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Abstract
In the field of millimeter-wave (MMW) imaging, the integration of artificial intel-
ligence (AI) has emerged as a crucial solution for addressing automation challenges. 
In this study, concealed object classification was successfully achieved on point 
cloud data from MMW radar high-precision imaging using the PointNet +  + deep 
learning method. The utilized dataset comprises point cloud data generated through 
the transformation of 3D models and reconstruction of physical objects with an 
accuracy of less than 1 mm via MMW radar scanning. Classification accuracy was 
significantly improved by introducing data enhancement techniques, including the 
generation of homologous data and optimization of sampling points. After several 
evaluations, 300 epochs of training were conducted using 8192 sampling points, the 
results showed an accuracy of 0.998 for the training dataset and 0.996 for the test 
dataset. Moreover, evaluations of samples not included in the original dataset as well 
as multi-surface scans of concealed objects within the cardboard both resulted in 
correct predictions, which further validates the effectiveness and reliability of the 
study and demonstrates the potential of AI applied to MMW imaging.

Keywords  Millimeter wave imaging · Millimeter wave radar · Object classification · 
Deep learning

1  Introduction

Millimeter waves (MMWs) refer to electromagnetic waves with frequencies rang-
ing from 30 to 300 GHz and wavelengths between 10 and 1 mm. There are various 
unique features that make them highly attractive. One of the distinctive features is 
high transparency to various non-metallic objects, including cardboard and cloth-
ing, allowing imaging through obstacles that impede visibility with traditional 
measurement techniques. Moreover, unlike other radiation-based methods, MMW 
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imaging techniques do not pose exposure risks, thereby enhancing safety for both 
operators and subjects under inspection. Additionally, MMWs exhibit exceptional 
weather resistance, maintaining functionality even under adverse weather condi-
tions such as rain and fog. These inherent advantages have spurred the develop-
ment of various applications utilizing MMWs, including vehicle-mounted radar 
for driving assistance systems and autonomous driving [1–3], biometric monitor-
ing technologies for non-contact measurement of vital signs [4–7], infrastructure 
inspection for detecting cracks beneath paint coatings [8–11], non-destructive 
testing for object defect detection [12–15], and security technologies for detecting 
hazardous objects [16–18]. Furthermore, with the rapid advancement of artificial 
intelligence (AI) technology, integration with AI has emerged as a significant 
breakthrough in these fields [19]. For instance, through deep learning techniques, 
applications such as autonomous vehicles can accurately detect and identify vari-
ous objects in the environment using LiDAR point cloud data [20].

In the field of MMW imaging, most of the AI integration research has been 
focused on 2D images due to the maturity of the 2D imaging processing tech-
niques. In passive imaging, machine learning has successfully identified the loca-
tion of concealed objects on the human body with an accuracy of approximately 
94% [21]. In non-passive imaging, a 27 GHz with 5 GHz bandwidth MMW radar 
is used to scan the human body, and deep learning techniques applied to the 
acquired 2D images successfully segment body parts and estimate poses with an 
accuracy of approximately 98.4% [22]. However, 2D imaging techniques suffer 
from an inherent limitation: the inability to identify objects at different depths. 
Currently, AI integration research on object classification using MMW 3D point 
clouds is relatively limited. This limitation stems from the low resolution of the 
3D images obtained by the MMW imaging system, which is due to the lack of 
high-precision image processing techniques to accurately reconstruct object con-
tours [23]. For example, in an AI integration study [24], a 79 GHz with 1.6 GHz 
bandwidth MMW radar was used to classify large objects such as cars and buses; 
however, due to the lack of high-precision image processing techniques, the reso-
lution was approximately 60 cm, allowing only simple contours of large objects 
to be identified. Nevertheless, our previous research has successfully established 
a multiple-input multiple-output synthetic aperture radar (MIMO-SAR) fre-
quency-modulated continuous wave (FMCW) MMW radar imaging system and 
developed a technique for precise 2D and 3D reconstruction using observed point 
cloud data [25]. By effectively reducing noise in smooth surface 3D point cloud 
data, a resolution of less than 1 mm was achieved. With the successful acquisi-
tion of high-precision data using the MMW radar, key technical support has been 
provided for the further development of high-precision MMW 3D imaging and 
AI integration, which makes it feasible to perform precise object classification of 
MMW imaging through deep learning.

Therefore, this study aims to combine MMW 3D imaging and deep learning 
to achieve the automatic object classification of concealed objects by observing 
high-precision point cloud features. This work fills a gap in the application of AI 
integration in high-precision MMW 3D imaging and contributes to addressing the 
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challenges of automation and productivity enhancement in MMW imaging applica-
tions, thereby promoting the development and application of relevant technologies.

2 � PointNet +  + Architecture

In the field of deep learning for point cloud data, the processing and analysis of such 
data pose challenging tasks due to their high dimensionality, non-structural, and 
irregular nature. However, with the continuous advancement of deep learning tech-
nology, a series of deep learning methods for point cloud data have emerged, includ-
ing point-based methods such as PointNet, PointNet +  + , Dynamic Graph CNN, 
and PointCNN [26–29], voxel-based methods such as VoxNet, OctNe, and GridNet 
[30–32], and image-based methods such as Frustum PointNet and MVCNN [33, 34].

Point-based methods exhibit several advantages over voxel-based and image-
based methods: the raw point cloud data can be directly handled without requiring 
additional preprocessing or transformation; more flexibility in adapting to different 
shapes and structures of point cloud data, enabling better capture of local and global 
information; and the ability to process point cloud data of arbitrary shapes and struc-
tures, independently of the mesh structure.

In point-based methods, PointNet +  + , which was proposed by Qi et  al. from 
Stanford University in 2017, introduces a hierarchical point set aggregation mecha-
nism, progressively aggregating feature information of point cloud data from local 
to global levels [27]. This multi-level feature learning mechanism enables Point-
Net +  + to better capture local and global information of point cloud data, exhibiting 
strong flexibility and adaptability. Therefore, PointNet +  + holds significant advan-
tages in the field of deep learning for point cloud data, leading this study to select 
PointNet +  + as the learning model.

The deep learning process of PointNet +  + is as follows: input point cloud data; 
extract local features and combine them to obtain local and global features; aggre-
gate features at different levels through hierarchical aggregation; input the processed 
features into network layers to accomplish classification.

3 � Composition of the Dataset

Accurate recognition by neural networks relies heavily on extensive data for con-
tinual feature learning. This necessitates the creation of datasets, critical for train-
ing and evaluating deep learning models. These datasets typically encompass train-
ing, test, and evaluation subsets. The training dataset enables the model to learn 
input–output relationships and adjust parameters to minimize prediction errors, 
while the test dataset fine-tunes the model hyper-parameters and evaluates perfor-
mance after each round of training. Finally, the evaluation dataset evaluates the gen-
eralization and accuracy of the trained model on new data.

For the current commonly used 3D object recognition datasets, such as Shap-
eNet and ModelNet40 [35, 36], since the objects in them are mostly used for 
object recognition in rooms or large spaces, while the objects required in this 
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study are smaller and precise, therefore, we downloaded the 3D objects in GLB 
format from the Internet and converted all of them to point cloud objects in PLY 
format. For the initial training dataset, we downloaded five categories, namely 
hammer, knife, pistol, scissors, and wrench, as point cloud data for training, com-
prising 66 data entries for hammers, 70 for knives, 70 for pistols, 70 for scissors, 
and 68 for wrenches. Part of the training dataset of point cloud data is shown in 
Fig. 1.

For the testing set, we utilized an MMW imaging system to acquire point cloud 
data of objects. Considering the time and monetary costs associated with scan-
ning and processing MMW imaging point cloud data and purchasing samples, we 
acquired a test dataset consisting of 11 data entries for hammers, 11 for knives, 
12 for pistols, 13 for scissors, and 12 for wrenches. It is noteworthy that while 
actual guns are typically metallic, the samples we acquired were plastic replicas. 
To obtain a more comprehensive sample contour, we applied metallic exterior 
paint to the plastic and wooden parts of the samples. The low reflective intensity 
of plastic and wood compared to metal can cause uneven contours in the recon-
structed point cloud. By applying a conductive coating, the reflective intensity of 
these regions is significantly increased, resulting in a more uniform point cloud 
contour of the object. However, this process is only used during dataset collection 
to improve the quality of training models. In practical application scenarios, we 
will use samples without metallic coatings for validation experiments to ensure 
the model’s performance is more aligned with real-world conditions and to verify 
its effectiveness when handling unprocessed objects. Part of the actual sample of 
the test set is shown in Fig. 2a. Each object underwent scanning from four sides 
utilizing an IWR1443 module affixed to a two-axis mechanical stage. Analyzing 
IF signals from transmitted and received chirps produced Range FFT spectra, 
offering distance and reflection intensity information based on frequency. Sub-
sequently, point cloud data reconstruction was accomplished through our previ-
ously developed precise 3D reconstruction algorithm, which includes monolayer-
ing, smoothing, and 3D stitching [25]. By effectively reducing noise in 3D point 
cloud data, a resolution of less than 1 mm was achieved. The results of the recon-
struction process for all objects are visually depicted in Fig. 2b.

Fig. 1   Composition of the training dataset



Journal of Infrared, Millimeter, and Terahertz Waves	

4 � Impact of Homologous Dataset

A dataset consisting of five objects was created in the previous section, where the 
training and test datasets showed significant differences in point cloud contours. 
By comparing the training dataset (shown in Fig. 1) with the test dataset (shown in 
Fig. 2b), we can observe the lack of noise and smooth edges of object contours in 
the 3D models that were downloaded from the Internet. In contrast, for the dataset 
obtained from the MMW imaging system, the vibration of the scanner or the inter-
ference phenomenon of the reflected signals from the MMW resulted in significant 
noise in the captured data and non-uniform data distribution. It is difficult to achieve 
high accuracy only on the above training and test sets, as specific features of the 
MMW point cloud cannot be learned efficiently by using a training dataset that does 
not contain noise. In order to increase the diversity of data obtained from the MMW 
system in the training dataset, we performed transformation operations such as pan-
ning, scaling, zooming, and rotating on the test set to generate homologous data, 
which were added to the initial training dataset. It is important to note that panning 
operations on a 3D point cloud can change its position, scaling and zooming can 
change its size, and rotation can change its orientation. With these transformations, 
we can generate new data samples that are similar but not identical to the original 
data samples, thus enriching the training dataset. This data augmentation technique 
is widely used in deep learning to help increase the diversity of training data and 
improve the generalization ability and robustness of the model [37–40]. It is also 
worth noting that real-world scenarios often involve objects appearing at different 
scales, orientations, and positions. Data augmentation techniques can effectively 
simulate these situations, thus making the model more robust and adaptable to a 
variety of real-world environments.

Fig. 2   a Actual sample of the test dataset. b Composition of the test dataset
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We performed four different homologous data generation operations on the test 
set: scaling up by 1.1 × and rotating by 180 degrees; scaling down by 0.95 × and 
rotating by 180 degrees; scaling up by 1.1 × and mirroring; and scaling down by 
0.9 × and mirroring. It is worth noting that in order to minimize the difference in 
point distance, the point cloud was scaled between 0.9 and 1.1 times. These trans-
formations produce four sets of homogeneous data for enriching the initial training 
dataset. Taking the hammer as an example, the results of these homologous data are 
shown in Fig. 3. Figure 3a shows the point cloud data of the hammer after recon-
struction by the MMW imaging system, while Fig. 3 b, c, d, and e show the homolo-
gous data after scaling up by a factor of 1.1 and rotating it by 180 degrees around 
Y-axis, scaling down by a factor of 0.95 and rotating it by 180 degrees around 
Y-axis, scaling up by a factor of 1.1 and mirroring it, and scaling down by a factor of 
0.9 and mirroring it, respectively. It is clear from this example that the homologous 
data is not identical to the test set data in terms of position, size, and orientation, 
and is substantially a new sample. Adding these homologous data to the training set 
can effectively increase the diversity of the training data, and this technique helps 
to train the model to recognize and understand the features of objects after MMW 
imaging processing, making the model more robust and adaptable.

The objective of adding homologous data is to allow the neural network to learn 
these features even if the homologous data contains features specific to the MMW 
point cloud, such as missing, hollow, noise, and overlapping features. However, if 
the amount of homologous data is too large, defective features in the homologous 
data may dominate the learning process, resulting in the network not being able to 
efficiently learn the shape features of the object, which will reduce the correctness 
rate. In order to determine the appropriate proportion of homologous data, we added 
homologous data with factors ranging from 0 to 4 in the initial training dataset, 
respectively. The specific homologous data added include:

–	 Increase homologous data by a factor of 1: Scale up 1.1 × and rotate by 180 
degrees.

–	 Increase homologous data by a factor of 2: Scale up 1.1 × and rotate by 180 
degrees, scale down 0.95 × and rotate 180 degrees.

Fig. 3   a Point cloud data after MMW imaging reconstruction. b Scaling up by 1.1 × and rotating by 180 
degrees around Y-axis. c Scaling down by 0.95 × and rotating by 180 degrees around Y-axis. d Scaling up 
by 1.1 × and mirroring. e Scaling down by 0.9 × and mirroring
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–	 Increase homologous data by a factor of 3: Scale up 1.1 × and rotate 180 degrees, 
scale down 0.95 × and rotate 180 degrees, scale up 1.1 × and mirror.

–	 Increase homologous data by a factor of 4: Scale up 1.1 × and rotate 180 degrees, 
scale down 0.95 × and rotate 180 degrees, scale up 1.1 × and mirror, scale down 
0.9 × and mirror.

We employed 2048 sampling points and performed 300 epochs of training. The 
accuracy rate of the training dataset is shown in Fig.  4a and the accuracy rate 
of the test dataset is shown in Fig.  4b. From the results of the training set, it 
can be seen that adding homologous data has almost no effect, which is because 
the complexity of the model and the learning parameters have not been changed. 
From the results of the test dataset, it can be seen that with the increase of homol-
ogous data, the accuracy rate reaches the peak when it is increased to the factor 
of 2, and then gradually decreases. This is because the neural network has learned 
the specific features of the MMW point cloud data by increasing the homolo-
gous data up to a factor of 2. However, when the homologous data is increased 
to a factor of 3–4, the neural network learns an excessive number of defective 
features, leading to a decrease in the accuracy rate. Figure 4c shows this result 
more clearly, that is the highest accuracy rate, about 0.973, is achieved when the 
homologous data is increased to the factor of 2.

Fig. 4   a The accuracy rate of the training dataset. b The accuracy rate of the test dataset. c The relation-
ship between the multiples of homologous data and accuracy rate
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5 � Impact of Sampling Points

The PointNet +  + methodology employs the farthest point sampling (FPS) method 
to simplify massive point cloud data [27]. A higher number of sampling points 
captures more features, but also significantly increases the size of the dataset. This 
indicates that increasing the number of sampling points improves accuracy, but 
excessive sampling points can dramatically increase the training time of the neural 
network, making it difficult to build a practical system. To determine the optimal 
number of sampling points that balances high accuracy with acceptable learning 
time, we conducted a series of training experiments that gradually changed the num-
ber of sampling points without changing the dataset.

We added homologous data by a factor of 2 to the initial training dataset for train-
ing and used the point cloud data obtained from the MMW imaging system as the 
test dataset to train for 300 epochs. The number of sampling points started from 
256 points and multiplied exponentially until it reached 8192 points (the limit of the 
device), as shown in Fig. 5.

Figure  6a illustrates the accuracy rate of the training dataset as the number of 
sampling points increases. As the number of sampling points increases, more shape 
features can be extracted, which improves the accuracy rate of the training set. When 
the number of sampling points is 8192, the training set has the highest accuracy rate, 
which is about 0.998. Figure 6b shows how the accuracy rate of the test dataset var-
ies with the number of sampling points. The difference between 256 and 512 points 
is not significant, but the accuracy rate of the test dataset gradually increases from 
1024 points onwards. Figure 6c shows more clearly the result, with the highest accu-
racy rate of the test set, about 0.996, at a sampling point count of 8192.

An increase in the number of sampling points represents an increase in computa-
tion and training time. Figure 6d shows the learning time required to complete 300 
epochs with the number of sampling points ranging from 256 to 8192 points. As 
the number of sampling points increases, the required training time also increases. 
For 8192 sample points, the required learning time is about 3.44 h, which is close 
to the limit of our computer equipment. In order to obtain the best accuracy, we 
chose to use 8192 sampling points to train the optimal model. In addition, another 
important influence on the training time is the hardware of the computer used. The 
more the number and performance of GPUs, the shorter the training time. In this 
study, the GPU we used was the NVIDIA GeForce RTX 2070 SUPER. In future 

Fig. 5   Results of different numbers of sampling points using the FPS method
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studies, we will further explore the relationship between processing time and per-
formance and consider using more and higher-performance GPUs to accelerate the 
training process. In different applications, processing time is closely tied to hard-
ware requirements. For real-time applications like autonomous driving, low latency 
and high inference efficiency are crucial. These scenarios require multiple high-end 
GPUs to ensure sufficient computational speed. In contrast, offline applications like 
medical image analysis focus more on processing large datasets, relying on high-
capacity memory and fast storage devices. While offline tasks don’t demand real-
time response, reducing training time remains key to improving efficiency.

6 � Object Classification Results

Based on the previous evaluation of the homologous data and the sampling points 
of the FPS method, we added the factor of two homologous data to the initial train-
ing dataset as the training dataset and used the point cloud obtained from the MMW 
system as the test dataset, with the number of sampling points set to 8192, and per-
formed the training for 300 epochs. The training results are shown in Fig. 7a. The 
blue data in the figure represents the accuracy rate of the training dataset, which 
reaches 0.998 after 300 epochs. The orange data represents the accuracy rate of the 
test dataset, which reaches 0.996 after 300 epochs. These training results show that 
we have achieved a very high accuracy rate in model training.

Fig. 6   a The accuracy rate of the training dataset. b The accuracy rate of the test dataset. c The relation-
ship between the sampling point and accuracy rate. d The relationship between the sampling point and 
training time–cost
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Additionally, the loss value is crucial in evaluating trained models, as it serves 
as the core metric for assessing predictive performance and guiding model opti-
mization. In the PointNet +  + classification model, cross-entropy is used as the 
loss function, represented as the average cross-entropy loss across all samples 
[27]. When the predicted and actual classes differ significantly, the loss value 
is high; conversely, the loss value is low when the predicted and actual classes 
are similar [41]. By calculating the loss function value, the model can quantify 
the difference between the current predictions and the true values. As shown in 
Fig.  7b, the blue line represents the train mean loss, while the orange line rep-
resents the test mean loss. The train mean loss rapidly decreases and converges 
within the first 30 epochs, ultimately approaching zero, indicating that the model 
is highly fitted to the training data. The test mean loss also decreases rapidly 
within the first 40 epochs, then fluctuates slightly, but eventually approaches zero, 
demonstrating good generalization performance on the test data. Moreover, the 
train loss and test loss run almost parallel, with the test loss slightly higher than 
the train loss, indicating consistent performance between training and testing data 
and no significant overfitting. In summary, the trained model exhibits ideal per-
formance on both training and test data, showcasing strong learning capability 
and generalization ability.

In order to evaluate the trained model, each sample in Fig. 2b is transformed by 
scaling down by a factor of 0.95 and shifting to the right by 0.5 cm as an evaluation 
dataset input to the trained model. The data used for evaluation are point clouds of 
11 hammers, 11 knives, 12 pistols, 13 scissors, and 12 wrenches. The prediction 
results are shown in Fig. 8. For the available samples, the trained model classified all 
objects correctly, which conforms with a high accuracy rate of 99.6%.

To ensure that the trained models have good generalization ability, further evalu-
ation and validation of the trained models were performed. A sample not included 
in the dataset was used to evaluate the trained model. The samples are shown in 
Fig. 9a, with a hammer, two wrenches, and a knife. The right side of Fig. 9a shows 
the actual image of the samples, and the left side shows the point cloud obtained 
from the MMW imaging processing. The point clouds of the four objects are input 

Fig. 7   Results of training with 2 × homologous data and 8192 sampling points. a Accuracy over epochs. 
b Loss over epochs
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into the trained model, and the results obtained are shown in Fig. 9b, where all the 
samples are classified correctly.

Considering the practical application that objects containing plastic or wood 
will not be sprayed with metallic paint, we evaluated objects that were not sprayed 
with metallic paint and also were not included in the dataset. The sample, shown 
in Fig.  10a, contains scissors with a plastic handle, a knife with a plastic handle, 
and a hammer with a wooden handle. The right side of Fig. 10a shows the actual 
image of the sample, and the left side shows the point cloud obtained after the 
MMW imaging reconstruction process. From the point cloud image, it can be seen 

Fig. 8   Prediction results with the evaluation dataset

Fig. 9   a Actual image and point cloud data of the samples. b Prediction results
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that the plastic or wood parts exhibit hollow areas, attributed to the high penetra-
tion of MMW to objects made of these materials, which are weak in reflecting sig-
nals. The point clouds of the three objects were input into the trained model, and 
the results obtained are shown in Fig. 10b. Even though the point cloud data have 
hollow defects in some parts, the samples are all correctly classified, which proves 
that the trained model has the potential for the classification of non-metallic objects 
in practical applications.

Finally, in order to verify the feasibility of this study in practical applications, 
a cardboard box with concealed objects was used as a sample to be scanned by 
an MMW imaging system, the composition of which is shown in Fig.  11. The 
IWR1443 module was attached to a 2-axis mechanical stage for X–Z scanning pur-
poses. The duration of the chirp signal in the 77–81 GHz range is 40 μs. The x-axis 
scanning speed is 200mm/s and the time taken to scan an area of 500mm x 500mm 
is approximately 4 min.

Due to the limitations of the scanning area, the five samples were divided into 
two sets and scanned in separate cardboard boxes. It is worth noting that of these 
5 samples, the hammer, scissors, wrench, and knife are items not included in the 
dataset, and due to the limited number of samples of pistols, the pistol used in this 
concealed object identification was the sample included in the dataset.

The first set of concealed objects were a wooden-handled hammer, a plastic-
handled knife, and plastic-handled scissors. The position of the hammer at the 
top layer is at approximately Y = 160 mm, as shown in Fig.  12a, and the knife 
and scissors at the bottom layer are located at approximately Y = 232 and 235 
mm, respectively, as shown in Fig. 12b. Notably, the hammer and the two objects 

Fig. 10   a Actual image and point cloud data of the samples. b Prediction results
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at the bottom layer overlapped with each other. In Fig.  12c, the reconstruction 
results from four-sided scanning using our previously developed MMW point 
cloud reconstruction algorithm are illustrated. The light blue part is the perimeter 
of the cardboard box, the pink part is the scissors, the dark blue part is the knife, 
and the red part is the hammer. The results show that even though the objects 
overlap each other, the reconstruction results of four-sided scanning can still get 
the rough outline of each object, which is unachievable with 2D imaging. Due to 

Fig. 11   The composition of the 
MMW imaging system

Fig. 12   a Top layer of the cardboard box. b Bottom layer of the cardboard box. c Reconstruction and 
object classification results
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the fact that some of the canceled objects are made of non-metallic materials such 
as wood and plastic, the reconstructed contours of the objects appear uneven and 
hollow. Since the point cloud has been segmented by clustering in the first step of 
data processing during single-sided scanning, the box and the inner objects can 
be segmented directly in the result of four-sided scanning. Subsequently, the seg-
mented objects were input into the trained model. It is worth noting that it took 
a total of 16 min to scan all four sides of the cardboard, and it only about 4 s to 
input the segmented point cloud into the training model to obtain the prediction 
results. Figure 12c presents the object classification results and the supplemen-
tary video showcases rotated 3D results, wherein the concealed objects are boxed, 
and the object classification results are displayed beneath the box. Notably, all 
classification outcomes are accurate.

The second set of concealed objects are the pistol and the wrench. The position 
of the wrench on the top layer is approximately at Y = 165 mm, and the pistol on 
the bottom layer is located approximately at Y = 210 mm, as shown in Fig. 13a. 
After scanning the six sides of the cardboard box, Fig. 13b shows the reconstruc-
tion results and the supplementary video showcases rotated 3D results. The light 
blue part is the perimeter of the cardboard box, the red part is the pistol, and the 
orange part is the wrench. The segmented objects inside the cardboard box are 
input into the trained model. Figure 13b showcases the results of object classifi-
cation, where the concealed objects are boxed, and the object classification out-
comes are displayed beneath the box, all of which are correctly classified. These 
outcomes demonstrate the robust performance of our trained model for object 
classification using MMW point cloud data, which often contain missing, hollow, 
noisy, and overlapping features. The efficacy of this method in practical applica-
tions has been successfully validated.

Fig. 13   a Internal view of the cardboard box. b Reconstruction and object classification results
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7 � Conclusion

This study successfully applied AI technology in the field of MMW imaging, 
effectively using the PointNet +  + method to classify high-precision point cloud 
data obtained from MMW radar into five different object categories. The utilized 
dataset includes point cloud data generated through the transformation of 3D 
models and high-precision reconstruction of physical objects using MMW radar 
scanning. Through data augmentation techniques on the training and test data-
sets, including generating homologous data and optimizing the number of sam-
pling points, we enhanced the accuracy in classifying five categories of objects. 
Considering evaluation results and hardware limitations, we augmented the ini-
tial training set with an addition in 2 × homologous data for training, using point 
clouds obtained by the MMW imaging system as the test dataset, with 8192 sam-
pled points, and trained for 300 epochs. The training dataset achieved an accuracy 
of 0.998, while the test dataset achieved an accuracy of 0.996.

Moreover, to further validate the potential of the trained model for practical 
applications, samples not included in the dataset were evaluated. The experiment 
results demonstrated exceptional performance in dealing with complex situations, 
including new samples and non-metallic materials, particularly in the classifi-
cation of concealed objects inside the cardboard box for multi-surface scanning 
reconstruction. These findings highlight the effectiveness and feasibility of our 
method in classifying complex point cloud data from MMW imaging systems.

In conclusion, this study is significant in applying the AI technique to MMW 
imaging successfully and realizing the efficient object classification of com-
plex point cloud data, which offers strong support for the practical application 
of MMW imaging technology. In future research, it is possible to enhance train-
ing speed by improving hardware or optimizing neural network architectures and 
to adapt to a wider range of complex applications by expanding the variety of 
datasets.
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