I ′′

j ∈ Ik ⊆ I≥k , by Eq. 9, we have
DI ′′

j
(s′) 	= 1. In addition, since Pj (s) = Pj (s′) and n j (Pj (s)) = nI ′(s) ≤ 1, we have

nI ′′
j
(s′) ≤ n j (Pj (s′)) = n j (Pj (s)) ≤ 1. It follows from the second condition of Def-

inition 1 that DI ′′
j
(s′) = 0. We consider any j ′ ∈ I ′′

j such that nI ′′
j
(s′) = n j ′(Pj ′(s′)).

By DI ′′
j
(s′) = 0, we have c j ′(Pj ′(s′)) = 0. Since c j (Pj (s′)) = c j (Pj (s)) = 1, we

have nI ′′
j
(s′) < n j (Pj (s′)) = n j (Pj (s)) = nI ′(s) ≤ 1, which implies nI ′′

j
(s′) = 0. By

Eq. 25 and j ′ ∈ I ′′
j , we have s′ ∈ P−1

j ′ Pj ′(F0(m)). Then, there exists s′′ ∈ F0(m) =
L(G) ∩ (L(G) − K )�≥m such that Pj ′(s′) = Pj ′(s′′). By Eq. 23, we have DI ′′

j
(s′′) = 1.

Since n j ′(Pj ′(s′′)) = n j ′(Pj ′(s′)) = nI ′′
j
(s′) = 0, we have nI ′′

j
(s′′) = n j ′(Pj ′(s′′)) = 0,

which implies together with c j ′(Pj ′(s′′)) = c j ′(Pj ′(s′)) = 0 that DI ′′
j
(s′′) 	= 1. This contra-

dicts DI ′′
j
(s′′) = 1.
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We next consider the case where Eq. 6 holds. For any s ∈ H2(m) 	= ∅, there exists I ′ ∈ Ik

such that

s ∈ H1(m) ∩
(

⋂

i∈I ′
P−1
i Pi (F1(m))

)

. (26)

Since s ∈ H1(m) ⊆ H0(m) = K and I ′ ∈ Ik ⊆ I≥k , by Eq. 9, we have DI ′(s) 	= 1. In
addition, by Eq. 6, we have nI ′(s) ≤ 1. It follows from the second condition of Definition 1
that DI ′(s) = 0. We consider any j ∈ I ′ such that nI ′(s) = n j (Pj (s)). By DI ′(s) = 0,
we have c j (Pj (s)) = 0. Since s ∈ P−1

j Pj (F1(m)) by Eq. 26, there exists s′ ∈ F1(m) such

that Pj (s) = Pj (s′). It follows from s′ ∈ F1(m) and s′ ∈ P−1
j Pj (s) ⊆ P−1

j Pj (H0(m)) that

there exists I ′′
j ∈ Ik such that

s′ ∈ F0(m) ∩
⎛

⎜

⎝

⋂

i∈I ′′
j

P−1
i Pi (H0(m))

⎞

⎟

⎠
(27)

and j ∈ I ′′
j . Since s′ ∈ F0(m) = L(G) ∩ (L(G) − K )�≥m and I ′′

j ∈ Ik ⊆ I≥k , by
Eq. 23, we have DI ′′

j
(s′) = 1. We consider any j ′ ∈ I ′′

j such that nI ′′
j
(s′) = n j ′(Pj ′(s′)).

By DI ′′
j
(s′) = 1, we have c j ′(Pj ′(s′)) = 1. Since c j (Pj (s′)) = c j (Pj (s)) = 0, we have

nI ′′
j
(s′) < n j (Pj (s′)) = n j (Pj (s)) = nI ′(s) ≤ 1, which implies nI ′′

j
(s′) = 0. By Eq. 27

and j ′ ∈ I ′′
j , we have s′ ∈ P−1

j ′ Pj ′(H0(m)). Then, there exists s′′ ∈ H0(m) = K such
that Pj ′(s′) = Pj ′(s′′). By Eq. 9, we have DI ′′

j
(s′′) 	= 1. In addition, by Eq. 6, we have

nI ′′
j
(s′′) ≤ 1. It follows from the second condition of Definition 1 that DI ′′

j
(s′′) = 0. Since

n j ′(Pj ′(s′′)) = n j ′(Pj ′(s′)) = nI ′′
j
(s′) = 0, we have nI ′′

j
(s′′) = n j ′(Pj ′(s′′)) = 0, which

implies together with c j ′(Pj ′(s′′)) = c j ′(Pj ′(s′)) = 1 that DI ′′
j
(s′′) 	= 0. This contradicts

DI ′′
j
(s′′) = 0. ��

Example 1 We consider a DES modeled by the finite automaton G shown in Fig. 1, where
� = {a, b, c, d, e, f , g}. We assume that n = 4, that is, there are four local diagnosers. Let
the locally observable event sets be �1,o = {a, e, g}, �2,o = {b, e, g}, �3,o = {c, e, g}, and
�4,o = {d, e, g}. We assume that diagnosis decisions of at least three local diagnosers are

Fig. 1 Finite automaton G for Example 1
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available, that is, k = 3. As the nonfailure behavior of G, we consider a nonempty closed
regular sublanguage K ⊆ L(G) that is generated by the finite automatonGK shown in Fig. 2.
That is, the occurrence of a failure is modeled by the event f .

We show thatG is (4, 3)-reliably 1-inference-diagnosable for the sublanguage K ⊆ L(G).
We have I3 = {I1, I2, I3, I4}, where I1 = {1, 2, 3}, I2 = {1, 2, 4}, I3 = {1, 3, 4}, and
I4 = {2, 3, 4}. For any m ∈ N with m ≥ 1, initially, we have

F0(m) = f eme∗ + g(ab f eme∗ + cd f eme∗), (28)

H0(m) = pr((abe∗ + cde∗) + g(e∗ + ab + cd)). (29)

Since

P1(F0(m)) = eme∗ + g(aeme∗ + eme∗), (30)

P2(F0(m)) = eme∗ + g(beme∗ + eme∗), (31)

P3(F0(m)) = eme∗ + g(eme∗ + ceme∗), (32)

P4(F0(m)) = eme∗ + g(eme∗ + deme∗), (33)

P1(H0(m)) = pr((ae∗ + e∗) + g(e∗ + a)), (34)

P2(H0(m)) = pr((be∗ + e∗) + g(e∗ + b)), (35)

P3(H0(m)) = pr((e∗ + ce∗) + g(e∗ + c)), (36)

P4(H0(m)) = pr((e∗ + de∗) + g(e∗ + d)), (37)

we have

F0(m) ∩
(

⋂

i∈I ′
P−1
i Pi (H0(m))

)

= f eme∗, (38)

H0(m) ∩
(

⋂

i∈I ′
P−1
i Pi (F0(m))

)

= geme∗ (39)

for each I ′ ∈ I3. It follows that F1(m) = f eme∗ and H1(m) = geme∗, which imply
that G is neither (4, 3)-reliably disjunctive-codiagnosable nor (4, 3)-reliably conjunctive-

Fig. 2 Finite automaton GK for Example 1
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codiagnosable. In addition, since Pi (F1(m)) = eme∗ and Pi (H1(m)) = geme∗ for each
i ∈ I , we have

F1(m) ∩
(

⋂

i∈I ′
P−1
i Pi (H1(m))

)

= ∅, (40)

H1(m) ∩
(

⋂

i∈I ′
P−1
i Pi (F1(m))

)

= ∅ (41)

for each I ′ ∈ I3. It follows that F2(m) = H2(m) = ∅, that is,G is (4, 3)-reliably 1-inference-
diagnosable. Note that (n, k)-reliable 1-inference-diagnosability requires that there exists
m ∈ N such that F2(m) = ∅∨ H2(m) = ∅. This example is a special case where both F2(m)

and H2(m) are empty for any m ∈ N with m ≥ 1.
Since G is (4, 3)-reliably 1-inference-diagnosable, by Proposition 2, the local diagnosers

Di (i = 1, 2, 3, 4) synthesized by Eqs. 19–22 for any m ∈ N with m ≥ 1 solve the reliable
decentralized diagnosis problem in the case of N = 1.We letm = 1. The diagnosis decisions

Table 1 Local decisions of Di
(i = 1, 2, 3, 4) and their
ambiguity levels

t ∈ P1(L(G)) n f
1 (t) nh1(t) c1(t) n1(t)

t ∈ ε + a 1 0 0 0

t ∈ ee∗ 1 2 1 1

t ∈ aee∗ 1 0 0 0

t ∈ g + ga 1 0 0 0

t ∈ gee∗ 2 1 0 1

t ∈ gaee∗ 0 1 1 0

t ∈ P2(L(G)) n f
2 (t) nh2(t) c2(t) n2(t)

t ∈ ε + b 1 0 0 0

t ∈ ee∗ 1 2 1 1

t ∈ bee∗ 1 0 0 0

t ∈ g + gb 1 0 0 0

t ∈ gee∗ 2 1 0 1

t ∈ gbee∗ 0 1 1 0

t ∈ P3(L(G)) n f
3 (t) nh3(t) c3(t) n3(t)

t ∈ ε + c 1 0 0 0

t ∈ ee∗ 1 2 1 1

t ∈ cee∗ 1 0 0 0

t ∈ g + gc 1 0 0 0

t ∈ gee∗ 2 1 0 1

t ∈ gcee∗ 0 1 1 0

t ∈ P4(L(G)) n f
4 (t) nh4(t) c4(t) n4(t)

t ∈ ε + d 1 0 0 0

t ∈ ee∗ 1 2 1 1

t ∈ dee∗ 1 0 0 0

t ∈ g + gd 1 0 0 0

t ∈ gee∗ 2 1 0 1

t ∈ gdee∗ 0 1 1 0
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of Di (i = 1, 2, 3, 4) together with their ambiguity levels are shown in Table 1. For example,
for ge ∈ P1(L(G)), D1(ge) = (c1(ge), n1(ge)) is computed as follows. By Eqs. 19 and 20,
we have n f

1 (ge) = 2 and nh1(ge) = 1. Since 1 = nh1(ge) < n f
1 (ge) = 2, c1(ge) = 0 and

n1(ge) = 1 are obtained by Eqs. 21 and 22, respectively, which implies that D1 issues the
nonfailure decision whose ambiguity level is 1 after observing ge.

For example, for I1 = {1, 2, 3} ∈ I3 ⊆ I≥3 = I3 ∪ {I }, the diagnosis decisions of
DI1 are shown in Tables 2. For example, for gcd f e ∈ L(G) − K , DI1(gcd f e) is computed
as follows. By 0 = n3(P3(gcd f e)) < n1(P1(gcd f e)) = n2(P2(gcd f e)) = 1, we have
nI1(gcd f e) = n3(P3(gcd f e)) = 0 and DI1(gcd f e) = 1, which imply that DI1 detects the
occurrence of f with the ambiguity level 0 after the occurrence of gcd f e. We can verify that
Di (i = 1, 2, 3, 4) are (n, k)-1-inferring and satisfy the conditions

∀I ′ ∈ I≥3,∀s ∈ L(G) ∩ (L(G) − K )�≥1(DI ′(s) = 1) (42)

and Eq. 9 for k = 3. That is, they correctly detect the any occurrence of the event f within
one step, even if a diagnosis decision of one local diagnoser is not available.

Remark 5 In Takai and Yoshida (2022), the reliable decentralized supervisory control prob-
lem has been solved using single-level inference. To solve the problem for a nonempty regular
sublanguage K ⊆ L(G) given as a control specification, four language pairs (Dh(σ ), Eh(σ ))

(h = 0, 1, 2, 3) per controllable event σ ∈ �c Ramadge andWonham (1987), where�c ⊆ �

is the set of controllable events, are defined. Initially, D0(σ ) and E0(σ ) are defined as

D0(σ ) = {s ∈ pr(K ) | sσ ∈ L(G) − pr(K )}, (43)

E0(σ ) = {s ∈ pr(K ) | sσ ∈ pr(K )}. (44)

Then, for h = 0, 1, 2, Dh+1(σ ) and Eh+1(σ ) are defined as

Dh+1(σ ) = Dh(σ ) ∩
⎧

⎨

⎩

⋃

I ′∈Ik

(

⋂

i∈I ′
P−1
i Pi (Eh(σ ))

)

⎫

⎬

⎭

, (45)

Eh+1(σ ) = Eh(σ ) ∩
⎧

⎨

⎩

⋃

I ′∈Ik

(

⋂

i∈I ′
P−1
i Pi (Dh(σ ))

)

⎫

⎬

⎭

. (46)

Then, the notion of (n, k)-reliable 1-inference-observability is defined as

∀σ ∈ �c(D2(σ ) = ∅ ∨ E2(σ ) = ∅). (47)

In addition, the language pairs (Dh(σ ), Eh(σ )) (h = 0, 1, 2, 3) are used to synthesize
local supervisors. Since the number |�c| of controllable events is finite, (Dh(σ ), Eh(σ )) (h =
0, 1, 2, 3) are effectively computable for all controllable events σ ∈ �c using the standard

Table 2 Decisions of DI1 s ∈ L(G) nI1 (s) DI1 (s)

s ∈ f + pr(abe∗ + cde∗) 0 0

s ∈ f ee∗ 1 1

s ∈ pr(g(ab f + cd f )) 0 0

s ∈ g(ab f ee∗ + cd f ee∗) 0 1

s ∈ gee∗ 1 0
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operations over finite automata. On the other hand, the language pairs (Fh(m), Hh(m)) (h =
0, 1, 2, 3) introduced to solve the reliable decentralized diagnosis problem in this paper
involve a nonnegative integer m ∈ N, which represents a delay of detecting a failure string.
Since N is an infinite set, it is impossible to compute (Fh(m), Hh(m)) (h = 0, 1, 2, 3) for all
nonnegative integers m ∈ N. This is the reason why the result of Takai and Yoshida (2022)
cannot be applied to the reliable decentralized diagnosis problem considered in this paper.

5 Verification of reliable 1-inference-diagnosability

In this section, we develop a method for verifying (n, k)-reliable 1-inference-diagnosability
effectively. Given a nonnegative integer m ∈ N, we can verify whether F2(m) = ∅ ∨
H2(m) = ∅ holds using the standard operations over finite automata. However, to verify
(n, k)-reliable 1-inference-diagnosability, we need to test the existence of m ∈ N such that
F2(m) = ∅∨ H2(m) = ∅. For this purpose, we develop a verification method in this section.

For a nonempty closed regular sublanguage K ⊆ L(G) that models the nonfailure behav-
ior of the system G, there exists a finite automaton GK = (QK , �, δK , qK ,0) that generates
it. That is, it holds that L(GK ) = K . We augment the automaton GK by adding a dump
state qd /∈ QK . The augmented automaton is defined as ˜GK = (˜QK , �,˜δK , qK ,0), where
the state set is ˜QK = QK ∪ {qd}, and the state transition function˜δK : ˜QK × � → ˜QK is
given as

˜δK (̃qK , σ ) =
{

δK (̃qK , σ ), if q̃K ∈ QK ∧ δK (̃qK , σ )!
qd , otherwise

(48)

for each q̃K ∈ ˜QK and each σ ∈ �. It follows from the definition of the state transition
function˜δK that L(˜GK ) = �∗. Let

G ‖ ˜GK = (Q × ˜QK , �, α, (q0, qK ,0)) (49)

be the synchronous composition of G and ˜GK , where the state transition function α : (Q ×
˜QK ) × � → (Q × ˜QK ) is given as

α((q, q̃K ), σ ) =
{

(δ(q, σ ),˜δK (̃qK , σ )), if δ(q, σ )!
undefined, otherwise

(50)

for each (q, q̃K ) ∈ Q × ˜QK and each σ ∈ �. Then, it holds that L(G ‖ ˜GK ) = L(G) ∩
L(˜GK ) = L(G) ∩ �∗ = L(G). For each s ∈ L(G), s ∈ L(G) − K if and only if the second
element of the state reached by the execution of s ∈ L(G) in G ‖ ˜GK is the dump state qd .

By Definition 2, G is not (n, k)-reliably 1-inference-diagnosable if and only if

∀m ∈ N(F2(m) 	= ∅ ∧ H2(m) 	= ∅). (51)

In the section, we show how to verify ∀m ∈ N(F2(m) 	= ∅) and ∀m ∈ N(H2(m) 	= ∅),
separately.

Remark 6 Unlike the verification approach of Sampath et al. (1995), we do not use a diag-
noser automaton that generates the projection Pi (L(G)) (i ∈ I ) to verify (n, k)-reliable
1-inference-diagnosability. We adopt the approach, called the verifier approach, introduced
in Jiang et al. (2001); Yoo and Lafortune (2002). The advantage of the verifier approach is
that constructing a diagnoser automaton whose computational complexity is exponential in
|Q × ˜QK |, where Q and ˜QK are the state sets of G and ˜GK , respectively, is not necessary.
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5.1 Verification of ∀m ∈ N(F2(m) �= ∅)

First, we show how to verify whether ∀m ∈ N(F2(m) 	= ∅). By composing n(n − 1) + 1
copies of G ‖ ˜GK , which are used to trace failure strings, and n copies of ˜GK , which are
used to trace nonfailure strings, we construct a finite automaton

VF = (RF , �V , δF , rF,0) (52)

as follows:

• The state set RF is given by

RF = (Q × ˜QK ) ×
⎛

⎝

n
∏

i=1

n
∏

j=1

QFi j

⎞

⎠ , (53)

where

QFi j =
{

˜QK , if i = j
Q × ˜QK , otherwise

(54)

for each i, j ∈ I .
• The initial state rF,0 ∈ RF is given by

rF,0 = ((q0, qK ,0), qF11,0, . . . , qF1n,0, qF21,0, . . . , qFnn,0), (55)

where

qFi j,0 =
{

qK ,0, if i = j
(q0, qK ,0), otherwise

(56)

for each i, j ∈ I .
• The event set �V is given by

�V = {(σ, σ 11, . . . , σ 1n, σ 21, . . . , σ nn) ∈ �
n2+1 |

σ ∈ �o ∧ [∀i, j ∈ I (σ i j = e�o(i, j, σ ))]}
∪{σ, σ 11, . . . , σ 1n, σ 21, . . . , σ nn) ∈ �

n2+1 |
σ ∈ �uo ∧ [∀i, j ∈ I (σ i j = ε)]}

∪{(ε, σ 11, . . . , σ 1n, σ 21, . . . , σ nn) ∈ �
n2+1 |

∃i ′ ∈ I , ∃σ ∈ � − �i ′,o
[∀i, j ∈ I (σ i j = e�i ′,uo(i, j, σ ))]}

∪{(ε, σ 11, . . . , σ 1n, σ 21, . . . , σ nn) ∈ �
n2+1 |

∃i ′ ∈ I , ∃ j ′ ∈ I − {i ′}, ∃σ ∈ � − � j ′,o
[∀i, j ∈ I (σ i j = e�i ′ j ′,uo(i, j, σ ))]}, (57)

where
�

n2+1 = (� ∪ {ε}) × (� ∪ {ε}) × · · · × (� ∪ {ε})
︸ ︷︷ ︸

n2 + 1 times

(58)

and

e�o(i, j, σ ) =
{

σ, if σ ∈ �i,o ∩ � j,o

ε, otherwise,
(59)
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e�i ′,uo(i, j, σ ) =
{

σ, if i = i ′ ∧ [ j = i ∨ σ ∈ � j,o]
ε, otherwise,

(60)

e�i ′ j ′,uo(i, j, σ ) =
{

σ, if i = i ′ ∧ j = j ′
ε, otherwise

(61)

for each i, j ∈ I and each σ ∈ �. Then, any element of �V , denoted by
(σ , σ 11, . . . , σ 1n, σ 21, . . . , σ nn), satisfies the following three conditions:

– σ 	= ε ∨ [∃i, j ∈ I (σ i j 	= ε)],
– ∀i ∈ I (Pi (σ ) = Pi (σ i i )),
– ∀i ∈ I ,∀ j ∈ I − {i}(Pj (σ i i ) = Pj (σ i j )).

• For any rF = ((q, q̃K ), qF11, . . . , qF1n, qF21, . . . , qFnn) ∈ RF and any σV =
(σ , σ 11, . . . , σ 1n, σ 21, . . . , σ nn) ∈ �V , δF (rF , σV )! if and only if the following two
conditions hold:

– σ 	= ε ⇒ α((q, q̃K ), σ )!,
– ∀i ∈ I ,∀ j ∈ I − {i}(σ i j 	= ε ⇒ α(qFi j , σ i j )!).

If δF (rF , σV )!, then
δF (rF , σV ) = ((q ′, q̃ ′

K ), q ′
F11, . . . , q

′
F1n, q

′
F21, . . . , q

′
Fnn), (62)

where

(q ′, q̃ ′
K ) =

{

α((q, q̃K ), σ ), if σ 	= ε

(q, q̃K ), otherwise
(63)

and, for each i, j ∈ I ,

q ′
Fi j =

⎧

⎨

⎩

˜δK (qFi j , σ i j ), if i = j ∧ σ i j 	= ε

α(qFi j , σ i j ) if i 	= j ∧ σ i j 	= ε

qFi j , otherwise.
(64)

The finite automaton VF traces n2 + 1 strings s0 ∈ L(G), si j ∈ L(G) (i, j = 1, 2, . . . , n)
such that

∀i ∈ I [Pi (s0) = Pi (sii ) ∧ [∀ j ∈ I − {i}(Pj (sii ) = Pj (si j ))]]. (65)

For each state rF = ((q, q̃K ), qF11, . . . , qF1n, qF21, . . . , qFnn) ∈ RF of VF , we let
π0(rF ) = (q, q̃K ) and πi j (rF ) = qFi j for each i, j ∈ I . Similarly, for each event σV =
(σ , σ 11, . . . , σ 1n, σ 21, . . . , σ nn) ∈ �V , we let π0(σV ) = σ and πi j (σV ) = σ i j for each
i, j ∈ I . Then, for each sV ∈ �∗

V , π0(sV ) and πi j (sV ) for any i, j ∈ I are defined as

π0(sV ) =
{

ε, if sV = ε

π0(σV ,1)π0(σV ,2) · · · π0(σV ,|sV |), otherwise,
(66)

and

πi j (sV ) =
{

ε, if sV = ε

πi j (σV ,1)πi j (σV ,2) · · · πi j (σV ,|sV |), otherwise,
(67)

where sV is denoted by sV = σV ,1σV ,2 · · · σV ,|sV | if sV 	= ε.
For any m ∈ N, we assume that there exist sV ∈ L(VF ) and I ′ ∈ Ik such that π0(sV ) ∈

L(G) ∩ (L(G) − K )�≥m = F0(m) and, for each i ∈ I ′, the following two conditions hold:

• πi i (sV ) ∈ K = H0(m),
• ∃I ′′

i ∈ Ik[i ∈ I ′′
i ∧ [∀ j ∈ I ′′

i − {i}(πi j (sV ) ∈ L(G) ∩ (L(G) − K )�≥m = F0(m))]].
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Fig. 3 Finite automaton G for Example 2

Since Pi (π0(sV )) = Pi (πi i (sV )) for any i ∈ I ′ and Pj (πi i (sV )) = Pj (πi j (sV )) for any
i ∈ I ′ and any j ∈ I ′′

i − {i}, we have

π0(sV ) ∈ F0(m) ∩
(

⋂

i∈I ′
P−1
i Pi (H0(m))

)

⊆ F1(m) (68)

and, for any i ∈ I ′,

πi i (sV ) ∈ H0(m) ∩
⎛

⎝

⋂

j∈I ′′
i

P−1
j Pj (F0(m))

⎞

⎠ ⊆ H1(m). (69)

Again, since Pi (π0(sV )) = Pi (πi i (sV )) for any i ∈ I ′, we have

π0(sV ) ∈ F1(m) ∩
(

⋂

i∈I ′
P−1
i Pi (H1(m))

)

⊆ F2(m) 	= ∅. (70)

Therefore, for any m ∈ N, the existence of such sV ∈ L(VF ) and I ′ ∈ Ik implies
F2(m) 	= ∅. The verification method developed in this paper is based on this reasoning.

Example 2 For a DES modeled by the finite automaton G shown in Fig. 3, where � =
{a, b, c, f , o}, we let n = 3, that is, there are three local diagnosers. Let the locally observable

Fig. 4 Finite automaton GK for Example 2
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event sets be �1,o = {a, b, o}, �2,o = {b, c, o}, and �3,o = {a, c, o}. We assume that
diagnosis decisions of at least two local diagnosers are available, that is, k = 2. As the
nonfailure behavior of G, we consider a nonempty closed regular sublanguage K ⊆ L(G)

that is generated by the finite automaton GK shown in Fig. 4. That is, the event f represents
the occurrence of a failure.

A part of the finite automaton VF is shown in Fig. 5. This part of VF shows that, for any
m ∈ N, the string sV ,m = σV ,1σV ,2 · · · σV ,12σ

m
V ,13 can be generated by VF , where

σV ,1 = (ε, c, c, c, ε, ε, ε, ε, ε, ε), σV ,2 = (ε, ε, ε, ε, c, ε, ε, ε, ε, ε),

σV ,3 = (ε, ε, ε, ε, ε, ε, b, ε, ε, ε), σV ,4 = (ε, ε, f , ε, ε, ε, ε, ε, ε, ε),

σV ,5 = (ε, ε, ε, ε, f , ε, ε, ε, ε, ε), σV ,6 = (ε, ε, ε, ε, ε, ε, f , ε, ε, ε),

Fig. 5 A part of finite automaton VF for Example 2
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σV ,7 = (a, a, ε, a, ε, ε, ε, a, ε, a), σV ,8 = (ε, ε, ε, ε, ε, ε, ε, ε, a, ε),

σV ,9 = ( f , ε, ε, ε, ε, ε, ε, ε, ε, ε), σV ,10 = (ε, ε, ε, ε, ε, ε, ε, f , ε, ε),

σV ,11 = (ε, ε, ε, ε, ε, ε, ε, ε, f , ε), σV ,12 = (ε, ε, ε, ε, ε, ε, ε, ε, ε, f ),

σV ,13 = (o, o, o, o, o, o, o, o, o, o).

We consider {1, 2} ∈ I2. Then, we have π0(sV ,m) = a f om ∈ L(G) ∩ (L(G) − K )�≥m =
F0(m), π11(sV ,m) = caom ∈ K = H0(m), π22(sV ,m) = om ∈ K = H0(m), and
π12(sV ,m) = π21(sV ,m) = c f om ∈ L(G) ∩ (L(G) − K )�≥m = F0(m). In addition,
we have P1(π0(sV ,m)) = P1(π11(sV ,m)) = aom , P2(π0(sV ,m)) = P2(π22(sV ,m)) = om ,
P2(π11(sV ,m)) = P2(π12(sV ,m)) = com , and P1(π22(sV ,m)) = P1(π21(sV ,m)) = om . It
follows that π0(sV ,m) ∈ F2(m) 	= ∅ for any m ∈ N.

To effectively verify whether ∀m ∈ N(F2(m) 	= ∅), based on the finite automaton VF , a
nondeterministic acyclic finite automaton

VNF = (RNF , �V , δNF , RNF,0), (71)

which has the same event set �V as VF , is constructed as follows:

• The state set RNF is the set of all maximal strongly connected components of VF .
• The initial state RNF,0 ∈ RNF is a maximal strongly connected component of VF such
that rF,0 ∈ RNF,0.

• The nondeterministic state transition function δNF : RNF × �V → 2RNF is given as

δNF (RNF , σV ) = {R′
NF ∈ RNF | RNF 	= R′

NF

∧[∃rF ∈ RNF , ∃r ′
F ∈ R′

NF (δF (rF , σV ) = r ′
F )]} (72)

for any RNF ∈ RNF and any σV ∈ �V .

We define a labeling function JF : RNF × I → 2I as

JF (RNF , i)

= { j ∈ I − {i} | [∃rF ∈ RNF (πi j (rF ) ∈ Q × {qd})]
∧[∃rF , r ′

F ∈ RNF , ∃σV ∈ �V (δF (rF , σV ) = r ′
F ∧ πi j (σV ) 	= ε)]} (73)

for each RNF ∈ RNF and each i ∈ I . For any path RNF,0
σV ,0−−→ RNF,1

σV ,1−−→ · · · σV ,l−1−−−→
RNF,l (l ≥ 1) of VNF , denoted by pVNF , its label ̂JF (pVNF ) ∈ 2I is given as

̂JF (pVNF ) =
⎧

⎨

⎩

i ∈ I |
∣

∣

∣

∣

∣

∣

⋃

h∈{1,2,...,l}
JF (RNF,h, i)

∣

∣

∣

∣

∣

∣

≥ k − 1

∧[∃rF ∈ RNF,l(πi i (rF ) ∈ QK )]
}

. (74)

Example 3 We consider the setting of Example 2. For the part of the finite automaton VF

shown in Fig. 5, the corresponding part of VNF is shown in Fig. 6. Note that this part is a
special case where each state that is a subset of the state set of VF is singleton.

As shown in Fig. 6, a singleton state

{((q4, qd), qK ,5, (q8, qd), (q7, qK ,5),

(q8, qd), qK ,0, (q6, qd), (q4, qd), (q4, qd), qd)} ∈ RNF ,
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Fig. 6 A part of nondeterministic acyclic finite automaton VNF for Example 3

denoted by {rF }, is reachable in VNF . We consider any path pVNF that ends with {rF }. For
1 ∈ I , we have π11(rF ) = qK ,5 ∈ QK . In addition, we have π12(rF ) = (q8, qd) ∈ Q×{qd},
δF (rF , σV ,13) = rF , and π12(σV ,13) = o 	= ε for σV ,13 = (o, o, o, o, o, o, o, o, o, o) ∈ �V .
It follows that 2 ∈ JF ({rF }, 1). Thus, we have 1 ∈ ̂JF (pVNF ). Similarly, we can show that
2 ∈ ̂JF (pVNF ).

Then, we have the following theorem, which shows how to verify whether ∀m ∈
N(F2(m) 	= ∅).

Theorem 4 Let k ∈ N be a nonnegative integer such that 2 ≤ k ≤ n. For a nonempty closed
regular sublanguage K ⊆ L(G) generated by a finite automaton GK = (QK , �, δK , qK ,0),
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∀m ∈ N(F2(m) 	= ∅) if and only if there exists a path pVNF : RNF,0
σV ,0−−→ RNF,1

σV ,1−−→
· · · σV ,l−1−−−→ RNF,l (l ≥ 1) of the nondeterministic acyclic finite automaton VNF that satisfies

∃h ∈ {1, 2, . . . , l}
[∃rF ∈ RNF,h(π0(rF ) ∈ Q × {qd})]
∧[∃rF , r ′

F ∈ RNF,h, ∃σV ∈ �V (δF (rF , σV ) = r ′
F ∧ π0(σV ) 	= ε)] (75)

and
|̂JF (pVNF )| ≥ k. (76)

Proof (⇐) We suppose that there exists a path pVNF : RNF,0
σV ,0−−→ RNF,1

σV ,1−−→ · · · σV ,l−1−−−→
RNF,l (l ≥ 1) of VNF that satisfies Eqs. 75 and 76. We consider any i ∈ ̂JF (pVNF ) and any
j ∈ ⋃

h∈{1,2,...,l} JF (RNF,h, i). By the definition of JF (RNF,h, i), we have j ∈ I − {i}. In
addition, there exists h ∈ {1, 2, . . . , l} such that

[∃rF ∈ RNF,h(πi j (rF ) ∈ Q × {qd})]
∧[∃rF , r ′

F ∈ RNF,h, ∃σV ∈ �V (δF (rF , σV ) = r ′
F ∧ πi j (σV ) 	= ε)]. (77)

By Eqs. 75, 77, and the definition of ̂JF (pVNF ), there exists a path pVF : rF,0
σ

(0)
V−−→ rF,1

σ
(1)
V−−→

· · · σ
(lF−1)
V−−−−→ rF,lF (lF ≥ 1) of VF that satisfies the following three conditions:

• ∃h01, h02, h03 ∈ N

0 ≤ h01 ≤ h02 < h03 ≤ lF

∧rF,h01 = rF,h03 ∧ π0(rF,h02) ∈ Q × {qd} ∧ π0(σ
(h02)
V ) 	= ε, (78)

• ∀i ∈ ̂JF (pVNF ),∀ j ∈ ⋃

h∈{1,2,...,l} JF (RNF,h, i), ∃hi j1, hi j2, hi j3 ∈ N

0 ≤ hi j1 ≤ hi j2 < hi j3 ≤ lF

∧rF,hi j1 = rF,hi j3 ∧ πi j (rF,hi j2) ∈ Q × {qd} ∧ πi j (σ
(hi j2)
V ) 	= ε, (79)

• ∀i ∈ ̂JF (pVNF )(πi i (rF,lF ) ∈ QK ).

We consider any m ∈ N. By Algorithm 1, we construct sV , tV ,0, tV ,i j ∈ �∗
V for

each i ∈ ̂JF (pVNF ) and each j ∈ ⋃

h∈{1,2,...,l} JF (RNF,h, i). By Algorithm 1, we have

sV , tV ,0, tV ,i j ∈ L(VF ) and tV ,0, tV ,i j ∈ pr(sV ) for each i ∈ ̂JF (pVNF ) and each
j ∈ ⋃

h∈{1,2,...,l} JF (RNF,h, i). Since tV ,0 ∈ pr(sV ), there exists uV ,0 ∈ �∗
V such that

sV = tV ,0uV ,0. Let t0 = π0(tV ,0) and u0 = π0(uV ,0). By the construction of tV ,0 in Algo-
rithm 1, we have α((q0, qK ,0), t0) = π0(rF,h01) = π0(rF,h03). Since π0(rF,h02) ∈ Q ×{qd},
we have α((q0, qK ,0), t0) ∈ Q × {qd}, which implies t0 ∈ L(G) − K . In addition,
since |u0| ≥ m by π0(σ

(h02)
V ) 	= ε, we have t0u0 ∈ F0(m). Let sii = πi i (sV ) for

each i ∈ ̂JF (pVNF ). Then, we have ˜δK (qK ,0, sii ) = πi i (rF,lF ) ∈ QK , which implies
sii ∈ K = H0(m). In addition, we have Pi (t0u0) = Pi (sii ), which implies together with
sii ∈ H0(m) that t0u0 ∈ P−1

i Pi (H0(m)). By Eq. 76, we have t0u0 ∈ F1(m). For each
i ∈ ̂JF (pVNF ) and each j ∈ ⋃

h∈{1,2,...,l} JF (RNF,h, i), since tV ,i j ∈ pr(sV ), there exists
uV ,i j ∈ �∗

V such that sV = tV ,i j uV ,i j . Let ti j = πi j (tV ,i j ) and ui j = πi j (uV ,i j ). By the
construction of tV ,i j in Algorithm 1, we have α((q0, qK ,0), ti j ) = πi j (rF,hi j1) = πi j (rF,hi j3).
Since πi j (rF,hi j2) ∈ Q × {qd}, we have α((q0, qK ,0), ti j ) ∈ Q × {qd}, which implies

ti j ∈ L(G) − K . In addition, since |ui j | ≥ m by πi j (σ
(hi j2)
V ) 	= ε, we have ti j ui j ∈ F0(m).
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Algorithm 1 Constructions of sV , tV ,0, tV ,i j ∈ �∗
V (∀i ∈ ̂JF (pVNF ),∀ j ∈

⋃

h∈{1,2,...,l} JF (RNF,h, i))

Require: σ
(0)
V σ

(1)
V · · · σ (lF−1)

V , h01, h03, hi j1, hi j3 (∀i ∈ ̂JF (pVNF
), ∀ j ∈ ⋃

h∈{1,2,...,l} JF (RNF,h , i)),
m

1: sV ← ε, tV ,0 ← ε, tV ,i j ← ε (∀i ∈ ̂JF (pVNF
), ∀ j ∈ ⋃

h∈{1,2,...,l} JF (RNF,h , i))
2: h ← 0
3: while h ≤ lF − 1 do
4: if h = h01 then
5: tV ,0 ← sV

6: sV → sV (σ
(h01)
V σ

(h01+1)
V · · · σ (h03−1)

V )m

7: end if
8: 	(h) ← {(i, j) | h = hi j1}
9: while 	(h) 	= ∅ do
10: Pick any (i, j) ∈ 	(h)

11: tV ,i j ← sV

12: sV ← sV (σ
(hi j1)
V σ

(hi j1+1)
V · · · σ (hi j3−1)

V )m

13: 	(h) ← 	(h) − {(i, j)}
14: end while
15: sV ← sV σ

(h)
V

16: h ← h + 1
17: end while

Furthermore, we have Pj (sii ) = Pj (ti j ui j ), which implies together with ti j ui j ∈ F0(m) that
sii ∈ P−1

j Pj (F0(m)). Since | ⋃h∈{1,2,...,l} JF (RNF,h, i)| ≥ k − 1 and sii ∈ P−1
i Pi (t0u0) ⊆

P−1
i Pi (F0(m)), we have sii ∈ H1(m).
By t0u0 ∈ F1(m), Eq. 76, and t0u0 ∈ P−1

i Pi (sii ) ⊆ P−1
i Pi (H1(m)) for each i ∈

̂JF (pVNF ), we have t0u0 ∈ F2(m) 	= ∅.
(⇐) For anym ∈ Nwithm > |RF |, where RF is the finite state set of VF , we consider any

s0 ∈ F2(m) 	= ∅. Then, s0 can be written as s0 = t0u0 such that t0 ∈ L(G)−K and |u0| ≥ m.
There exists I ′ ∈ Ik such that t0u0 ∈ P−1

i Pi (H1(m)) for each i ∈ I ′. For each i ∈ I ′, there
exists sii ∈ H1(m) such that sii ∈ P−1

i Pi (t0u0) ⊆ P−1
i Pi (F0(m)). Since sii ∈ H1(m) and

sii ∈ P−1
i Pi (F0(m)), there exists I ′′

i ∈ Ik such that i ∈ I ′′
i and sii ∈ P−1

j Pj (F0(m)) for
each j ∈ I ′′

i . For each j ∈ I ′′
i − {i}, there exists si j ∈ F0(m) such that Pj (si j ) = Pj (sii ).

Then, si j can be written as si j = ti j ui j such that ti j ∈ L(G) − K and |ui j | ≥ m. Thus, there

exists σ
(0)
V σ

(1)
V · · · σ (lF−1)

V ∈ L(VF ) (lF ≥ 1) that satisfies the following three conditions:

• π0(sV ) = t0u0,
• ∀i ∈ I ′(πi i (sV ) = sii ),
• ∀i ∈ I ′,∀ j ∈ I ′′

i − {i}(πi j (sV ) = ti j ui j ),

where sV = σ
(0)
V σ

(1)
V · · · σ (lF−1)

V . There exists ˜h0 ∈ N with 0 ≤ ˜h0 ≤ lF − 1 such that

π0(σ
(0)
V σ

(1)
V · · · σ (˜h0)

V ) = t0 ∈ L(G) − K . In addition, for each i ∈ I ′ and each j ∈ I ′′
i − {i},

there exists ˜hi j ∈ N with 0 ≤ ˜hi j ≤ lF − 1 such that πi j (σ
(0)
V σ

(1)
V · · · σ (˜hi j )

V ) = ti j ∈
L(G) − K .
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We consider the path pVF : rF,0
σ

(0)
V−−→ rF,1

σ
(1)
V−−→ · · · σ

(lF−1)
V−−−−→ rF,lF (lF ≥ 1) obtained

by executing sV in VF . For the path pVF , there exists the path pVNF : RNF,0
σ

(hF,0)

V−−−−→
RNF,1

σ
(hF,1)

V−−−−→ · · · σ
(hF,l−1)

V−−−−−→ RNF,l (l ≥ 1) of VNF such that

{rF,0, . . . , rF,hF,0} = RNF,0, (80)

{rF,hF,0+1, . . . , rF,hF,1} = RNF,1, (81)

...

{rF,hF,l−1+1, . . . , rF,lF } = RNF,l (82)

for some hF,0, hF,1, . . . , hF,l−1 ∈ {0, 1, . . . , lF − 1} such that 0 ≤ hF,0 < hF,1 <

· · · < hF,l−1 < lF . Since u0 = π0(σ
(˜h0+1)
V · · · σ (lF−1)

V ) and |u0| ≥ m > |RF |, there
exist h01, h02, h03 ∈ N that satisfy ˜h0 < h01 ≤ h02 < h03 ≤ lF , rF,h01 = rF,h03 , and
π0(σ

(h02)
V ) 	= ε. In addition, since t0 ∈ L(G) − K and

t0 ∈ pr(π0(σ
(0)
V σ

(1)
V · · · σ (h01−1)

V )) ⊆ pr(π0(σ
(0)
V σ

(1)
V · · · σ (h02−1)

V )), (83)

we have
π0(rF,h02) = α((q0, qK ,0), π0(σ

(0)
V σ

(1)
V · · · σ (h02−1)

V )) ∈ Q × {qd}. (84)

Thus, the path pVNF satisfies Eq. 75.
We show that the path pVNF satisfies Eq. 76. For each i ∈ I ′, since πi i (sV ) = sii ∈

H1(m) ⊆ K , we have
πi i (rF,lF ) = ˜δK (qK ,0, πi i (sV )) ∈ QK (85)

for rF,lF ∈ RNF,l . For each j ∈ I ′′
i − {i}, since ui j = πi j (σ

(˜hi j+1)
V · · · σ (lF−1)

V ) and |ui j | ≥
m > |RF |, there exist hi j1, hi j2, hi j3 ∈ N that satisfy ˜hi j < hi j1 ≤ hi j2 < hi j3 ≤ lF ,

rF,hi j1 = rF,hi j3 , and πi j (σ
(hi j2)
V ) 	= ε. In addition, since ti j ∈ L(G) − K and

ti j ∈ pr(πi j (σ
(0)
V σ

(1)
V · · · σ (hi j1−1)

V )) ⊆ pr(πi j (σ
(0)
V σ

(1)
V · · · σ (hi j2−1)

V )), (86)

we have

πi j (rF,hi j2) = α((q0, qK ,0), πi j (σ
(0)
V σ

(1)
V · · · σ (hi j2−1)

V )) ∈ Q × {qd}. (87)

It follows that j ∈ JF (RNF,h, i) for some h ∈ {1, 2, . . . , l}. Since |I ′′
i − {i}| = k − 1, we

have
∣

∣

∣

∣

∣

∣

⋃

h∈{1,2,...,l}
JF (RNF,h, i)

∣

∣

∣

∣

∣

∣

≥ k − 1. (88)

Thus, we have i ∈ ̂JF (pVNF ). Since |I ′| = k, pVNF satisfies Eq. 76. ��
The result of Theorem 4 can be explained as follows. We consider a string sV ∈ L(VF )

that can be generated along a path pVNF : RNF,0
σV ,0−−→ RNF,1

σV ,1−−→ · · · σV ,(l−1)−−−−→ RNF,l

(l ≥ 1) of VNF that satisfies Eqs. 75 and 76. By Eq. 76, there exists an index set I ′ ∈ Ik

such that I ′ ⊆ ̂JF (pVNF ). By Eq. 75, π0(sV ) is a failure string in L(G) − K that can be
arbitrarily extended such that π0(sV ) ∈ F0(m) for any m ∈ N. It follows from the definition
of ̂JF (pVNF ) that πi i (sV ) ∈ K = H0(m) for each i ∈ I ′. By the construction of VF , we have

123



Discrete Event Dynamic Systems

Pi (π0(sV )) = Pi (πi i (sV )). In addition, by the definitions of JF (RNF , i) and ̂JF (pVNF ),
there exists I ′′

i ∈ Ik with i ∈ I ′′
i such that, for each j ∈ I ′′

i − {i}, πi j (sV ) is a failure string
in L(G)− K that can be arbitrarily extended such that πi j (sV ) ∈ F0(m). Moreover, we have
Pj (πi i (sV )) = Pj (πi j (sV )). It follows that π0(sV ) ∈ F1(m) and πi i (sV ) ∈ H1(m) for each
i ∈ I ′, which implies π0(sV ) ∈ F2(m) 	= ∅.
Remark 7 The number |RF | of states of the finite automaton VF is at most |Q|n(n−1)+1 ×
(|QK |+1)n

2+1. The number |�V | of events of VF is atmost (n2+1)|�|. Thus, the complexity
of constructing VF is O(|Q|n(n−1)+1×|QK |n2+1×n2|�|). To construct the nondeterministic
acyclic finite automaton VNF , we need to find all maximal strongly connected components
of VF . Its computational complexity is O(|Q|n(n−1)+1 × |QK |n2+1 × n2|�|). Note that the
value of k is irrelevant to the construction of VF and VNF .

Then, ∀m ∈ N(F2(m) 	= ∅) can be verified by exploring paths of VNF as shown in

Theorem 4. To verify the existence of a path pVNF : RNF,0
σV ,0−−→ RNF,1

σV ,1−−→ · · · σV ,l−1−−−→
RNF,l (l ≥ 1) that satisfies Eqs. 75 and 76, we have to identify all states RNF ∈ RNF such
that

[∃rF ∈ RNF (π0(rF ) ∈ Q × {qd})]
∧[∃rF , r ′

F ∈ RNF , ∃σV ∈ �V (δF (rF , σV ) = r ′
F ∧ π0(σV ) 	= ε)] (89)

and construct the labeling function JF : RNF × I → 2I defined by Eq. 73. The computa-
tional complexity of identifying all states RNF ∈ RNF that satisfy Eq. 89 is O(|RNF | ×
|RF | × |�V |), where |RNF | is at most |RF |(≤ |Q|n(n−1)+1 × (|QK | + 1)n

2+1). In addition,
the computational complexity of constructing the labeling function JF : RNF × I → 2I

is O(|RNF | × n2 × |RF | × |�V |). Since VNF is acyclic and events of a path of VNF

are not relevant to Eqs. 75 and 76, the number of paths that have to be explored is at
most

∑|RNF |−1
r=1 |RNF |−1Pr . Once all states RNF ∈ RNF that satisfy Eq. 89 are identi-

fied and the labeling function JF : RNF × I → 2I is constructed, the computational
complexity for verifying the existence of a path pVNF that satisfies Eqs. 75 and 76 is

O(n × (
∑|RNF |−1

r=1 |RNF |−1Pr )).

Example 4 Again, we consider the setting of Example 2. We verify whether ∀m ∈
N(F2(m) 	= ∅) holds by Theorem 4. For this purpose, we construct the nondeterministic
acyclic finite automaton VNF based on the finite automaton VF .

As in Example 3, we consider any path pVNF that ends with {rF }, where
rF = ((q4, qd), qK ,5, (q8, qd), (q7, qK ,5),

(q8, qd), qK ,0, (q6, qd), (q4, qd), (q4, qd), qd). (90)

Since π0(rF ) = (q4, qd) ∈ Q × {qd}, δF (rF , σV ,13) = rF , and π0(σV ,13) = o 	= ε for
σV ,13 = (o, o, o, o, o, o, o, o, o, o) ∈ �V , pVNF satisfies Eq. 75. As shown in Example 3, it
holds that 1, 2 ∈ ̂JF (pVNF ). Then, we have |̂JF (pVNF )| ≥ 2 = k, which implies that pVNF

satisfies Eq. 76. By Theorem 4, we can conclude that ∀m ∈ N(F2(m) 	= ∅) holds.

5.2 Verification of ∀m ∈ N(H2(m) �= ∅)

Next, we present a method for verifying whether ∀m ∈ N(H2(m) 	= ∅). For this purpose,
we construct a finite automaton

VH = (RH , �V , δH , rH ,0) (91)
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by composing n copies of G ‖ ˜GK , which are used to trace failure strings, GK , and n(n− 1)
copies of ˜GK , which are used to trace nonfailure strings, as follows:

• The state set RH is given by

RH = QK ×
⎛

⎝

n
∏

i=1

n
∏

j=1

QHi j

⎞

⎠ , (92)

where

QHi j =
{

Q × ˜QK , if i = j
˜QK , otherwise

(93)

for each i, j ∈ I .
• The initial state rH ,0 ∈ RH is given by

rH ,0 = (qK ,0, qH11,0, . . . , qH1n,0, qH21,0, . . . , qHnn,0), (94)

where

qHi j,0 =
{

(q0, qK ,0), if i = j
qK ,0, otherwise

(95)

for each i, j ∈ I .
• The event set �V is the same as that of VF .
• For any rH = (qK , qH11, . . . , qH1n, qH21, . . . , qHnn) ∈ RH and any σV =

(σ , σ 11, . . . , σ 1n, σ 21, . . . , σ nn) ∈ �V , δH (rH , σV )! if and only if the following two
conditions hold:

– σ 	= ε ⇒ δK (qK , σ )!,
– ∀i ∈ I (σ i i 	= ε ⇒ α(qHii , σ i i )!).

If δH (rH , σV )!, then
δH (rH , σV ) = (q ′

K , q ′
H11, . . . , q

′
H1n, q

′
H21, . . . , q

′
Hnn), (96)

where

q ′
K =

{

δK (qK , σ ), if σ 	= ε

qK , otherwise
(97)

and, for each i, j ∈ I ,

q ′
Hi j =

⎧

⎨

⎩

α(qHi j , σ i j ), if i = j ∧ σ i j 	= ε
˜δK (qHi j , σ i j ) if i 	= j ∧ σ i j 	= ε

qHi j , otherwise.
(98)

For any m ∈ N, we assume that there exist sV ∈ L(VH ) and I ′ ∈ Ik such that π0(sV ) ∈
K = H0(m) and, for each i ∈ I ′, the following two conditions hold:

• πi i (sV ) ∈ L(G) ∩ (L(G) − K )�≥m = F0(m),
• ∃I ′′

i ∈ Ik[i ∈ I ′′
i ∧ [∀ j ∈ I ′′

i − {i}(πi j (sV ) ∈ K = H0(m))]].
Then, we have H2(m) 	= ∅ in a similar way to the reasoning about F2(m) 	= ∅.
Example 5 For a DES modeled by the finite automaton G shown in Fig. 7, where � =
{a, b, c, f , o}, we let n = 3, that is, there are three local diagnosers. Let the locally observable
event sets be �1,o = {a, b, o}, �2,o = {b, c, o}, and �3,o = {a, c, o}. We assume that
diagnosis decisions of at least two local diagnosers are available, that is, k = 2. As the
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Fig. 7 Finite automaton G for Example 5

nonfailure behavior of G, we consider a nonempty closed regular sublanguage K ⊆ L(G)

that is generated by the finite automaton GK shown in Fig. 8. That is, the event f represents
the occurrence of a failure.

A part of the finite automaton VH is shown in Fig. 9. This part of VH shows that, for any
m ∈ N, the string sV ,m = σV ,1σV ,2 · · · σV ,8σ

m
V ,9 can be generated by VH , where

σV ,1 = (a, a, ε, a, ε, ε, ε, a, ε, a), σV ,2 = (ε, ε, ε, ε, ε, ε, ε, ε, a, ε),

σV ,3 = (ε, ε, ε, ε, ε, ε, b, ε, ε, ε), σV ,4 = (ε, f , ε, ε, ε, ε, ε, ε, ε, ε),

σV ,5 = (ε, ε, ε, f , ε, ε, ε, ε, ε, ε), σV ,6 = (ε, ε, ε, ε, ε, f , ε, ε, ε, ε),

σV ,7 = (ε, c, c, c, ε, ε, ε, ε, ε, ε), σV ,8 = (ε, ε, ε, ε, c, ε, ε, ε, ε, ε),

σV ,9 = (o, o, o, o, o, o, o, o, o, o).

We consider {1, 2} ∈ I2. Then, we have π0(sV ,m) = aom ∈ K = H0(m), π11(sV ,m) =
a f com ∈ L(G) ∩ (L(G) − K )�≥m = F0(m), π22(sV ,m) = f om ∈ L(G) ∩ (L(G) −
K )�≥m = F0(m), and π12(sV ,m) = π21(sV ,m) = com ∈ K = H0(m). In addition,
we have P1(π0(sV ,m)) = P1(π11(sV ,m)) = aom , P2(π0(sV ,m)) = P2(π22(sV ,m)) = om ,

Fig. 8 Finite automaton GK for Example 5
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Fig. 9 A part of finite automaton VH for Example 5

P2(π11(sV ,m)) = P2(π12(sV ,m)) = com , and P1(π22(sV ,m)) = P1(π21(sV ,m)) = om . It
follows that π0(sV ,m) ∈ H2(m) 	= ∅ for any m ∈ N.

For each state rH = (qK , qH11, . . . , qH1n, qH21, . . . , qHnn) ∈ RH of VH , we let
π0(rH ) = qK and πi j (rH ) = qHi j for each i, j ∈ I . To effectively verify whether
∀m ∈ N(H2(m) 	= ∅), based on the finite automaton VH , we construct a nondeterminis-
tic acyclic finite automaton

VNH = (RNH , �V , δNH , RNH ,0) (99)

as follows:

• The state set RNH is the set of all maximal strongly connected components of VH .
• The initial state RNH ,0 ∈ RNH is a maximal strongly connected component of VH such
that rH ,0 ∈ RNH ,0.

• The nondeterministic state transition function δNH : RNH × �V → 2RNH is given as

δNH (RNH , σV ) = {R′
NH ∈ RNH | RNH 	= R′

NH

∧[∃rH ∈ RNH , ∃r ′
H ∈ R′

NH (δH (rH , σV ) = r ′
H )]} (100)

for any RNH ∈ RNH and any σV ∈ �V .
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A labeling function JH : RNH → 2I is defined as

JH (RNH )

= {i ∈ I | [∃rH ∈ RNH (πi i (rH ) ∈ Q × {qd})]
∧[∃rH , r ′

H ∈ RNH , ∃σV ∈ �V (δH (rH , σV ) = r ′
H ∧ πi i (σV ) 	= ε)]} (101)

for each RNH ∈ RNH . For any path RNH ,0
σV ,0−−→ RNH ,1

σV ,1−−→ · · · σV ,l−1−−−→ RNH ,l (l ≥ 1) of
VNH , denoted by pVNH , its label ̂JH (pVNH ) ∈ 2I is given as

̂JH (pVNH )

=
⎧

⎨

⎩

i ∈ I | i ∈
⋃

h∈{1,2,...,l}
JH (RNH ,h)

∧|{ j ∈ I − {i} | ∃rH ∈ RNH ,l(πi j (rH ) ∈ QK )}| ≥ k − 1

}

. (102)

Example 6 We consider the setting of Example 5. For the part of the finite automaton VH

shown in Fig. 9, the corresponding part of VNH is shown in Fig. 10. As shown in Fig. 10, a
singleton state

{(qK ,1, (q7, qd), qK ,3, qd , qK ,3, (q2, qd), qK ,2, qK ,1, qK ,1, (q1, qK ,1))} ∈ RNH ,

denoted by {rH }, is reachable in VNH . We consider any path pVNH that ends with {rH }. For
1 ∈ I , we have π11(rH ) = (q7, qd) ∈ Q×{qd}, δH (rH , σV ,9) = rH , and π11(σV ,9) = o 	= ε

Fig. 10 A part of nondeterministic acyclic finite automaton VNH for Example 6
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for σV ,9 = (o, o, o, o, o, o, o, o, o, o) ∈ �V , which imply 1 ∈ JH ({rH }). In addition, we
have π12(rH ) = qK ,3 ∈ QK . It follows that 1 ∈ ̂JH (pVNH ). Similarly, we can show that
2 ∈ ̂JH (pVNH ).

The following theorem shows how to verify whether ∀m ∈ N(H2(m) 	= ∅).

Theorem 5 Let k ∈ N be a nonnegative integer such that 2 ≤ k ≤ n. For a nonempty closed
regular sublanguage K ⊆ L(G) generated by a finite automaton GK = (QK , �, δK , qK ,0),

∀m ∈ N(H2(m) 	= ∅) if and only if there exists a path pVNH : RNH ,0
σV ,0−−→ RNH ,1

σV ,1−−→
· · · σV ,l−1−−−→ RNH ,l (l ≥ 1) of the nondeterministic acyclic finite automaton VNH that satisfies

|̂JH (pVNH )| ≥ k. (103)

Proof (⇐) We suppose that there exists a path pVNH : RNH ,0
σV ,0−−→ RNH ,1

σV ,1−−→ · · · σV ,l−1−−−→
RNH ,l (l ≥ 1) of VNH that satisfies Eq. 103. We consider any i ∈ ̂JH (pVNH ). Then, there
exists h ∈ {1, 2, . . . , l} such that i ∈ JH (RNH ,h). By the definition of JH (RNH ,h), we have

[∃rH ∈ RNH ,h(πi i (rH ) ∈ Q × {qd})]
∧[∃rH , r ′

H ∈ RNH ,h, ∃σV ∈ �V (δH (rH , σV ) = r ′
H ∧ πi i (σV ) 	= ε)]. (104)

By Eq. 104 and the definition of ̂JH (pVNH ), there exists a path pVH : rH ,0
σ

(0)
V−−→ rH ,1

σ
(1)
V−−→

· · · σ
(lH−1)
V−−−−→ rH ,lH (lH ≥ 1) of VH that satisfies the following two conditions:

• ∀i ∈ ̂JH (pVNH ), ∃hii1, hii2, hii3 ∈ N

0 ≤ hii1 ≤ hii2 < hii3 ≤ lH

∧rH ,hii1 = rH ,hii3 ∧ πi i (rF,hii2) ∈ Q × {qd} ∧ πi i (σ
(hii2)
V ) 	= ε, (105)

• ∀i ∈ ̂JH (pVNH ),∀ j ∈ { j ∈ I−{i} | ∃rH ∈ RNH ,l(πi j (rH ) ∈ QK )}(πi j (rH ,lH ) ∈ QK ).

We consider any m ∈ N. By Algorithm 2, we construct sV , tV ,i i ∈ �∗
V for each i ∈

̂JH (pVNH ). By Algorithm 2, we have sV , tV ,i i ∈ L(VH ) and tV ,i i ∈ pr(sV ) for each i ∈
̂JH (pVNH ). Let s0 = π0(sV ). Then, by the construction of VH , we have s0 ∈ K = H0(m). For
each i ∈ ̂JH (pVNH ), since tV ,i i ∈ pr(sV ), there exists uV ,i i ∈ �∗

V such that sV = tV ,i i uV ,i i .
Let tii = πi i (tV ,i i ) and uii = πi i (uV ,i i ). By the construction of tV ,i i in Algorithm 2, we
have α((q0, qK ,0), tii ) = πi i (rH ,hii1) = πi i (rH ,hii3). Since πi i (rH ,hii2) ∈ Q×{qd}, we have
α((q0, qK ,0), tii ) ∈ Q×{qd}, which implies tii ∈ L(G)−K . In addition, since |uii | ≥ m by
πi i (σ

(hii2)
V ) 	= ε, we have tii uii ∈ F0(m). Furthermore, we have Pi (s0) = Pi (tii uii ), which

implies together with tii uii ∈ F0(m) that s0 ∈ P−1
i Pi (F0(m)). By Eq. 103, we have s0 ∈

H1(m). For each i ∈ ̂JH (pVNH ) and each j ∈ { j ∈ I −{i} | ∃rH ∈ RNH ,l(πi j (rH ) ∈ QK )},
let si j = πi j (sV ). Then, we have˜δ(qK ,0, si j ) = πi j (rH ,lH ) ∈ QK , which implies si j ∈ K =
H0(m). In addition, we have Pj (tii uii ) = Pj (si j ), which implies together with si j ∈ H0(m)

that tii uii ∈ P−1
j Pj (H0(m)). Since |{ j ∈ I − {i} | ∃rH ∈ RNH ,l(πi j (rH ) ∈ QK )}| ≥ k − 1

and tii uii ∈ P−1
i Pi (s0) ⊆ P−1

i Pi (H0(m)), we have tii uii ∈ F1(m).
By s0 ∈ H1(m), Eq. 103, and s0 ∈ P−1

i Pi (tii uii ) ⊆ P−1
i Pi (F1(m)) for each i ∈

̂JH (pVNH ), we have s0 ∈ H2(m) 	= ∅.
(⇐) For any m ∈ N with m > |RH |, where RH is the finite state set of VH , we consider

any s0 ∈ H2(m) 	= ∅. There exists I ′ ∈ Ik such that s0 ∈ P−1
i Pi (F1(m)) for each i ∈ I ′.

For each i ∈ I ′, there exists sii ∈ F1(m) such that sii ∈ P−1
i Pi (s0) ⊆ P−1

i Pi (H0(m)).
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Algorithm 2 Constructions of sV , tV ,i i ∈ �∗
V (∀i ∈ ̂JH (pVNH ))

Require: σ
(0)
V σ

(1)
V · · · σ (lH−1)

V , hii1, hii3 (∀i ∈ ̂JH (pVNH
)), m

1: sV ← ε, tV ,i i ← ε (∀i ∈ ̂JH (pVNH
))

2: h ← 0
3: while h ≤ lH − 1 do
4: 	(h) ← {i | h = hii1}
5: while 	(h) 	= ∅ do
6: Pick any i ∈ 	(h)

7: tV ,i i ← sV

8: sV ← sV (σ
(hii1)
V σ

(hii1+1)
V · · · σ (hii3−1)

V )m

9: 	(h) ← 	(h) − {i}
10: end while
11: sV ← sV σ

(h)
V

12: h ← h + 1
13: end while

Then, sii can be written as sii = tii uii such that tii ∈ L(G) − K and |uii | ≥ m. Since
tii uii ∈ F1(m) and tii uii ∈ P−1

i Pi (H0(m)), there exists I ′′
i ∈ Ik such that i ∈ I ′′

i and
tii uii ∈ P−1

j Pj (H0(m)) for each j ∈ I ′′
i . For each j ∈ I ′′

i − {i}, there exists si j ∈ H0(m)

such that Pj (si j ) = Pj (sii ). Thus, there exists σ
(0)
V σ

(1)
V · · · σ (lH−1)

V ∈ L(VH ) (lH ≥ 1) that
satisfies the following three conditions:

• π0(sV ) = s0,
• ∀i ∈ I ′(πi i (sV ) = tii uii ),
• ∀i ∈ I ′,∀ j ∈ I ′′

i − {i}(πi j (sV ) = si j ),

where sV = σ
(0)
V σ

(1)
V · · · σ (lH−1)

V . For each i ∈ I ′, there exists˜hii ∈ Nwith 0 ≤ ˜hii ≤ lH −1

such that πi i (σ
(0)
V σ

(1)
V · · · σ (˜hii )

V ) = tii ∈ L(G) − K .

We consider the path pVH : rH ,0
σ

(0)
V−−→ rH ,1

σ
(1)
V−−→ · · · σ

(lH−1)
V−−−−→ rH ,lH (lH ≥ 1) obtained

by executing sV in VH . For the path pVH , there exists the path pVNH : RNH ,0
σ

(hH ,0)

V−−−−→
RNH ,1

σ
(hH ,1)

V−−−−→ · · · σ
(hH ,l−1)

V−−−−−→ RNH ,l (l ≥ 1) of VNH such that

{rH ,0, . . . , rH ,hH ,0} = RNH ,0, (106)

{rH ,hH ,0+1, . . . , rH ,hH ,1} = RNH ,1, (107)

...

{rH ,hH ,l−1+1, . . . , rH ,lH } = RNH ,l (108)

for some hH ,0, hH ,1, . . . , hH ,l−1 ∈ {0, 1, . . . , lH − 1} such that 0 ≤ hH ,0 < hH ,1 < · · · <

hH ,l−1 < lH .
We show that the path pVNH satisfies Eq. 103. For each i ∈ I ′, since uii =

πi i (σ
(˜hii+1)
V · · · σ (lH−1)

V ) and |uii | ≥ m > |RH |, there exist hii1, hii2, hii3 ∈ N that sat-

isfy˜hii < hii1 ≤ hii2 < hii3 ≤ lH , rH ,hii1 = rH ,hii3 , and πi i (σ
(hii2)
V ) 	= ε. In addition, since

tii ∈ L(G) − K and

tii ∈ pr(πi i (σ
(0)
V σ

(1)
V · · · σ (hii1−1)

V )) ⊆ pr(πi i (σ
(0)
V σ

(1)
V · · · σ (hii2−1)

V )), (109)
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we have

πi i (rH ,hii2) = α((q0, qK ,0), πi i (σ
(0)
V σ

(1)
V · · · σ (hii2−1)

V )) ∈ Q × {qd}. (110)

It follows that i ∈ JH (RNH ,h) for some h ∈ {1, 2, . . . , l}. In addition, for each j ∈ I ′′
i −{i},

since πi j (sV ) = si j ∈ H0(m) = K , we have

πi j (rH ,lH ) = ˜δK (qK ,0, πi j (sV )) ∈ QK (111)

for rH ,lH ∈ RNH ,l . Since |I ′′
i − {i}| = k − 1, we have

|{ j ∈ I − {i} | ∃rH ∈ RNH ,l(πi j (rH ) ∈ QK )}| ≥ k − 1. (112)

Thus, we have i ∈ ̂JH (pVNH ). Since |I ′| = k, pVNH satisfies Eq. 103. ��
Remark 8 The number |RH | of states of the finite automaton VH is at most |Q|n × |QK | ×
(|QK |+1)n

2
. The number |�V | of events of VH is at most (n2+1)|�|. Thus, the complexity

of construction VH is O(|Q|n × |QK |n2+1 × n2|�|). For constructing the nondeterministic
acyclic finite automaton VNH , we need to find all maximal strongly connected components
of VH . Its computational complexity is O(|Q|n × |QK |n2+1 × n2|�|). Similar to VF and
VNF , the value of k is irrelevant to the construction of VH and VNH .

Then, ∀m ∈ N(H2(m) 	= ∅) can be verified by exploring paths of VNH as shown in The-

orem 5. To verify whether there exists a path pVNH : RNH ,0
σV ,0−−→ RNH ,1

σV ,1−−→ · · · σV ,l−1−−−→
RNH ,l (l ≥ 1) that satisfies Eq. 103, we have to construct the labeling function JH : RNH →
2I defined by Eq. 101. Its computational complexity is O(|RNH |×n×|RH |×|�V |), where
|RNH | is at most |RH |(≤ |Q|n ×|QK |× (|QK |+ 1)n

2
). Since VNH is acyclic and events of

a path of VNH are not relevant to Eq. 103, the number of paths that have to be explored is at
most

∑|RNH |−1
r=1 |RNH |−1Pr . Once the labeling function JH : RNH → 2I is constructed, the

computational complexity for verifying the existence of a path pVNH that satisfies Eq. 103

is O(n2 × (
∑|RNH |−1

r=1 |RNH |−1Pr )).

Example 7 Again, we consider the setting of Example 5. We verify whether ∀m ∈
N(H2(m) 	= ∅) holds by Theorem 5. For this purpose, we construct the nondeterministic
acyclic finite automaton VNH based on the finite automaton VH .

As in Example 6, we consider any path pVNH that ends with {rH }, where
rH = (qK ,1, (q7, qd), qK ,3, qd , qK ,3, (q2, qd), qK ,2, qK ,1, qK ,1, (q1, qK ,1)). (113)

As shown in Example 6, it holds that 1, 2 ∈ ̂JH (pVNH ). Then, we have |̂JH (pVNH )| ≥
2 = k, which implies that pVNH satisfies Eq. 103. By Theorem 5, we can conclude that
∀m ∈ N(H2(m) 	= ∅) holds.

6 Computation of delay bound

When the systemG to be diagnosed is (n, k)-reliably 1-inference-diagnosable for a nonempty
closed regular sublanguage K ⊆ L(G), there existsm ∈ N such that F2(m) = ∅∨ H2(m) =
∅. Let m∗ ∈ N be the such minimum integer, that is,

m∗ = min{m ∈ N | F2(m) = ∅ ∨ H2(m) = ∅}. (114)

As shown in Proposition 2, the n local diagnosers Di : Pi (L(G)) → C × N (i =
1, 2, . . . , n) synthesized by Eqs. 19–22 for any m ∈ N with F2(m) = ∅ or H2(m) = ∅ are
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(n, k)-1-inferring and satisfy Eqs. 23 and 9. That is, if diagnosis decisions of at least k local
diagnosers are available, the occurrence of any failure string can be correctly detected within
m steps. Hence,m∗ can be considered as the delay bound and can be used to synthesize local
diagnosers using Eqs. 19–22. Letting NF = {m ∈ N | F2(m) = ∅} and NH = {m ∈ N |
H2(m) = ∅}, it holds that

m∗ =
⎧

⎨

⎩

min{m∗
F ,m∗

H }, if NF 	= ∅ ∧ NH 	= ∅
m∗

F , if NF 	= ∅ ∧ NH = ∅
m∗

H , if NF = ∅ ∧ NH 	= ∅,

(115)

where

m∗
F =

{

minNF , if NF 	= ∅
undefined, otherwise,

(116)

m∗
H =

{

minNH , if NH 	= ∅
undefined, otherwise.

(117)

To compute m∗, we develop methods for computing m∗
F and m∗

H when NF 	= ∅ and
NH 	= ∅, respectively.

6.1 Computation ofm∗
F

To compute m∗
F in the case of NF 	= ∅, we use the nondeterministic acyclic finite

automaton VNF = (RNF , �V , δNF , RNF,0), which is constructed for verifying whether
∀m ∈ N(F2(m) 	= ∅). Let

IF = {0} ∪ {i j | [i, j ∈ I ] ∧ [i 	= j]}. (118)

Each element of IF indicates the corresponding component of the finite automaton VF =
(RF , �V , δF , rF,0) that traces a failure string. For each iF ∈ IF , we introduce a weight of
each transition of VNF by a function wF,iF : RNF × �V × RNF → {0, 1} defined as

wF,iF (RNF , σV , R′
NF ) =

⎧

⎨

⎩

1, if [R′
NF ∈ δNF (RNF , σV )] ∧ [πiF (σV ) 	= ε]

∧[∃r ′
F ∈ R′

NF (πiF (r ′
F ) ∈ Q × {qd})]

0, otherwise
(119)

for each RNF , R′
NF ∈ RNF and each σV ∈ �V . This weight of a transition of VNF is used

to count the number of occurrences of events after failure. For any path pVNF : RNF,0
σV ,0−−→

RNF,1
σV ,1−−→ · · · σV ,l−1−−−→ RNF,l (l ≥ 1) of VNF , its weight with respect to iF ∈ IF is defined

as

wF,iF (pVNF ) =
l−1
∑

h=0

wF,iF (RNF,h, σV ,h, RNF,h+1). (120)

We consider any index set I ′ ∈ Ik . Then, we define the set, denoted byϒI ′ , of all functions
υI ′ : I ′ → Ik such that i ∈ υI ′(i) for any i ∈ I ′. For example, in the case of n = 3 and
k = 2, for I ′ = {1, 2} ∈ I2, a function υ{1,2} : {1, 2} → I2 such that υ{1,2}(1) = {1, 2} and
υ{1,2}(2) = {2, 3} is an element of ϒ{1,2}, since 1 ∈ υ{1,2}(1) and 2 ∈ υ{1,2}(2). We consider

any path pVNF : RNF,0
σV ,0−−→ RNF,1

σV ,1−−→ · · · σV ,l−1−−−→ RNF,l (l ≥ 1) of VNF . For any pair
(I ′, υI ′) of an index set I ′ ∈ Ik and a function υI ′ ∈ ϒI ′ , a subset �F,(I ′,υI ′ )(pVNF ) ⊆ IF
whose elements are involved to compute m∗

F is defined as follows:
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• 0 ∈ �F,(I ′,υI ′ )(pVNF ) if and only if Eq. 75 in Theorem 4 does not hold,
• for any i j ∈ IF − {0}, i j ∈ �F,(I ′,υI ′ )(pVNF ) if and only if i ∈ I ′, j ∈ υI ′(i) − {i}, and

j /∈ JF (RNF,h, i) for any h ∈ {1, 2, . . . , l}, where the function JF : RNF × I → 2I is
defined by Eq. 73.

Intuitively, for each iF ∈ �F,(I ′,υI ′ )(pVNF ), the number of occurrences of events after failure
can be computed as wF,iF (pVNF ).

The following lemma shows the nonemptyness of �F,(I ′,υI ′ )(pVNF ).

Lemma 1 Let k ∈ N be a nonnegative integer such that 2 ≤ k ≤ n. For a nonempty closed
regular sublanguage K ⊆ L(G) generated by a finite automaton GK = (QK , �, δK , qK ,0),

we assume that NF 	= ∅. We consider any path pVNF : RNF,0
σV ,0−−→ RNF,1

σV ,1−−→ · · · σV ,l−1−−−→
RNF,l (l ≥ 1) of the nondeterministic acyclic finite automaton VNF . For any pair (I ′, υI ′)
of an index set I ′ ∈ Ik and a function υI ′ ∈ ϒI ′ , if

∀i ∈ I ′, ∃rF ∈ RNF,l(πi i (rF ) ∈ QK ), (121)

then �F,(I ′,υI ′ )(pVNF ) 	= ∅.

Proof Since NF 	= ∅, there exists m ∈ N such that F2(m) = ∅. By Theorem 4, we
first consider the case where Eq. 75 does not hold for pVNF . Then, by the definition of
�F,(I ′,υI ′ )(pVNF ), we have 0 ∈ �F,(I ′,υI ′ )(pVNF ) 	= ∅. We next consider the case where
Eq. 76 does not hold for pVNF . Since |̂JF (pVNF )| < k, we have I ′ − ̂JF (pVNF ) 	= ∅. We
consider any i ∈ I ′ − ̂JF (pVNF ). By Eq. 121 and the definition of ̂JF (pVNF ), we have

∣

∣

∣

∣

∣

∣

⋃

h∈{1,2,...,l}
JF (RNF,h, i)

∣

∣

∣

∣

∣

∣

< k − 1. (122)

Therefore, there exists j ∈ υI ′(i) − {i} such that j /∈ JF (RNF,h, i) for any h ∈
{1, 2, . . . , l}. It follows that i j ∈ �F,(I ′,υI ′ )(pVNF ) 	= ∅. ��

We define the weightwF,(I ′,υI ′ )(pVNF ) of pVNF with respect to a pair (I ′, υI ′) of an index
set I ′ ∈ Ik and a function υI ′ ∈ ϒI ′ as

wF,(I ′,υI ′ )(pVNF )

=
{

min{wF,iF (pVNF ) ∈ N | iF ∈ �F,(I ′,υI ′ )(pVNF )}, if Eq. 121 holds
0, otherwise.

(123)

By Lemma 1, wF,(I ′,υI ′ )(pVNF ) is well-defined. Then, we define the weight wF (pVNF )

of pVNF as

wF (pVNF ) = max{wF,(I ′,υI ′ )(pVNF ) ∈ N | I ′ ∈ Ik ∧ υI ′ ∈ ϒI ′ }. (124)

Finally, letting Path(VNF ) be the set of all paths of VNF , we define wF as the maximum
weight

wF = max{wF (pVNF ) ∈ N | pVNF ∈ Path(VNF )} (125)

over Path(VNF ). Since VNF is acyclic, Path(VNF ) is finite, which implies that wF is
effectively computable.

The following theorem shows that m∗
F can be computed as m∗

F = wF .
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Theorem 6 Let k ∈ N be a nonnegative integer such that 2 ≤ k ≤ n. For a nonempty closed
regular sublanguage K ⊆ L(G) generated by a finite automaton GK = (QK , �, δK , qK ,0),
if NF 	= ∅ then m∗

F = wF .

Proof First, we prove that m∗
F ≤ wF . For the sake of contradiction, we suppose that wF <

m∗
F . By the definition of m∗

F , we have F2(wF ) 	= ∅. As shown in the proof of the (⇐) part
of Theorem 4, there exist I ′ ∈ Ik , I ′′

i ∈ Ik with i ∈ I ′′
i for each i ∈ I ′, and sV ∈ L(VF )

such that

• π0(sV ) ∈ F0(wF ),
• ∀i ∈ I ′ : πi i (sV ) ∈ H0(wF ),
• ∀i ∈ I ′,∀ j ∈ I ′′

i − {i} : πi j (sV ) ∈ F0(wF ).

Then, we have sV 	= ε, and sV can be written as sV = σ
(0)
V σ

(1)
V · · · σ (lF−1)

V (lF ≥ 1).

We consider the path pVF : rF,0
σ

(0)
V−−→ rF,1

σ
(1)
V−−→ · · · σ

(lF−1)
V−−−−→ rF,lF obtained by executing

sV in VF . For the path pVF , there exists the path pVNF : RNF,0
σ

(hF,0)

V−−−−→ RNF,1
σ

(hF,1)

V−−−−→
· · · σ

(hF,l−1)

V−−−−−→ RNF,l (l ≥ 1) in Path(VNF ) such that

{rF,0, . . . , rF,hF,0} = RNF,0, (126)

{rF,hF,0+1, . . . , rF,hF,1} = RNF,1, (127)

...

{rF,hF,l−1+1, . . . , rF,lF } = RNF,l (128)

for some hF,0, hF,1, . . . , hF,l−1 ∈ {0, 1, . . . , lF − 1} such that 0 ≤ hF,0 < hF,1 < · · · <

hF,l−1 < lF . For I ′, we consider the function υI ′ : I ′ → Ik such that υI ′(i) = I ′′
i for

each i ∈ I ′. Since i ∈ υI ′(i) for each i ∈ I ′, we have υI ′ ∈ ϒI ′ . For each i ∈ I ′, since
πi i (sV ) ∈ H0(wF ) = K , we have πi i (rF,lF ) = ˜δK (qK ,0, πi i (sV )) ∈ QK for δF (rF,0, sV ) =
rF,lF ∈ RNF,l . It follows that Eq. 121 holds.

By the definition of wF and wF (pVNF ), we have

wF,(I ′,υI ′ )(pVNF ) ≤ wF (pVNF ) ≤ wF . (129)

Since Eq. 121 holds, by the definition of wF,(I ′,υI ′ )(pVNF ), there exists iF ∈
�F,(I ′,υI ′ )(pVNF ) such that wF,(I ′,υI ′ )(pVNF ) = wF,iF (pVNF ). By iF ∈ �F,(I ′,υI ′ )(pVNF ),
we have πiF (rF,hiF

) /∈ Q × {qd}, πiF (rF,hiF +1) ∈ Q × {qd}, and

|πiF (σ
(hiF )

V σ
(hiF +1)
V · · · σ (lF−1)

V )| = wF,iF (pVNF ) (130)

for some hiF ∈ {0, 1, . . . , lF − 1}. It follows that πiF (sV ) ∈ K�
≤wF,iF (pVNF

) ⊆ K�≤wF .
Besides, since iF = 0 or iF = i j with i ∈ I ′ and j ∈ I ′′

i −{i}, we have πiF (sV ) ∈ F0(wF ) =
L(G)∩(L(G)−K )�≥wF , which contradicts πiF (sV ) ∈ K�≤wF . Thus, we havem∗

F ≤ wF .
Wenext prove thatm∗

F ≥ wF . For the sake of contradiction,we suppose thatm∗
F < wF . By

the definition of wF , there exists a path pVNF : RNF,0
σ

(hF,0)

V−−−−→ RNF,1
σ

(hF,1)

V−−−−→ · · · σ
(hF,l−1)

V−−−−−→
RNF,l (l ≥ 1) in Path(VNF ) such that wF = wF (pVNF ). In addition, by the definition of
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wF (pVNF ), there exist I ′ ∈ Ik and υI ′ ∈ ϒI ′ such that wF (pVNF ) = wF,(I ′,υI ′ )(pVNF ).
Since 0 ≤ m∗

F < wF , by the definition of wF,(I ′,υI ′ )(pVNF ), we have Eq. 121 and

wF = wF,(I ′,υI ′ )(pVNF ) ≤ wF,iF (pVNF ) (131)

for any iF ∈ �F,(I ′,υI ′ )(pVNF ). Besides, for any iF ∈ ({0} ∪ {i j | i ∈ I ′ ∧ j ∈ υI ′(i) −
{i}}) − �F,(I ′,υI ′ )(pVNF ), there exists hiF ∈ {1, 2, . . . , l} such that

[∃rF ∈ RNF,hiF
: πiF (rF ) ∈ Q × {qd}]

∧[∃rF , r ′
F ∈ RNF,hiF

, ∃σV ∈ �V : δF (rF , σV ) = r ′
F ∧ πiF (σV ) 	= ε]. (132)

Then, there exists a path pVF : rF,0
σ

(0)
V−−→ rF,1

σ
(1)
V−−→ · · · σ

(lF−1)
V−−−−→ rF,lF of VF such that, for

somêhF,0,̂hF,1, . . . ,̂hF,l−1 ∈ {0, 1, . . . , lF − 1} witĥhF,0 < ̂hF,1 < · · · < ̂hF,l−1,

{rF,0, . . . , rF,̂hF,0
} = RNF,0, (133)

{rF,̂hF,0+1, . . . , rF,̂hF,1
} = RNF,1, (134)

...

{rF,̂hF,l−1+1, . . . , rF,lF } = RNF,l , (135)

σ
(̂hF,p)

V = σ
(hF,p)

V for each p ∈ {0, 1, . . . , l − 1}, and
πiF (rF,̂hF,hiF

−1+1) ∈ Q × {qd}

∧|πiF (σ
(̂hF,hiF

−1+1)

V σ
(̂hF,hiF

−1+2)

V · · · σ (lF−1)
V )| ≥ wF − 1 (136)

for each iF ∈ ({0} ∪ {i j | i ∈ I ′ ∧ j ∈ υI ′(i) − {i}}) − �F,(I ′,υI ′ )(pVNF ). In addition,
for each iF ∈ �F,(I ′,υI ′ )(pVNF ), since wF ≤ wF,iF (pVNF ), there exists hiF ∈ {1, 2, . . . , l}
such that Eq. 136 holds. Let sV = σ

(0)
V σ

(1)
V . . . σ

(lF−1)
V . Then, we have π0(sV ) ∈ L(G) ∩

(L(G) − K )�≥wF−1 ⊆ L(G) ∩ (L(G) − K )�≥m∗
F = F0(m∗

F ) and πi j (sV ) ∈ L(G) ∩
(L(G) − K )�≥wF−1 ⊆ L(G) ∩ (L(G) − K )�≥m∗

F = F0(m∗
F ) for any i ∈ I ′ and any

j ∈ υI ′(i) − {i}. In addition, for any i ∈ I ′, by Eq. 121, we have ˜δ(qK ,0, πi i (sV )) =
πi i (rF,lF ) ∈ QK , which implies πi i (sV ) ∈ K = H0(m∗

F ). Since Pi (π0(sV )) = Pi (πi i (sV ))

for each i ∈ I ′ and Pj (πi i (sV )) = Pj (πi j (sV )) for each i ∈ I ′ and each j ∈ υI ′(i)−{i}, we
have π0(sV ) ∈ F2(m∗

F ), which contradicts F2(m∗
F ) = ∅. Thus, it holds that m∗

F ≥ wF . ��

Remark 9 Since the number of transitions of a path in Path(VNF ) is at most |RNF | − 1, by
Theorem 6, we have m∗

F ≤ |RNF | − 1.

Example 8 We consider the setting of Example 1. A part of the nondeterministic acyclic
finite automaton VNF is shown in Fig. 11. Let pVNF denote the path in Path(VNF ) shown
in Fig. 11.

We consider an index set {1, 2, 3} ∈ I3 and a function υ{1,2,3} : {1, 2, 3} → I3 such that
υ{1,2,3}(i) = {1, 2, 3} for each i ∈ {1, 2, 3}. It follows that υ{1,2,3} ∈ ϒ{1,2,3}. As shown in
Fig. 11, a singleton state

{((q1, qd), qK ,0, (q1, qd), (q1, qd), (q0, qK ,0), (q1, qd), qK ,0, (q1, qd), (q0, qK ,0),

(q1, qd), (q1, qd), qK ,0, (q0, qK ,0), (q0, qK ,0), (q0, qK ,0), (q0, qK ,0), qK ,0)} ∈ RNF ,
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where q1 = δ(q0, f ), is reached by the path pVNF . Let {rF } denote this singleton state. Since
πi i (rF ) = qK ,0 ∈ QK for any i ∈ {1, 2, 3}, Eq. 121 holds. For {1, 2, 3} and υ{1,2,3}, we have

�F,({1,2,3},υ{1,2,3})(pVNF ) = {0, 12, 13, 21, 23, 31, 32}. (137)

It holds that, for each iF ∈ �F,({1,2,3},υ{1,2,3})(pVNF ), wF,iF (pVNF ) = 1. Then, we have
wF,({1,2,3},υ{1,2,3})(pVNF ) = 1. By computing wF,(I ′,υI ′ )(pVNF ) for all pairs (I ′, υI ′) of an
index set I ′ ∈ I3 and a function υI ′ ∈ ϒI ′ , we obtain wF (pVNF ) = 1. Finally, by examining
all paths in Path(VNF ), we have w∗

F = 1.

6.2 Computation ofm∗
H

To compute m∗
H in the case of NH 	= ∅, we use the nondeterministic acyclic finite

automaton VNH = (RNH , �V , δNH , RNH ,0), which is constructed for verifying whether
∀m ∈ N(H2(m) 	= ∅). Let

IH = {i i | i ∈ I }. (138)

Fig. 11 A part of nondeterministic acyclic finite automaton VNF for Example 8
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Each element of IH indicates the corresponding component of the finite automaton VH =
(RH , �V , δH , rH ,0) that traces a failure string. For each iH ∈ IH , we introduce a weight of
each transition of VNH by a function wH ,iH : RNH × �V × RNH → {0, 1} defined as

wH ,iH (RNH , σV , R′
NH ) =

⎧

⎨

⎩

1, if [R′
NH ∈ δNH (RNH , σV )] ∧ [πiH (σV ) 	= ε]

∧[∃r ′
H ∈ R′

NH (πiH (r ′
H ) ∈ Q × {qd})]

0, otherwise
(139)

for each RNH , R′
NH ∈ RNH and each σV ∈ �V . This weight of a transition of VNH

is used to count the number of occurrences of events after failure. We consider any path

pVNH : RNH ,0
σV ,0−−→ RNH ,1

σV ,1−−→ · · · σV ,l−1−−−→ RNH ,l (l ≥ 1) of VNH . Its weight with respect
to iH ∈ IH is defined as

wH ,iH (pVNH ) =
l−1
∑

h=0

wH ,iH (RNH ,h, σV ,h, RNH ,h+1). (140)

For any pair (I ′, υI ′) of an index set I ′ ∈ Ik and a function υI ′ ∈ ϒI ′ , a subset
�H ,(I ′,υI ′ )(pVNH ) ⊆ IH whose elements are involved to compute m∗

H is defined as

�H ,(I ′,υI ′ )(pVNH ) = {i i ∈ IH | ∀h ∈ {1, 2, . . . , l}(i /∈ JH (RNH ,h))}, (141)

where the function JH : RNH → 2I is defined by Eq. 101. Intuitively, for each iH ∈
�H ,(I ′,υI ′ )(pVNH ), the number of occurrences of events after failure can be computed as
wH ,iH (pVNH ).

The following lemma shows the nonemptyness of �H ,(I ′,υI ′ )(pVNH ).

Lemma 2 Let k ∈ N be a nonnegative integer such that 2 ≤ k ≤ n. For a nonempty closed
regular sublanguage K ⊆ L(G) generated by a finite automaton GK = (QK , �, δK , qK ,0),

we assume thatNH 	= ∅. We consider any path pVNH : RNH ,0
σV ,0−−→ RNH ,1

σV ,1−−→ · · · σV ,l−1−−−→
RNH ,l (l ≥ 1) of the nondeterministic acyclic finite automaton VNH . For any pair (I ′, υI ′)
of an index set I ′ ∈ Ik and a function υI ′ ∈ ϒI ′ , if

∀i ∈ I ′,∀ j ∈ υI ′ − {i}[∃rH ∈ RNH ,l(πi j (rH ) ∈ QK )], (142)

then �H ,(I ′,υI ′ )(pVNH ) 	= ∅.
Proof SinceNH 	= ∅, there existsm ∈ N such that H2(m) = ∅. By Theorem 5, Eq. 103 does
not hold for pVNH . Since |̂JH (pVNH )| < k, we have I ′ − ̂JH (pVNH ) 	= ∅. We consider any
i ∈ I ′ − ̂JH (pVNH ). Since |υ ′

I (i) − {i}| = k − 1, by Eq. 142, we have

|{ j ∈ I − {i} | ∃rH ∈ RNH ,l(πi j (rH ) ∈ QK )}| ≥ k − 1. (143)

By the definition of ̂JH (pVNH ), we have i /∈ JH (RNH ,h) for any h ∈ {1, 2, . . . , l}. It follows
that i i ∈ �H ,(I ′,υI ′ )(pVNH ) 	= ∅. ��

We define the weight wH ,(I ′,υI ′ )(pVNH ) of pVNH with respect to a pair (I ′, υI ′) of an
index set I ′ ∈ Ik and a function υI ′ ∈ ϒI ′ as

wH ,(I ′,υI ′ )(pVNH )

=
{

min{wH ,iH (pVNH ) ∈ N | iH ∈ �H ,(I ′,υI ′ )(pVNH )}, if Eq. 142 holds
0, otherwise.

(144)
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By Lemma 2, wH ,(I ′,υI ′ )(pVNH ) is well-defined. Then, we define the weight wH (pVNH )

of pVNH as

wH (pVNH ) = max{wH ,(I ′,υI ′ )(pVNH ) ∈ N | I ′ ∈ Ik ∧ υI ′ ∈ ϒI ′ }. (145)

Finally, letting Path(VNH ) be the set of all paths of VNH , we definewH as the maximum
weight

wH = max{wH (pVNH ) ∈ N | pVNH ∈ Path(VNH )} (146)

over Path(VNH ). Since VNH is acyclic, Path(VNH ) is finite, which implies that wH is
effectively computable.

The following theorem, which can be proved in a similar way to Theorem 6, shows that
m∗

H can be computed as m∗
H = wH .

Theorem 7 Let k ∈ N be a nonnegative integer such that 2 ≤ k ≤ n. For a nonempty closed
regular sublanguage K ⊆ L(G) generated by a finite automaton GK = (QK , �, δK , qK ,0),
if NH 	= ∅ then m∗

H = wH .

Remark 10 Since the number of transitions of a path in Path(VNH ) is at most |RNH | − 1,
by Theorem 7, we have m∗

H ≤ |RNH | − 1.

7 Conclusion

Weconsidered the reliable decentralized diagnosis problem forDESs.We introduced a notion
of reliable 1-inference-diagnosability and showed that reliable 1-inference-diagnosability is a
necessary and sufficient condition for the existence of local diagnosers that solve the reliable
decentralized diagnosis problem using single-level inference. We presented a method for
effectively verifying reliable 1-inference-diagnosability. Moreover, we computed the delay
bound within which the occurrence of any failure string can be detected. The computed
delay bound is used to synthesize local diagnosers. Reliable decentralized diagnosis using
multi-level inference is a subject of future work.
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