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Abstract
An event that hinders or changes the possibility of observing the event of interest
is called a competing risk. For instance, clinical studies for those with multimorbid-
ity or critically severe illnesses often require consideration of competing risks, as
the occurrence of other events may preclude the primary event of interest. Since the
one-to-one correspondence between the cause-specific hazard and the cause-specific
incidence is lost in the classical competing risk model (Andersen et al., International
Journal of Epidemiology 41:861–870, 2012), the Fine-Gray hazard was developed.
The cause-specific incidence and the Fine-Gray hazard have been widely used and
have become the default methods in competing risk analysis. The cause-specific inci-
dence, however, often fails to represent treatment effects properly due to failures of
the competing causes, particularly when the hazards of the competing causes are con-
siderably different between the control and treatment arms. This study introduces a
new incidence termed, cause-distinct incidence, which has a one-to-one correspon-
dence with the cause-specific hazard and is less affected by competing causes than
the cause-specific incidence. Whilst, recent studies have found unexpected effects of
censors on the Fine-Gray hazard analysis. For instance, the estimation of the censor-
ing distribution can affect the accuracy or censoring can complicate the estimation.
The root cause of these unexpected phenomena has been uninvestigated. The basic
requirement for the hazard is that it be independent of the distribution of independent
censoring. Nevertheless, this study verifies mathematically and also numerically that
the Fine-Gray hazard depends on the distribution of independent censoring.
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1 Introduction

An event that hinders or changes the possibility of observing the event of interest is
called a competing risk (Li et al., 2022). Competing risk analysis refers to time-to-
event analysis, or survival analysis, which aims to correctly estimate the possibility
of an event of interest in the presence of competing events. Populations susceptible
to competing risks include those with multimorbidity or critically severe illnesses
such as cancer, cardiovascular diseases, stroke, diabetes, nephrology, and chronic
obstructive pulmonary disease (COPD). Drug efficacy research needs to assess the
effects of exposure on the disease-specific failure endpoint of interest rather than on
the composite endpoint that combines all-cause mortality. Ignoring competing risks in
time-to-event analyses can lead to biased risk estimates (Tullio et al., 2019). However,
the decision to conduct competing risk analysis is not always straightforward, and
even when deemed necessary, misconceptions exist about the appropriate choice of
analytical methods (Li et al., 2022).

Gray (1988) demonstrated that the cause-specific hazard does not correspond one-
to-one with the cause-specific incidence. This finding eventually led him to develop
the Fine-Gray, or subdistribution, hazard (Fine & Gray, 1999), which has the property
of one-to-one correspondence with the cause-specific incidence. The cause-specific
incidence and the Fine-Gray subdistribution hazard have become the default methods
for estimating the incidence of outcomes over time in the presence of competing
risks (Austin et al., 2021; Kremers et al., 2021; Macek et al., 2020; Pintilie, 2011;
Rehman et al., 2022). This remark prompted us to perform a literature search for papers
published between 2020 and 2023. A search using Scopus with key words “competing
risk” hit 5691 papers, “cause-specific” 3902, and “Fine-Gray” or “subdistribution
hazard” 1712.

Nevertheless, some clinicians seem to be unable to correctly interpret the results
obtained from the Fine-Gray hazard. Koller et al., (2012) surveyed major biostatistics
and clinical journals to find that the competing risk issues were often ignored and that
the application of inappropriate statistical methods was a frequent problem. Noordzij
et al. (2013) suggest that the Fine-Gray hazard is suitable for the prediction of survival
probability, while for etiological studies, when hazard ratios need to be derived, the
cause-specific hazard is appropriate. Abdel-Qadir et al. (2018) warn that the cause-
specific hazard ratio is not directly comparable to the magnitude of the effect of the
covariate on the risk of stroke derived from the Fine-Gray model. Li et al. (2022) warn
that a lower cause-specific hazard and a lower cumulative incidence are distinct and
may result in analytical contrastswith different, even opposing, conclusions depending
on the nature and extent of the competing risks.Macek et al. (2020) warn that the Fine-
Gray hazard ratio should not be interpreted in the sameway as the cause-specific hazard
ratio which is by far the most suited method for prognostic studies.

Several commentaries have been written regarding proper usage and sound inter-
pretation in the practice of competing risk analysis (Austin et al., 2016, 2021; Austin
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& Fine, 2017) and some statisticians have warned against using the Fine-Gray haz-
ard (e.g., Andersen et al., 2012; Putter et al., 2020; Troendle et al., 2018). These
suggestions and warnings derive primarily from two facts. First, recent studies have
found unexpected effects of censors on Fine-Gray model analysis. Donoghoe and
Gebski (2017) observe that the estimation of the censoring distribution can affect
the accuracy of an analysis using the Fine-Gray hazard. Putter et al. (2020) observe
that censoring complicates estimation in the Fine-Gray regression model. Poguntke
et al. (2018) conclude that cause-specific hazard analysis is the method of choice for
general right-censored data. These warnings concerning the Fine-Gray hazard were
based on observed phenomena, but the root cause of these phenomena has not yet been
clarified. The most basic requirement for hazards is that they should be independent
of the distribution of independent censoring. Nevertheless, this study finds through
mathematical considerations that the Fine-Gray hazard depends on the distribution of
independent censoring, which is also confirmed numerically.

Second, and more fundamentally, there is no one-to-one correspondence between
the cause-specific hazard and the cause-specific incidence. Andersen et al. (2012)
emphasize that “The key feature of competing risks is that the one-to-one correspon-
dence between cause-specific hazard and cumulative incidence, between rate and risk,
is lost.” Then, they warn that “The loss of one-to-one correspondence should be kept
in mind when deciding on how to make inferences.” To resolve this situation, this
study proposes an incidence termed, “cause-distinct incidence”. The cause-distinct
incidence (CD-incidence) is less susceptible to the failure times of competing causes
and corresponds one-to-one with the cause-specific hazard.

Section 2 describes the notation and symbols, Sect. 3 addresses the dependency
of Fine-Gray hazard on independent censoring, Sect. 4 defines and studies the cause-
distinct incidence in the presence of competing causes, and Sect. 5 summarizes the
findings and results.

2 Notation and symbols

Wefirst consider a homogeneous (no covariates) competing riskmodel. Let T and J be
randomvariables to denote the failure time and the failure type, respectively.C denotes
random censoring time independent of T . We observe min (T , C) and δ � I (T ≤ C),
where I (·) is the indicator function. F(t) � P(T < t) is the cumulative incidence,
S(t) � P(T ≥ t) � 1 − F(t) the survivor function, f (t) � dF(t)/dt the incidence,
λ(t) � f (t)/S(t) the hazard and �(t) � ∫ t

0 λ(u)du the cumulative hazard. Then it

follows that λ(t) � −d log S(t)/dt and S(t) � exp{−�(t)}.
For notational simplicity, we assume two types of failure, namely J � 1 or 2.

J � 1 denotes the primary cause and J � 2 the competing cause. Failure due to
J � i is termed Type-i failure (i � 1, 2). We define a cause-specific incidence (CS-
incidence), cause-specifichazard (CS-hazard) and cumulative cause-specific incidence
(CCS-incidence) in the presence of the other type of failure to be fi (t) � lim

�→0
P

(t ≤ T < t + �, J � i)/�, λi (t) � lim
�→0

P(t ≤ T < t + �, J � i |t ≤ T )/� and

123



Japanese Journal of Statistics and Data Science

Fi (t) � P(T < t , J � i) � ∫ t
0 fi (u)du, respectively, (i � 1, 2). It holds that λi (t) �

fi (t)/S(t), λ(t) �λ1(t) + λ2(t) and f (t) � f1(t) + f2(t).
The Fine-Gray, or subdistribution, hazard is defined as

λφ(t) � lim
�→0

P{(t ≤ T < t + �, J � 1)|(t ≤ T ) ∪ (T ≤ t , J � 2)}/� (1)

Since P(t ≤ T ) + P(T ≤ t , J � 2) � 1− P(T < t , J � 1) � 1− F1(t), we have

λφ(t) � lim
�→0

P{(t ≤ T < t + �, J � 1)}
�P{(t ≤ T ) ∪ (T ≤ t , J � 2)} � f1(t)

1 − F1(t)
� −d log{1 − F1(t)}

dt
.

3 Dependency of Fine-Gray hazard on censoring

3.1 Hazard formula explicitly including censoring

The hazard λ(t) � lim
�→0

P(t ≤ T < t + �|t ≤ T )/� is defined without considering

C, although T is observed only if T ≤ C . To consider whether λ(t) is independent of
C, C is explicitly included in t ≤ T and t ≤ T < t +� in the definition of λ(t). First,
t ≤ T means that T is under observation at t. Hence, we have (t ≤ T ) ∩ (t ≤ C), as
described in Fine and Gray (1999). Second, t ≤ T < t +� implies that T is observed
to fail in (t , t + �) and hence (t ≤ T < t + �) ∩ (T ≤ C) holds. Consequently, if C
is explicitly included in the definition of λ(t), it is written as

λC (t) � lim
�→0

P((t ≤ T < t + �) ∩ (T ≤ C)|(t ≤ T ) ∩ (t ≤ C))

�

� lim
�→0

P((t ≤ T < t + �) ∩ (T ≤ C))

�P((t ≤ T ) ∩ (t ≤ C))
.

(2)

For the Fine-Gray hazard (1), the explicit inclusion of C needs further attention
since at risk at t in (1) includes those who have been observed to fail byt. That is, the
at risk at t in λφ(t) consists of not only (t ≤ T ) but also (T ≤ t , J � 2). As previously
described, (t ≤ T ) consists of subjects such that t ≤ T and t ≤ C . Whilst, (T ≤ t ,
J � 2) means that T is observed to fail of J � 2 at or before t, hence it holds that
(T ≤ t , J � 2) ∩ (T ≤ C). Thus, we have

λ
φ
C (t) � lim

�→0

1

�

P{(t ≤ T < t + �, J � 1) ∩ (T ≤ C)}
P[{(t ≤ T ) ∩ (t ≤ C)} ∪ {(T ≤ t , J � 2) ∩ (T ≤ C)}] .
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3.2 Independence of the hazard from censoring

The following theorem is the most fundamental in the failure time analysis. A detailed
proof is described, since the proof technique is essential for examining the effect of
censoring on the Fine-Gray hazard.

Theorem If C is independent of T, then λC (t) � λ(t)holds.

Proof A point to consider in the proof is that, (t ≤ T ) and (t ≤ C) are mutually
independent given t, but (t ≤ T ) and (T ≤ C) are not necessarily. Thus, we first show

lim
�→0

P((t ≤ T < t + �) ∩ (T ≤ C))

�
� lim

�→0

P((t ≤ T < t + �) ∩ (t ≤ C))

�
(3)

That is, (T ≤ C) in the numerator may be replaced by (t ≤ C).
Since (t ≤ T < t + �) ∩ (T ≤ C) implies (t ≤ T ≤ C), we have (t ≤ T <

t + �) ∩ (t ≤ C) ⊃ (t ≤ T < t + �) ∩ (T ≤ C). For notational simplicity, put
α � (t ≤ T < t + �) and define δ � P{α ∩ (t ≤ C)} − P{α ∩ (T ≤ C)}. If
lim
�→0

δ/� � 0, then (3) holds.

Since (t ≤ C) − (T ≤ C) � (t ≤ C) ∩ (T ≤ C)c� (t ≤ C) ∩ (C < T ) � (t ≤
C < T ), we have P{α ∩ (t ≤ C < T )} � P{α ∩ (t ≤ C)} − P{α ∩ (T ≤ C)}.
Thus, δ �P{α ∩ (t ≤ C < T )}. Since T < t + � in α and T and C are mutually
independent, δ ≤ P{α ∩ (t ≤ C ≤ t +�)} � P(α)P(t ≤ C < t +�). It follows from
lim
�→0

P(α)/� � f (t) and lim
�→0

P(t < C < t + �) � 0 that lim
�→0

δ/� � 0. Since T

and C are mutually independent, it follows from (2) that

λC (t) � lim
�→0

P((t ≤ T < t + �) ∩ (T ≤ C))

�P((t ≤ T ) ∩ (t ≤ C))
� lim

�→0

P((t ≤ T < t + �) ∩ (t ≤ C))

�P((t ≤ T ) ∩ (t ≤ C))

� lim
�→0

P(t ≤ T < t + �)P(t ≤ C)

�P(t ≤ T )P(t ≤ C)
� lim

�→0

P(t ≤ T < t + �)

�P(t ≤ T )
.

Thus, λC (t) � λ(t) is obtained. �

The theorem indicates that λ(t) is well defined. Similarly, λ1(t) is verified to be well
defined. On the other hand, the Fine-Gray hazard λφ(t) is not necessarily independent
of independent censoring. This is verified as follows.

First, it follows from (3) that

λ
φ
C (t) � lim

�→0

1

�

P{(t ≤ T < t + �, J � 1) ∩ (t ≤ C)}
P[{(t ≤ T ) ∩ (t ≤ C)} ∪ {(T ≤ t , J � 2) ∩ (T ≤ C)}]

Since T and C are mutually independent and (t ≤ T ) and (T ≤ t) are mutually
disjoint, or more precisely P(T � t) � 0, we have

λ
φ
C (t) � lim

�→0

1

�

P(t ≤ T < t + �, J � 1)P(t ≤ C)

P(t ≤ T )P(t ≤ C) + P{{(T ≤ t , J � 2) ∩ (T ≤ C)}
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First, (T ≤ C) in the denominator may not be replaced by (t ≤ C), since, as
previously noted, (T ≤ t , J � 2) ∩ (t ≤ C) does not include (T ≤ t , J � 2) ∩ (T ≤
C ≤ t), a subset of (T ≤ t , J � 2) ∩ (T ≤ C). Furthermore, (T ≤ t , J � 2) and
(T ≤ C) are not necessarily mutually independent. Thus, P(t ≤ C) is not cancelled
out and remains in the equation.

However, Fine and Gray (1999) replaced (T ≤ C) by (t ≤ C) in their proof (line
4 in the right column, p. 499) to obtain a modified hazard

λ
γ

C (t) � lim
�→0

1

�

P(t ≤ T < t + �, J � 1)P(t ≤ C)

P(t ≤ T )P(t ≤ C) + P{(T ≤ t , J � 2) ∩ (t ≤ C)} .

Then P(t ≤ C) is canceled out since C is independent of (T , J ). Thus, it follows

λ
γ

C (t) � lim
�→0

1

�

P(t ≤ T < t + �, J � 1)

{P(t ≤ T )+P(T < t , J � 2)} � λφ(t).

Therefore, λγ

C (t) is independent of C.

Consider cases such that (T , J � 2) with T < C < t. Those cases are included in
(T ≤ t , J � 2)∩ (T < C) but not in (T ≤ t , J � 2)∩ (t < C); therefore, those cases
causeλ

γ

C (t)	� λ
φ
C (t). These facts indicate thatλ

φ(t) isnot necessarily independent ofC.

Fine andGray (1999) introduced “censoring complete”, or “administrative censoring”
(Joffle, 2001), which means censoring times are known at the baseline; however, that
does not allow (T ≤ C) to be replaced by (t ≤ C) in λ

φ
C (t).

3.3 Numerical study

A numerical study is performed to examine the degree of dependency on censoring of
the Fine-Gray hazard. For comparison, the cause-specific hazard is also examined.

Let X, Y and Z independently follow Unif (0, 1). Type-1 and Type-2 failure times
are defined as T1 � 80X + 20Y and T2 � 20X + 80Y , respectively. The correlation
coefficient Corr (T1, T2) is approximately 0.5. A total of 1000 cases of (T1, T2) are
generated and the Fine-Gray hazard λφ(t) and cause-specific hazard λ1(t) are obtained.
The cumulative hazard with no censoring is regarded as “true” and the effects of
censoring on them are examined by simulations using three censoring patterns. The
censoring pattern is C1 � 50Z , C2 � 10 + 50Z , or C3 � 20 + 50Z; the supports of
C1,C2 and C3 are (0, 50), (10, 60) and (20, 70), respectively.

In each iteration of the simulation, 750 cases out of the 1000 (T1,T2)were randomly
selected and assigned censoring timesC1,C2 andC3 and the remaining 250 cases were
assigned no censoring time, or C1 � C2 � C3 � ∞. Thus, three samples {(T1, T2,
C1)}, {(T1, T2, C2)} and {(T1, T2, C3)} of size 1000 were obtained for each iterration.
In each iteration λφ(t) and λ1(t) were obtained for each ofC1,C2 andC3, that produced
cumulative hazards�φ(t) and�1(t) for 0 < t < 100.We performed 1,000 iterations and
obtained 1000 of �φ(t) and �1(t) for each of C1,C2 and C3. We obtained the average
of them fort such that n < t < n + 1 for each of �φ(t) and �1(t). The frequencies of
λφ(t) and λ1(t) considerably decreased for t > 60.
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(a) Fine-Gray hazard (t) (b) Cause-specific hazard (t) 

Fig. 1 The cumulative hazards according to the censoring pattern. No censoring (blue), C1 � 50Z (red), C2
� 10 + 50Z(green) and C3 � 20 + 50Z (yellow)

Given t, λγ

C (t)	� λ
φ
C (t) can be caused by cases such thatC < t; therefore, the smaller

C, the more such cases should be. Accordingly, the influence of censoring on the Fine-
Gray hazard should be greatest for C1, and decrease in order of C2 and C3. Figure 1
demonstrates the cumulative hazards by the censoring pattern for (a) the Fine-Gray
hazard λφ(t) and (b) the cause-specific hazard λ1(t), labeled Cox. As expected, �φ(t)
depends on censoring, with C3 being closest to the no-censoring, followed by C2 and
then C1. In contrast, �1(t) does not depend on censoring, also as expected.

To examine the effect of the random numbers used in the SAS simulation, the same
simulation with different seeds for random number generations was performed, and
the result are shown in the Appendix.

4 Cause-distinct incidence in the presence of competing causes

4.1 Definition

In the competing risk analysis, it is customary to consider Type-2 failures as
censors to obtain the maximum likelihood estimate of the type-1 specific haz-
ard λ1(t). We will briefly review the rationale following Kalbfleisch and Prentice
(2002). For notational simplicity, we assume there are two types of failures,
namely Type-1 and Type-2, and no censored subjects. Let {t1i}and {t2j} denote
the failure times for Type-1 and Type-2 failures, respectively. Let λi (t) denote a
Type-i specific hazard, �i (t) � ∫ t

0 λi (s)ds and Si (t) � exp{ − �i (t)} for i �
1, 2. Since Si (t) accounts only λi (t), Si (t) is Type i-specific survivor function
obtained by regarding other types of failures as censored. S(t) � S1(t)S2(t) is
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the survivor function, and fi (t) �λi (t)S(t) is the CS-incidence. Then, the likeli-
hood L(λ1, λ2) � ∏

i
f1(t1i )

∏

j
f2(t2j ) factorizes as L(λ1, λ2) � L1(λ1)L2(λ2) where

L1(λ1) � ∏
iλ1(t

1
i )S1(t

1
i )

∏
j S1(t

2
j ) andL2(λ2) � ∏

jλ2(t
2
j )S2(t

2
j )

∏
i S2(t

1
i ). Since λ1

is included only in L1(λ1), the λ1 that maximizes L1(λ1) is the maximum likelihood
estimate (MLE) of λ1 (8.2.3, Kalbfleisch & Prentice, 2002). The critical point is that
S1(t) � exp{−�1(t)} is the Type-1 survivor function in the presence of Type-2 failure,
not the survivor function S(t).

This consideration led us to propose f ∗
1 (t) � λ1(t)S1(t), termed the “cause-distinct

incidence in the presence of Type-2 failure (CD-incidence)”. F∗
1 (t) � ∫ t

0 f ∗
1 (s)ds

is termed the cumulative cause-distinct incidence (CCD-incidence). It follows that
f1(t) � λ1(t)S(t) � λ1(t)S1(t)S2(t)� f ∗

1 (t)S2(t). Table 1 shows the notations and

Table 1 Notation and symbols in Kalbfleisch and Prentice (2002), SAS and this study

Kalbfleisch and Prentice SAS This study

(Overall) Hazard h(t) (Overall) Hazard

λ(t) λ(t)

Type-i Cause-specific hazard λi (t) Type-i Cause-specific hazard

λi (t) λi (t)

(Overall) Survivor function S(t) Survivor function

F(t) S(t)

Type-i (sub) density function No name Type-i specific incidence

fi (t) � λi (t)F(t) fi (t) � λi (t)S(t)

See footnotea No name Type-i survivor function

No name Si (t) � exp
{
−∫ t

0λi (s)ds
}

Type-i cumulative hazard �i (t) � ∫ t
0λi (s)ds Type-i cumulative hazard

−logFi (t) �i (t) � ∫ t
0λi (s)ds

Type-i cumulative incidenceb No name Type-i cumulative incidence

Fi (t) � ∫ t
0 fi (s)ds Fi (t) � ∫ t

0 fi (s)ds

Type-i distinct incidence

f ∗
i (t) � λi (t)Si (t)

Type-i cumulative distinct incidence

F∗
i (t) � ∫ t

0 f
∗
i (s)ds

aKalbfleisch and Prentice (2002) define Fi (t) � exp
{
−∫ t

0λi (s)ds
}
with the remark “these functions will

not, in general, have any survivor function interpretation” and assign no name to it
bKalbfleisch and Prentice (First edition, 1980) defined Type-i cumulative incidence as Ii (t) � ∫ t

0 fi (s)ds
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symbols in Kalbfleisch and Prentice (2002), SAS (PHREG or LIFETEST) and this
study.

4.2 One-to-one correspondence between hazard and incidence

The following theorem assures that there is a one-to-one correspondence between
λ1(t), S1(t) and f ∗

1 (t) when S1(t) → 0, as t → ∞.

Theorem When S1(t) → 0, as t → ∞, each of the three functions λ1(t) S1(t) and
f ∗
1 (t) determines the other two. It also holds that F∗

1 (t) + S1(t) � 1 for t ≥ 0.

Proof First, λ1(t) determines S1(t) � exp{ − �1(t)}, and therefore also f ∗
1 (t) �

λ1(t)S1(t). Conversely, f ∗
1 (t) determines S1(t) and λ1(t) as follows. Since

dS1(t)/dt �−λ1(t)S1(t) � − f ∗
1 (t) and S1(t) → 0 as t → ∞, we have∫ ∞

t f ∗
1 (s)ds � −[S1(s)]∞t � S1(t). Then λ1(t) is obtained by λ1(t) � f ∗

1 (t)/S1(t).

Finally, S1(t) determines λ1(t) � d{− log S1(t)}/dt and therefore f ∗
1 (t) � λ1(t)S1(t).

The last equality follows from F∗
1 (t)+ S1(t)�

∫ ∞
0 f ∗

1 (s)ds� −[S1(s)]∞0 � 1 when

S1(t) → 0 as t → ∞. �

Since S1(t) is a survivor function for Type-1 failures that regards Type-2 failures
as censoring at the individual’s failure time, S1(t) is an ordinary survivor function
with one failure type. Therefore, S1(t) → 0 as t → ∞ is generally assumed in most
applications. The last equality F∗

1 (t) + S1(t) � 1(t ≥ 0) is useful in application.
On the other hand, λ1(t) is not obtained from f1(t) without additional information

on Type-2 failure. Andersen et al. (2012) describe the property as “no one-to-one
correspondence between λ1(t) and f1(t)”. There is another inconvenience with f1(t).
Since f1(t) � f ∗

1 (t)S2(t), f1(t) is more severely influenced by Type-2 failures than
f ∗
1 (t), particularly when λ2(t) > λ1(t) as in Gray’s example (4.3.1) or when λ2(t) is

considerably different between the groups.

4.3 Comparison between CD-incidence and CS-incidence

4.3.1 Gray’s example: when the competing cause is high hazard

In the introduction of Gray (1988), a paradoxical relationship between CS-incidence
and CS-hazard was described using two groups and two types of failure. Gray assigned
λ(1)1 � λ(1)2 � 3, λ(2)1 � 2 and λ(2)2 � 1, where λ(k)i denotes the Type-i specific
hazard for Group k. We consider groups 1 and 2 as the control and treatment groups
and types 1 and 2 as the primary and competing causes, respectively. According to our
interpretation, this treatment reduces the hazard from 3 to 2 for the primary cause and
3 to 1 for the competing cause, making it highly effective. Some related functions are
presented in Table 2. Since the failure types are mutually independent, the competing
failures are treated as independent censoring in calculating the CD-incidence.

Figure 2a shows Type-1 CCS-incidences for the groups. Since they cross each, they
fail to represent the treatment effect properly. This paradoxical phenomenon is caused
by the impact of competing failures on Type-1 CS-incidence, as explained in Sect.
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Table 2 Functions determined
from the hazards specified by
Gray (1988)

Group 1: Control Group 2:
Treatment arm

Type-l Hazard λ(1)1 � 3 λ(2)1 � 2

Type-2 Hazard λ(1)2 � 3 λ(2)2 � 1

Total Hazard λ(1) � 6 λ(2) � 3

Survivor function SC (t) � e−6t ST (t) � e−3t

Cumulative incidence FC (t) � 1- e−6t FT (t) � 1-e−3t

Type-1 Survivor function SC1(t) � e−3t ST 1(t) � e−2t

Type-1 CCS-incidence FC
1(t) � (1-

e−6t )/2
FT

1(t) �
2(1-e−3t )/3

Type-1 CS-incidence f C
1(t) � 3e−6t f T

1(t) � 2e−3t

Type-1 CD-incidence f *C1(t) � 3e−3t f *T 1(t) �
2e−2t

Type-l cumulative
hazard

ΛC
1(t) � 3t ΛT

1(t) � 2t

(a) CCS-incidence                                             
(b) CCD-incidence

Fig. 2 The horizontal lines denote time, while the vertical lines denote a CCS-incidence and b CCD-
incidence. The control and treatment arms are denoted by blue and red lines, respectively. They cross in
(a) but not in (b)

4.2. On the other hand, Fig. 2b shows that Type-1 CCD-incidence for the treatment
arm is consistently lower than that for the control arm, which presents the treatment
effect properly. Gray’s example, in effect, demonstrates that the CD-incidence is more
reliable than the CS-incidence.

Figure 2 can be directly obtained from the Type-1 CS incidence and Type-1 CD-
incidence functions in Table 2. However, to clarify the difference between the CS-
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and CD- incidences in the calculations, we present a SAS-code that calculates the
incidences: https://www.med.osaka-u.ac.jp/pub/dmi/opendata/files/yamada/CS_CD_
incidence.zip.

It first generates competing failure times (T, J) for the control and treatment arms
based on the hazards specified in Table 2. Then, it calculates the CCS- and CCD-
incidences from the data. The sample size is set 10,000 for each arm.

5 Conclusion

This study shows that a one-to-one correspondence, the key feature of competing
risk analysis (Andersen et al., 2012), holds between the CD-incidence f ∗

i (t) and CS-
hazard λi (t). The fact that the key feature holds for CD-incidence but not for CS-
incidence is based on the following fact. Let {t1i}and {t2j} denote the failure times
for Type-1 and Type-2 failures, respectively, and assume no censoring. Then, the
likelihood L(λ1, λ2) � ∏

i
f1(t1i )

∏

j
f2(t2j ) is obtained using the CS-incidences f1(t)

and f2(t), however, the maximum likelihood estimate of λ1 is obtained bymaximizing
L1(λ1) � ∏

i
f ∗
1 (t

1
i )

∏
j S1(t

2
j ), which uses the CD-incidence f ∗

1 (t). Since f ∗
1 (t) �

λ1(t)S1(t), L1(λ1) coincides with the likelihood that is obtained by regarding {t1i}
as failures and {t2j} as censoring. This fact has been overlooked, and the feature of
CD-incidence f ∗

i (t) has not been well investigated. This study also verifies that CD-
incidence is less susceptible to competing causes than CS-incidence, and consequently
CD-incidence is more appropriate than CS-incidence in drug efficacy comparisons.

The Fine-Gray hazard is not well defined; that is, it depends on independent cen-
soring. This is caused by an error when random censoring is explicitly includied in
the hazard formula (Fine-Gray, 1999). The Fine-Gray hazard is well defined when
censoring occurs only at the termination of the study, or no loss to follow.

Appendix

See Fig. 3.
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(a) Fine-Gray hazard (t)                                
(b) Cause-specific hazard 1(t)

Fig. 3 To examine the effect of the randomnumbers used in the SAS simulation onFig. 1, the same simulation
with different seeds for the random numbers was performed. The result is these figures that are nearly the
same as those in Fig. 1. * SAS code for the simulation is obtained from the following site: https://www.
med.osaka-u.ac.jp/pub/dmi/opendata/files/yamada/FineGray_Cox_Simulation.zip

Line 12 in the SAS code: “local seed � 579384925” specifies the random seed
when generating (T1, T2). The number of iterations is specified by “for k � 1, 1000
do” on Line 31. The number of iterations is modified by modifying only 1000.
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