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Abstract
A simulation environment of harbor maneuvers is critical for developing automatic berthing. Mathematical models are widely 
used to estimate harbor maneuvers. However, user’s analysis and decision are necessary to derive, select, and identify the 
model because each actuator configuration needs an inherent mathematical expression. We proposed a new mathematical 
model for arbitrary configurations to overcome that issue. The new model is a hybrid model that combines the simplicity 
of the derivation of the Taylor expansion and the high degree of freedom of the MMG low-speed maneuvering model. We 
also developed a method to select mathematical expressions for the proposed model using system identification. Because 
the proposed model can easily derive mathematical expressions, we can generate multiple expressions simultaneously and 
choose the best one. This method can reduce the workload of model identification and selection. Furthermore, the proposed 
method will enable the automatic generation of mathematical models because it can reduce user’s decision-making and data 
analysis for the model generation due to its less dependency on the knowledge of ship hydrodynamics and captive model test. 
The proposed method was validated with free-running model tests and showed equivalent or better estimation performance 
than the conventional model generation method.

Keywords Ship maneuvering · Autonomous docking · Maneuvering model · System identification · CMA-ES

1 Introduction

Research and development of Maritime Autonomous Sur-
face Ship (MASS) are active, including automatic berth-
ing. The development of controllers for MASS—including 
parameter tuning, verification, and certification by class 
society—ultimately requires verification in a real ship. Still, 
a significant part of development in a simulation environ-
ment would be helpful from a cost and safety. A mathemati-
cal model of a ship’s maneuver (i.e., maneuvering model or 
system-based mathematical model hereafter simply referred 

to as “mathematical model” or the “model”) is widely used 
to estimate ship maneuvering in numerical simulations from 
the standpoint of computation time.

The harbor maneuver of a ship is an inclusive maneuver 
that includes various maneuvers: leaving and entering the 
port, approach maneuvers to the berth, berthing, and also 
unberthing; hence, it contains various types of motions, 
i.e., forward, astern, acceleration and deceleration, turn, 
pivot turn, stop, crabbing, position-keeping. A mathemati-
cal model for harbor maneuvers is generally more complex 
than that for ocean navigation because the flow field and use 
of actuators are much more complex and because the ship is 
navigating close to obstacles, the high estimation accuracy 
is required.

Mathematical models for harbor maneuvers can be 
divided into two categories how they address the complex-
ity, either a complex model that switches and combines sub-
model withvarious condition, or a simpler one that uses uni-
fied mathematical expression and parameters for all state for 
practicality. The former method is represented by the low-
speed maneuvering MMG model [e.g., 1, 2], and the latter 
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is represented by Abkowitz model with variable propeller 
rotation [3] and Fossen’s model for dynamic positioning [4].

1.1  Problem definition

Generating a maneuvering model of a particular ship gener-
ally consists of the following four tasks. Therefore, in this 
paper, the term “model generation” refers to the entire pro-
cess that includes the following four tasks, and, a “user” is 
a person who generates a model and utilizes the model in a 
simulation environment.

Derivation of the model’s mathematical expression The 
user derives a new mathematical model if the existing model 
is not sufficient. The derivation here refers to the derivation 
of the mathematical expressions of the model. This step is 
unnecessary if the user thinks an existing model is sufficient.

Model selection The user selects the mathematical model 
to be used. The selection is based on the findings of previ-
ous studies or results of maneuvering basin tests conducted 
by the user.

Parameter identification The user obtains model param-
eters for the selected model from maneuvering basin tests, 
databases, or empirical formulae.

Validate mathematical model The user performs a maneu-
vering simulation with identified model parametersmathe-
matical model. The model is validated by comparing the 
simulation results with known maneuvers, a maneuvering 
trial of a ship or a free-running model ship.

1.2  Difficulties of existing modeling methods

Let us assume that the user’s goal is to build a maneuvering 
simulation environment that can simulate harbor maneu-
vers. If the hull form of the ship is fixed and the accuracy of 
maneuvering simulation is required, model parameters are 
often identified by the captive model test [5–7]. The stand-
ard method of the MMG model [7] also uses captive model 
tests to identify model parameters. Moreover, even for har-
bor maneuvers, several studied [8–15] on berthing control 
have used captive model tests to identify model parameters. 
However, existing mathematical models and captive model 
test-based scheme seem problematic because the user’s 
workload to generate the model is large. In particular, the 
following are some examples:

Special testing facility The model parameters are obtained 
from hydrodynamic forces measured in a towing tank or a 
maneuvering basin; hence, the model cannot be generated 
without using such a facility. Recently, computational fluid 
dynamics (CFD) has been used to alternate captive model 
tests [16–18]. However, powerful computational resources 
and CFD expertise are required.

Cost of parameter identification The time and the cost 
required for the experiment become non-negligible due to 

the increased number of test conditions caused by the com-
plexity of the model of harbor maneuvers.

Selection of the mathematical model. So far, several 
mathematical models have been proposed that are applicable 
to harbor maneuvers (see Sect. 1.3), but none of them can 
be called the de facto standard yet. Therefore, the user must 
select an appropriate model (and its mathematical expres-
sion) for their vessel of interest. Selection can be done by 
comparing various models with a known maneuver or com-
paring estimated hydrodynamic forces with captive model 
tests.

Diversity of actuator configurations A ship’s actuator sys-
tem includes a wide variety of configurations, e.g., a single-
propeller and single-rudder ship, a twin-propeller and twin-
rudder ship, a ship with multiple azimuth thrusters, and so 
on. The mathematical expression of the model is unique to 
each actuator configuration; thus, the user needs to prepare 
the model and implement a numerical code for each actuator 
configuration.

Knowledge of Ship hydrodynamics and model test The 
user must have appropriate knowledge of captive model 
tests, hydrodynamics on ship maneuvering, and the model 
itself to identify model parameters from captive model tests. 
However, for the users who aim to build automatic berthing 
systems, those knowledge is not necessarily their area of 
expertise. In such cases, a different person who is an expert 
in that area should be asked for support.

1.3  Related works

Among the difficulties stated in Sect. 1.2, “special test-
ing facility” and “cost of parameter identification” can be 
addressed by the system identification (SI) technique. On 
the SI for ship maneuvering, SI identifies model parameters 
from a set of ship trajectories. SI for ship maneuvering was 
first introduced by Äström and Köllström [19], and Abkow-
itz [3] in the late 1970s and early 1980s, and then numerous 
studies have been done for both from full-scale[3, 19–21] 
ship and model ship [22–25].

However, research on SI has been conducted mainly on 
mathematical models for IMO standard maneuvers [26], 
ocean voyage, and autopilot application. Only a few stud-
ies have been conducted on SI for mathematical models on 
harbor maneuvers. The authors previously studied [1] the 
feasibility of SI for low-speed maneuvering MMG model 
for single-propeller, single rudder ship. The MMG model 
used in the previous study [1] can represent characteristics 
of harbor maneuvers, e.g., large drift angle, thrust reduction 
on propeller reversal, and rudder characteristics dependency 
on propeller wake. Model parameters were identified from 
trajectories for the scaled free-running model. SI of low-
speed maneuvering MMG model for single-propeller, single 
rudder ship was also done by Sawada et al. [27]. In [27], they 
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used full-scale ship trial data as train data and succeeded in 
developing a berthing controller with a simulation environ-
ment using the identified model. Using Fossen’s model [4], 
SI of an urban ferry with azimuth thrusters was done by [28].

All of the above previous research [1, 27, 28] used math-
ematical models which categorized as the Hydrodynamic 
model [29]. The hydrodynamic model is a model that was 
derived and designed to identify the model parameters based 
on hydrodynamic assumption, observation, and measure-
ment. The other kind of model is the response model [29], 
which considers only the relationship between the ship’s 
control input and response, i.e., the motion of the ship. The 
most popular response model would be Nomoto’s KT model 
[30]. Meanwhile, application of neural networks (NN) as 
a response model has been actively studied in the last two 
decades [31–33]. Models using NN are highly capable of 
modeling the nonlinear dynamics; however, to the best of 
our knowledge, Wakita et al. [34] is the only case of SI using 
NN for harbor maneuvers.

1.4  Objective and contribution of the study

We recognize that to overcome the remaining difficulties—
selection of a model, diversity of actuator configurations, 
and knowledge of ship hydrodynamics—a new response 
model-type model is necessary. The hydrodynamic model 
has a favorable feature that the physical meaning of the for-
mulae is understandable; therefore, flow field and forces can 
be observed from the model. However, it needs to derive 
model formulae with due consideration of hydrodynamics 
for each configuration. On the other hand, as a simulation 
environment for R &D of automatic berthing, how the ship 
moves, i.e., the relationship between the control input and 
response, is important. Whether the mathematical model can 
represent the flow field and hydrodynamic forces is desirable 
but not mandatory. Hence, the response model, especially 
a model using NN, is an option to overcome those issues; 
however, behavior on the extrapolation region of train data 
is questionable because the model is not understandable and 
needs treatment to impose a constraint to be physically rea-
sonable (e.g., [34]).

Therefore, we aim to propose a new response model 
whose formulae are easily derivable for arbitrary actuator 
configurations, have enough degree of freedom to express 
harbor maneuvers, and not having the downside of NN 
models. In addition, we aim to propose a method to select 
formulae of the proposed model which does not depend 
on captive model tests and knowledge of ship hydrody-
namics. Our previous work [35] proposed a 4-quadrant 
Abkowitz model for single-propeller, single-rudder ships. 
This previous model was based on Taylor expansion, so 
the polynomials are easily derived. In addition, the previ-
ous model has four sets of model parameters to model the 

change of characteristics caused by propeller reversal and 
astern conditions. In this study, we expand the previous 
model [35] for arbitrary actuators and develop a method 
for model generation using the SI. Utilizing SI, we will be 
able to be less dependent on captive model tests and ship 
hydrodynamics in model generation. Furthermore, the pro-
posed method enables the automatic generation of math-
ematical models because human intervention in model 
derivation, selection, and identification can be reduced. 
Our previous literature [36] described the initial results of 
the investigations done in this paper. This paper presents 
the results more extensively, with more details, and with 
several revisions.

The major contributions of this study are as follows: 

1. We proposed a new mathematical model, from which 
the model formula is easily derived according to simple 
rules and is complex enough to handle complex phe-
nomena of harbor maneuvers. The new model is a hybrid 
model that combines the simplicity of the derivation of 
the Abkowitz model, based on Taylor expansion, and the 
complexity of the MMG low-speed maneuvering model.

2. We proposed a method for selecting a model that does 
not require captive model tests and knowledge of ship 
hydrodynamics and modeling. Because the proposed 
model can easily derive multiple formulae, we can gen-
erate multiple models using system identification and 
select the model formulae that best fit the ship’s trajec-
tory. Therefore, we can reduce the effort of parameter 
identification and model selection for arbitrary actuator 
configurations.

2  Abkowitz–MMG hybrid model

2.1  Overview of the proposed model

This section describes the mathematical model proposed in 
this study (hereafter referred to as the "proposed model"). 
The proposed model is a hybrid model that combines the 
simplicity of the Abkowitz model with the complexity of 
the MMG low-speed model.

Requirements of the model First, we describe the 
requirements of the proposed model and ideas of our 
approach to those requirements. The requirements of the 
proposed model were derived based on the issues raised in 
the introduction. The requirements are as follows:

Requirement 1 The model complexity can be increased eas-
ily. This allows for handling various levels of complexity of 
the of harbor maneuvers.
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Requirement 2 The user can easily derive the model’s 
expression even if the configuration of the actuator of the 
subject ship changes.

Requirement 3 The model must be accurate enough to eval-
uate the controller by maneuvering simulation, i.e., the same 
level of accuracy as existing methods.

Requirement 4 The model can represent significant char-
acteristic changes of fluid forces at berthing and unberthing 
(e.g., flow separation, propeller reversal).

Requirement 5 Model selection and parameter identification 
of the proposed model do not require in-depth knowledge of 
mathematical models or detailed hydrodynamic observation.

Requirement 6 The model does not require captive model 
tests through its generation process.

Requirement 7 The model has robustness to input state and 
control input over the operation range of harbor maneuvers. 
In other words, the divergence of acceleration should not 
occur even for unknown data within the range of typical 
harbor maneuvers.

Basic ideas on the model design We designed the pro-
posed model to meet the above requirements with the fol-
lowing ideas:

Idea 1 Following Abkowitz’s polynomial model [37] (here-
after, Abkowitz model), the model is derived by Taylor 
expansion of the hydrodynamic forces. The complexity of 
the model can be easily increased by increasing the high-
est degree of the polynomial obtained by Taylor expansion 
or the number of terms employed (Requirement 1). If the 
actuator configuration changes (Requirement 2), we only 
need to add the actuator features (e.g., propeller revolution, 
rudder angle, azimuth thruster angle) to the Taylor expan-
sion variables.

Idea 2 Following the concept of low-speed maneuver-
ing MMG model, the model parameters are set to differ-
ent values for each representative condition (e.g., propeller 
forward/reverse rotation). In addition, the same mathemati-
cal expression is maintained for all operating conditions, 
thereby preserving the simplicity (Requirements 5, 1, 2) 
while ensuring that the accuracy (Requirement 3) and the 
complexity (Requirement 4) could be achieved.

Idea 3 Utilize the system identification (SI) and use ship’s 
trajectory (i.e., the time history of motion and actuator 
usage) as a training dataset to identify the model param-
eters. Suppose the user can easily derive several different 

mathematical expressions of the proposed model (Require-
ment 1), the user can select a model by choosing the one 
that best fits the motion data for validation. This procedure 
allows the user to select the appropriate model without 
requiring observation of the hydrodynamic forces or knowl-
edge of the model (Requirement 5). It also achieves a captive 
model test-free.

Idea 4 The stability of the proposed model is not ensured 
because the model’s expressions and parameter explora-
tion domain are not based on hydrodynamics. Therefore, 
we intended to maintain the stability of the proposed model 
by the objective function and the dataset to be used in the 
optimization process. Details of the objective function and 
dataset are described in Sects. 3.1 and 3.3, respectively.

2.2  Derivation of proposed model

In this section, we derive the mathematical expression of the 
proposed model based on the basic idea described in the pre-
vious section. First, the subject ship is a scaled model ship of 
a coastal vessel equipped with a single-propeller, VecTwin 
type twin-rudder, and bow thruster. The ship fixed coordinate 
system O − xy and space fixed coordinate system O0 − x0y0 
are defined as Fig. 1 and equations of motion for the three 
degrees of freedom used in the standard MMG model [7] are 
as follows:

(1)

(m + mx)u̇ − (m + my)vmr − xGmr
2 = X

(m + my)v̇m + (m + mx)ur + xGmṙ = Y

(Izz + Jzz + x2
G
m)ṙ + xGm(v̇m + ur) = N.

Fig. 1  Coordinate systems
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Here, notations for physical parameters are as follows: m 
is ship’s mass, Izz is the moment of inertia at the center of 
gravity (CG), mx and my are added mass, Jzz is added inertia 
moment, xG is the longitudinal distance to CG from mid-
ship, X,  Y,  N are forces and moment acting on the body 
except added mass. Notations for kinematic variables are 
as follows: � is ship heading, u and vm are longitudinal and 
lateral speed of motion on O − xy system, r is yaw angular 
velocity, � is drift angle, and ̇(⋅) represent the time derivative. 
Notations for actuator features are as follows: nP and nBT are 
revolution numbers of propeller and bow thruster, �s, �p are 
rudder angles of starboard and port side rudder. Notations 
for wind are as follows: UT and �T are true wind speed and 
direction, UA and �A are apparent wind speed and direction, 
respectively.

Next, the right-hand side of Eq. 1 is expressed as a poly-
nomial by Taylor expansion. The classical Abkowitz model 
assumes the perturbation motion of a ship from a certain for-
ward speed u = U0, v = 0, r = 0 . Then, expand the hydro-
dynamic forces or their dimensionless forms by the state 
variables st , the control vectors at and their time derivatives 
ṡt, ȧt . To apply Abkowitz model to harbor maneuvers, we 
use Taylor expansion with ideas below:

Idea 5 Assume that hydrodynamic forces and moments are 
function of st , at and added mass component on left hand 
side of Eq. 1. The users can include other added mass com-
ponents and ȧt in the model if necessary, however generally 
those are neglected in MMG model.

Idea 6 No scale conversion is performed since we assumed 
that the user estimates the model directly from the motion of 
a full-scale ship. This means that the hydrodynamic forces 
are expanded by Taylor expansion without non-dimension-
alization. This is also because to avoid zero division caused 
by the non-dimensionalization1 of the hydrodynamic forces 
at U = 0.

Idea 7 Assuming slow-speed motion, hydrodynamic forces 
are expanded around the origin (st = 0, at = 0) by Taylor’s 
expansion.

Idea 8 Hydrodynamic forces are decomposed into the 
above-water (wind) and below-water (underwater) contri-
butions to account for the wind force, which is relatively 
important in harbor maneuvers. This decomposition is 
appropriate because the relative wind velocity governs the 
wind force while ship’s state and control input governs the 
underwater contribution. While the underwater contribution 

is Taylor expanded, the wind force is modeled using an exist-
ing wind force model.

Accordingly, let us start the derivation of the mathemati-
cal model from the decomposition of the hydrodynamic 
forces on the right-hand side of the Idea 8 into wind pressure 
forces XA, YA, NA and other hydrodynamic forces. Next, 
let us focus on hydrodynamic forces acting below the water 
surface. Since the subject ship has a bow thruster, the fol-
lowing is assumed.

– Bow thruster force YBT, NBT is separated with the 
hydrodynamic forces of the hull+rudder+propeller 
XHPR, YHPR, NHPR , because bow thruster is located 
at the bow, away from the rudder and propeller, so we 
assume that the influence of the flow interaction between 
bow thruster and rudder/propeller is small. If this were a 
stern thruster, the coupling with the propeller and rudder 
would need to be considered.

– Bow thruster is assumed that it does not generate force 
in the X direction.

From these assumptions, we yield the following:

The wind force XA, YA, NA is modeled by existing polyno-
mial-type model (see Sect. 2.3) proposed by [38]. The coef-
ficients of the wind force model were optimized simultane-
ously with the coefficients of XHPR, YHPR, NHPR by SI. As a 
first step of research, bow thruster was neglected, although 
the subject ship is equipped with a bow thruster; therefore, 
always YBT = NBT = 0.

Next, we select the variable vector x = (st, at) for Tay-
lor expansion of XHPR, YHPR, NHPR . We selected following 
variables for state variables vector st and control input vector 
at , where the subscript t is the value at time t:

Here, we use trigonometric functions of the rudder angles 
�s, �p for the port and starboard rudder features. Most 
Abkowitz models use the rudder angle � , but trigonometric 
functions of the rudder angles are physically appropriate to 
express rudder forces to decompose the rudder normal force 
with a trigonometric function, as in the MMG model [7, 
29]. In addition, the proposed model is intended to be able 

(2)X = XHPR + XA

(3)Y = YHPR + YBT + YA

(4)N = NHPR + NBT + NA.

(5)st ≡ (u, vm, r) ∈ ℝ
3

(6)at ≡ (nP, sin(�s), cos(�s), sin(�p), cos(�p)) ∈ ℝ
5.

1 X� = X∕(0.5�LdU2), Y � = Y∕(0.5�LdU2), N� = N∕(0.5�L2)dU2)
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to apply arbitrary actuator configurations. Model formulae 
need to be capable of representing the post-stall characteris-
tics of the rudder to represent high-lift rudder systems such 
as the Vectwin rudder system we employed in this study. The 
Vectwin rudder can steer up to 105◦ , which is in the post-
stall region. The use of a trigonometric function of the rud-
der angle instead of the rudder angle itself allows for more 
degrees of freedom in model formulae without increasing 
the number of variables to be optimized. At the same time, 
the use of radian may induce overestimation of rudder force 
where the rudder effectiveness is in the post-stall region.

If the user wants to derive the mathematical model for 
other ship configurations, add appropriate features to at . 
For example, for a ship equipped with a stern thruster, the 
revolution number of the stern thruster can be added to at . 
Likewise, the revolution number of the azimuth thruster 
and the sin and cos functions of the operating angle can be 
used for an azimuth thruster.In addition, if the user needs 
to consider the shallow water effect in the harbor, we can 
add under keel clearance h to the variable vector x.

2.2.1  Derivation of mathematical expressions by Taylor 
expansion

Taylor expansion is now performed for XHPR, YHPR , and 
NHPR . Hereafter we only show the manipulation for XHPR , 
but YHPR and NHPR are also derived similarly. XHPR is 
expanded for x as follows:

where

Ignoring the fluid memory effect, we can assume that 
XHPR(x1, … , xk)

||x=0 = 0 . Then the first term on the right-
hand side of the Eq. 7 can be ignored. Next, expanding 
Eq. 7, we obtain

(7)

XHPR(x1, … , xk)

= XHPR(x1, … , xk)
||x=0

+
1

1!

(
k∑

i=1

xi
�

�xi

||||x=0

)
XHPR(x1, … , xk)

+
1

2!

(
k∑

i=1

xi
�

�xi

||||||x=0

)2

XHPR(x1, … , xk)

+
1

3!

(
k∑

i=1

xi
�

�xi

||||||x=0

)3

XHPR(x1, … , xk)

+⋯ ,

(8)

x = (x1, … , xk)

=
(
u, vm, r, nP, sin(�s), cos(�s), sin(�p), cos(�p)

)
∈ ℝ

8.

Partial derivatives of Eq. 9 are called hydrodynamic coef-
ficients on Abkowitz model. Using common expressions 
of hydrodynamic coefficients, we can formulate Eq. 9 as 
follows,

where

2.2.2  Selection of the term of polynomial equation

For polynomial-type mathematical models, the question is 
which terms in Eq. 10 should be included in the polynomial. 
For existing mathematical models, the choice of formulae 
has been determined by comparison with the results of cap-
tive model tests. For example, for of MMG, see [39, 40], 
and for Abkowitz model see [6]. However, in this study, 
we assume a captive model test-free mathematical model 
(Requirement 6). Therefore, the proposed model’s order and 
term selection methods are as follows:

Idea 9 All terms are used unless they are obviously unneces-
sary or need modification.

Idea 10 The highest order of the polynomials is defined 
by the capability of the optimization method and the user’s 
computational resources. The user derives and compares 
several model formulae with different maximum order. In 
this study, second- and third-order models were used.

(9)

XHPR(st, at)

=
�XHPR

�u

||||x=0u +
�XHPR

�vm

||||x=0
vm +⋯

+
1

2!

(
�2XHPR

�u2

|||||x=0
u2 +…

�2XHPR

� cos2 �p

|||||x=0
cos2 �p

)

+
1

3!

(
�3XHPR

�u3

|||||x=0
u3 +⋯ +

�3XHPR

� cos3 �p

|||||x=0
cos3 �p

)
+⋯ .

(10)

XHPR(st, at)

= Xuu +…+ Xcos(�p)
cos(�p)

+ Xuuu
2 +…+ Xcos(�p) cos(�p)

cos2(�p)

+ Xuuuu
3 +…+ Xcos(�p) cos(�p) cos(�p)

cos3(�p)

+⋯ ,

(11)

Xxi
≡ �XHPR

�xi

||||x=0
Xxixj

≡ 1

2!

�2XHPR

�xi�xj

|||||x=0
Xxixjxk

≡ 1

3!

�3XHPR

�xi�xj�xk

|||||x=0
.
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The reasons are as follows: the available duration of the 
test facility for the captive model test-based method binds 
the number of identifiable parameters. For example, the orig-
inal Abkowitz model [37] used 65 parameters, and studies by 
the authors using the MMG low-speed maneuvering model 
[1] used 52 parameters to model the forces acting below the 
surface of the water. The authors believe that about 100 is 
a practical upper limit for the number of model parameters. 
To ensure accuracy with fewer terms, the terms employed 
should be examined based on theoretical considerations and 
observations on the hydrodynamics forces. On the other 
hand, SI can increase the number of parameters as far as 
the performance of the optimization method allows. For 
example, CMA-ES used in this study (described in detail in 
Sect. 3.5) can optimize up to several hundred dimensions. 
The proposed model is assumed to be a model that does not 
require detailed observation of the hydrodynamic forces; 
thus, terms are removed or modified only for obvious ones.

Based on the principles discussed above, we perform 
modification of Eq. 10. The proposed model is modified 
with the following three manipulations.

Modification A: selection based on the symmetricity of the 
ship The term is selected based on the fact that the ship is 
symmetrical at the longitudinal center line of the hull. Origi-
nal Abkowitz model [37] assumed for a single-propeller, 
single-rudder ship; hence, X is assumed as an even function 
of vm,2 r, � . Hence, the odd powers of vm, r, � were deleted 
from the polynomial for X. Similarly, because Y and N were 
assumed as an odd function of vm, r, � due to symmetry, 
their even powers were deleted.

The proposed model also uses this symmetry 
assumption. We assume that X is an even function of 
xasym = {vm, r, sin(�s), sin(�p)} , and remove the odd 
power terms 

∑
i=1,3,…{vm + r + sin(�s) + sin(�p)}

i . Also, 
from the polynomial of Y and N, the 0th power and even 
power terms 

∑
i=0,2,…{vm + r + sin(�s) + sin(�p)}

i were 
removed. The asymmetric motion vector xasym was selected 
for motions outside the symmetry plane of the hull.

However, strictly speaking, Y and N are asymmetric and 
hence not purely odd functions of xasym . For example, for a 
single-propeller ship, turning forces of the port and starboard 
sides are different due to the rotational flow of the propeller. 
In addition, significant lateral force and yaw moment will 
occur during propeller reversal of a single-fixed-pitch pro-
peller ship [41–43]. That asymmetricity can be modeled by 
not removing the 0th powered term of xasym (e.g., Yu, Yuu,… ) 
[37]. However, we decided not to add terms to express asym-
metricity to prioritize the simplicity of the model derivation.

Modification B: delete terms containing nth power of 
sin(⋅) and cos(⋅) Terms containing the n-th power of the trig-
onometric function of the rudder angle were removed, except 

for n = 1 . Further consideration of the physical meaning of 
the power function of the rudder angle is necessary. How-
ever, here we removed those to maintain the optimization 
dimension reasonably.

Modification C: replace squared variables with modulus 
function Replace the squared variable, both on the 2nd-order 
term and 3rd-order term, with the modulus function. For the 
X polynomial, replace x2

k
 for xk ∉ xasym to xk|xk| and similarly 

in the Y,  N polynomial, xk ∈ xasym , let x2
k
 be xk|xk| . However, 

this is not done for odd power terms of non-coupling terms, 
such as uuu and vmvmvm.

The results of the above operations are shown below. Here 
let us express the obtained polynomial for 3rd-order model 
as the inner product of hydrodynamic coefficient vector 
X(i) ∈ ℝ

m, Y(i) ∈ ℝ
n , or N(i) ∈ ℝ

n and even powers vector 
zeven ∈ ℝ

m of xasym or odd powers vector zodd ∈ ℝ
n , as follows:

where

(12)

XHPR = X(i)
⋅ zeven

YHPR = Y(i)
⋅ zodd

NHPR = N(i)
⋅ zodd,

(13)

X
(i=1⋯m)

=
(
X
(i)

u
, X

(i)

cos(�s)
, X

(i)

cos(�p)
, X(i)

nP
,

X
(i)

u|u|, X
(i)

u cos(�s)
, X

(i)

u cos(�p)
, X(i)

unP
, X(i)

vmvm
,

X
(i)

vmr
, X

(i)

vm sin(�s)
, X

(i)

vm sin(�p)
, X(i)

rr
, X

(i)

r sin(�s)
,

X
(i)

r sin(�p)
, X

(i)

sin(�s) sin(�p)
, X

(i)

cos(�s) cos(�p)
,

X
(i)

cos(�s)nP
, X

(i)

cos(�p)nP
, X

(i)

nP|nP|,

X
(i)

uuu
, X(i)

uvmvm
, X(i)

uvmr
, X(i)

urr
, X

(i)

uvm sin(�s)
,

X
(i)

ur sin(�s)
, X

(i)

u|u| cos(�s), X
(i)

vmvm cos(�s)
,

X
(i)

vmr cos(�s)
, X

(i)

vm sin(�s) cos(�s)
, X

(i)

rr cos(�s)
,

X
(i)

uvm sin(�p)
, X

(i)

ur sin(�p)
, X

(i)

u sin(�s) sin(�p)
,

X
(i)

vm cos(�s) sin(�p)
, X

(i)

r cos(�s) sin(�p)
, X

(i)

r sin(�s) cos(�s)
,

X
(i)

sin(�s) cos(�s) sin(�p)
, X

(i)

u|u| cos(�p), X
(i)

u cos(�s) cos(�p)
,

X
(i)

vmvm cos(�p)
, X

(i)

vmr cos(�p)
,

X
(i)

vm sin(�s) cos(�p)
, X

(i)

vm sin(�p) cos(�p)
, X

(i)

rr cos(�p)
,

X
(i)

r sin(�s) cos(�p)
, X

(i)

r sin(�p) cos(�p)
, X

(i)

sin(�s) sin(�p) cos(�p)
,

X
(i)

u|u|nP , X
(i)

u cos(�s)nP
, X

(i)

u cos(�p)nP
,

X
(i)

unP|nP|, X
(i)

vmvmnP
, X(i)

vmrnP
,

X
(i)

vm sin(�s)nP
, X

(i)

vm sin(�p)nP
, X(i)

rrnP
, X

(i)

r sin(�s)nP
,

X
(i)

r sin(�p)nP
,X

(i)

sin(�s) sin(�p)nP
, X

(i)

cos(�s) cos(�p)nP
,

X
(i)

cos(�s)nP|nP|, X
(i)

cos(�p)nP|nP|, X
(i)

nPnPnP

)
2 Precisely, [37] use the speed at the center of gravity, vG
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(14)

zeven =
(
u, cos(�s), cos(�p), nP, u|u|, u cos(�s),

u cos(�p), unP, vmvm, vmr, vm sin(�s),

vm sin(�p), rr, r sin(�s), r sin(�p),

sin(�s) sin(�p), cos(�s) cos(�p), cos(�s)nP,

cos(�p)nP, nP|nP|,
uuu, uvmvm, uvmr, urr, uvm sin(�s), ur sin(�s),

u|u| cos(�s), vmvm cos(�s), vmr cos(�s),

vm sin(�s) cos(�s), rr cos(�s), r sin(�s) cos(�s),

uvm sin(�p), ur sin(�p), u sin(�s) sin(�p),

vm cos(�s) sin(�p), r cos(�s) sin(�p),

sin(�s) cos(�s) sin(�p), u|u| cos(�p),
u cos(�s) cos(�p), vmvm cos(�p), vmr cos(�p),

vm sin(�s) cos(�p), vm sin(�p) cos(�p), rr cos(�p),

r sin(�s) cos(�p), r sin(�p) cos(�p),

sin(�s) sin(�p) cos(�p), u|u|nP, u cos(�s)nP,
u cos(�p)nP, unP|nP|, vmvmnP, vmrnP,
vm sin(�s)nP, vm sin(�p)nP, rrnP, r sin(�s)nP,

r sin(�p)nP, sin(�s) sin(�p)nP, cos(�s) cos(�p)nP,

cos(�s)nP|nP|, cos(�p)nP|nP|, nPnPnP
)

(15)

Y(i=1⋯m) =
(
Y (i)
vm
, Y (i)

r
, Y

(i)

sin(�s)
, Y

(i)

sin(�p)
, Y (i)

uvm
,

Y (i)
ur
, Y

(i)

u sin(�s)
, Y

(i)

u sin(�p)
, Y

(i)

vm cos(�s)
, Y

(i)

vm cos(�p)
,

Y (i)
vmnP

, Y
(i)

r cos(�s)
, Y

(i)

r cos(�p)
, Y (i)

rnP
, Y

(i)

sin(�s) cos(�s)
,

Y
(i)

sin(�s) cos(�p)
, Y

(i)

sin(�s)nP
, Y

(i)

cos(�s) sin(�p)
,

Y
(i)

sin(�p) cos(�p)
, Y

(i)

sin(�p)nP
,

Y (i)
uuvm

, Y (i)
vmvmvm

, Y (i)
uur

, Y
(i)

vm|vm|r, Y
(i)

vmr|r|, Y
(i)
rrr
,

Y
(i)

uu sin(�s)
, Y

(i)

vm|vm| sin(�s), Y
(i)

vmr sin(�s)
, Y

(i)

r|r| sin(�s),

Y
(i)

uvm cos(�s)
, Y

(i)

ur cos(�s)
, Y

(i)

u sin(�s) cos(�s)
,

Y
(i)

vm cos(�s) cos(�s)
, Y

(i)

r cos(�s) cos(�s)
,

Y
(i)

sin(�s) cos(�s) cos(�s)
, Y

(i)

uu sin(�p)
, Y

(i)

u cos(�s) sin(�p)
,

Y
(i)

vm|vm| sin(�p), Y
(i)

vmr sin(�p)
, Y

(i)

vm sin(�s) sin(�p)
,

Y
(i)

r|r| sin(�p), Y
(i)

r sin(�s) sin(�p)
, Y

(i)

cos(�s) cos(�s) sin(�p)
,

Y
(i)

uvm cos(�p)
, Y

(i)

ur cos(�p)
, Y

(i)

u sin(�s) cos(�p)
,

Y
(i)

u sin(�p) cos(�p)
, Y

(i)

vm cos(�s) cos(�p)
, Y

(i)

r cos(�s) cos(�p)
,

Y
(i)

sin(�s) cos(�s) cos(�p)
, Y

(i)

cos(�s) sin(�p) cos(�p)
, Y (i)

uvmnP
,

Y (i)
urnP

, Y
(i)

u sin(�s)nP
, Y

(i)

u sin(�p)nP
, Y

(i)

vm cos(�s)nP
,

Y
(i)

vm cos(�p)nP
, Y (i)

vmnPnP
, Y

(i)

r cos(�s)nP
, Y

(i)

r cos(�p)nP
,

Y (i)
rnPnP

, Y
(i)

sin(�s) cos(�s)nP
, Y

(i)

sin(�s) cos(�p)nP
,

Y
(i)

sin(�s)nPnP
, Y

(i)

cos(�s) sin(�p)nP
, Y

(i)

sin(�p) cos(�p)nP
,

Y
(i)

sin(�p)nPnP

)
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N(i) is omitted because it is similar to Eq. 15. 2nd-order 
model consists only with linear and 2nd-order term of 
Eqs 13, 15, 14, 16. Here, the superscript i represents the ith 
parameter set of the coefficient vector Submodel, described 
in the following section.

2.2.3  Submodel

The proposed model uses the same polynomial formulae 
for all operational conditions but changes the values of the 
hydrodynamic coefficients for each condition, to achieve 
both simplicity of the derivation and complexity of the 
model, as described in Idea 2. The complexity of the model 
can be increased arbitrarily by increasing the number of 
conditional branches. Here, we named the value set of coef-
ficients for each condition as “Submodel”. In our previous 
study [35], a mathematical model of a single-propeller, 
single-rudder ship was developed with a Submodel for each 
propeller operating quadrant (defined by u, np ). Since the 
subject ship of the current study has a VecTwin rudder, 
the propeller is always in forward rotation. Therefore, the 
simplest Submodel would be Submodel-2, which switches 

(16)

zodd =
(
vm, r, sin(�s), sin(�p), uvm, ur, u sin(�s),

u sin(�p), vm cos(�s), vm cos(�p), vmnP,

r cos(�s), r cos(�p), rnP, sin(�s) cos(�s),

sin(�s) cos(�p), sin(�s)nP, cos(�s) sin(�p),

sin(�p) cos(�p), sin(�p)nP,

uuvm, vmvmvm, uur, vm|vm|r, vmr|r|, rrr,
uu sin(�s), vm|vm| sin(�s), vmr sin(�s),
r|r| sin(�s), uvm cos(�s), ur cos(�s),

u sin(�s) cos(�s), vm cos(�s) cos(�s),

r cos(�s) cos(�s), sin(�s) cos(�s) cos(�s),

uu sin(�p), u cos(�s) sin(�p), vm|vm| sin(�p),
vmr sin(�p), vm sin(�s) sin(�p), r|r| sin(�p),
r sin(�s) sin(�p), cos(�s) cos(�s) sin(�p),

uvm cos(�p), ur cos(�p), u sin(�s) cos(�p),

u sin(�p) cos(�p), vm cos(�s) cos(�p),

r cos(�s) cos(�p), sin(�s) cos(�s) cos(�p),

cos(�s) sin(�p) cos(�p), uvmnP, urnP,

u sin(�s)nP, u sin(�p)nP, vm cos(�s)nP,

vm cos(�p)nP, vmnPnP, r cos(�s)nP,

r cos(�p)nP, rnPnP, sin(�s) cos(�s)nP,

sin(�s) cos(�p)nP, sin(�s)nPnP,

cos(�s) sin(�p)nP, sin(�p) cos(�p)nP,

sin(�p)nPnP
)
.

by the sign of u. The conditional branch of Submodel-2 is 
shown in Algorithm 1.
Algorithm 1  X(i) of Submodel-2

Here, algorithm 1 shows only X(i) , but switches Y(i), N(i) 
as well.

VecTwin rudder-equipped vessels do not reverse their 
propellers but instead gain stopping power by taking a 
large rudder angle up to 105◦ . Therefore, we can add 
a conditional branch with a nominal stall angle of rud-
ders. The VecTwin rudders have a nominal stall angle of 
�stall,s = 50◦, �stall,p = 55◦ which can be observed from the 
captive model test results [44]. Submodel-3 is shown in 
Algorithm 2 and Submodel-4 shown in Algorithm 3. Sub-
model-3 uses the stall angle as the branch for forwarding 
conditions only, but Submodel-4 uses it for both forward 
and astern.

Algorithm 2  X(i) of Submodel-3

Algorithm 3  X(i) of Submodel-4

As shown above, the proposed model can apply to various 
kind of motions by adding Submodels because it includes 
all terms that may be relevant to the characteristics of the 
flow and actuators. For example, for a single-propeller, 
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single-rudder ship, if the user assumes that characteristics 
of propeller reversal are not crucial for their use, then Sub-
model-2 can be used. Still, if a difference is desired, Sub-
model-4 can be used.

2.3  Modeling on wind disturbance

In this study, the wind force is modeled using Fujiwara’s 
regression formula, [38], which has fewer model parame-
ters than Isherwood’s regression [45] because trigonometric 
functions represent wind direction. Fujiwara’s wind force 
model is shown by Eq. 17,

where

XAi, YAi, NAi are the model coefficients of wind force. Fuji-
wara’s formula estimates the XAi, YAi, NAi by regression for-
mulae with the ship’s particulars as explanatory variables. 
But in this study, they were obtained by optimization.

3  Optimization procedure and its condition

In this chapter, we describe the method to optimize the 
parameters of a proposed model using system identifica-
tion (SI). SI of ship maneuvering is defined as the problem 
of finding a parameter vector of an optimal mathematical 
model �opt that minimizes the difference between the state 
variable history of the input dataset D and the state vari-
able history estimated by the maneuvering simulation using 
obtained model. Here, D is the measured results of model 
tests or full-scale ship trials and includes the data of state 
variables st , control input at and disturbances �t . The dataset 
D consisted of a training dataset D(train) for the optimiza-
tion procedure, validation dataset D(validation) for selecting 
the optimal parameter and hyperparameter, and test dataset 
D

(test) to test the generalization performance on unknown 
data. From now on, bracketed superscripts indicate values 
for the associated dataset, and superscript (input) indicates 
one of (train), (validation), or (test).

(17)

XA = (1∕2)�AU
2
A
AT ⋅ CX

YA = (1∕2)�AU
2
A
AL ⋅ CY

NA = (1∕2)�AU
2
A
ALLOA ⋅ CN ,

(18)

CX =XA0 + XA1 cos(2� − �A) + XA3 cos 3(2� − �A)

+ XA5 cos 5(2� − �A)

CY =YA1 sin(2� − �A) + YA3 sin 3(2� − �A)

+ YA5 sin 5(2� − �A)

CN =NA1 sin(2� − �A) + NA2 sin 2(2� − �A)

+ NA3 sin 3(2� − �A).

Hereafter, the chapter will be organized as follows: the 
objective function, which is the metric for the optimization, 
is described in Sect. 3.1; the domain of the parameter explo-
ration is described in Sect. 3.2; the details of the dataset are 
described in Sect. 3.3; the hyperparameters are described in 
Sect. 3.4; the optimization algorithm CMA-ES in Sect. 3.5; 
and a model generated by conventional parameter identifica-
tion method used as a comparison is described in Sect. 3.6.

3.1  Objective function

The optimization procedure is defined as exploration for the 
parameter vector � of the model that minimizes the objective 
function F  for the training data set D(train) using an optimiza-
tion algorithm, CMA-ES. Objective function F  is defined as 
follows:

where

The first term of Eq. 20 is the error norm L of the maneuver-
ing simulation using � for the data set D(train) . The second 
term is the deviation penalty from the a priori acceleration 
range for � , and � is its weighting coefficient. The third term 
is the regularization term, and � is the L1 regularization 
penalty. Detail of the first term is described in Sect. 3.1.1, 
and the second term is described in Sect. 3.1.2. In Eq. 21, 
superscript i = 1⋯N  denotes the ith contiguous subse-
quences (CS), and N denotes the total number of CS. Details 
of CS are stated in the next subsection. Also, ŝ(⋅,i)

t,j
 is the 

standardized state variables of the ith CS at time t, and their 
jth component is defined by the mean �(train,i)

j
 and standard 

deviation �(train,i)

j
 as in the following equation:

(19)�
(train)

opt
= argmin

�∈Θ

F(�; D(train))

(20)
F(�; D(train)) = L

(train)(�; D(train))

+ �Pdiv(�) + �‖�‖1

(21)

L
(train)(�; D(train))

=

N�
i=1

∫
tf

t=0

‖ŝt(train,i) − ŝt
(sim,i)(�)‖2dt.

(22)ŝ
(train,i)

t,j
=
(
s
(train,i)

t,j
− 𝜇

(train,i)

j

)
∕𝜎

(train,i)

j

(23)ŝ
(sim,i)

t,j
=
(
s
(sim,i)

t,j
− 𝜇

(train,i)

j

)
∕𝜎

(train,i)

j
.
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3.1.1  Maneuvering simulation and error norm L

The maneuvering simulation is conducted to evaluate the 
performance of � , by estimating the state variable s(sim)

t  
as an initial value problem using the mathematical model 
described in Sect. 2 and � . The control input at and the dis-
turbance �t are given. In this study, s(sim)

t0
, a

(sim)
t , �

(sim)
t  were 

defined by the input dataset D(input) as Eq. 24:

Here, D(input) is one of D(train), D(validation), D(test) . We can get 
the time derivative of st : ṡt ≡ (u̇, ̇vm, ṙ) by solving Eq. 1. 
The first-order Euler method was used for time development. 
The time interval Δt = 0.1 s was used.

In the simulation, we divide D(input) into contiguous sub-
sequences: D(input,i) to avoid accumulation of errors. We 
divided D(input) into CS because the velocity was used in the 
error norm (Eq. 21) instead of accelerations. Accelerations 
can be directly obtained by solving Eq. 1; however, accelera-
tion measurement is more difficult than speed and angular 
velocity measurement. On the other hand, the estimation 
error of accelerations will be accumulated in the velocity 
components. The length of the CS is set to tf = 100 s.

In addition, because we search for coefficients from a 
wide range, certain combinations of model coefficients can 
result in unusually large acceleration during maneuvering 
simulations. Unrealistically, large acceleration will cause 
numerical overflows in st or L . We try to prevent overflow 
by substituting the extra large value with a constant value 
corresponding to the time-step number when the absolute 
values of velocity and acceleration exceed the limit Slimit , 
same as [1]:

where

(24)

s
(sim,i)
t0

= s
(input,i)
t0

a
(sim)
t = a

(input,i)
t

�
(sim,i)
t = �

(input,i)
t .

(25)

St,j=1…6(t) =

{
sgn

(
St,j

)
(2 − t∕tf)Slimit,j ∶ |St,j| > Slimit,j

St,j ∶ else

(26)St ≡ (st, ṡt)

(27)
Slimit = (a, a, 2a∕Lpp, a, a, 2a∕Lpp)

a = 1.0 × 1080

(28)sgn(x) =

⎧⎪⎨⎪⎩

1 ∶ x > 0

−1 ∶ x < 0

0 ∶ x = 0

.

3.1.2  Deviation penalty Pdiv

Because the proposed model is a simple polynomial equa-
tion that does not include hydrodynamic constraints, the 
acceleration may be overestimated for unknown data, 
which may cause generalization performance degrada-
tion. To prevent overestimation, we imposed a penalty on 
the objective function when the estimated acceleration 
exceeded the a priori limit for a specific state and control 
inputs, which was assumed to give maximum acceleration. 
This method [46] was expected to eliminate model param-
eters that return unrealistic accelerations.

Below is the detailed calculation method of the devia-
tion penalty, Pdiv . With given initial state variable s0 , 
steady control input at = a0 , and steady disturbance 
�t = �0 a penalty is applied if the estimated acceleration 
ṡ
(sim)
t  exceed the predefined range 

[
ṡmin, ṡmax

]
 as follows:

Here t(div)
f

 is duration of the maneuvering simulation and 
tf = 1 s. Since s0 and a0 are expected combinations to 
generate the maximum or minimum acceleration, we set 
s0 = (u0, v0, r0) by the maximum and minimum value of 
D with a certain margin, and set a0 = (nP0, �s0, �p0) by the 
value which expected to generate maximum and minimum 
control forces. Accordingly, s0 and a0 are show as in Eq. 32:

Total number of combination Ndiv is 1350. In addition, no 
wind disturbance is assumed �0 = (0, 0).

The range of 
[
ṡmin, ṡmax

]
 was defined using a priori infor-

mation. Here, we used 1-second moving average of the 
numerical differentiation of s(D)

t  as the acceleration ṡ(D)
t  . 

This study’s model experiment did not measure accelera-
tion due to its low signal-noise ratio. The 99.7th percentile 

(29)Pdiv =

Ndiv∑
n=1

Pn

(30)

where

Pn =

{
1 −

tover−Δt

tf
∶ tover < t

(div)

f

0 ∶ else

(31)tover = inf
{
t ≥ 0 ∶ ṡ

(sim)
t

∉
[
ṡmin, ṡmax

]}
.

(32)

u0 ∈ {−0.2, 0.0, 0.5}

v0 ∈ {−0.2, 0.0, 0.2}

r0 ∈ {−0.1, 0.0, 0.1}

nP0 ∈ {0.0, 12.5}

�s0 ∈ {−35, 0, 45, 60, 90}

�p0 ∈ {35, 0,−45,−60,−90}.



 Journal of Marine Science and Technology

of the of modulus of the acceleration Q99.7(|ṡ(D)
t |) was used 

to set the range:

We can simplify the range by employing the modulus func-
tion in Eq. 33. The reason for using the 99.7th percentile is 
to remove the effect of noise amplified by numerical differ-
entiation. If the subject ship’s acceleration can be measured 
appropriately, measured acceleration is more suitable.

3.2  Exploration domain

In this section, we show the exploration domain � of param-
eter � . The parameter vector � consists of added masses and 
inertia, hydrodynamic coefficients, and wind force coeffi-
cients as follows:

Domain � must be defined without a captive model test of 
the subject ship a priori. In our previous study [1], boundary 
of the domain � is set to be approximately 10 times greater 
value of a priori solutions, i.e., captive model test results and 
empirical value. Because of this vast exploration domain, 
we believed we could obtain optimal coefficients even if 
the hull form or model’s formulae differed from a priori 
solutions. Hence, we set the domain boundary by multiply-
ing the coefficient values of the classic Abkowitz model for 
single-propeller, single-rudder ship [3]:

Here, Θj is a domain for the j-th component of the parameter 
vector. Moreover, several exceptions of domain boundary 
setting were made like the previous study as follows:

– Maximum value of Xu, Xuu, Yvm , Nr are set to 0 because 
the signs of diagonal resistance components are self-
explanatory.

– Minimum value of XnP
 was set to 0 because the sign of 

the first-order thrust coefficient is self-explanatory.
– We multiplied 10 to Eq. 35 according to the order of r 

contained in �j , because r is relatively smaller than the 
other components of x due to its radian/s dimension.

– We multiplied 0.1 to Eq. 35 according to the order of nP 
contained in �j , because the subject ship is a model ship, 
nP is relatively larger than the other components of x.

– The added mass, added mass moment, and wind 
force coefficients were determined from the 

(33)
[
ṡmin, ṡmax

]
= [−Q99.7(|ṡ(D)

t |), Q99.7(|ṡ(D)
t |)].

(34)

� =
(
mx, my, Izz + Jzz,

X(i), Y(i), N(i),

XA0, XA1, XA3, XA5,

YA1, YA3, YA5, NA1, NA2, XA3

)
.

(35)�j ∈ Θj =
[
− 1.0, 1.0

]
.

empir ical value �empirical,j  .  For mx, my, Izz + Jzz , 
Θj =

[
− 10�empirical,j, 10�empirical,j

]
 and for wind coeffi-

cient, Θj =
[
− 10�empirical,j, 10�empirical,j

]
.

There are pros and cons to searching dimensional values. 
In dimensional form, domain � depends on the ship’s size; 
hence, � needs to be determined by repeated trials every 
time the subject ship changes. In contrast, � for non-dimen-
sional coefficients can set its domain boundaries independent 
of the size and scale of the ship; however, non-dimension-
alization causes a problem when ship speed is zero. Further 
study on domain design is needed.

3.3  Dataset

This section describes the datasets used in the study. Maneu-
vering time histories of a 3-meter free-running model ship 
were used as the datasets. Principal particulars of the sub-
ject model ship are shown on Table 1. The measurement 
system of the model ship is almost the same as in the previ-
ous study [1], with the following differences. Ship speed 
u and vm were calculated from speed over ground (SOG), 
course over ground (COG) measured by the GNSS receiver, 
and ship heading measured by fiber optical gyro (FOG). In 
addition, compared to previous studies, the current FOG has 
better heading accuracy; the yaw drift was about 1◦/hour. 
Moreover, unlike in previous studies, r was not filtered due 
to the improved performance of FOG.

Random maneuvers are the maneuvers used in the data-
set, same as the previous study [1]. The reason for using 
random maneuvers was used to ensure the stability of the 
model (Requirement 7), as described in Sect. 2. The random 
maneuvers are intended to obtain various different values 
of state variables and control inputs that can occur as the 
motion of the subject ship as possible. In this study, as in the 
previous studies, the model ship operator gives random at so 
that the state variables and control inputs are distributed. For 
details on the random maneuvers, please refer to the previ-
ous study [1]. The experiment was conducted in an experi-
ment pond (Inukai Pond) at Osaka University. Water depth 
was sufficiently deep enough to neglect shallow water effect.

The control input at of random maneuvers was given 
within a set upper and lower limit range as shown in Table 3. 
The range of �s, �p is the maximum mechanical steering 
range of the VecTwin rudder. With the maximum propeller 
speed npmax , the ship reaches u ≈ 0.6 m/s in a forwarding 
equilibrium state. The dimensionless speed corresponding 
to u = 0.6 is Fr = u∕

√
gLpp = 0.11 , equivalent to 6.7 knots 

for a medium-sized ship (assuming Lpp = 100 m). Therefore, 
npmax is a typical range of propeller speed for ship handling 
in a harbor. Since the subject ship is equipped with VecTwin 
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rudder system, the ship can stop and astern without reversing 
the propeller; hence, npmin = 0 was used.

The entire dataset D was divided into D(train), D(validation) 
and D(test) , and here we compare the distribution among the 
datasets. First, the number of samples for each dataset is 
shown in time in Table 2. The measurement frequency of 
the datasets is 0.1 s, equal to Δt of the maneuvering simula-
tion. The entire dataset D is divided to be the length of each 
dataset T (train), T (validation), T (test) is approximately 6 : 1 : 1. 
The distribution of st and control inputs nP, �s, �p for each 
dataset are shown in Fig. 2. The distributions of the datasets 
generally agree well with each other.

The data set D is expected to cover all possible maneu-
vers that may occur during harbor maneuvers, includ-
ing unknown maneuvers, to obtain a robust model. There 
is no clear definition of the range of state variables for 
harbor maneuvers; however, the state variables in D are 
comparable to the empirical range of speeds used in the 
harbor when converted to real ship scale. Specifically, u 
is u ∈ [−0.1, 0.4] , equivalent to 1.2 knots astern and 4.5 
knots forward of Lpp = 100 . Both vm and r are approximately 
symmetric, i.e., positively and negatively symmetrically dis-
tributed, and vm ∈ [−0.1, 0.1] , which is the range of slow 
maneuver corresponding to Frvm = ±0.018 and 1.2 knots at 
Lpp = 100 . Further, by observing the distribution of u and 
vm , we see that the drift angle � is distributed over the entire 
circumference.

In addition, random maneuvers are favorable because 
correlations between state variables and control inputs are 
weak. The multi-collinearity is a known problem when using 
zig-zag maneuvers and turnings as training data due to the 
strong correlation between vm and r in those motions [3, 47]. 
On the other hand, in the random maneuvers, the correlation 
between all state variables and control inputs is weak, not 
only between vm and r as shown in Fig. 2.

In this study, random maneuvers were employed as the 
data set, but the validity of the proposed model needs to be 
demonstrated for motions other than random maneuvers. 
Here, other than random maneuvers, Crash-Astern (CA) 
test data set D(CA) was employed. A CA test was performed 
by making a steady propeller revolution at nP = 7.3 rps 
or nP = 9.8 rps from a stopped state, accelerating straight 
ahead at �sp = 0◦ for 120 s ( nP = 7.3 ) or 100 s ( nP = 9.8 ), 
and steer �s = 105◦, �p = −105◦ to decelerate, stop, and 

astern. In total, D(CA) contains four CA tests, and each 
test is about 400 s. Hence, the total length of the D(CA) is 
T (CA) = 1647.7 s is shown in Table 2.

The normalized histogram of D(CA) and D(train) is shown 
in Fig. 3. As mentioned earlier, CA test only used a spe-
cific nP, �s, �p as a command signal, which results in a 
stronger nP, �s, �p bias than the random maneuvers. In 
addition, since nP, �s, �p were constant, the speed devel-
oped faster, and the distribution of u was wider than that 
of random maneuvering. On the other hand, vm and r were 
more biased around 0 than in random maneuvers.

3.4  Numerical conditions of mathematical models 
and hyperparameters

The objective function of Eq. 20 requires the user to select 
the hyperparameters � and � . The � and � depend on the 
model’s complexity, i.e., order of the model’s polynomials 
and number of Submodels. In this study, order of polynomi-
als and the number of Submodels were calculated for five 
combinations as shown in Table 4. Hereafter, a model with 
Submodel-2 and 2nd-order polynomials will be referred to 
as a “SM-2, 2nd-order model.” In addition, hyperparameters 
� and � are used for the combinations shown in Tables 5, 6. 
Hereafter, an optimization performed with a specific model, 
� , and � is referred to as a “computational case.” A total of 
28 computational cases were executed.

3.5  CMA‑ES and its conditions

This study used the optimization method Covariance Matrix 
Adaption-Evolution Strategy (CMA-ES) [48]. CMA-ES is 
effective for complex optimization problems where the prob-
lems are non-separable and multi-modal [49, 50]. In addi-
tion, CMA-ES has strong search capability for optimization 
problems up to several hundred dimensions [51]. We expect 
CMA-ES to be effective for the Black Box optimization 

Table 1  Principal particulars of 
the subject ship

Parameter Value

Length between perpen-
diculars: Lpp (m)

3.000

Breadth (m) 0.484
Draft (m) 0.172

Table 2  Duration of datasets

Name T
(train)

T
(validation)

T
(test)

T
(CA)

Value (s) 7407.4 1201.2 1201.2 1647.7

Table 3  Maximum and 
minimum of control input 
nP, �s, �p of random maneuver 
data set D

Parameter Maximum 
and mini-
mum

nP (rps) [0,  12.5]
�s (deg.) [−35, 105]

�p (deg.) [−105, 35]
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problem we are tackling in this study. In addition, CMA-ES 
has a practical advantage in requiring fewer hyperparameters 
to be determined by the user.

CMA-ES uses the normal distribution to generate candi-
date solutions and updates the statistics (mean and covari-
ance matrices) of the normal distribution using candidates 
with a high degree of adaption to the objective function 
among the candidates. This process of generation, evalua-
tion, and update is iterated, which is interpreted as minimiz-
ing the expectation value of the evaluation function [52, 53].

In this study, the CMA-ES with box constraints[54] and 
the restart strategy [55] was used as in the previous study [1, 

35]. The initial and maximum population sizes of candidate 
solutions were set to 64 and 256, respectively. This study’s 
optimization using CMA-ES was terminated at 5 × 105 
iterations.

3.6  Reference model

The proposed model needs to be verified whether it can 
be used as a maneuvering estimation module of a harbor 
maneuvering simulator. The authors confirmed the validity 
of the proposed method by confirming that the proposed 
model has the same or better estimation performance as 
the model identified by conventional methods. That is, the 

Fig. 2  Distribution of state variables and control inputs of data sets. 
Diagonal and upper triangle figures are univariate and bivariate ker-
nel density estimations of state variables and control inputs, respec-

tively. Lower triangle figures are bivariable scatter plots of state vari-
ables and control inputs. In this figure, data sets were re-sampled with 
one sample per five seconds for plotting
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low-speed maneuvering MMG model and captive model 
tests. Hereafter, the model for comparison will be referred 
to as thereference model.

Details of the model and parameters used in reference 
model are as follows: the MMG model estimates the hydro-
dynamic forces generated by each module, such as the hull, 
propeller, rudder, and wind force. The sub-modules used 
in reference model are as follows: Yoshimura’s model [56] 
for the hull; Fujiwara’s model [38] for the wind pressure; 
and Kang’s model [57] for the propeller and rudder forces. 

Model parameters were obtained by a captive model test of 
the subject ship, empirical formulae, or substituted by other 
ship’s parameters. Specifically, for the hull model, the linear 
coefficient and the astern drag coefficient were derived from 
captive model tests, while the other values were obtained by 

Fig. 3  Histograms of x
k
 of 

D
(train) and D(CA) . Histograms 

are normalized to make the total 
area of the bins to be 1 for each 
data set

Table 4  Maximum order of polynomials and number of Submodels 
of the mathematical models

Submodels Max. order Unknown 
variables

2 2nd order 133
3 193
4 253
2 3rd order 413
3 613

Table 5  Settings of computational cases with 2nd-order models

Case no. Order SM � �

1  2nd 2 0 0
2 0 1e2
3 1e2 0
4 1e2 1e2
5 2nd 3 0 0
6 0 1e2
7 1e2 0
8 1e2 1e2
9 2nd 4 0 0
10 0 1e2
11 1e2 0
12 1e2 1e2
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empirical formulae [56]. For the propeller and rudder mod-
els, propeller thrust coefficients KT0, KT1,KT2 were obtained 
from the propeller open test of the subject ship’s propel-
ler, and the other coefficients were substituted by VLCC’s 
values given by Kang [57]. Wind coefficients were derived 
by Fujiwara’s regression formulae using the subject ship’s 
geometric parameters. Although the reference model used 
surrogate parameters for more than half of its parameters, 
the authors believe that the reference model has sufficient 
accuracy for practical use because the authors used the ref-
erence model to train an automatic berthing controller and 
successfully demonstrated a scaled-model experiment of 
automatic berthing [34].

4  Results

In this chapter, we examine the performance of the optimal 
parameter �opt obtained from the optimization. First, we 
select the optimal parameter for each computational case 
by observing the learning curve of train loss L(�; D(train)) 
and validation loss L(�; D(validation)) . Second, since CMA-
ES is a stochastic search method, we check the dependency 
on the random seed used in CMA-ES. Third, we select 
the optimal value of hyperparameters by comparing the 
L(�opt; D

(validation)) with different hyperparameter values. 
Finally, the generalization performance is checked using 
random maneuvering test set D(test) and crash-astern test set 
D

(CA) . We also check how the performance varies with the 
order of model formulae and the Submodel. Furthermore, 
the estimation error in train, validation, and test is discussed.

The error norm L defined by Eq. 21 is used as a per-
formance metric. This is because the objective function F  
shown in Eq. 20 is penalized by two terms other than the 
error norm.

4.1  Learning curve of optimization

The optimization yields the optimal parameter �(train)

opt
 in 

D
(train) defined by Eq. 19, but overfitting may occur. Thus, 

the error norm L(validation) ≡ L(�; D(validation)) on D(validation) 
is shown below:

and L(train) are observed during iterative process of optimiza-
tion. Figure 4 shows the learning curve of two representative 
computational cases. Note that in Fig. 4, the mean of the 
candidate solutions � of each iteration of the CMA-ES was 
used for error norm L(train), L(validation) by Eqs. 21, 36. Since 
the total time of datasets is different, the error norms were 
compared in error-per-time from ( L∕T  ) using the data set 
time T (train), T (validation) . Note that L(train) and L(validation) have 
several peaks at the same iterations in Fig. 4. This is due to 
the restart strategy of CMA-ES.

The learning curve of the SM-2, 3rd-order model is 
shown in Fig. 4a. The validation loss L(validation) , indicated 
by the blue line, showed the same downward trend as train-
ing loss L(train) . The validation loss stagnated at the value 
with slight degradation from its minimum indicated by the 
blue circle. Therefore, we concluded that overfitting did not 
occur in this computational case. On the other hand, in the 
SM-3, 3rd-order model, shown in Fig. 4b, L(validation) wors-
ened in the iteration around �̄(train)

opt
 indicated by the black 

circle; thus, we concluded that overfitting has occurred.
To avoid overfitting, the optimal parameter on D(validation) 

was selected as the optimal parameter for each computa-
tional case, and the model with the optimal parameter 
�
(validation)

opt
 was defined as the optimal model. More precisely, 

the optimal parameter �(validation)

opt
 was selected from the set 

Θ(train) , which is the set of � per 200 iterations:

4.2  Random seed trial

Since CMA-ES is a stochastic search method, the optimal 
parameter may depend on the random seed. Before testing 

(36)

L(�; D(validation))

=

N�
i=1

∫
tf

t=0

‖ŝt(validation,i) − ŝt
(sim,i)(�)‖2dt

(37)�
(validation)

opt
= argmin

�∈Θ(train)

L(�; D(validation)).

Table 6  Settings of computational cases with 3rd-order models

Case no. Order SM � �

13 3rd 2 0 0
14 0 1e2
15 0 1e4
16 1e2 0
17 1e2 1e2
18 1e2 1e4
19 1e4 0
20 1e4 1e2
21 3rd 3 0 0
22 0 1e2
23 0 1e4
24 1e2 0
25 1e2 1e2
26 1e2 1e4
27 1e4 0
28 1e4 1e2
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the performance of the optimal model, we check the effect 
of the random seed. Here, we performed five independent 
trials with different random number seeds for representative 
cases. Random seed trials with regularization penalty � and 
deviation penalty � were only conducted for 3rd-order mod-
els. Trials on the cases with � = 0 or � = 0 were conducted 
both on 2nd-order and 3rd-order models. From now on, for 
simplicity of notation, the error norm is expressed in the 
following expression:

The effect of random seed on the error norm L is shown in 
Fig. 5. In all cases except for the SM-3, 3rd-order model, 
� = 0, � = 1e2 shown in yellow, the error norm is smaller 
than that of the reference model for both training and 

(38)
L
�(train)
opt = L(�

(train)

opt ;D(train))∕T (train)

L
�(validation)
opt = L(�

(validation)

opt ;D(validation))∕T (validation)
.

validation dataset regardless of the random seed, indicat-
ing that the model obtained by the proposed method has 
the same or better estimation performance than the existing 
methods.

Next, we discuss the differences in performance for 
each computational case on the training and validation 
datasets. First, we focus on L�(train)

opt
 . In L�(train)

opt
 , the third-

order model has a smaller error norm L�(train)
opt

 than the 
second-order model, which means that it fits the training 
data better. The effect of the regularization penalty � and 
the deviation penalty � differed depending on the model. 
In the SM-2, 3rd-order model, �, � tended to suppress the 
variation of L�(train)

opt
 . On the other hand, in the SM-3, 3rd-

order model, the variation of L�(train)
opt

 was larger. Moreover, 
on � = 1e2 case, L�(train)

opt
 was significantly worsen. There-

fore, the effect of � and � on optimization is different for 
each model. A parameter study of the hyperparameters is 
required for each model when using the proposed method.

Next, we focus on L�(validation)
opt

 . Although L�(validation)
opt

 is 
several times worse than that of L�(train)

opt
 , L�(validation)

opt
 is still 

smaller than that of the reference model except for one case. 
In other words, the proposed method has the same or bet-
ter estimation accuracy than the conventional method even 
when the data is not used for training, as long as the appro-
priate � and � were selected, regardless of the random seed.

The performance rank of the models on D(validation) is 
the same as for training: SM-2, 3rd-order model is the 
best, followed by SM-3, 3rd-order model. The second-
order model is inferior to the third-order model, and the 
performance difference between the second-order models 
is insignificant compared to the variation due to random 
seeding. Moreover, as in training, the trend of the regu-
larization penalty � and the deviation penalty � differed 
among the models. In the SM-2, 3rd-order model, the 
regularization penalty � and the deviation penalty � sup-
pressed the variation of L�(validation)

opt
 . In SM-3, 3rd-order 

model, � = 0, � = 1e2 is an exception where L�(validation)
opt

 is 
worse than the other cases. This may be because proper 
learning is not achieved as described in the previous para-
graph, resulting in worse performance for L�(validation)

opt
.

4.3  Select the best hyperparameter

In the previous section, we discussed the effect of random 
seeding on performance estimation. We found that � and 
� show different trends depending on the model. There-
fore, we next select the hyperparameters: � and � , based 
on the performance on D(validation) . The error norm L�(train)

opt
 

and L�(validation)
opt

 of the optimal model for all computational 

Fig. 4  Train loss and validation loss through the optimization 
by CMA-ES. Black circle represents L(�(train)

opt ;D(train)) and blue 
circle represents L(�

(validation)

opt ;D(validation)) . Note that in Fig.  4, 
line plots of L(validation)∕T (validation) are not connected when the 
error norm is much greater than max of vertical axis range: 
L
(validation)∕T (validation) ≫ 5 × 102 . Other peaks in the figure are due to 

the restart strategy of CMA-ES. "SM" stands for Submodel



 Journal of Marine Science and Technology

cases defined in Tables 5, 6 is shown in Fig. 6. In Fig. 6a, 
dot plots of L�(train)

opt , L
�(validation)
opt

 are color-coded by � values, 
and in Fig. 6b, dot plots are color-coded by � values.

For D(train) , the fitness was higher when the value of � 
and � was close to zero. For D(validation) , the same trend was 
seen for � , but there was no clear trend due to the devia-
tion penalty � . Since the deviation penalty and regulariza-
tion are intended to prevent overestimation of acceleration 
and overfitting, both caused by the complexity of the pro-
posed model, the appropriate value is expected to depend 
on the characteristics of the model and dataset. However, 
we could not observe any clear performance degradation 
due to the penalties. Therefore, when using the proposed 
method, the user is recommended to perform parameter 
studies on the validation dataset for � and � . For example, 
we introduced penalties to expect a regularization effect 
for models with high searching dimensions, but � = 1e4 
has worse L�(train)

opt , L
�(validation)
opt

 are both worse than in the 
other cases, suggesting that the regularization penalty was 
too large.

In the next section, we selected the combination of �, � 
that minimize L(validation) for each model, and compared the 
performance of each model with the test data.

4.4  Evaluation by test data

The generalization performance of the optimal models is 
checked on the test data. As with training and validation, 
the following simplified notations are made for test and 
crash-astern:

4.4.1  Random maneuvers

The test data results for the optimal model for each model 
are shown in Fig. 7a. The figure shows that all the opti-
mal models outperform the reference in D(test) . The plots 
are generally on the linear line shown by the dashed line in 
the figure. In other words, the optimal parameter �(validation)

opt
 

chosen by the D(validation) achieves the same accuracy with 
unknown test data. The reference model is also on the same 
line, indicating that the proposed method has a generaliza-
tion performance that can maintain its estimation accuracy 
regardless of the data set under random maneuvers, which 
is the same as reference model.

Next, we show the results of the maneuvering simulation 
using the best optimal model and the worst optimal model 
to verify the performance of the proposed model in detail. 
Based on the Fig. 7a, SM-2, 2nd-order model, � = 0, � = 0 , 
is the worst, and the SM-2, 3rd-order model, � = 0, � = 0 
is the best. The maneuvering simulation results of the two 
models are shown in Fig. 8. The simulation results of the ref-
erence model and the time series of D(test) are also compared. 
The simulation results from both optimal models agreed 
with the experimental results. In addition, the acceleration 
ṡt = (u̇, v̇m, ṙ) of the optimal model and the reference model 
are of the same order. In other words, the proposed model 
with optimal parameters can obtain the same level of accel-
eration as the reference model, which is a model constructed 

(39)
L
�(test)
opt = L(�

(validation)

opt ;D(test))∕T (test)

L
�(CA)
opt = L(�

(validation)

opt ;D(CA))∕T (CA)

Fig. 5  Results of random seed 
trial. Dot plots represent each 
random seed trial. Labels on 
vertical axis without � and � 
values, those are � = 0, � = 0 . 
The vertical purple dashed line 
represents reference model 
results
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from hydrodynamic forces measured by model tests even 
though the acceleration is not included in the optimization 
of the proposed model.

4.4.2  Crash‑astern

Here we validate the proposed model for maneuvers other 
than random maneuvers using the crash-astern (CA) test 
data set D(CA) . The error norm for each model is shown in 
Fig. 7b. The correlation coefficient between L�(validation)

opt
 and 

L
�(CA)
opt

 is r = 0.76 and positively correlated. In other words, 
by improving the performance on random maneuvers, per-
formance could be improved even for data with different 
types of maneuvers. As shown in Fig. 3, the distributions of 
D

(train) and D(CA) are different. Consequently, the proposed 
method can improve the estimation performance for various 
motions and generate a stable model. Compared to D(test) , L 
increased by a factor of 2 to 3, which means the estimation 
accuracy worsened, but the reference model also showed a 
similar degree of deterioration.

The time series of the maneuvering simulation with the 
best model are compared with the physical experiment 
results. The results of maneuvering simulation using the best 
and worst model for D(CA) are shown in Figs. 9 and 10. In 
Figs. 9 and 10, one of the four CA tests included in D(CA) is 
shown. This particular CA test has the smallest L�(CA)

opt
 with 

simulation using the best model. The trajectory (x0, y0, �) 
shown in Fig. 9 agrees with the experimental trajectory 
well except for � immediately after the start of the stopping 

Fig. 6  Relation between hyperparameters and estimation performance 
of the optimal model. The vertical purple dashed line represents refer-
ence model results

Fig. 7  Performance on test dataset D(test) and D(CA)
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maneuver in both optimal models and during astern in the 
worst model. In addition, the time series of s(sim)

t  and ṡ(sim)
t  

is shown in Fig. 10. In both the best and the worst model’s 
results, the estimation performance of time-series showed 
two types of trend on contiguous subsequences (CS): CS 
with a good agreement and CS with a large discrepancy. 
In particular, the deviations were considerable for the CS 
at 100 < t < 200 s immediately after the start of the crash-
astern steering. Moreover, slopes of vm, r had opposite signs 
with the experiment at 100 < t < 120 s. The velocity slope, 
i.e., acceleration, is not resolved correctly, meaning tran-
sient characteristics of hydrodynamic forces are not repre-
sented at that period. In this period, u = 0.5 m/s at t = 0 of 
the subsequence, which is the velocity extrapolated from the 
training data as shown in Fig. 3. The extrapolation of the 
training data is considered to have degraded the estimation 
performance.

4.4.3  Analysis on error

This section analyzes the distribution of errors in the 
maneuvering simulations for each data set, to summarize 
the estimation performance on the training, validation, 
and test-CA datasets. The model used is the best model, 
SM-2, 3rd-order model, � = � = 0 . Since the error function 
Eqs. 21 and 36 is the sum of errors, the squared error vec-
tor �t ≡ (

�t,u, �t,vm , �t,r
)
∈ ℝ

3 at time t is analyzed. Here, 
the following equation defines the j-th component of �t as 
follows:

Here, ŝ(⋅,i)
t,j

 is the j-th component of the standardized state 
variables at time t of the ith CS. The standardized state vari-
ables are ŝ(⋅,i)

t
=
(
û(⋅,i)(t), v̂

(⋅,i)
m (t), r̂(⋅,i)(t)).

The histogram of �t is shown in Fig. 11a and the cumula-
tive frequency histogram of �t is shown in Fig. 11b. The fig-
ure shows that test-CA contains larger instantaneous errors 
than training and validation. In test-CA, vm and r have longer 
legs of the distribution than u, which means vm and r contain 
larger instantaneous errors. In addition, cumulative frequen-
cies of �t,vm , �t,r increased gradually for 𝜀t,j > 15 . From this 
result, we can say that a specific large instantaneous error 
does not increase the sum of errors; instantaneous errors of 
about 5–10% of the overall time steps are worsening. There-
fore, measures to improve the accuracy of these lower 5–10% 
time steps of vm and r are needed.

(40)𝜀t,j =
{
ŝ
(input,i)

t,j
− ŝ

(sim,i)

t,j
(�opt; D

(input))
}2
.

Fig. 8  Result of maneuvering simulation on D(test) by optimal models 
of the best model and worst model. This figure shows time histories 
of s(sim)

t
 and ṡ(sim)

t
 of maneuvering simulation using the optimal model 

and the reference model for D(test) . This figure also shows time histo-
ries of a

t
 and the measured state of the free-running model test s(test)

t
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5  Discussion

5.1  Modeling automation

Before concluding the study, we explain how the proposed 
model and method enable modeling automation. First, 
because of the simple rules for of the model formulae, 
derivation can be automated. Several model formulae with 
different terms and order numbers can easily derived for 
comparison. In contrast, existing hydrodynamic models 
must derive the expression based on hydrodynamics for 
each actuator configuration. Second, the necessary inputs 
for the proposed method are only the dataset. Generation 
of datasets itself cannot be automated with the proposed 
method; however, a priori hydrodynamic information other 
than the dataset is not necessary. Since CMA-ES with the 
restart strategy is a quasi-parameter-free optimization [55], 
the user is not required to seek the parameter for the optimi-
zation itself. Third, selection of the model formulae can also 
be automated. This can be achieved by the combination of 

the automated derivation of multiple model formulae with 
different terms or order numbers andthe determination of 
best model formula based on the comparison of a single 
fitness function, L�(validation)

opt
 . Because of those three reasons, 

the proposed method can essentially remove the human work 
required to generatemathematical models. By employing the 
proposed method, we can develop an algorithm that auto-
matically generates a model suitable for harbor maneuvers 
once the user feeds a dataset.

5.2  Limitations and future work

The main drawback of the proposed method is the com-
putation time required for optimization. The SM-2, 2nd-
order model, a model with the smallest number of param-
eters, requires three days of computation time, and the 
SM-3, 3rd-order model, the largest number of parameters, 
requires ten days. The computation conditions were 16 
parallel Intel Xeon Platinum 8260 computers, and the lan-
guage and compiler were Fortran 90 and Intel Fortran. 
CMA-ES is easy to parallelize and may be faster depend-
ing on machine power, but it is computationally expen-
sive in general because of the need for parallel-capable 
machines.

A remaining issue is a dependence on the dataset size. 
In this study, the dataset size was kept constant. A total of 
approximately 10,000 s of random maneuvers were used. If 
Lpp = 100 m, this corresponds to about 16 h. As the size of 
the target vessel increases, the cost of data acquisition also 
increases. Therefore, in addition to the dependence on the 
amount of data, reducing the amount of data required and 
efficient methods of data acquisition is also future work. In 
addition, introducing non-dimensionalization without veloc-
ity U, such as [58], may ease the domain boundary setting 
of coefficients.

Another remaining issue consists of the derivation rules 
of mathematical expression of model formulae. As shown 
in Sect. 2.2.2, we modified or removed several terms in the 
polynomial derived by the Taylor expansion. Those modi-
fications might affect the performance of the model.For 
instance, we have ignored the terms which include sin2 � . 
However, those terms have non-negligible meanings on the 
MMG model’s rudder force drag componentXR when the 
ship is moving straight forward:

Hence, further research on the derivation rule might be 
necessary.

(41)
XR= −(1 − tR)0.5�ARU

2
R
f� sin �R sin �

≈ −(1 − tR)0.5�ARU
2
R
f� sin � sin � if �R ≈ �.

Fig. 9  Estimated trajectories of maneuvering simulation using two 
optimal models and the reference model for D(CA) . Ship-like pen-
tagons represent ship positions and headings at contiguous subse-
quences (CS)’s beginning, middle, and end. The black line represents 
the input dataset, i.e., measured trajectory of the free-running model 
test. Optimal model is SM-2, 2nd-order, � = 0, � = 0 . Note that esti-
mated trajectories seem to jump when the CS changes
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Fig. 10  Time histories of s(sim)
t

 
and ṡ(sim)

t
 of maneuvering simu-

lation using the best optimal 
model and the reference model 
for D(CA) . This figure also shows 
time histories of control inputs 
and s(CA)

t
 , i.e., measured state of 

free-running model test. Opti-
mal model is SM-2, 2nd order, 
� = 0, � = 0
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6  Conclusion

In this study, we proposed the Abkowitz–MMG hybridmodel 
and its parameter identification method for harbor maneu-
vers and to realize automated modeling.

The proposed model can be derived according to sim-
ple rules using Taylor expansion and has a high degree of 
freedom to express harbor maneuvers’ complex motions 
and ship handlings. The proposed model can be more easily 
derived than existing Hydrodynamic models for arbitrary 
ship configurations. In addition, the physical meaning of the 
model’s formulae and their terms is much more understand-
able than those using neural networks.

We also proposed a method to identify the model param-
eters and select the model’s formulae using system identi-
fication. Even though the proposed model needs to identify 
several hundred model parameters because of its simple 
rules for derivation, SI using CMA-ES enables identifying 
model parameters within reasonable computational time. 
Moreover, since multiple models can be easily derived, we 
identified the parameters of several models and selected the 
best model from them. Thus, the proposed method does not 

depend on the captive model tests and knowledge of ship 
hydrodynamics to select appropriate mathematical expres-
sions of the model, thereby reducing the amount of labor 
required for model selection. In addition, simple rule-based 
model derivation and easy model selection methods can 
relax the necessary skill and facility requirements for users 
to perform model generation.

This study used trajectories of a free-running model ship 
of a single-propeller, VecTwin-rudder-equipped ship, as the 
data set. As a result, we confirmed that even a mathematical 
model derived from simple rules could estimate unknown 
harbor maneuvers equivalently or more accurately than a 
model generated by existing methods.

In summary, we showed that the proposed model and 
method could reduce human intervention in model gen-
eration and have adequate estimation performance. Conse-
quently, they enable automated modeling, which automates 
the modeling process itself. Although design and develop-
ment of the automation algorithm are the remaining tasks, 
the basic concept of modeling automation, and the core of 
the automation algorithm, i.e., the mathematical model and 
the model generation method, were proposed in this study.
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