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Abstract

We consider a reliable decentralized diagnosis problem for discrete event systems in the
inference-based framework. This problem requires us to synthesize local diagnosers such
that the occurrence of any failure string is correctly detected within a finite number of steps,
even if local diagnosis decisions of some local diagnosers are not available. In the case
of single-level inference, we introduce a notion of reliable 1-inference-diagnosability and
show that reliable 1-inference-diagnosability is a necessary and sufficient condition for the
existence of a solution to the reliable decentralized diagnosis problem. Then, we show how
to verify reliable 1-inference-diagnosability effectively. When the system to be diagnosed is
reliably 1-inference-diagnosable, we compute the delay bound within which the occurrence
of any failure string can be detected. Local diagnosers can be constructed using the computed
delay bound.

Keywords Discrete event system - Decentralized failure diagnosis - Reliable
inference-diagnosability - Delay bound

Nomenclature

N Set of all nonnegative integers.
»=m Subset of * defined as ¥=" = {s € ©* | |s| > m}.
n=m Subset of ©* defined as =" = {s € T* | |s| < m}.
1 Index set {1, 2, ..., n} of local diagnosers.
7k Subset of the power set 2/ of I defined as 72X = {1’ € 2! | |I'| > k}.
T* Subset of the power set 2/ of I defined as ZF = {I’ € 2! | |I'| = k}.
C Set {0, 1, ¢} of diagnosis decisions.
Gk Automaton that generates the language K C L(G).
Gk Augmented automaton that generates X*.
\%3 Finite automaton constructed for verifying Vim € N(F>(m) # 0).
VNF Nondeterministic acyclic automaton constructed from V.
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fp(pvw) Label of path py, . of Vi r defined as Eq. 74.
Vy Finite automaton constructed for verifying Vim € N(Hy(m) # ().
VN Nondeterministic acyclic automaton constructed from Vp.
fH(vaH) Label of path py,,, of Vyyu defined as Eq. 102.
m* Delay bound defined as Eq. 114.
my Minimum element of Ny = {m € N | Fo(m) = (}.
m}‘_l Minimum element of Ny = {m € N | Hy(m) = (}.

1 Introduction

For discrete event systems (DESs), the language-based notion of diagnosability was intro-
duced in Sampath et al. (1995) for the centralized setting, where a single diagnoser diagnoses
the system so that the occurrence of any failure string is correctly detected within a finite
number of steps. In decentralized failure diagnosis (Cassez 2012; Chakib and Khoumsi 2012;
Debouk et al. 2000; Khoumsi 2020; Kumar and Takai 2009; Qiu and Kumar 2006; Su and
Wonham 2005; Takai and Kumar 2017; Viana and Basilio 2019; Wang et al. 2011, 2007,
Yin and Lafortune 2015), multiple local diagnosers locally diagnose the system. A decen-
tralized diagnoser consists of local diagnosers and issues the diagnosis decision based on the
local diagnosis decisions made by local diagnosers. The two kinds of decentralized diagnosis
architectures, called the disjunctive architecture (Debouk et al. 2000; Qiu and Kumar 2006)
and the conjunctive architecture (Wang et al. 2007), were developed. In the disjunctive archi-
tecture, the decentralized diagnoser issues the failure decision if and only if at least one local
diagnoser makes the local failure decision. On the other hand, in the conjunctive architecture,
the decentralized diagnoser issues the failure decision if and only if all local diagnosers make
the local failure decisions. The codiagnosability property plays an important role in character-
izing the class of systems which are diagnosable in the decentralized setting. The notions of
disjunctive-codiagnosability (Qiu and Kumar 2006) and conjunctive-codiagnosability (Wang
et al. 2007) were introduced in the disjunctive and conjunctive architectures, respectively.
Interestingly, these two notions are incomparable (Wang et al. 2007).

Inference-based approaches were first introduced for DESs in the setting of decentralized
supervisory control (Kumar and Takai 2007; Ricker and Rudie 2007; Yoo and Lafortune
2004). In these approaches, each local supervisor makes a control decision based on infer-
ence, which means using the knowledge about control decisions of other local supervisors.
In particular, using the knowledge about control decisions issued by other local super-
visors unambiguously is referred to as single-level inference. Later, the inference-based
approaches were applied to decentralized diagnosis (Khoumsi 2020; Kumar and Takai
2009; Takai and Kumar 2017; Wang et al. 2007). The conditional architecture introduced in
Wang et al. (2007) involves single-level inference. The notions of conditional disjunctive-
codiagnosability and conditional conjunctive-codiagnosability, both of which are weaker
than disjunctive-codiagnosability and conjunctive-codiagnosability, were introduced in the
conditional disjunctive and conjunctive architectures, respectively (Wang et al. 2007). The
general inference-based frameworks developed in Kumar and Takai (2009); Takai and Kumar
(2017) allow multi-level inference. In these general frameworks, a local diagnosis decision
is tagged with a nonnegative integer called an ambiguity level. The ambiguity level repre-
sents how ambiguous a local diagnoser is about its local diagnosis decision. To correctly
detect the occurrence of any failure string within a finite number of steps, any nonfailure
string should be distinguished from any sufficiently long failure string or vice versa. The
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local failure decision with the ambiguity level 0 is taken when a local diagnoser is certain
that a failure string has occurred. On the other hand, the local nonfailure decision with the
ambiguity level 0 is made when a local diagnoser certainly knows that a sufficiently long
failure string has not occurred. In addition, the local failure (respectively, nonfailure) decision
with the ambiguity level 1 is taken when a local diagnoser knows that, for any indistinguish-
able nonfailure (respectively, sufficiently long failure) string, another local diagnoser makes
the local nonfailure (respectively, failure) decision with the ambiguity level O so that the
local failure (respectively, nonfailure) decision with the ambiguity level 1 is overridden. The
failure/nonfailure decision with a higher ambiguity level can be similarly explained.

Reliability is a desirable property for safety-critical systems. In most previous work on
decentralized diagnosis, it is implicitly assumed that diagnosis decisions of all local diag-
nosers are available. However, it may be possible that some local decisions are not available,
due to some reasons including breakdown of local diagnosers and disconnection of the net-
work. A reliable decentralized diagnosis problem was considered in the disjunctive and
conjunctive architectures in Basilio and Lafortune (2009); Nakata and Takai (2013) and
Yamamoto and Takai (2014), respectively. Similar problems were considered for decen-
tralized supervisory control in Liu and Lin (2010); Takai and Ushio (2000, 2003) and
decentralized prognosis in Yin and Li (2016). Letting n be the number of local diagnosers,
the reliable decentralized diagnosis problem requires us to synthesize n local diagnosers such
that the occurrence of any failure string is correctly detected within a finite number of steps,
as long as at least k (2 < k < n) local diagnosis decisions are available. In other words, the
occurrence of any failure string is detected within a finite number of steps, even if diagnosis
decisions of at most n — k local diagnosers are not available. In this sense, the decentral-
ized diagnoser consisting of such local diagnosers is reliable. To characterize the existence
of a solution to the problem, the notions of (n, k)-reliable disjunctive-codiagnosability and
(n, k)-reliable conjunctive-codiagnosability were introduced in Nakata and Takai (2013) and
Yamamoto and Takai (2014), respectively.

In this paper, we consider the reliable decentralized diagnosis problem in the inference-
based framework of Takai and Kumar (2017). In order to characterize the existence of a
solution, we define a notion of (n, k)-reliable 1-inference-diagnosability, which is weaker than
(n, k)-reliable disjunctive-codiagnosability and (n, k)-reliable conjunctive-codiagnosability.
To do so, the iterative computations over languages introduced in Takai and Kumar (2017)
are generalized. We show that (n, k)-reliable 1-inference-diagnosability is a necessary and
sufficient condition for the existence of n local diagnosers that solve the reliable decentralized
diagnosis problem based on single-level inference. This result generalizes the existing ones
of Basilio and Lafortune (2009); Nakata and Takai (2013); Yamamoto and Takai (2014)
on reliable decentralized diagnosis without inference. In addition, we present how to verify
(n, k)-reliable 1-inference-diagnosability. When the system is (n, k)-reliably 1-inference-
diagnosable, we compute the delay bound within which the occurrence of any failure string
can be detected, even if diagnosis decisions of at most n — k local diagnosers are not available.
The computed delay bound is used to construct local diagnosers.

Recently, the reliable decentralized supervisory control problem has been solved using
single-level inference (Takai and Yoshida 2022). In supervisory control, a supervisor is
required to always issue a correct control decision for each feasible controllable event. The
purpose of failure diagnosis addressed in this paper is to detect the occurrence of a failure
string that cannot be directly observed. Due to unobservability of the occurrence of a failure
string, the requirement that it should be detected immediately is unrealistic. Therefore, the
notion of diagnosability introduced in Sampath et al. (1995) requires that the occurrence
of any failure string is correctly detected with a finite delay. Since a delay of detecting the

@ Springer



Discrete Event Dynamic Systems

occurrence of a failure string is allowed, the result of Takai and Yoshida (2022) cannot be
applied to the reliable decentralized diagnosis problem considered in this paper.

The present paper is an extended version of the authors’ conference papers (Hamada and
Takai 2022a) and Hamada and Takai (2022b). Its additional contributions are summarized as
follows:

e The proofs of the technical results are included
and

e how to compute the delay bound within which the occurrence of any failure string can
be detected is presented.

2 Preliminaries

A DES to be diagnosed is modeled as a finite automaton G = (Q, X, §, qo), where Q is the
finite set of states, X is the finite set of events, a partial function § : Q x £ — Q is the state
transition function, and gg € Q is the initial state. A sequence go 2 q1 a2 qi
(I = 1) of transitions from the initial state go such that §(gn, o)) = gp4+1 for each h €
{0, 1,...,1—1}iscalled a path of G. Let =* be the set of all finite strings of elements of X,
including the empty string ¢. The function § can be generalized to § : Q x ¥* — Q in the
usual manner. For any ¢ € Q and any s € X%, §(q, s)! denotes that §(g, s) is defined. Let
N be the set of all nonnegative integers, thatis, N = {0, 1,2,...}. Forany s € &*, |s| € N
denotes its length and s denotes m concatenations of s, where m € N. Besides, for any
meN, welet 22" ={s e T* | |s| >m}and T = {s € T* | |s]| < m}.

The generated language of G, denoted by L(G), isdefinedas L(G) = {s € £* | §(qo, 5)!}.
Foreach s € L(G), the postlanguage of L(G) after s is defined as L(G)/s = {t € * | st €
L(G)}. For a string s € %, pr(s) denotes the set of all prefixes of s, that is, pr(s) = {t €
¥* | Ju € ¥*(s = tu)}. For alanguage K C X%, pr(K) ={s € X* | 3r € X*(st € K)} is
the set of all prefixes of strings in K. K is said to be (prefix-)closed if K = pr(K).

In the setting of decentralized diagnosis, n local diagnosers diagnose the system G based
on local event observations. Let I = {1, 2, ..., n} be the index set of local diagnosers. For
the ith local diagnoser (i € I), let ¥; , € X be the set of locally observable events and
P :X* > Ei”i ,, be the natural projection from X* to Ei’f ,» Which is inductively defined as
follows:

o Pi(e) =¢,

o Vs € X* Vo € X,

Pi(s)o,ifo € X;,
P;(s), otherwise.

Pi(so) = { ()]

If a string s € L(G) is executed in G, then the locally observable event string P;(s) is
observed by the ith local diagnoser. For any language K € X*, let P;(K) = {Pi(s) € El.*’o |
s € K}. Twostrings s, s’ € L(G) are said to be indistinguishable (under P;)if P;(s) = P;(s’).
Then, the inverse projection Pl._l : Ei’f 0 = 25" is defined by Pi_l(ti) ={seX*| P(s) =
tj} forany t; € Ei*, - That is, Pi_l(ti) is the set of strings that are observed as ¢#; by the ith
local diagnoser. We define the globally observable and unobservable event sets ¥, C ¥ and

Tuo CEas X, = J;o; Tioand Ty, = T — X, respectively.

iel
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3 Problem formulation

In this section, we formulate a reliable decentralized diagnosis problem in the inference-based
framework of Takai and Kumar (2017).

The set of diagnosis decisions is C = {0, 1, ¢}, where 0 and 1 represent the nonfailure
and failure decisions, respectively, while ¢ denotes the unsure decision. Due to local event
observations, a local diagnoser is possibly ambiguous whether a failure string has occurred.
To represent the degree of ambiguity of a local diagnosis decision, a nonnegative integer,
which is called the ambiguity level, is attached to it. If a local diagnoser is unambiguous about
its diagnosis decision, 0 is attached as its ambiguity level. For each i € I, an inference-based
local diagnoser D; is defined as a function D; : P;(L(G)) — C x N. For each s € L(G),
D;(P;(s)) is denoted by

D;(Pi(s)) = (ci(Pi(s)), ni(Pi(s))), (@)

where, for the locally observed event string P;(s) € P;(L(G)), ¢;(Pi(s)) € C denotes the
local diagnosis decision of D; and n; (P;(s)) € N is the ambiguity level of ¢; (P; (s)).

In this paper, we consider a situation where diagnosis decisions of some local diagnosers
are not available with some reasons. Let £ be a nonnegative integer such that 2 < k < n,
which represents the minimum number of local diagnosers whose diagnosis decisions are
available.

Remark 1 In the case of k = 1, it is possible that the diagnosis decision of only one local
supervisor is available. Therefore, each local diagnoser has to be synthesized as a centralized
diagnoser that works alone, and the reliable decentralized diagnosis problem considered in
this paper can be simply solved by the existing results on centralized diagnosis. This is the
reason why we exclude the case of k = 1.

We define two subsets Z2* and Z* of the power set 2/ of I as 72k = {I' € 2! | |I'| = k}
and ZF = {I' € 2! | |I'| = k}. For each I’ € ZZ*, it is possible that diagnosis decisions of
only local diagnosers D; with i € I are available. The decentralized diagnoser consisting
of local diagnosers D; with i € I’ is defined as a function Dy : L(G) — C such that, for
each s € L(G), the diagnosis decision Dy (s) is given as

1, if Vi € I'(n; (Pi(s)) = np(s) = ci(Pi(s)) = 1)
Dp(s) =10, if Vi € I'(nj(P;(s)) =np(s) = ¢;(Pi(s)) =0) 3)
¢, otherwise,

where n/(s) is the minimum ambiguity level of local decisions, i.e.,
np(s) =min{n;(Pi(s)) e N|iel'}). “4)

Unlike a local diagnoser D; : P;(L(G)) — C x N, the decentralized diagnoser D;: :
L(G) — C issues the diagnosis decision D/ (s) € C forastring s € L(G) without attaching
its ambiguity level. When a string s € L(G) is executed in G, each local diagnoser makes the
local diagnosis decision c¢; (P;(s)) with the ambiguity level n; (P;(s)). Then, the diagnosis
decision Dy (s) of the decentralized diagnoser D/ is taken to be the same as the local
diagnosis decision whose ambiguity level is minimal. The value n;/(s) can be considered as
the ambiguity level of the diagnosis decision D/ (s). Since the subject of failure diagnosis is
detecting the occurrence of a failure string, the value n;/(s) is not issued by the decentralized
diagnoser Dy.

For the sake of simplicity, we assume in the remainder of the paper that the system G
to be diagnosed is deadlock free, that is, for any s € L(G), there exists ¢ € X such that
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so € L(G). Besides, we assume that the nonfailure behavior of the system G is described by
anonempty closed regular sublanguage K € L(G). Thatis, K is the set of all strings without
failures. For any s € K, a failure is modeled by the occurrence of an event o € X such that
so € L(G) — K. Any string in L(G) — K (respectively, K) is called a failure (respectively,
nonfailure) string.

Remark 2 When the system G is not deadlock free, G has to be modified by adding a self-
loop transition by a new unobservable event 0, ¢ X at any deadlock state reached by a
string s € L(G) such that so ¢ L(G) for any o € . The modified system is deadlock free,
and the results of the paper are applicable to it.

Given a nonnegative integer k € N with 2 < k < n and a nonnegative integer N € N, a
notion of (n, k)-N-inferring local diagnosers is defined as follows:

Definition 1 Let k € N be a nonnegative integer such that 2 < k < n, where n € N is
the number of local diagnosers and k is the minimum number of local diagnosers whose
diagnosis decisions are available, and N € N be a nonnegative integer that represents an
upper bound of the ambiguity level of a diagnosis decision. For a nonempty closed regular
sublanguage K C L(G), n local diagnosers D; : P;(L(G)) > CxN (i =1,2,...,n)are
said to be (n, k)-N-inferring if the following two conditions hold:

e [t holds that
VI' € T7% Vs € L(G) — K(Dy/(s) =1 = nyi(s) < N) 5)
or
VI' € 77K Vs € K(Dyi(s) # 1 = np(s) < N), (6)
e there exists m € N such that
VI € 725 Vs € (L(G) N (L(G) — K)SZ™Y UK (ny(s) < N = Dy(s) £ ¢). (7)
If n local diagnosers D; (i = 1,2, ..., n) are (n, k)-N-inferring, then, for any I’ € 7=k

o the ambiguity level of the failure decision of the decentralized diagnoser D for any
failure string or that of the nonfailure or unsure decision of D/ for any nonfailure string
is bounded by N, and

e for any nonfailure or sufficiently long failure string, the decision of D/ is not unsure if
its ambiguity level is less than or equal to N.

A reliable decentralized diagnosis problem considered in this paper is formulated as
follows:

Problem 1 (Reliable Decentralized Diagnosis Problem) Let k € N be a nonnegative integer
such that2 < k < n. A reliable decentralized diagnosis problem is a problem of synthesizing
(n, k)-N-inferring local diagnosers D; : P;(L(G)) - C x N (i = 1,2, ..., n) that satisfy

Im e N, VI € 725, ¥s € L(G) N (L(G) — K)XZ"(Dy(s) = 1) ®)

and
vI' € 7% Vs € K(Dy/(s) # 1). )

The conditions Eqs. 8 and 9 guarantee that there exists a nonnegative integer m € N
such that if diagnosis decisions of at least k local diagnosers are available, the occurrence of
any failure string can be correctly detected within m steps. In this sense, the decentralized
diagnoser consisting of local diagnosers D; (i = 1,2,...,n) that satisfy the conditions
Egs. 8 and 9 is reliable.
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4 Solvability of reliable decentralized diagnosis problem

We consider the reliable decentralized diagnosis problem formulated in the last section. For
the solvability of the problem, we focus on the case of N = 1 and present a necessary
and sufficient condition for the existence of (n, k)-1-inferring local diagnosers that solve the
problem.

4.1 Reliable 1-inference-diagnosability

To characterize the existence of (n, k)-1-inferring local diagnosers that solve the reliable
decentralized diagnosis problem, we introduce a notion of (n, k)-reliable 1-inference-
diagnosability.

For a nonempty closed regular sublanguage K C L(G) that models the nonfailure behav-
iorof G, we introduce a sequence {(F, (m), Hy (m))}nen of language pairs, wherem € Nisan
arbitrary nonnegative integer, to define a notion of (n, k)-reliable 1-inference-diagnosability
and synthesize (n, k)-1-inferring local diagnosers. Initially, Fo(m) and Hy(m) are defined
as

Fo(m) = L(G) N (L(G) — K)==", (10)
Hy(m) = K. (11)
Fy(m) is the set of failure strings such that at least m events have occurred after the occurrences

of the corresponding failures, while Ho(m) is the set of all nonfailure strings. Then, for any
h €N, Fyy1(m) and Hp41(m) are defined as

Frp1(m) = Fuom)n 3 (ﬂ P,-“P,-(Hh(m») : (12)
I'eTk \iel’

Hyy10m) = Hym)n § (ﬂP,-IPi(Fh(m))> : (13)
I'eTk \iel'

By Eq. 12 (respectively, Eq. 13), Fj41(m) (respectively, Hy1(m)) is a sublanguage of
Fj,(m) (respectively Hj,(m)), which means that as the value of & increases, Fj,(m) (respec-
tively Hj,(m)) becomes smaller. For each string in Fj,41(m) (respectively, Hj41(m)), there
exist an index set I’ € Z¥ and an indistinguishable string in Hj, (m) (respectively, Fj, (m)) for
eachi € I'.

Remark 3 In the case of k = n, that is, diagnosis decisions of all n local diagnosers are
available, the languages Fj,11(m) and Hj41(m) are given by

Fiyy1(m) = Fy(m) N (ﬂ P,.lPi<Hh<m>)) : (14)
iel

Hy11(m) = Hy(m) N (ﬂ P;IP,»(Fh<m>)> (15)
iel

for any 4 € N, which are the same as those defined in Takai and Kumar (2017).

For each string in Fo(m) — Fi(m) (respectively, Hyo(m) — Hj(m)), at least one local
diagnoser can distinguish it from strings in Hy(m) (respectively, Fo(m)) and make the failure
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(respectively, nonfailure) decision whose ambiguity level is 0, even if diagnosis decisions
of at most n — k local diagnosers are not available. We consider any string s € Fj(m) —
F>(m) (respectively, s € Hi(m) — Hp(m)). There exists at least one local diagnoser that
can distinguish it from strings in Hj(m) (respectively, F1(m)). In addition, for each string
in Hy(m) — Hy(m) (respectively, Fo(m) — Fj(m)), the nonfailure (respectively, failure)
decision is issued by another local diagnoser unambiguously. Therefore, based on single-
level inference, a local diagnoser that can distinguish s € Fj(m) — F>(m) (respectively,
s € Hy(m) — Hy(m)) from strings in H;(m) (respectively, F;(m)) is able to make the failure
(respectively, nonfailure) decision whose ambiguity level is 1. Moreover, if F>(m) = ¢
(respectively, Hy(m) = ), the failure (respectively, nonfailure) decision whose ambiguity
level is less than or equal to 1 can be made for any string in Fo(m) (respectively, Ho(m)). This
observation motivates us to introduce a notion of (n, k)-reliable 1-inference-diagnosability
as follows:

Definition 2 Ler k € N be a nonnegative integer such that2 < k < n. For a nonempty closed
regular sublanguage K < L(G), the system G is said to be (n, k)-reliably I-inference-
diagnosable if

dm € N(Fo(m) =0 v Hy(m) = 0). (16)

Remark4 When k = n, (n, k)-reliable l-inference-diagnosability is reduced to the 1-
inference-diagnosability condition of Takai and Kumar (2017).

The two notions of reliable codiagnosability were defined in Nakata and Takai (2013);
Yamamoto and Takai (2014). For a nonempty closed regular sublanguage K € L(G), the
system G is

e (n, k)-reliably disjunctive-codiagnosable (Nakata and Takai 2013) if
Im e N,Vs € L(G) N (L(G) — K)S="(|Ip(s)| = n —k + 1), a7

where Ip(s) ={i € I | Pi_lP,-(s) NL(G) € L(G) — K},
e (n, k)-reliably conjunctive-codiagnosable (Yamamoto and Takai 2014) if

ImeN,Vs e K(Ic(s)| =n—k+1), (18)
where Ic(s) = {i € I | P, Pi(s) N L(G) € K="},

By the definition of F{ (m) (respectively, Hi(m)), G is (n, k)-reliably disjunctive-codiagnosable
(respectively, (n, k)-reliably conjunctive-codiagnosable) if and only if there exists m € N
such that Fy(m) = @ (respectively, Hy(m) = ). Thus, the following proposition is obtained.

Proposition1 Let k € N be a nonnegative integer such that 2 < k < n. For a
nonempty closed regular sublanguage K < L(G), if the system G is (n, k)-reliably
disjunctive-codiagnosable or (n, k)-reliably conjunctive-codiagnosable, then it is (n, k)-
reliably I-inference-diagnosable.

Proposition 1 shows that (n, k)-reliable 1-inference-diagnosability is weaker than (n, k)-

reliable disjunctive-codiagnosability and (n, k)-reliable conjunctive-codiagnosability. As
shown in Example 1 later, the reverse relation does not hold.
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4.2 Synthesis of local diagnosers

We assume that, for a nonempty closed regular sublanguage K < L(G), the system G
is (n, k)-reliably 1-inference-diagnosable. Then, there exists m € N such that Fy(m) =
Hp(m) = @ for any h € N with & > 3. For such m € N, according to the synthesis method
developed in Takai and Kumar (2017), we synthesize an inference-based local diagnoser
D; : P;(L(G)) - C x N foreachi € I. Since F,(m) = Hp(m) = # for any h € N
with & > 3, the language pairs (Fj, (m), Hy(m)) (h =4, 5,6, ...) are redundant. Therefore,
the four language pairs (Fy(m), H,(m)) (h =0, 1, 2, 3) are used for this purpose. For each
s € L(G), nlf (P;(s)) € N, which we call the ambiguity level of the failure decision, and
nﬁ’(P,- (s)) € N, which we call the ambiguity level of the nonfailure decision, are computed
by

n] (Pi(s)) = min{h € {0, 1,2, 3} | Pi(s) ¢ Pi(Hy(m))}, 19)
n} (Pi(s)) = min{h € {0, 1,2,3} | Pi(s) ¢ Pi(Fj(m))}. (20)

n lf (P; (s)) (respectively, n? (P;(s))) is the minimum integer & such that s can be distinguished
from strings in Hj (m) (respectively, Fj,(m)) under P;. It follows from F3(m) = Hz(m) = 0
that ni.f(Pi (s)) and nf’(Pi (s)) are well-defined. Using nf(Pi (s)) and n?(Pi (s)), the local
diagnosis decision ¢;(P;(s)) € C and its ambiguity level n; (P;(s)) € N are determined as
follows:

1, if n/ (Pi(s)) < n!(Pi(s))

ci(Pi(s)) =10, it ! (Pi(s)) < n! (Pi(s)) (21)
¢, otherwise,

ni (P;(s)) = min{n] (Pi(s)). nl(P;(s)}. (22)

The local diagnosis decision c¢;(P;(s)) is determined by comparing nlf (P;(s)) and
n(P;(s)). It n! (P;(s)) (respectively, n/(P;(s))) is smaller than n/(P;(s)) (respectively,
nlf (P;(s))), then the local failure (respectively, nonfailure) decision is made.

The following proposition is obtained in the same way as Lemma 2 of Takai and Kumar
(2017), which shows that if the system G is (n, k)-reliably 1-inference-diagnosable for a
given nonempty closed regular sublanguage K C L(G), then the n local diagnosers D; (i =
1,2, ..., n) synthesized by Eqs. 19-22 solve the reliable decentralized diagnosis problem in
the case of N = 1.

Proposition 2 Letk € N be anonnegative integer suchthat2 < k < n. For anonempty closed
regular sublanguage K C L(G), if the system G is (n, k)-reliably I-inference-diagnosable,
then the n local diagnosers D; : Pi(L(G)) - C x N (i = 1,2, ..., n) synthesized by Eqs.
19-22 for any m € N such that F>(m) = @ or Hy(m) = @ are (n, k)-1-inferring and satisfy
the conditions

VI' € I2% Vs € L(G) N (L(G) — K)S="(Dy(s) = 1) (23)
and Eq. 9.

Proposition 2 shows that the n local diagnosers D; : P;i(L(G)) > CxN(@ =1,2,...,n)
synthesized by Eqs. 19-22 for m € N with Fo(m) = ¢ or Hy(m) = ) can detect the
occurrence of any failure string correctly within m steps. How to compute such m € N will
be presented in Section 6.
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4.3 Existence of solution

By Proposition 2, (n, k)-reliable 1-inference-diagnosability is a sufficient condition for the
existence of a solution to the reliable decentralized diagnosis problem in the case of N = 1.
In the following theorem, we show that this condition is also necessary.

Theorem 3 Let k € N be a nonnegative integer such that 2 < k < n. For a nonempty
closed regular sublanguage K C L(G), there exist (n, k)-1-inferring local diagnosers D; :
Pi(L(G)) - C xN @ =1,2,...,n) that satisfy the conditions Eqs. 8 and 9 if and only if
the system G is (n, k)-reliably 1-inference-diagnosable.

Proof To prove the sufficiency part, we suppose that G is (n, k)-reliably 1-inference-
diagnosable. By Proposition 2, there exist (n, k)-1-inferring local diagnosers D; (i =
1,2, ..., n) that satisfy the conditions Eqgs. 8 and 9.

We prove the necessity part. We consider arbitrary (n, k)-1-inferring local diagnosers D;
(i = 1,2,...,n) that satisfy the conditions Eqs. 8 and 9. Since they satisfy Eq. 8, there
exists m € N such that Eq. 23 holds. For the sake of contradiction, we suppose that G is not
(n, k)-reliably 1-inference-diagnosable. Then, we have F>(m) # ¢ and Ho(m) # @. Since
D; (i=1,2,...,n) are (n, k)-1-inferring, the condition Egs. 5 or 6 in the first condition of
Definition 1 holds for N = 1.

We first consider the case where Eq. 5 holds. For any s € F»(m) # #, there exists I’ € Z*
such that

s € Fi(m) N (ﬂ P Pi(H, (m))) . (24)
iel’

Since s € Fi(m) € Fo(m) = L(G) N (L(G) — K)XZ™ and I’ € TF C T7*, by Eq. 23,
we have Dy/(s) = 1. By Eq. 5, we have ny(s) < 1. We consider any j € I’ such that
np(s) =n;(Pj(s)). By Dp(s) = 1, we have ¢ (Pj(s)) = 1. Since s € Pj_le(Hl(m)) by
Eq. 24, there exists s’ € Hj(m) such that P;(s) = P;j(s’). It follows from s’ € H;(m) and
s’ e ijl Pi(s) C ijl P;(Fy(m)) that there exists IJ’/ € 7* such that

s' € Hoem) N | () P Pi(Fo(m)) (25)

el
4SS j

and j € Ij’/. Since s' € Hy(m) = K and I]’.’ € IF C Iz by Eq. 9, we have
D,J//(s/) # 1. In addition, since Pj(s) = P;j(s") and n;(P;j(s)) = np(s) < I, we have
n,j/_r(s/) < nj(Pj(s")) = n;j(Pj(s)) < L. It follows from the second condition of Def-
inition 1 that D,j/_/(s’) = 0. We consider any j' € I]’f such that n,j/_/(s’) = nj(Pj(s").
By DIJ/_/(S/) = 0, we have ¢j/(P;(s")) = 0. Since c;(P;(s")) = c¢;j(Pj(s)) = 1, we
have n,j/_/(s/) < nj(Pj(s") = nj(Pj(s)) = np(s) < 1, which implies n,l//(s/) = 0. By
Eq. 25 and j' € IJ//, we have s/ € PJTIPJ-/(Fo(m)). Then, there exists s” € Fy(m) =
L(G) N (L(G) — K)E=" such that Pj/(s") = Pj(s"). By Eq. 23, we have Dljr_/(s”) = 1.
Since nj/(Pji(s")) = njy(Py(s") = nlj/_/(s’) = 0, we have n,j/_/(s”) =n;y(Pp(s")) =0,
which implies together with ¢/ (Pj/(s")) = ¢;/(Pj/(s)) = 0 that D,l// (s”) # 1. This contra-
dicts D,jr/(s”) =1.
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We next consider the case where Eq. 6 holds. For any s € Ha(m) # @, there exists I’ € ZF
such that

s € Hi(m)N (ﬂ PP (m))> . (26)
iel’

Since s € Hi(m) € Ho(m) = K and I’ € T € 7Z%, by Eq. 9, we have Dy (s) # 1. In
addition, by Eq. 6, we have n;/(s) < 1. It follows from the second condition of Definition 1
that D/ (s) = 0. We consider any j € I’ such that n;(s) = n;j(Pj(s)). By Dp(s) = 0,
we have c¢;(P;(s)) = 0. Since s € Pj_le(Fl (m)) by Eq. 26, there exists s € F(m) such
that Pj(s) = P;(s"). It follows from s € Fi(m) and s" € P;"' Pj(s) S P;' P;(Ho(m)) that
there exists / }’ € 7* such that

s’ e Fom)yn | (1) P Pi(Ho(m)) (27)

iel’
j

and j € I}. Since s’ € Fo(m) = L(G) N (L(G) — K)£=" and I € Ik C 17K, by
Eq. 23, we have DIJ/_/ (s") = 1. We consider any j’ € IJ’/ such that npy (s") = nj(Pj(sh).
By D,j/_/(s’) = 1, we have cj/(Pj(s")) = 1. Since ¢;(P;(s")) = c;(Pj(s)) = 0, we have
n,j//(s/) < nj(Pj(s")) = n;j(Pj(s)) = np(s) < 1, which implies n,.;/(s/) = 0. By Eq. 27
and j' € Ij//, we have s’ € PJTIR,-/(HO(m)). Then, there exists s” € Ho(m) = K such
that P;/(s") = Pj:(s”). By Eq. 9, we have D,u(v”) # 1. In addition, by Eq. 6, we have

npy (s”) < 1. It follows from the second condmon of Definition 1 that D 1 (s”) = 0. Since
n /(P (s") = np(Pp(s")) = nl//(s’) = 0, we have n,u(s”) =ny(Pj (s”)) = 0, which
implies together with ¢/ (Pj/ (s”)) =cjy(Pi(s) =1 that D’j-’ (s”) #£ 0. This contradicts
Dy(s") =0. u!

Example 1 We consider a DES modeled by the finite automaton G shown in Fig. 1, where
Y ={a,b,c,d, e, f, g}. We assume that n = 4, that is, there are four local diagnosers. Let
the locally observable event sets be X1 , = {a, e, g}, oo = {b, e, g}, T3, = {c, e, g}, and
¥4,0 = {d, e, g}. We assume that diagnosis decisions of at least three local diagnosers are

1
4

Fig. 1 Finite automaton G for Example 1
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available, that is, k = 3. As the nonfailure behavior of G, we consider a nonempty closed
regular sublanguage K C L(G) thatis generated by the finite automaton G g shown in Fig. 2.
That is, the occurrence of a failure is modeled by the event f.

We show that G is (4, 3)-reliably 1-inference-diagnosable for the sublanguage K C L(G).
We have Z° = (I}, Ir, Iz, I4}, where I, = {1,2,3), I, = {1,2,4}, Is = {1, 3,4}, and
Iy = {2, 3,4}. For any m € N with m > 1, initially, we have

Fo(m) = fe"e* + g(abfe™e* + cdfe™e™), (28)
Hy(m) = pr((abe* + cde™) + g(e* + ab + cd)). (29)
Since

Pi(Fy(m)) = e"e* + g(ae™e* + e™e*), (30)
Py(Fo(m)) = e™e* + g(be™e™ + €™ e™), (31)
P3(Fo(m)) = e"e* + g(e™e* + ce™e™), (32)
Py(Fo(m)) = e™e* + g(e™e™ + de™e™), (33)
Pi(Ho(m)) = pr((ae* +e*) + g(e* + a)), (34
Py (Ho(m)) = pr((be* + e*) 4 g(e* + b)), (35)
P3(Ho(m)) = pr((e* + ce*) + g(e* + ), (36)
P4(Ho(m)) = pr((e* +de*) + g(e* +d)), (37

we have
Fo(m) N (ﬂ Pi_IPi(Ho(m))> = fe"e", (38)

iel’
Ho(m) N (ﬂ P,»lPi(Fo(m))> = gee* (39)
iel’

for each I’ € Z3. It follows that Fi(m) = fe™e* and Hi(m) = ge™e*, which imply
that G is neither (4, 3)-reliably disjunctive-codiagnosable nor (4, 3)-reliably conjunctive-

y g e
a C CL/\XC e
b % b? d
? o O

Fig.2 Finite automaton G g for Example 1

@ Springer



Discrete Event Dynamic Systems

codiagnosable. In addition, since P;(Fi(m)) = e™e* and P;(Hi(m)) = ge™e* for each
i € I, we have

Fi(m) N (ﬂ P Pi(H, (m))) =0, (40)
iel’

Hi(m) N (ﬂ PilP,»(me») =0 (41)
iel’

foreach I’ € Z3. It follows that F»(m) = H»(m) = @, thatis, G is (4, 3)-reliably 1-inference-
diagnosable. Note that (n, k)-reliable 1-inference-diagnosability requires that there exists
m € Nsuch that F,(m) = @ Vv H>(m) = (. This example is a special case where both F,(m)
and H>(m) are empty for any m € N withm > 1.

Since G is (4, 3)-reliably 1-inference-diagnosable, by Proposition 2, the local diagnosers
D; (i =1,2,3,4) synthesized by Eqgs. 19-22 for any m € N with m > 1 solve the reliable
decentralized diagnosis problem in the case of N = 1. Weletm = 1. The diagnosis decisions

Table 1 Local decisions of D;

(i =1,2,3,4) and their t € PI(L(G)) n] (1) nlt (1) c1 (1) ni ()
ambiguity levels teeta 1 0 0 0
€ ee* 1 2 1 1
t € aee* 1 0 0 0
teg+ga 1 0 0 0
t € gee* 2 1 0 1
t € gaee* 0 1 1 0
1€ Py(L(G)) nd @ nh(0) e (1) 0
tee+b 1 0 0 0
€ ee* 1 2 1 1
t € bee* 1 0 0 0
teg+gb 1 0 0 0
t € gee* 2 1 0 1
t € ghee™ 0 1 1 0
1€ Py(L(G)) 0! n(0) 0 n3(0)
tee+c 1 0 0 0
€ ee* 1 2 1 1
t € cee* 1 0 0 0
teg+gc 1 0 0 0
t € gee* 2 1 0 1
t € gcee* 0 1 1 0
t € P4(L(G)) nj (1) nlt(t) ca(®) na(t)
tee+d 1 0 0 0
€ ee* 1 2 1 1
t € dee* 1 0 0 0
teg+gd 1 0 0 0
t € gee* 2 1 0 1
t € gdee* 0 1 1 0
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of D; (i = 1,2, 3, 4) together with their ambiguity levels are shown in Table 1. For example,
for ge € Pi(L(G)), Di(ge) = (c1(ge), ni(ge)) is computed as follows. By Eqs. 19 and 20,
we have n/ (ge) = 2 and n'(ge) = 1. Since 1 = n’(ge) < n! (ge) =2, c1(ge) = 0 and
ni(ge) = 1 are obtained by Egs. 21 and 22, respectively, which implies that D; issues the
nonfailure decision whose ambiguity level is 1 after observing ge.

For example, for I1 = {1,2,3} € 3 c1x3 =7%U {1}, the diagnosis decisions of
Dy, are shown in Tables 2. For example, for gcdfe € L(G) — K, Dy, (gcdfe) is computed
as follows. By 0 = n3(P3(gcdfe)) < ni(Pi(gedfe)) = na(P(gcdfe)) = 1, we have
ny (gedfe) = n3(P3(gedfe)) = 0and Dy, (gedfe) = 1, which imply that Dy, detects the
occurrence of f with the ambiguity level O after the occurrence of gcd f e. We can verify that
D; (i =1,2,3,4) are (n, k)-1-inferring and satisfy the conditions

VI' € I73 Vs € L(G) N (L(G) — K)X=Y(Dy(s) = 1) (42)

and Eq. 9 for k = 3. That is, they correctly detect the any occurrence of the event f within
one step, even if a diagnosis decision of one local diagnoser is not available.

Remark 5 In Takai and Yoshida (2022), the reliable decentralized supervisory control prob-
lem has been solved using single-level inference. To solve the problem for a nonempty regular
sublanguage K € L(G) given as a control specification, four language pairs (D, (0), Ep (o))
(h =0, 1,2, 3) per controllable event 0 € ¥, Ramadge and Wonham (1987), where ¥, C ¥
is the set of controllable events, are defined. Initially, Do(c) and Eo(c) are defined as

Do(o) = {s € pr(K) | so € L(G) — pr(K)}, (43)
Eo(o) = {s € pr(K) | so € pr(K)}. (44)

Then, for h =0, 1,2, Dy11(0) and Ej41(0) are defined as

Dyi1(0) = Dpo) N4 | (ﬂP,»"Pi(Eh(a))) , (45)
I'eTk \iel

Epi(0) = Ex@)n{ | (ﬂPi‘Pi(Dh(a») : (46)
I'eTk \iel'

Then, the notion of (n, k)-reliable 1-inference-observability is defined as
Vo € X.(Dy(0) =0V Ey(o) =0). a7

In addition, the language pairs (Dj (o), Ep(0)) (h = 0, 1, 2, 3) are used to synthesize
local supervisors. Since the number | .| of controllable events is finite, (Dy, (o), Ej(0)) (h =
0, 1, 2, 3) are effectively computable for all controllable events o € Z. using the standard

Table2 Decisions of Dy, s € L(G) n1, () Dy, (s)

s € f + pr(abe* + cde*)
s € fee*

s € pr(g(abf +cdf))

s € glabfee* + cdfee*)

s € gee™

-0 O = O
S = O = O
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operations over finite automata. On the other hand, the language pairs (Fj, (m), Hy,(m)) (h =
0,1, 2, 3) introduced to solve the reliable decentralized diagnosis problem in this paper
involve a nonnegative integer m € N, which represents a delay of detecting a failure string.
Since N is an infinite set, it is impossible to compute (Fy, (m), Hy(m)) (h = 0, 1, 2, 3) for all
nonnegative integers m € N. This is the reason why the result of Takai and Yoshida (2022)
cannot be applied to the reliable decentralized diagnosis problem considered in this paper.

5 Verification of reliable 1-inference-diagnosability

In this section, we develop a method for verifying (n, k)-reliable 1-inference-diagnosability
effectively. Given a nonnegative integer m € N, we can verify whether Fo(m) = ¢ v
H>(m) = ¢ holds using the standard operations over finite automata. However, to verify
(n, k)-reliable 1-inference-diagnosability, we need to test the existence of m € N such that
F>(m) =0V Hy(m) = . For this purpose, we develop a verification method in this section.
For a nonempty closed regular sublanguage K € L(G) that models the nonfailure behav-
ior of the system G, there exists a finite automaton G = (Qk, X, 8k, ¢k .0) that generates
it. That is, it holds that L(Gk) = K. We augment the automaton G by adding a dump
state g4 ¢ QOk. The augmented automaton is defined as G K = (Q K 2 s Ks4dK,0)s where
the state set is Q k = Ok U{qgq}, and the state transition function s K : Q K XX — Q K is
given as
8k Gk, o), ifgx € Ok A Sk (qk.0)!

qd, otherwise “48)

Sk @k, 0) = {
for each g":K IS Q k and each o0 € X. It follows from the definition of the state transition
function 8k that L(Gg) = T*. Let

G| Gk =(0x 0Ok, %, a, (g0, 4k .0)) (49)

be the synchronous composition of G and G k, where the state transition function o : (Q x
Ok) X X — (Q x Qg) is given as

(8(q.0). 5k (Gk. 0)). if 8(g. 0)!
undefined, otherwise

a((q,qx),0) = { (50)

forfach (q,qx) € O x QK and each o € X. Then, it holds that L(G || 51() =L(G)N

L(Gg) =L(G)NX* = L(G).Foreachs € L(G),s € L(G) — K~if and only if the second

element of the state reached by the execution of s € L(G) in G || G is the dump state gg.
By Definition 2, G is not (n, k)-reliably 1-inference-diagnosable if and only if

Vm € N(Fa(m) # @ A Hy(m) # ). 51)

In the section, we show how to verify Vm € N(Fy(m) # @) and Ym € N(Hy(m) # 0),
separately.

Remark 6 Unlike the verification approach of Sampath et al. (1995), we do not use a diag-
noser automaton that generates the projection P;(L(G)) (i € I) to verify (n, k)-reliable
1-inference-diagnosability. We adopt the approach, called the verifier approach, introduced
in Jiang et al. (2001); Yoo and Lafortune (2002). The advantage of the verifier approach is
that constructing a diagnoser automaton whose computational complexity is exponential in
|Q x Q x|, where Q and Q x are the state sets of G and G g, respectively, is not necessary.
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5.1 Verification of Ym € N(F,(m) # 0)

First, we show how to verify whether Vm € N(F>(m) # #). By composmg nn—1)+1
copies of G || Gk, which are used to trace failure strings, and n copies of G, which are
used to trace nonfailure strings, we construct a finite automaton

Ve =(Rp,Zv,8F,7F0) (52)
as follows:

e The state set Rr is given by

Rr=(Qx0x)x |[[]]@ri | (53)
i=1j=1
where -
) 9k, _ ifi =j
Qrij = { 0 x Qg, otherwise S

foreachi, j € I.
e The initial state rr,o € RF is given by

rr,0 = ((q07 qK,O)s qFr11,05 -« -»4F1n,0, 4F21,05 - - - » ann’O)’ (55)
where .
o qdK .0, lfl :j
qFij,0 = { (g0, gk .0), otherwise o

foreachi, j € I.
e The event set Xy is given by
_ _ _ —=n?+1
EV={(0,0117-~-70'111,0'217---»011n)eEn |
o €Z,AIVi,jel(oij=ex,,j, 0))l}

_ _ _ —n?+1
U{o,011,...,012,021,...,0pp) € X |

0 € Tuo AlVi, j € 1@ = &)}

_ _ _ — —n?+1
U{(&,0115,--,010,021,-..,0un) €X |

Ji'el,Io € T - %y,

[vVi,jel@ij =esx,, (0 j, o)}

i’ uo
_ _ _ _ —=n?+1
U{(e,011,...,011,021,...,0pp) € X |

3i'el,3j'el—{i'},IoexT -2,

[vi,jel@ij =esx,,, (0 j, o)} (57)

i j' .uo
where

fnz-ﬁ—l =(ZU{) x (TU{eH) x---x (TU{e) (58)

n? + 1 times
and
o,ifoc e X, N Yjo

g, otherwise, (59)

ezn(i,j,0)={
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. o ifi=iAlj=ivoeZ,l
sy, J,0) = {g, otherwise, (60)
. o, ifi=i'"nj=]j
€Zitj o (b 1 0) = {s, otherwise ©1)

for each i,j € [ and each ¢ € X. Then, any element of Xy, denoted by
(@,011,---,01n,021, ..., 0nn), satisfies the following three conditions:

-0 #FeVvI[I,jel(o #e)l,
- VieI(P(0) = Pi(di;)),
-Viel Vjel - {i}(Pj(E,’,’) = Pj(El‘j)).
e For any rr = ((¢,9k).4F11,---,4F1n. 4F21,---,qFnn) € Rp and any oy =

(,011,---,01n,021,---,0nn) € Xy, 8p(rr, oy)! if and only if the following two
conditions hold:

-0 #e=a((q.qx). )
- Viel Vjel—{i}(@; #¢e= alqrij. o).

If §p(rp, oy)!, then

Sr(reov) = (4", q%) dpits -+ dFins AFa1s - - - Dpnn)» ©2)
where
r ey g k). o), ifo £
@ ax) = { (4. 9k). otherwise (63)

and, foreachi, j € I,

Sk(qrij. i), ifi = j NG #¢
qFij, otherwise.

The finite automaton Vp traces n% + 1 strings so € L(G),s;j € L(G) (i, j=1,2,...,n)
such that

Vi € I[Pi(so) = Pi(sii) ANVj € I —{i}(Pj(sii) = Pj(sij)]]. (65)

For each state rr = ((¢,4k)>4F11s---+4F1n> qF21 --->qFnn) € Rp of Vp, we let
mo(rr) = (q.9x) and m;;(rr) = gpij for each i, j € I. Similarly, for each event oy =
(©,011,...,011,021,...,0n) € Xy, we let mp(oy) = o and m;j(oy) = o;; for each

i, j € I. Then, for each sy € X}, mo(sy) and m;;(sy) for any i, j € I are defined as

e ifsy =¢
Tl = { T0(0v.1)70(0v 2) - T0(0V sy ). Otherwise, 0
and
. g, lfSV =&
mev) = {mj((fv,l)mj(dv,z) ~7ij (O sy ), otherwise, o

where sy is denoted by sy = oy 1oy 2 -0y |5y if sy # €.
For any m € N, we assume that there exist sy € L(Vp) and I’ € T* such that mo(sy) €
L(G)N(L(G) — K)Z=" = Fy(m) and, for each i € I', the following two conditions hold:

e 7;i(sy) € K = Ho(m),
. El[i// c Ik[i c Ii// AV € Ii// _ {i}(”i_i(s\/) e L(G) N (L(G) — K)I=" = Fy(m))]].
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W@ 986
0 0 0 0 0

Fig.3 Finite automaton G for Example 2

Since P;(mo(sy)) = Pi(m;i(sy)) for any i € I’ and Pj(ﬂ'ii(s\/)) = Pj(n'ij(SV)) for any
i €l"andany j € I — {i}, we have

mo(sy) € Fo(m) N (ﬂ Pi_IPi(Ho(m))) C Fi(m) (68)
iel’
and, forany i € I,
mii(sv) € Hom) 0 | (1) P Pi(Fo(m)) | < Hi(m). (69)
jeli//

Again, since P;(mo(sy)) = P;(rt;;i (sy)) forany i € I’, we have

mo(sy) € Fy(m) N (ﬂ P Pi(H (m))) C Fa(m) # 0. (70)

iel

Therefore, for any m € N, the existence of such sy € L(Vp) and I’ € T* implies
F>(m) # . The verification method developed in this paper is based on this reasoning.

Example 2 For a DES modeled by the finite automaton G shown in Fig. 3, where ¥ =
{a, b, c, f,o0},weletn = 3, thatis, there are three local diagnosers. Let the locally observable

qK,1
C
K4 6 4K 5
o
Fig.4 Finite automaton G g for Example 2
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event sets be X1, = {a,b,0}, X2, = {b,c,0}, and X3, = {a, c, 0}. We assume that
diagnosis decisions of at least two local diagnosers are available, that is, k = 2. As the
nonfailure behavior of G, we consider a nonempty closed regular sublanguage K € L(G)
that is generated by the finite automaton G g shown in Fig. 4. That is, the event f represents
the occurrence of a failure.

A part of the finite automaton V¢ is shown in Fig. 5. This part of Vr shows that, for any
m € N, the string sy ,, = oy 10y 2" UV,IZU{/"yB can be generated by Vg, where

oy1=(ec,c,c,666,6,8,8), oyp=(666,6C,EEE,8,¢8),
ovs3=1(e¢,¢6,66¢6b,6,¢,¢), ova=1(s,6¢ f,6,6,66,¢€,¢,¢),

oys=1(e¢66 f,6,6¢6¢6,¢6), ove=I(660¢6¢¢66 f,¢66¢),

é) ((Qm QK,O)7 4K,0, (Qm QK,0)~, (Qm QK,0)7 (Qm QK,O)a qdK,0, (QO, QK,0)7 (Qm QK,O)7 (Qm QK,0)7 QK,O)
(g,¢,¢,c,e,e,¢,8,8,¢)

O (90, 9x,0), a3 (a3, ax.3)s (a3, ax.3)5 (90, x,0)5 AK.05 (G0, AK,0), (G05 Gxc0), (05 GKc0)s AKc0)
(g,e,6,6,¢,6,8,€,£,¢)

O (90, 9k,0), ar.3: (a3, ax3)5 (a3, ax.3) (43, Ak 3), Ak0, (G05 Gxc0)5 (05 Gx0)s (G0 AK0)s UKc0)
(g,e,¢,6,¢,¢,b,¢,8,¢)

O ((90,9x0), ax 35 (3, 4K 3), (03, Gxc 3): (@35 Grc.3) A0, (925 e 2) (90, 4x0)5 (G0, 9K 0)5 G 0)
(g,¢, f,e,6,6,6,€,€,¢€)

O ((90,4x.0), are.3, (as5 9a)s (a3, axc3), (43, Are.3), A0 (G2, 4xc 2), (0, A0 (G05 4x0)5 A 0)
(g,e,¢,¢, f,e,¢,€,€,¢€)

O (90, x,0), 4x.3, (48, qa), (a3, 4K 3), (a8, 4x8)s Gr.05 (425 A 2), (G0, 4K.0)5 (G0 UK0) Aic0)
(e,e,6,6,¢,¢, f,e,€,¢€)

@) (90, qx.0), 4rc.3, (G35 4a), (G3, qrc,3)5 (485 Ga), Gxc05 (65 Ga)s (90, Gx0), (G0, AKc.0)5 Grc0)
(a,a,e,a,e,¢,€,a,¢,a)

O ((Q1, QK,I)a dK.5, (qB, Qd)7 (Q77 QK,5)7 (qg, Qd), dK,0, (%, Qd)7 (Qh QK,1), (Qm QK,0)7 QK,l)
(e,e,6,6,¢,¢,8,8,a,¢)

O ((@1:9x,1), x5, (@85 4a), (@75 Grc5), (@85 4a) Ax0, (@65 Ga), (G15 Gre1)s (G15 Gren), aicn)
(f.e,e,6,¢,¢,e,6,8,¢)

O (94, 94), 4K 55 (a8, 9a), (97, 4xc5)5 (@85 9a)s 4xc.05 (65 Ga), (@1, Q1) (q15 arcn), G
(g,e,e,¢,¢,¢,¢, [,€,¢€)

O (a4, 4a), x5, (a3, a), (a7, ar.5), (a5, 4a), A0, (G6: 4a), (4. 4a), (1, qrc1)s drc1)
(g,e,e,¢,¢,¢,¢,¢, f,€)

O ((94,9a), ax55 (a8: 9a)s (a7, r¢.5)5 (@85 a), 4,05 (65 Ga)s (a5 Ga), (a5 4a)s dxc1)
(e,e,6,8,6,¢,¢,¢,8, f)

6 ((q4: ), are.5, (a8, qa), (a7, axc5), (a5 4a)s G105 (65 a) s (Qas 4a), (44, qa) 4a)

(07 07 07 07 07 07 07 07 07 O)

Fig.5 A part of finite automaton Vg for Example 2
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oy7=V(a,a,¢ea,¢,¢¢a,¢,a), oyg =(£,6,66,6,6,8,6,a,8),

ovo=(f,e66666,¢66,¢8), oy,10=(¢,¢6,86,¢6,86,¢,¢, f,¢e,¢€),

oy11 =(8¢6,¢6,¢6,6,6,¢6,¢ f,¢), oy =1(e,¢6,¢6,¢8,8,¢8,¢8,¢,¢, f),

oy,13 = (0,0,0,0,0,0,0,0,0,0).
We consider {1, 2} € Z2. Then, we have wo(sy.m) = afo™ € L(G) N (L(G) — K)T=" =
Fo(m), m11(sy,m) = cao™ € K = Hy(m), mo(sy,,) = o™ € K = Hy(m), and
T12(sy.m) = mi(sy.m) = cfo™ € L(G) N (L(G) — K)T=" = Fy(m). In addition,
we have Pi(o(sv.m)) = Pi(mii(sy,.m)) = ao™, Pa(wo(sy.m)) = Pa(mwaalsy.m)) = o™,

Py(m11(sy,m)) = Pa(mia(sy,m)) = co™, and Pi(mn(sy m)) = Pi(mi(sy,m) = o™ It
follows that wo(sy ) € Fa(m) # ¢ for any m € N.

To effectively verify whether Vimn € N(F>(m) # (), based on the finite automaton Vg, a
nondeterministic acyclic finite automaton

VNrF = (RnF, Zv,8NF, RNF.0), (71
which has the same event set Xy as Vp, is constructed as follows:

e The state set Ry is the set of all maximal strongly connected components of V.
e The initial state Ry o € Ry F is a maximal strongly connected component of Vr such
that rr.o € RnF.0.
e The nondeterministic state transition function Sy : Ryp X Sy — 2RNF jg given as
Snr(RNF,ov) = {Ryr € RNF | RvF # Ryp
Al3rF € Ryp,3rp € Ryp(8p(rr, ov) =rp)l} (72)

forany Ryr € Ryr and any oy € Zy.
We define a labeling function Jr : Ryr x [ — 21 as

Jr(RNF, )
={jel—{i}|[3rr € Rnr(mij(rr) € Q x {gq})]
Al3rp,ry € Ryp,Joy € Sy (Sp(rp, ov) =rp Amjjloy) # €)1} (73)

for each Ryr € Ryr and each i € I. For any path Ryr o Ve RNF.1 RAC N
Ryry (1> 1) of Vyr, denoted by py, ., its label Jr(py, ) € 2! is given as
Tr(pvyp) = {iel | U Jr(RNF, )| =k —1
hell.2,...1}
AlFrr € Ryp(mii(rr) € QK)]}- (74)

Example 3 We consider the setting of Example 2. For the part of the finite automaton V¢
shown in Fig. 5, the corresponding part of Vyr is shown in Fig. 6. Note that this part is a
special case where each state that is a subset of the state set of V is singleton.

As shown in Fig. 6, a singleton state

{((q4, 94): K 5. (g8, q4), (97, 4K 5),
(g8, 94)» 4K ,0> (96, q4d), (94, q4), (94, qa), 94)} € RNF,
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(g {((Qm QK,O)7 ax.0; (90, QK,0)7 (qo, QK,O), (40, QK,O): ax.0, (90, QK,0)7 (qo5 QK,O), (40, QK,O)> QK,O)}
(g,¢,¢,¢,6,6,6,6,¢,¢€)

C {((q07 CIK,U)7 qK,3, (Q:h QK,3)7 (937 QK,3)7 (CIm QK,0)7 4K.,0, (QO, QK,0)7 (Qm QK,0)7 ((Io, QK,0)7 QK,O)}
(e,¢,6,6,c,6,6,6,8,€)

O {((Qm QK,O)a 9K.3, (a3, QK,3)» (a3, QK.,3)7 (a35 QK,s), qK.,0, (40, QK,O), (g0, QK.,O)7 (4o, QK,O), QK,U)}
(e,¢,¢,¢,¢,¢,b,6,¢,¢)

O {((q0,ax.0)s 4.3, (a3, A 3)5 (a3, A 3), (a3, 4K 3) Arc.05 (G2, AK 2)5 (0, AK0)s (05 Arc0)5 e 0) }
(e,¢, f,e,6,6,8,8,8,¢)

O {((Qm QK,0)7 4K.3, (Q& Qd)7 (Q37 (IK,3)7 (Q:s, QK,:;), 4K,0, ((127 QK,2)7 (QU, (IK,O)7 (QO, QK,0)7 QK,U)}
(e,¢,¢,¢, f,e,8,8,8,¢)

O {((Qm QK,O)a 9K.3, (a8 qa); (a3, QK,3)7 (85 qrc8)s 9K,05 (g2, QK,2)7 (40, QK,O)7 (qo, QK,O)7 QK,O)}
(e,¢,¢,¢,¢,¢, f,e,€,¢€)

O {((90: a0), 4r.3: (s, 4a), (43, 4x.3)s (s, 4a), a0+ (965 4a); (905 Gr0)s (q05 4rc0), Grc0) }
(a,a,e,a,¢,¢,¢,a,¢,a)

O {((q1:ax1), 455 (a8, a), (97, axc5)5 (@8, 4a), a0+ (965 4a), (01, Grc1)s (G05 Grc0), Grc1) }
(e,¢,¢,¢,¢,¢,¢,€,a,¢)

O {((q1:9x1), 455 (s, a), (97, 4rx5)5 (Gs, 4a), G0+ (965 9a), (@15 )5 (G0, qrc1), ren) }
(f,e,e,8,6,6,8,8,8,¢€)

O {((94:94); 4x 5, (a85 90)s (g7, axc5), (G35 9a)s arc05 (G65 Ga)s (q15 arcn)s (@1, Gren)s aren)
(e,¢,¢,¢,¢,¢,¢, f,€,€)

O {((g1, 92), a5+ (a3, 9a): (a7, AK 5) (@8, 9a)s AKc.0 (65 Ga)s (9a, 9a); (@1, Ak,1), drc1) }
(e,¢,¢,¢,¢,¢,6,¢, f,€)

O {((a4,9a), ax 5, (a5, qa), (a7, axc ), (s, 4a)s 45,05 (@65 Ga)s (qas 4a)s (45 Ga), 1) }
(e,e,¢,¢,¢,¢,¢,€,¢, f)

O (91, 94), axc 5, (a8: 90)s (a7, ax 5), (a85 9a)s axc.05 (d65 Ga) (945 4a)s (qa, 4a), Ga) }

Fig.6 A part of nondeterministic acyclic finite automaton Vy r for Example 3

denoted by {rr}, is reachable in Vy . We consider any path py,, . that ends with {rr}. For
1 e I,wehavern|(rr) =gk 5 € Qk.Inaddition, we have w12 (rr) = (g3, qa) € QO % {qa},
Sr(rr,ov.13) =rF,and m2(oy 13) = 0 # € foroy 13 = (0,0,0,0,0,0,0,0,0,0) € Xy.
It fol]\ows that 2 € Jp({rr}, 1). Thus, we have 1 € fp(pVNF). Similarly, we can show that
2¢€ JF(PVNF)-

Then, we have the following theorem, which shows how to verify whether Vin ¢
N(F2(m) # 9).

Theorem 4 Let k € N be a nonnegative integer such that 2 < k < n. For a nonempty closed
regular sublanguage K C L(G) generated by a finite automaton Gk = (Qk, X, 8k, 4k .0),
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Vm € N(F2(m) # ¥) if and only if there exists a path pyy. : RnF o v RNF .1 v

oy,i—-1
- —— RyF, (I = 1) of the nondeterministic acyclic finite automaton Vy  that satisfies

Ie{l,2,....1)
[3rr € Rnran(mo(rr) € Q X {qa})]
A3rp,rp € Rypp, 3oy € Zy(Sp(rp, ov) = rp Amo(oy) # €)] (75)
and

1TF(pyvys)| = k. (76)

Proof (<) We suppose that there exists a path py, . : Ryr.0 U—) RNF, A1 i—# M
RyF (I = 1)of Vyr that satisfies Eqs. 75 and 76. We consider any i € JF (pyyr) and any
j € Uhe{l,z ’’’’’ JF(RNFJ, i). By the definition of Jr(RyF 5, 1), we have j € [ — {i}. In
addition, there exists h e{l,2,...,1} such that

[3rr € Rnrn(mij(rr) € Q x {qa})]

Al3rp,rp € Rypp, oy € Ty @Br(rp, ov) =rp Amij(oy) # €)]. (77)
N o) ey
By Eqgs. 75, 77, and the definition of Jr(py, ), there exists a path py, : rr o SN rF.1 SAAN
(p=1
. UV—) rr1p (IF > 1) of V that satisfies the following three conditions:

e 3ho1, ho2, ho3 € N

0<hot <ho <hos <IF
AFE hoy = TF oy ATO(F ) € Q X {qa} Amto(a ') # &, (78)

o Vie fF(PVNp)’Vj € Uneia,..iy JF(RNF s 1), 3hij1, hijo, hijz € N

0 < hij1 < hjjap < hjj3 <If

ViR e (79)

/\}’}:.hl.j1 rr Jhija A n,/(rp h!ﬂ) S Q X {qd} A TTij (O’

o Vi € Jr(poyp) (i (rray) € Q).

We conmder any m € N. By Algorithm 1, we construct sy, ty o, tv,ij € E for
each i € Jp(pv,w) and each j € Uhe{l 2.0} Jr(RNF hy ). By Algorlthm 1, we have
sv,tvo.tvij € L(Vp) and tyo,ty;; € pr(sy) for each i € JF(PVNF) and each
Jj € Uhe{l,z _____ 1y JF(RNF h,1). Since ty o € pr(sy), there exists uy o € Xy, such that
sy = ty,ouy . Let to = mo(ty 0) and ugp = mo(uv,0). By the construction of ty o in Algo-
rithm 1, we have a((qo, gx,0), 10) = 70(rF hg) = T0(rF hs)- Since o (rF,ny,) € Q X {qa},
we have «((qo,gx.0),%0) € QO x {qq}, which implies tp € L(G) — K. In addition,
since [ug| > m by no(o‘(/hm)) # &, we have roug € Fo(m). Let s;; = mii(sy) for
each i € Jr(py,,). Then, we have éx(gk 0,5ii) = mi(rr1.) € Qk, which implies
sii € K = Hy(m). In addition, we have P;(toup) = P;(s;i;), which implies together with
Sii eAHo(m) that roug € Pi_lP,-(Ho(m)). By Eq. 76, we have fyugp € Fj(m). For each
i € Jr(pyy,) and each j € Uhe{l,z,...,l} JE(RNF. B, 1), since ty ;j € pr(sy), there exists
uy.ij € 22‘/ such that sy = ty ijuy ij. Let lijj = JT,‘j(tV,l‘j) and ujj = ﬂij(uV,ij)- By the
construction of #y ;; in Algorithm 1, we have @ ((qo, gk ,0), tij) = 7ij (rp,h,.jl) = 7jj (VF,hiﬂ).
Since m;; (rF, hiﬂ) € 0 x {qq}, we have a((q0,qk,0), ;) € Q X {gq}, which implies

(h 1/2)

tij € L(G) — K. In addition, since |u;j| > m by m;j(oy, ") # &, we have t;ju;; € Fo(m).
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Algorithm 1 Constructions of sy,ty o, tv;; € X (Vi € Zv(pVNF),Vj €
Uhe{l,Z,...,l} JF(RNF,hv l))

O (1)
v Oy -

. Ip—1 S~ . .
Require: o "U‘SF ), hot. ho3, hij1, hijz (Vi € Jp(pyyp)s¥i € Unepo,..y JF(RNF. R D),

m
1: sy <&, tyo < &lyij < ¢ (Vi € JF(pVNF),Vj € Uhe[l,Q,“.,l] JF(RNF,hy i)
2: h <0
3: while s <Ip —1do
4 if h = ho| then
5 ty 0 < Sy
6 sy — sv(a‘(,hm)o‘(,hmﬂ) . ~a‘(,h03_]))m
7:  endif
8:  ®(h) < {G, j) | h=hij1}
9 while ®(h) # ¢ do
10 Pick any (i, j) € ®(h)
11

v,ij < Sv
hij)  (hij+1 hijz—1
12: sy <—sV(J( i) o Gijit )~--a‘(, i3 ))m
13: @ (h) < d(h) —{(, )}

14:  end while
15: sy < syoy,
160 h<«<h+1
17: end while

Furthermore, we have P;(s;;) = P;(t;ju;;), which implies together with #;ju;; € Fo(m) that
sii € P{ Pj(Fo(m)). Since | Upeqr 2.y JF(RNF.Rs D)l = k — Land s;; € P Pi(touo) <
P;l P; (Fy(m)), we have s;; € Hi(m).
By tgug € Fi(m), Eq. 76, and toug € P 'Pi(s;) S P'Pi(Hi(m)) for each i €
Jr(pyyr), we have toug € Fa(m) # 0.

(«)Forany m € Nwithm > |RFp|, where RF is the finite state set of V, we consider any
so € F>(m) # @. Then, sg can be written as so = foug such thatzy € L(G)— K and |ug| > m.
There exists I’ € Z¥ such that foug € Plfl P;(Hy(m)) foreach i € I'. Foreachi € I, there
exists s;; € Hy(m) such that s;; € P Pi(toug) € P, P;(Fo(m)). Since s;; € H (m) and
Sii € Pi_lPi(Fo(m)), there exists 1/ € T* such that i € I/ and s;; € Pj_le(F()(m)) for
each j € I/'. For each j € I — {i}, there exists 5;; € Fo(m) such that P;(s;;) = P;(si;).
Then, s;; can be written as s;; = f;ju;j such that#;; € L(G) — K and |u;;| > m. Thus, there

0, (1) =D
%4

exists oy, oy, € L(VF) (Ir > 1) that satisfies the following three conditions:

e mo(sy) = touo,
o Vi e I'(mi(sy) = sii),
o Viel \Vjel—{i}(mj(sy) = tijuij),

where sy = U‘(,O)O"(,l) - ~0‘(/1F71). There exists Eo € Nwith 0 < ﬁo < lr — 1 such that

no(a‘(,o)a‘(,l) . ~a‘(,h0)) =19 € L(G) — K. In addition, for eachi € I’ and each j € I/ — {i},

. 77 . >~ hl"
there exists #;; € N with 0 < h;; < I — 1 such that nij(a‘(/o)o\(,l) . -o\(, ’))

L(G) —-K.

= lij €
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(0) 1) (IF 1)
o o
We consider the path py, : rro BN rF.1 RN —> rr iy (Ip > 1) obtained
(hp 0)
by executing sy in Vg. For the path py,., there exists the path py,,. : Ryro ————>
g(hm) o_(hF,I—l)

RNF,l ! RNF,I (I = 1) of VyF such that
{rr0, - TF.hp o) = RNF.0 (80)
{FFohpotls-- s TFhp ) = RNF.1, (81)
{rEnp 415 - TFIp} = RNFy (82)
for some hFo,hpl,... hp[,1 € {0 1 lF - 1} such that 0 < h[qo < hp’l <

- < hpj-1 < Ilf. Since up = no(a(hOH) . 0‘(/”_])) and |ug| = m > |Rp|, there
exist ho1, ho2, ho3 € N that satisfy ho < hot < hop < hos < lp, rF.ng = TF hys» and
ﬂo(ax(/hm)) # ¢. In addition, since 7y € L(G) — K and

0 1 h 1 0 1 hor—1
1o € primo(ay oy - o) € primoe ol a2y, (83)
we have
1 (hg2—1)
0(rF hey) = @ ((q0, 9K,0)5 ﬂo(UV oy oy ) € 0 x {qa}. (84)

Thus, the path py,,. satisfies Eq. 75.
We show that the path py,, satisfies Eq. 76. For each i € I’, since 7;;i(sy) = si; €
H;(m) C K, we have N
i (rFir) = 0k (g0, Wi (sv)) € Ok (85)

. o i+l _
for rr 1, € Ryrp,. Foreach j € I — {i}, since u;; = n,i(a‘(, / )---o‘(,lF 1)) and |u;j| >
m > |Rp]|, there exist h,jl hij2, hij3 € N that satisfy h;; < hjj1 < hjj2 < hjj3 < IF,

TF.hijy = TF i3> and 705 (UV ”2)) # ¢. In addition, since t;; € L(G) — K and

©) (1) (hij1=1) ©) (1) (hij2—1)

tij € prmijoy oy oy ") € primijeey) oy T (86)
we have
(hx
71 (7 ) = (0, 45,0, 7 (0o o)) € 0 x {ga). (87)

It follows that j € Jr(RyF i) forsome h € {1,2,...,1}. Since |I] — {i}| = k — 1, we
have

U 7rRypand|=k—1. (88)
he(l,2,...,1)
Thus, we have i € ]}(vaF). Since |I'| = k, py,, satisfies Eq. 76. O
The result of Theorem 4 can be explained as follows. We consider a string sy € L(VF)
ov.,0 ov.1 oy, (I-1)
that can be generated along a path py,, : Ryrpo —> Rnp1 —> -+ ——— RnF

(I > 1) of VyF that satisfies Eqs. 75 and 76. By Eq. 76, there exists an index set I’ € Tk
such that I’ C JAF(vaF). By Eq. 75, mo(sy) is a failure string in L(G) — K that can be
arbitrarily extended such that o (sy) € Fo(m) for any m € N. It follows from the definition
of 7p (pyyy) that ;i (sy) € K = Hy(m) foreachi € I'. By the construction of Vi, we have
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P;(mo(sy)) = P;(mii(sy)). In addition, by the definitions of Jr(RyF, i) and fp(pv,v,‘),
there exists I € Tk with i € I!" such that, for each j € I — {i}, m;;(sy) is a failure string
in L(G) — K that can be arbitrarily extended such that 77;; (sy) € Fo(m). Moreover, we have
Pj(]T,'i(Sv)) = Pj(?'[ij (sy)). It follows that mo(sy) € Fi(m) and ;; (sy) € H;(m) for each
i € I', which implies o (sy) € Fo(m) # .

Remark 7 The number |Rf| of states of the finite automaton V- is at most | Q" ~D+1 x
(10Ok |+ 1)"2‘H . The number |y | of events of V is at most (n2+1)| = |. Thus, the complexity
of constructing Vr is O (| Q"D+ x |0 |"2+1 x n%|2|). To construct the nondeterministic
acyclic finite automaton Vy r, we need to find all maximal strongly connected components
of V. Its computational complexity is O (|Q|"*~D+! x |QK|”2+] x n2|Z|). Note that the
value of k is irrelevant to the construction of Vg and VyF.

Then, Vim € N(F2(m) # () can be verified by exploring paths of Vyr as shown in

. . oy o oy.—
Theorem 4. To verify the existence of a path py,,. : Rvr,o NAEN RNF.1 AN

RyF, (I = 1) that satisfies Egs. 75 and 76, we have to identify all states Ry € Ry r such
that

[Frr € Rnr(mo(rr) € O x {qa})]
A3re,ry € Ryp,Joy € Sy (Sp(rp, ov) = rp Amoloy) # )] (89)

and construct the labeling function Jr : Ryr x I — 2! defined by Eq. 73. The computa-
tional complexity of identifying all states Ryr € Ry that satisfy Eq. 89 is O(|RnF| X
IRF| % |Zv), where Ry r| is at most [Rf|(< [Q"® D+ x (|Qx |+ 1)’ *1). In addition,
the computational complexity of constructing the labeling function Jr : Ryp x I — 2!
is O(IRyF| x n% x |Rp| x |Zy]). Since Vyp is acyclic and events of a path of VyF
are not relevant to Eqgs. 75 and 76, the number of paths that have to be explored is at
most Z NF' ! |Ryrl—1Pr. Once all states Ryr € Ry that satisfy Eq. 89 are identi-
fied and the labeling function Jr : Ryrp X I — 2! is constructed, the computational
complexity for verifying the existence of a path py,, that satisfies Eqs. 75 and 76 is

On x (XIRYT 1P

Example 4 Again, we consider the setting of Example 2. We verify whether Vm €
N(F>(m) # @) holds by Theorem 4. For this purpose, we construct the nondeterministic
acyclic finite automaton Vy r based on the finite automaton V.

As in Example 3, we consider any path py,, , that ends with {rr}, where

rr = ((g4, 94), 9k 5, (48, 94), (@7, 9K 5),
(g8, 94), 9k 0> (g6, 94), (g4, 94), (@4, 94), qa)- (90)

Since 7o(rr) = (94.94) € Q x {qa}. 8r(rp.ov,13) = rp, and mo(oy,13) = 0 # & for
oy.13 = (0,0, 0, 0,0,0,0,0,0, 0) € Xy, Pvyr satisfies Eq. 75. As shown in Example 3, it
holds that 1,2 € JF (pvyr)- Then, we have |Jr(py, )| = 2 = k, which implies that py,,,.
satisfies Eq. 76. By Theorem 4, we can conclude that Vmm € N(F,(m) # ) holds.

5.2 Verification of Ym € N(Hy(m) # 0)

Next, we present a method for verifying whether Vim € N(Hy(m) # (). For this purpose,
we construct a finite automaton

Ve = (Ru, 2v,8H,7H,0) ©n
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by composing n copies of G || G k, which are used to trace failure strings, Gk, andn(n — 1)
copies of G g, which are used to trace nonfailure strings, as follows:

e The state set Ry is given by

n n
Ry =0k x|[]]]@Qui|. 92)
i=1j=1
where ~
O xQk.ifi=
Qnij = : Ok, otherwise ©3)

foreachi, j e I.
e The initial state ry o € Ry is given by

FH.0 = (GK.0s QH11.05 - -+ » QH100> QHILOx - - - » QHnn.0)» o4)
where
o _ 1@ gk0),ifi =)
M0 = {CIK,O, otherwise 95)

foreachi, j € I.

e The event set Xy is the same as that of V.

e For any ry = (gk,qH11s---s9HIn-qH21,--->q9Hnn) € Ry and any oy =
(,011,---,01ns021s.-.,0nn) € 2y, 8u(rg,oy)! if and only if the following two
conditions hold:

-0 #¢=8k(gk,0)),
- Viel(o; #¢= alqgii,oi))-

If g (ry, oy)!, then

Sa(rH, ov) = Gk quits - AHin QH21s - - - > Deinn)» (96)
where
r_ ) dk(gk.0), ifo #e
&= {QK, otherwise CH)

and, foreachi, j € I,
a(qHij, 0ij), ifi=jACij #¢
quij =\ Ok (qmij, 0ij) if i # j ATy # e 98)
qHij» otherwise.

For any m € N, we assume that there exist sy € L(Vg) and I’ € 7* such that wo(sy) €
K = Hy(m) and, for each i € I’, the following two conditions hold:

o 7ii(sy) € L(G) N (L(G) — K)Z=" = Fo(m),
o A1/ e TMi € I AIVj € I — {i}(mij(sv) € K = Ho(m))]l.

Then, we have Hy(m) # ¢ in a similar way to the reasoning about F,(m) # @.
Example 5 For a DES modeled by the finite automaton G shown in Fig. 7, where ¥ =
{a,b,c, f, o0}, weletn = 3, thatis, there are three local diagnosers. Let the locally observable

event sets be X1, = {a,b,0}, X2, = {b,c,0}, and X3, = {a, c, 0}. We assume that
diagnosis decisions of at least two local diagnosers are available, that is, k = 2. As the
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o

Fig.7 Finite automaton G for Example 5

nonfailure behavior of G, we consider a nonempty closed regular sublanguage K € L(G)
that is generated by the finite automaton G g shown in Fig. 8. That is, the event f represents
the occurrence of a failure.

A part of the finite automaton Vg is shown in Fig. 9. This part of Vy shows that, for any
m € N, the string sy ,, = oy 10y 2--- av,gaag can be generated by Vg, where

oy, 1 =(a,a,¢ea,¢,8,¢6,a,¢a), oyp=(6¢6¢6,68¢8¢,6¢,a,¢),
ov3=(g¢,6¢6,6¢8b,e,6,8), ova=1(s f,6,6¢6,6¢6,6¢,¢),
ovs= (e8¢ f,e,6,¢8,6,¢8), oye=1(5¢668,¢¢, [,6¢6¢,¢8),
oy7=1(c,c,c66¢6,6,6,6), oyg=I(6¢6,6,6C,E¢,6,68,6),

oy9 =(0,0,0,0,0,0,0,0,0,0).

We consider {1, 2} € Z2. Then, we have wo(sy. ) = ao™ € K = Ho(m), m11(sy.m) =
afco™ € L(G) N (L(G) — K)X=" = Fy(m), w2 (sy.m) = fo™ € L(G) N (L(G) —
K)sz — F()(m), and ﬂlZ(sV,m) = ﬂz](s‘/‘m) = com € K = H()(m) In addition,
we have Pi(mo(sy,m)) = Pi(mi1(sv,m)) = ao™, Py(mo(sy.m)) = Pa(wn(sy,m) = o™,

4K

0

Fig. 8 Finite automaton G g for Example 5
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(g (qK,()» (QO, QK,0)7 4K,0,4K,0, 4K,0, ((Jo-, QK,0)7 4K,0,4K,0, 4K,0, (907 QK,O))
(a,a,e,a,¢,¢6,6,a,€,a)

O (ar.1, (@1, 9K1), A0, A1, 405 (905 4K 0), AK0, AK,15 Grc,05 (015K 1))
(e,e,6,6,6,6,8,€,a,¢)

O (CIK,b (Ch, QK,1)7 dK,0,49K,1,4K,0, (QO, QK,0)7 4K,0,9K,1,9K,1, (Q17 QK,1))
(e,e,e,6,6,8,b,e,6,¢€)

O (ar.1, (@1, 9K,1), A0, AK1, A0 (G5 QK 0), AK,2, 15 Grc1s (Q15 Gk 1))
(e, f,e,e,8,8,8,¢,¢,¢€)

O (qr1, (55 9a), G0, A1, 05 (Q05 AK0), Arc,25 i1 Qi1 (Q15 K1)
(e,e,e, f,e,e,8,¢,¢,¢€)

O (ax1, (g5, 9a); 4x.05 Qs G105 (G05 GK0)5 Grc25 Qi 15 QK15 (G15 QK1)
(e,e,e,6,6, f,e,6,¢,€)

O (ax1: (a5, 9a): 4i.0+ 4 G0, (020 4a), 2, Qi Qi1 (@1, )
(e,¢,¢,c,8,8,6,8,€,€)

O (a1, (a7, 9a) Ak 35 Qs Arc05 (@25 Qa), AKc,2, A1 Qi1 (Q15 Gx1))
(e,e,8,8,¢,¢,¢,¢,€,€)

(r1, (a7, Ga)s Qs 35 Qs Gxc.3, (925 Qa)s OKc25 Q1> Aic1s (G, GKc1))

(07 07 07 07 0) O’ 07 0’ 07 O)

Fig.9 A part of finite automaton Vg for Example 5

Py(m11(sy,m)) = P2(m12(sy,m)) = co™, and Pi(maa(sy,m)) = Pi(m21(sy,m)) = o™. It
follows that mo(sy,») € Ha(m) # @ for any m € N.

For each state ry = (gkx,qH11s--->9HIn,qH21,--->qHm) € Rpg of Vg, we let
mo(rg) = qg and m;;(rg) = qpgi;j for each i, j € I. To effectively verify whether
Vm € N(H(m) # (), based on the finite automaton Vg, we construct a nondeterminis-
tic acyclic finite automaton

VYNe = (RnH, v, 8NH, RNH,0) 99)

as follows:

e The state set Ry g is the set of all maximal strongly connected components of V.
e The initial state Ry 0 € Ryn is a maximal strongly connected component of Vg such
thatry 0 € RyH,0-
e The nondeterministic state transition function Sy g : Ryg X Ty — 2RVH s given as
SvH(Rvu.0ov) = {Ryy € Rnu | Rvg # Ryy
AFry ERNH,Hr}_I GREVH((SH(rH,O'V):r}-])]} (100)

forany Rygy € Ryg and any oy € Zy.
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A labeling function Jy : Rygy — 2! is defined as

Ju(RNH)
={iel|[Fry € Rva(mi(ry) € O x {qa})]
A3ru,ry € Ryg. oy € Sy (u(ru, oy) =ry Ami(oy) # e} (101)

for each Ryg € Ryp. For any paﬁh RNH.0 v RNH.1 v ey Ryp, (I >1)of
Vw1, denoted by py, ., its label Jy (pyy,) € 2! is given as

Tt (pvyy)

=liellie U Ju(RNH. 1)
he(l,2,...1)

Aj el —{i}|3ry € Rnp(mij(ra) € Q) = k — 1}- (102)

Example 6 We consider the setting of Example 5. For the part of the finite automaton Vg
shown in Fig. 9, the corresponding part of Vy g is shown in Fig. 10. As shown in Fig. 10, a
singleton state

{(gk.1. (q7.94). 9K 3,94, 9K 3> (@2, 94), 4K 2, 9K 1, 9K,1, (1. 9K ,1))} € RnH,

denoted by {rpy}, is reachable in Vi ;. We consider any path py,,, that ends with {ry}. For
1 €l,wehaverm(ry) = (q7.94) € QO x{q4},0u(rg,ov,9) =rg,andmy(oy9) =0 #¢

(g {(QK,m ((Io, QK,0)7 qK,0,4K,0,4K,0, (907 QK,0)7 qK,0,4K,0,4K,0, (Qm (IK,O))}
(a,a,¢,a,6,€,€,a,¢,a)

O {(QK,h (@1, QK,1)~, 4dK,0,4K,1, 4K,0, (qo0, (ZK,O)7 dK,0,9K,1,9K,0; (q1, QK,l))}
(e,¢,¢,8,¢8,¢8,¢8,¢€,a,¢)

O a1 (@1, 9x1)s 405 G150, (905 GK0)5 Q05 Gr 1 Gx 15 (G15 Gren)) }
(e,e,¢,e,e,¢,b,,¢,¢)

O {(ax.1, (@1, ax1), GK05 Ar15 A0, (G0, GKc0)5 Q2 Qi1 A1, (G, A1)
(e, fre,6,6,6,6,6,6,€)

O {(ax.1, (g5, 9a), ax0, A1, A0, (Q05 Ax0), Grc25 Q15 Gr1s (G1, A1) }
(e,e,e, f,e,6,6,6,6,¢)

O (K15 (g5, 94); ax.05 qa, Gxc 0, (905 Gx0), G2, Arc1s Gic1s (1, Gren))
(e,e,¢,¢,¢, f,e,6,6,¢)

) {(QK,h (Q57 qd)7 4K,0,49d, 9K,0, (Q27 Qd)7 qK,2,9K,1, 4K 1, ((I17 qK,l))}
(e,¢,¢,¢,8,8,8,8,8,¢€)

O lar1, (97, 94), 4K 3, 9a> 40 (G2, 4a) s G2, 1, A1, (G1, Gx0)) }
(e,e,6,6,¢,6,8,€,€,€)

O tar1: (7, 9a), G35 Gas G35 (020 4a)s a2 Q15 G (@1, Gr1))

)

Fig. 10 A part of nondeterministic acyclic finite automaton Vy g for Example 6
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for oy 9 = (0,0,0,0,0,0,0,0,0,0) € Xy, whichimply 1 € Jy({rg}). In addition, we
have m12(ry) = gk 3 € Qk. It follows that 1 € Jy(py,,). Similarly, we can show that
2 € JH(PVNH)-

The following theorem shows how to verify whether Vmm € N(Hz(m) # 0).

Theorem 5 Let k € N be a nonnegative integer such that 2 < k < n. For a nonempty closed
regular sublanguage K C L(G) generated by a finite automaton G g = (QK, 2,8k, 9K.0)

Vm € N(Hx(m) # 9) if and only if there exists a path pyy, : Ryuo v RNH.1 vy

ov.,i—-1
- —— Rym,1 (I = 1) of the nondeterministic acyclic finite automaton Vy g that satisfies

|Ti (Pyoys)| = k. (103)

[ea o —
Proof (<) We suppose that there exists a path py,, : Rv#.0 v RNH 1 RACN LN

Ryw, (I = 1) of Vyp that satisfies Eq. 103. We consider any i € JH(PVNH) Then, there
exists h € {1,2,...,1} suchthati € Jy(Ryp,,). By the definition of Jy (Ry# 1), we have

[3rg € Ryun(mii(re) € O x {qa})]
ABry,ry € Ryap, 3oy € Sy @u(ra, ov) =ry Amii(oy) #¢&)l.  (104)

By Eq. 104 and the definition of fH (pyyy ), there exists a path py, : rp o i())) TH.1 i
ly—1
. ﬂ) ru1y (ly > 1) of Vi that satisfies the following two conditions:
o Viec fH(PvNH), Jhii1, hiiz, hiiz € N
0 < hii1 <hjip < hiiz <lg
AFHL i = TH by AT P ys) € @ X {ga Amig(0y") # 6, (105)

o Vie 7H(PVNH),VJ' ef{jel-{i}|Iry € Ryu, (mij(re) € Ox)}(mij(ra 1) € Qk).

We consider any m € N. By Algorithm 2, we construct sy, ty ;; € Z* for each i €
JH(vaH) By Algorithm 2, we have sy, ty ;; € L(Vy) and ty;; € pr(sv) for each i €
JH (pyyy)-Letsg = mo(sv). Then, by the construction of Vi, wehave s) € K = Hy(m). For
eachi € fH(vaH),since ty.ii € pr(sy),thereexistsuy ;; € 2*{, such thatsy =ty juv ;.
Let t;; = m;;(tv,;;) and u;; = m;;(uy ;;). By the construction of ty ;; in Algorithm 2, we
have @ ((qo0, 9k.,0), tii) = 7ii ("H ;i) = Tii (PH pyj3)- Since wi; (r g pyn) € Q X {qa}, we have
a((qo, 9k .0), tii) € O x {gq}, whichimplies t;; € L(G) — K. In addition, since |u;;| > m by
mi(a‘(,h”z)) # &, we have f;;u;; € Fo(m). Furthermore, we have P;(so) = P; (fj;u;;), which
implies together with/\tiiuii € Fy(m) that s¢ € PflPi(Fo(m)). By Eq. 103, we have 59 €
Hi(m).Foreachi € Jy(pyyy) aBdeachj €f{jel—{i}|3Iryg € Ryg, (mij(rp) € Ok)},
let Sij = Tij (Sv). Then, we have 5(6][(,(), S,‘j) = Tjj (VH,[H) (S QK, which implies Sij € K =
Ho(m). In addition, we have P;(t;;u;;) = P;(s;j), which implies together with s;; € Hy(m)
that t;;u;; € P]._le(Ho(m)). Since |[{j € I —{i} | Iry € Ryg 1(mij(rp) € Ok}l =k —1
and f;;u;; € P Pi(so) € P P;(Ho(m)), we have t;;u;; € Fi(m).

By so € Hi(m), Eq. 103, and s € P Pi(tyu) S P 'P;(Fi(m)) for each i €
Ju(pyyy), we have so € Hy(m) # 0.

(«) For any m € N with m > |Rpy|, where Ry is the finite state set of Vg, we consider
any so € Ho(m) # . There exists I’ € Z¥ such that sy € Pi_lPi(Fl (m)) foreachi € I'.
For each i € I, there exists s;; € Fi(m) such that s;; € PlflP,-(so) - P;lP,-(Ho(m)).
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Algorithm 2 Constructions of sy, ty ;; € X}, (Vi € fH (Pvye))
©) _(1)
v oy -

Require: o oY iy higs (i€ Ty (pyy ) m
1: sy <&, tyii < ¢ (Vi € ‘]H(pVNH))

2: h <0

3: whileh <ly — 1do

4 () <~ {i | h=hi}
5 while ®(h) # ¢ do

6 Pick any i € ®(h)

7 ty.ii < Sy

8: sy < SV(U‘(/]’iil)U(h[il+l) B .O,‘(/hiXS—l))m
9: O (h) < P(h) — {i}

10 end while

11 sy < syoy

122 h<h+1

13: end while

Then, s;; can be written as s;; = t;;u;; such that t;; € L(G) — K and |u;;| > m. Since
tijuii € Fi(m) and t;;u;; € Pi_lP,-(Ho(m)), there exists 1 € 7* such that i € I/ and
tiui; € P]fle(Ho(m)) for each j € I”. For each j € 1" — {i}, there exists s;; € Ho(m)
such that P;(s;j) = Pj(s;;). Thus, there exists o\ o -0V e L(Vy) Iy = 1) that
satisfies the following three conditions:

e 7o(sv) = 50,

o Vi e I'(mii(sv) = tijuii),

o Vi e I/,Vj (S Ii” — {i}(ﬂij(SV) = S,‘j),
where sy = a‘(,o)a‘(,l) e o‘(/lel). Foreachi € I, there exists ﬁii € Nwith0 < Eii <lg—1
such that 71',-,-(0‘(,0)0‘(,1) . 'a‘(,h“)) =t;, € L(G)—K.

Q) pEY) =D

We consider the path py, : ryo RN rH.1 AN AN rH 1y (I > 1) obtained
(hg.0)
o2
by executing sy in Vp. For the path py,,, there exists the path py,, : Ryuo BAAEEN
(hpg,1) (hg,1-1)
Oy 9y

Rym,1 Rym, (I = 1)of Vypy such that
{re,0s - s TH.hy o) = RNH 0 (106)
{rHohgo+tts - THAE Y = RNHI (107)
{reny 1 +1> -+ THIy} = RNH (108)

forsome hy o, hy 1, ..., hgi—1 €{0,1,...,lg —1}suchthat0 <hpo<hpy) <--- <
hgi—1 <lH.
We show that the path py,, satisfies Eq. 103. For each i € [I’, since u;; =

(i +1)
Vv

;i (o ~a‘(,l”_1)) and |u;;| > m > |Rpy]|, there exist h;;1, hji2, hji3 € N that sat-

isfy iy < hii1 < hiin < hiis < Lg, TH.by, = TH.byss» and ﬂii(ff‘(/hiiZ)) # ¢. In addition, since
tii € L(G) — K and

0) _(1 hiin—1 0) _( hiin—1
tii € primioy oy o) C pr(mi(oy oy a2, (109)
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we have
0 hiin—
it (F ) = (90, q&.0), Tii (0 oy o2 )) € 0 x {qa).  (110)
It follows that i € Jy (Ryp.») forsome h € {1,2,...,1}. In addition, for each j € I/ — {i},

since ;; (sy) = s;; € Ho(m) = K, we have
71 (ri i) = 8k (qk 0, Tij (sv)) € Qk (11
for rp.1,; € Rym- Since I — {i}| = k — 1, we have
{jel—A{i}|3Irm € Ryg (mijry) € Q) =k — 1. (112)

Thus, we have i € fH(pVNH). Since |I'| = k, py,,, satisfies Eq. 103. m]

Remark 8 The number |Ry| of states of the finite automaton Vy is at most |Q|" x |Q k| X
(|1Qk|+ 1)”2. The number | Ty | of events of V is at most (22 + 1)| = |. Thus, the complexity
of construction Vg is O(|Q|" x |Qk |”2"'1 x n2|Z|). For constructing the nondeterministic
acyclic finite automaton Vy g, we need to find all maximal strongly connected components
of V. Its computational complexity is O(|Q|" x |Qx|"*! x n2|Z]|). Similar to V¢ and
VN F, the value of & is irrelevant to the construction of Vg and Vy .

Then, Vm € N(H(m) # @) can be verified by exploring paths of Vg as shown in The-

. . ov.,0 ov,1 ov,i-1

orem 5. To verify whether there exists a path py,,, : Rvgo — Rypw,1 — -+ ——
Rym (I = 1)thatsatisfies Eq. 103, we have to construct the labeling function Jy : Ryg —
2! defined by Eq. 101. Its computational complexity is O (|Ryg| x n X |Ry| x |Zy|), where
[Rym|isatmost |[Ry|(< |0]" x |Ok| x (|1Qk|+ 1)"2). Since Vy g is acyclic and events of
a path of Vg are not relevant to Eq. 103, the number of paths that have to be explored is at
most erz’l‘””*l |Ryul—1Pr. Once the labeling function Jy : Ryg — 2! is constructed, the
computational complexity for verifying the existence of a path py,,, that satisfies Eq. 103

is O(n? x (erzllv”‘_l [Ryul-1Pr)).

Example 7 Again, we consider the setting of Example 5. We verify whether Vm €
N(Hy(m) # ¢) holds by Theorem 5. For this purpose, we construct the nondeterministic
acyclic finite automaton Vy g based on the finite automaton Vg.

As in Example 6, we consider any path py,,, that ends with {ry}, where

re = (qk,1, (97, 94), 4K 3 9d» 9K 3> (92, 44), 9K 2, 4K, 1, 9K, 1, (@1, 9K ,1))- (113)

As shown in Example 6, it holds that 1,2 € fH (pyyy)- Then, we have |fH(pyNH)| >
2 = k, which implies that py,, satisfies Eq. 103. By Theorem 5, we can conclude that
Vm € N(H>(m) # ¥) holds.

6 Computation of delay bound

When the system G to be diagnosed is (1, k)-reliably 1-inference-diagnosable for a nonempty
closed regular sublanguage K € L(G), there exists m € N such that Fo(m) = v Hy(m) =
#. Let m* € N be the such minimum integer, that is,

m* =min{m € N | Fo(m) =0V Hy(m) = @}. (114)
As shown in Proposition 2, the n local diagnosers D; : Pi(L(G)) — C x N (i =
1,2, ..., n) synthesized by Eqs. 19-22 for any m € N with F>(m) = ¥ or Hy(m) = {J are
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(n, k)-1-inferring and satisfy Eqs. 23 and 9. That is, if diagnosis decisions of at least k local
diagnosers are available, the occurrence of any failure string can be correctly detected within
m steps. Hence, m* can be considered as the delay bound and can be used to synthesize local
diagnosers using Eqs. 19-22. Letting Ny = {m € N | Fo(m) = ()} and Ny = {m € N |
H>(m) = @}, it holds that

min{m’, m%}, if N £ @ ANy # 0

m* = 1 m., i Np £ ANy =0 (115)
m’;_l, if Np =0 ANy #0,
where
. [minNg, ifNp #¢
Mp = :undeﬁned, otherwise, (116)
« _ |minNg, ifNg #0
"MH = :undeﬁned, otherwise. a17)

To compute m*, we develop methods for computing m7, and m}, when Np # ¢ and
Ny # 0, respectively.

6.1 Computation of mj

To compute m7} in the case of Ny 7 (), we use the nondeterministic acyclic finite
automaton Vyr = (RnF, Zv, 0NF, RNF.0), which is constructed for verifying whether
Vm € N(F(m) # ). Let

Ip={0yU{ij | [i,j € [T~ # j1}- (118)

Each element of I indicates the corresponding component of the finite automaton Vi =
(RF, Zv, 8F, rF,0) that traces a failure string. For each i € Ir, we introduce a weight of
each transition of Vy r by a function wr ;. : Ryr x Xy X Ryr — {0, 1} defined as

1, if [Ry r € SNF(RNF, ov)] A [ (0v) # €]
wr i (RNF, oV, Ryp) = Al3ry € Ry p(mip(ry) € Q % {ga})] (119)
0, otherwise

for each Ry F, R;VF € Rnr and each oy € Xy . This weight of a transition of Vy r is used

. av.0
to count the number of occurrences of events after failure. For any path py,, : Rvp o —

RNF 1 SN RnF (I > 1)of VyF, its weight with respect to i € IF is defined

as
-1
WF ir (Pyyp) = Z WF,ip (RNF 1OV iy RNFR41)- (120)
h=0

We consider any index set I’ € TF. Then, we define the set, denoted by Y/, of all functions
: I’ = TF such thati € vy (i) for any i € I'. For example, in the case of n = 3 and
k =2, for I' = {1,2} € 72, a function vy 5} : {1, 2} — Z? such that vy 2(1) = {1, 2} and

v1,2)(2) = {2,3}isan element of Y12y, since 1 € vyy2)(1) and 2 € vy 2)(2). We consider
any path py, . : Ryr0 v, RNF 1 vl vy Ryrg (I = 1) of Vyp. For any pair

(I',vyp) of an index set I’ € Z¥ and a function v;: € Yy, a subset Wr 1y, ) (Pyyy) S IF
whose elements are involved to compute 7}, is defined as follows:
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e 0 € Vp (1 v,)(pyyy) if and only if Eq. 75 in Theorem 4 does not hold,

o foranyij € Ir —{0},ij € YF (1,v,)(pvy,) if and only if i € I', j €evp(i)—{i},and
Jj & Jr(RyFp, i) forany h € {1,2,...,1}, where the function Jr : Ryr x [ — 27 is
defined by Eq. 73.

Intuitively, foreachip € Wr (;7,y,,)(Pvy,), the number of occurrences of events after failure
can be computed as wWr i, (Pyyp)-
The following lemma shows the nonemptyness of Wr (7 v,) (Pvyp)-

Lemma 1 Let k € N be a nonnegative integer such that 2 < k < n. For a nonempty closed

regular sublanguage K C L(G) generated by a finite automaton Gk = (Qk, X, 8k, 4k .0),
we assume that Ng # (). We consider any path py,, : RNF,0 v RNF.A vy 2ve
Rnr.1 (I > 1) of the nondeterministic acyclic finite automaton Vyp. For any pair (I', vp)

of an index set I' € T and a function vy € Yy, if
Viel,3rr € Ryr(mii(rF) € Qk), (121)
then Y (1 v, (PVye) # 9.

Proof Since Ny # @, there exists m € N such that Fo(m) = (. By Theorem 4, we
first consider the case where Eq. 75 does not hold for py, . Then, by the definition of
Vr (10, (Pyye)s we have 0 € Wr 1y, (pyy,) # . We next consider the case where

Eq. 76 does not hold for py, .. Since IJAp(pVNF)I < k, we have I’ — fF(pVNF) # . We
consider any i € I’ — Jp(pyy ). By Eq. 121 and the definition of J¢(py, ), we have

U JrRyrs. D] <k—1. (122)
he(l,2,...1)

Therefore, there exists j € vp(i) — {i} such that j ¢ Jr(RyfFp,i) for any h €
{1,2,...,1}. It follows that ij € Wr (1/.v,)(Pvyg) # V. O

We define the weight WF (1',u,;) (PVyr) of py, withrespect to a pair (I, vy) of an index
set I’ € ZF and a function v;s € Yy as

WE (1,0, (PVyr)

_ {min{wp,,-ﬁ.(pv,w,) eN | i € \IJF,(I/,UI/)(pVNF)}’ leq 121 holds

0, otherwise. (123)

By Lemma 1, wr (;/,v,)(Pvy,) is well-defined. Then, we define the weight wr(py, ;)
of pyy, as
wr (pyyp) = max{wr (v, (poy,) €N I € T8 Avp € Yy, (124)

Finally, letting Path(VyF) be the set of all paths of Vy r, we define wr as the maximum
weight
wr = max{wr(pyyr) € N| pyy, € Path(VnrF)} (125)

over Path(VyF). Since VyF is acyclic, Path(VyF) is finite, which implies that wr is
effectively computable.
The following theorem shows that . can be computed as m}, = wr.
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Theorem 6 Let k € N be a nonnegative integer such that 2 < k < n. For a nonempty closed
regular sublanguage K C L(G) generated by a finite automaton Gx = (Qk, X, 8k, qk.0),
if Np # 0 then my, = wr.

Proof First, we prove that m}, < wp. For the sake of contradiction, we suppose that wr <
m’,. By the definition of m7,, we have F(wr) # #. As shown in the proof of the (<) part
of Theorem 4, there exist I’ € ZF, I € 7 with i € I/ foreach i € I’, and sy € L(VF)
such that

e mo(sv) € Fo(wr),
eViel: JT,','(S\/) (S H()(w[:),
o Vie I/,Vj € Ii” — {l} : JT,‘j(Sv) € Fo(wF).

Then, we have sy # ¢, and sy can be written as sy = cr‘(,o)o‘(,l) . --a‘(,lF_l) (Ip = 1).

©) o <1F n
(T

We consider the path py, : rr o BN TF1 —> o —> rF 1 obtained by executing
a'(hF 0) a(hF 1)

sy in V. For the path py,, there exists the path py,,. : Rvro RN RNF.1 RN

(hpp-1)
(o2
- ——— Ryr,y (I > 1)in Path(VyF) such that

{rF.0s-- s rFhpo} = RNF 0 (126)

{rFhpo+ls - s TFhp ) = RNF 1, (127)

{rEnp ;1415 TE I} = RNF (128)

for some hro,hr1,....hr -1 € {0,1,...,lp — 1} suchthat 0 < hpo < hp1 <--- <

hpi—1 < lp. For I', we consider the function vy : I’ — Z* such that vy (i) = I for
eachi € I'. Since i € vy (i) foreachi € I’,ye have v;r € Y. For eachi € I, since
mii(sv) € Ho(wr) = K, wehave ;i (rp 1) = Sk (qk 0, 7ii (sv)) € Qk fordp(rr 0, sv) =
rr 1y € Ry . It follows that Eq. 121 holds.

By the definition of wr and wr(py, ), we have

wF,(I',U,/)(pVNF) < wF(PVNp) < WF. (129)

Since Eq. 121 holds, by the definition of wr (17 v,)(Pvyp), there exists ip €
Vr (17,0,) (Pyye) such that wr (17 v, (Pyye) = WEip (Pvye)- BY iF € VE (17,0,) (Pyye),
we have 7Tl'lr-‘(r[:,h,'F) ¢ Q X {Qd}, niF(rF,/’l,'F+1) € Q X {qd}: and

(hi ) (hz +1) IF—1
Tip oy oy o) = e (pyyy) (130)
for some h;, € {0, 1,...,1p — 1}. It follows that 7;, (sy) € Kx=wrip(Pyyp) ¢ KR <wr,

Besides, sinceip = 0orip =ij withi € I'and j € I —{i}, wehave ;. (sy) € Fo(wp) =
L(G)N(L(G)— K)X="F which contradicts 7;, (sy) € K £="F . Thus, we have m’ < wr.
We next prove thatm¥. > w . For the sake of contradiction, we suppose thatm}. < wr.By
a(hF 0) (hm) <hF1—1)

the definition of wF, there exists a path py, . : Ryr,0 RN RNFA .
Ryr,y (I = 1)in Path(VnF) such that wrp = wr(py, ). In addition, by the deﬁnmon of
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wr(pyyy), there exist I’ € ZF and vy € YTp such that wr(py,,) = WE (1 0,) (PVyp)-
Since 0 < mY} < wr, by the definition of WF (1 v, (PVyr)> We have Eq. 121 and

Wr = wF,(I/,u,/)(PVNp) =< wF,iF(PVNF) (131)

forany ir € Wr (1'v,)(pyyy)- Besides, forany ip € ({0} U{ij | i € I'ANjevp(i)—
i) = Yr (v, (Pyyp)s there exists hi, € {1,2, ..., 1} such that

(3rF € RNF.h;y, = 7ip (rF) € Q X {qa}]
Aldrg, r}; € RNthiF’ doy € Xy : 6p(rp,oy) = r} /\NiF(Uv) 75 el. (132)

0(0) a(l) (/F D

Then there exists a/Path DVp 1TF0 RN TF.1 RN —> rF 1 of VF such that, for
sometho,thl,.. /’lp,l 1 €{0,1,. lF—l}Wltth()<hF1<~~<th1 1
{rro. - rpfip o} = RNF.0, (133)
refiports - Trhp, ) = RNFLL (134)
re s i+1o - PRI} = RNFLIL (135)
a‘(,hF"’) (hF ? for each pe{0,1,...,1—1},and

T[iF(erl\Fh. 1) €O X {q4}

B O NP (136)
foreachip € ({0YU{ij | i € I' Aj € vp(i) —{i}}) — Vr (1',v,)(Pyyg)- In addition,
foreach iy € \pp’([/,ul,)(vaF), since wp < wr,ir (pyyr), there exists h;. € {1,2,...,1}
such that Eq. 136 holds. Let sy = O'V o‘(,l) .. cr‘(,lF_l). Then, we have mo(sy) € L(G) N
(L(G) — K)z=zwr=1 C L(G) N (L(G) — K)2Z"F Fo(m?}) and m;;(sy) € L(G) N
(L(G) — K)zz¥r~l C L(G) N (L(G) — K)E>m*F = Fy(m7,) for anyl € I’ and any
j € vp(i) — {i}. In addition, for any i € I’, by Eq. 121, we have S(qK 0, Tii(sy)) =
;i (rr.1p) € Qk, which implies 7;; (sy) € K = Ho(mF). Since P;(o(sy)) = P; (i (sy))
foreachi € I’ and P;j(m;;i (sy)) = Pj(m;j(sv)) foreachi € I’ and each j € vy (i) — {i}, we
have mo(sy) € F2(m¥), which contradicts F>(m%,) = ¢. Thus, it holds that m} > wr. O

Remark 9 Since the number of transitions of a path in Path(VyF) is at most |[Ryr| — 1, by
Theorem 6, we have m¥. < |[Ryr| — 1.

Example 8 We consider the setting of Example 1. A part of the nondeterministic acyclic
finite automaton Vy r is shown in Fig. 11. Let py,,, denote the path in Path(VyF) shown
in Fig. 11.

We consider an index set {1, 2, 3} € 73 and a function vi,23) :{1,2,3} = 73 such that
vi1,2,3)(@) = {1, 2,3} for each i € {1, 2, 3}. It follows that v(; 2 3} € Y{1,2,3). As shown in
Fig. 11, a singleton state

{((q1, 94), gk 0, (g1, 9a), (g1, ga), (G0, 9k .,0) (41, qga), 4k .,0, (q1, ga), (G0, 9K .,0),
(q1,94), (q1,94), 9k 0, (90, 9k .0)> (90, 9K ,0), (G0, 9K .0)> (90, 9K .,0), K ,0)} € RNF,
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where g1 = §(qo, f),is reached by the path py,, .. Let {rr} denote this singleton state. Since
i (rr) = qk,0 € Qg foranyi € {1, 2, 3}, Eq. 121 holds. For {1, 2, 3} and vy1 > 3, we have

\IJF,({I,2,3},U(1,2,3))(pVNF) = {0, 12,13, 21, 23, 31, 32} (137)

It holds that, for each iy € WF ((1,2,3},v123) (PVyr)s WF.ip (Pvyr) = 1. Then, we have
WF,({1,2.3}u.2.3) (Pyvyr) = 1. By computing wr (17,v,,)(Pyy,) for all pairs (I', vp) of an
index set I’ € 73 and a function v;: € Y, we obtain wr(py,, ;) = 1. Finally, by examining
all paths in Path(VyF), we have wy = 1.

6.2 Computation of mj

To compute mj, in the case of Ny # ¢, we use the nondeterministic acyclic finite
automaton Vg = (RnH, Zv, N1, RyH,0), which is constructed for verifying whether
Vm € N(Hy(m) # ). Let

Iy ={ii|iel}. (138)

é) {((g0, 410 45,05 (905 41.0): (q0+ G5 0): (G0, Ar¢.0), (0, Gr.0)5 Gc.05 (05 Arc.0) (905 Gxc0),
((Jo7 (JK.O)7 ((107 QK,0)7 4K,05 (qU: QK.O)7 ((IU, QK,(J)7 (C]o; (JK,U)7 (Qm (IK,[)); fJK,o)}

(fie,6,6,6,6,6,6,6,6,6,6,6,6,6,€,€)

) {((fh-, Qd): qK,0, (Qm QK,O)-, (fIm fM,o); (1107 l]K,o); (QO-, QK,0)7 4K,0, (1107 QK,O)a ((10-, QK.,O)7

(90, 4x0), (90, AK.0), AKc05 (905 Arc0) (90, 4K0)5 (0, Ux0), (G0, 4K 0), Gx0)}

(6,6, f,e,6,6,6,6,6,6,6,6,6,€,6,¢€,€)

)

O (a1, 44); axc0: (a1:44): (90, ax.0), (0, ax,0): (90, Arc.0) a0, (905 drc,0)s (G054 0),
(90, qx.0) (90, 4.0 Grc.05 (90, 4x.0) (90, 450 (90, 4505 (0, Ax0)5 Grc0) }

(6,66, f,€,6,6,6,6,6,€,6,€,6,€,¢€,€)

Y {((a1, qa), a0, (a1, qa), (@1, 4a), (0, dic.0) (@0, Gc,0)s A0, (05 Arc0), (d0- Arc0),
(Qm QK,())a (Qm QK,O)7 4K,0, (Qm QK,O)a (Qm QK,0)7 (Qm QK,O)-, (110«, QK,O), qK,o)}

(e,e,e,6,¢, f,€,6,6,€,6,€,6,€,€,€,€)

D) {((a1,9a), a0, (@1, qa), (@1, 44), (90, Gx0), (91, da), Axc0, (G0, Axc0) (G0, GKc0),
(1107 QK,O)s (Qm QK,0)7 4K,0, (1107 QK,O)s (Qm QK,0)7 (QO: QK,O)7 (1107 QK,O): QK,O)}

(5~,5~,6767575~,57f767575157575757575)

5 (a1, 9a), ar0, (a1, 9a), (@1, 9a): (0, qic0): (@1, 4a), a0, (61 ) (0, Grc0)-
(4o, (JK.O)y (40, QK,O)7 ax.0, (90, 4x 0); (o5 QK,O)7 (Qm QK,U)7 (0, (]K,U)7 QK,U)}

(6,6,6,6,6,6,6,6,6, f,€,6,6,6,6,€,€)

O {((a1,9a): a0, (1-9a), (a1, 9a) (90, qxc,0), (41, 9a), 4xc.0- (01 9a) (0, Gc.0)
(@1, 4a), (0, 4K.0), 4x.0, (90, Ix0); (G0, 4K.0), (G0, 4K 0) (90, Arc0)5 Arc0) }

(6,6,6,6,6,6,6,6,6,6, f,€,6,6,€,€,€)

O a1 44), axc0. (a1, 9a). (a1, 4a), (90, ar0), (g1, a), dicos (01, 4a), (q0. Gr0)
(91, 9a), (@1, 4a), 4x05 (G05 450): (905 Gx0)s (905 r¢0), (0, Grc0), Grc0) }

Fig. 11 A part of nondeterministic acyclic finite automaton Vy g for Example 8
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Each element of Iy indicates the corresponding component of the finite automaton Vg =
(Ru, Zvy, 8u,rm o) that traces a failure string. For each iy € Iy, we introduce a weight of
each transition of Vyy by a function wy ;, : Rnvuy X Xy x Ryg — {0, 1} defined as

L if [Ryy € v (Rnm. ov)] A iy (ov) # ¢l
wH.iy (RvH, 0V, Rypy) = A3ry € Ry (i, (ry) € O x {ga})] (139)
0, otherwise

for each Rypg, R;\,H € Rypm and each oy € Xy. This weight of a transition of Vypg

is used to count the number of occurrences of events after failure. We consider any path
[ea [ea

DPvyy  RNH 0 v RnH RACN i Y Ryp, (I = 1)of Vyp. Its weight with respect

toiy € Iy is defined as
-1
Wiy (Pyyg) = O WH.ig (RNH8-0v.h RyEA$)- (140)
h=0

For any pair (I', up) of an index set I’ € ZF and a function vy € Yy, a subset
Yy (v (Pyyy) € T whose elements are involved to compute m7, is defined as

Va0, (Pyyy) ={ii € In [Vh € {1,2, ..., 1}( ¢ Ju(Rnm.»))}, (141)

where the function Jy : Rypy — 2! is defined by Eq. 101. Intuitively, for each iy €
Y, (1',v,;)(PVyy)» the number of occurrences of events after failure can be computed as

WH. i (PVyy)-
The following lemma shows the nonemptyness of Wy (1/.v,,) (Pyyy)-

Lemma2 Let k € N be a nonnegative integer such that 2 < k < n. For a nonempty closed

regular sublanguage K C L(G) generated by a finite automaton GK = (Qk., 2,0k, 9K.0)

. ov.,1 oy,i—-1
we assume that Ny # (). We consider any path py,,,, : Ryu.0 v Ry — -+ ——

Rn .1 (1 > 1) of the nondeterministic acyclic finite automaton Vy g For any pair (I', vp)
of an index set I' € TF and a function vy € Yp, if

Viel \Vjevp —{i})[Fry € Ryui(mij(ru) € Q). (142)
then Wy (1 v,)(Pvyy) # 9.

Proof Since Ny # ), there exists m € N such that H,(m) = ). By Theorem 5, Eq. 103 does
not hold for DPvyy - Since |JH (pyvyu)| <k, we have I’ — JH (pyyy) # Y. We consider any
iel — JH(vaH) Since v} (i) — {i}| = k — 1, by Eq. 142, we have

{jel—{i}|3Irm € Ryg(mijry) € Q) =k —1. (143)

By the definition offH(vaH),we havei ¢ Jy(Rnm.p) forany h € {1,2,...,1}. It follows
thatii € \I/H,(I’,UI/)(pVNH) 0. ]

We define the weight wy (1/,v,) (Pyvyy) Of pyy, with respect to a pair (I',vp) of an
index set I’ € Z¥ and a function vy € Y as

WH (1',v;) (PVyg)

) min{wy i,y (pyyy) €Nlig € Yy (1,v,)(Pyyy)}, if Eq. 142 holds
= ' : (144)
0, otherwise.
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By Lemma 2, wy (1,v,,)(Pvyy) is well-defined. Then, we define the weight wy (pyy,)
of pyyy as

W (Pryy) = max{wy, 7,v,) (Pyyy) €N 1 € T Avp e Y} (145)

Finally, letting Path(Vy g ) be the set of all paths of Vy i, we define wy as the maximum
weight
WH = maX{wH(PVNH) eN | Pyvyn € Path(VNH)} (146)

over Path(Vnp). Since Vypg is acyclic, Path(Vyg) is finite, which implies that wgy is
effectively computable.

The following theorem, which can be proved in a similar way to Theorem 6, shows that
m7,; can be computed as m}, = wg.

Theorem 7 Let k € N be a nonnegative integer such that 2 < k < n. For a nonempty closed
regular sublanguage K C L(G) generated by a finite automaton Gx = (Qk, £, 8k, qk.0),
if Ny # (0 thenm’}, = wy.

Remark 10 Since the number of transitions of a path in Path(Vy ) is at most |[Rypg| — 1,
by Theorem 7, we have m};, < |Ryg| — 1.

7 Conclusion

We considered the reliable decentralized diagnosis problem for DESs. We introduced a notion
of reliable 1-inference-diagnosability and showed that reliable 1-inference-diagnosability is a
necessary and sufficient condition for the existence of local diagnosers that solve the reliable
decentralized diagnosis problem using single-level inference. We presented a method for
effectively verifying reliable 1-inference-diagnosability. Moreover, we computed the delay
bound within which the occurrence of any failure string can be detected. The computed
delay bound is used to synthesize local diagnosers. Reliable decentralized diagnosis using
multi-level inference is a subject of future work.
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