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Abstract

Road travel cost can be defined as a function of condition and volume:capacity factors. Asset managers
intervene on heavily trafficked and poor condition roads based on criteria to optimize network travel and
intervention (social) costs. These criteria may involve a trade-off between improving road condition or
capacity. Road performance is known through periodic inspection and stochastic modeling to estimate

deteriorated future condition. The predicted future condition and traffic growth rates change pavement
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section intervention (capacity or condition improvement) priority over time. The optimal road
intervention choice can be determined using algorithms including the greedy algorithm and Monte Carlo
simulations. Greedy algorithms search through the entire sample space locally and step-wise to
approximate global optima, whereas Monte Carlo simulations randomly sample candidate sections to
generate more globally optimum interventions. This study proposes a road asset management model using
Monte Carlo methods to optimally choose road network interventions considering condition and traffic
changes over a planning horizon. The study includes an empirical application using real world data and

compares the proposed Monte Carlo simulations approach to the greedy algorithm.

Introduction

Optimum road network intervention decisions involve choices on improving road condition and capacity
to shorten travel times from origins to destinations. These decisions should be done over longer planning
periods because limited road management budgets may not permit working on all candidate sections at
once. Therefore, road managers have to carefully develop intervention decision models that optimise
travel and agency (social) costs while ensuring user safety. Intervention decisions for a few sections may
be easily determined; however, as the number of sections increases, arriving at an optimum solution
becomes computationally more cumbersome.

Effective and efficient road condition and capacity improvement decisions are important to ensure
smooth movement. Chandra (2004) elaborated the effect of road condition on capacity and travel cost
with condition degenaration leading to capacity reduction and travel cost increase. The Bureau of Public
Roads (BPR 1964) function modeling the exponential relationship between travel time and traffic volume:
capacity ratio was conveniently modified by Obunguta et al. (2022) to incorporate a condition term to
model the joint condition deterioration and congestion effects on travel time. Condition improvement
costs less than capacity increase because the latter involves new pavement construction. Higher travel

speeds are achievable on good roads which in turn increases flow rates and road capacity (Chandra 2004).
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However, road width expansions significantly increase capacity due to the creation of additional lanes,
unclogging major road network bottlenecks resulting in greater travel time reduction compared to
condition improvement. Chandra and Kumar (2003) empirically showed an increasing linear relationship
between capacity and carriageway width for Indian roads attributable to the greater freedom of movement
on wider roads. A trade-off exists between capacity increase and condition improvement since the former
may contribute to a bigger reduction in social costs, whereas the latter increases travel costs if neglected
due to a build up of negative effects (Obunguta et al. 2022).

For sections on the same road link/group, working on sections simultaneously may generate multiple
intervention effects due to the interaction between these sections. If a poor condition section is improved,
it not only improves traffic flow on the improved section but also on neighboring sections as traffic build
up is slowed down. Algorithms such as Monte Carlo simulations that incorporate randomness enable the
evaluation of multiple effects (Zhang et al. 2018).

Additionally, intervening on road sections at the same time and in the same workzone reduces total
agency costs as spatial and temporal consolidations generate cost savings due to usage of the same
equipment and staff, and reduced traffic interruptions as a result of fewer work zone repair instances
(Mizutani et al. 2020). Lethanh et al. (2018) determined optimal sets of work zones for large
infrastructure networks consisting of multiple objects using a linear optimization model directly linked to
a geographical information system framework. To lower social costs while maximizing cost savings, road
agencies need to work on more sections in the same work zone and at the same time by developing
optimum road section group intervention strategies.

This research extends work by Obunguta et al. (2022) to evaluate the effects of pavement deterioration
and traffic volume growth on the condition-capacity intervention choice trade-off and explores the effect
of condition improvement on capacity that had been simplified. The past model assumed independence
between condition and capacity enhancements. Additionally, the study proposes a Monte Carlo simulation

approach to improve the efficiency of optimal solution search and includes a comparison between the
3
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proposed Monte Carlo to the greedy algorithm applied in the past.

Research Objectives
The main research objective is to build a road pavement asset management model to optimally determine
intervention choice for multiple road sections concurrently over a planning horizon while incorporating

network changes at each discrete time point. Specifically, the study objectives are:

1) Develop an asset management model to determine near-optimum road intervention choices by
optimizing social costs using Monte Carlo methods over a planning horizon.

2) Compare the proposed Monte Carlo simulations approach to a greedy algorithm in arriving at a close
to globally optimal solution.

3) Evaluate traffic growth, budget increase and condition deterioration effects on the condition-capacity
intervention choice trade-off for multiple pavement sections.

4) Empirically evaluate intervention effects and show the applicability of the model in obtaining

socially optimum intervention policies on an actual road network.

To the best of the authors’ knowledge, no past study builds a model that evaluates the effects of
stochastic pavement deterioration on the intervention (capacity or condition improvement) choice for
multiple sections simultaneously for a large network over a finite planning horizon. The rest of the paper
is organized as follows. Related literature is reviewed in the next section. The following section develops
the road pavement intervention model after which an empirical application is described. Lastly, the

conclusions, future work and other possible model applications are presented.

Related Literature
Road asset management involves optimizing the usage of road assets including pavements, bridges and
tunnels to maximize their value. In the optimization, intervention planning is preceded by deterioration

estimation for which stochastic models such as the probabilistic Markov hazard model are popular due to
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pavement deterioration uncertainty (Tsuda et al. 2006, Kobayashi et al. 2010, Obunguta and Matsushima
2020). For optimum pavement intervention planning; the usage, risk, travel and agency costs may be
optimized (Kobayashi et al. 2013, Mizutani et al. 2020, Obunguta et al. 2022, Moghtadernejad et al. 2022).

Optimal solution search algorithms can be broadly divided into exact and approximate algorithms.
Exact methods include iterative approaches, whereas approximate methods include randomized, heuristic
and meta-heuristic algorithms. Approximate solution search algorithms involve randomness and arrive at
near optimal solutions in a comparatively shorter computational time compared to exact methods
(Moghtadernejad et al. 2022). Obunguta et al. (2022) applied a greedy algorithm at one time-point to
simultaneously optimize multiple road section interventions by proposing works on a given section while
fixing all other section states and generated section specific social costs. Their study then selected
candidate sections based on total social cost minimization. Marzouk and Osama (2017) developed a
fuzzy-based Monte Carlo methodology to perform integrated infrastructure management through failure
risk prediction and life cycle cost (LCC) optimization. Monte Carlo simulations were utilized to assess
road infrastructure project risk considering cost, time and quality as the main parameters in LCC analysis
(Arba et al. 2019) and to evaluate the benefits of battery swapping services in comparison to electric
vehicle charge stations (Zhang et al. 2018). Research by Zhang et al. (2018) encouraged swapping as it
was more profitable for large electric vehicle populations. Likewise, Monte Carlo simulations could be
used to evaluate the trade-off between two competing road infrastructure management alternatives such as
condition and capacity improvement. Greedy algorithms (Rinnooy Kan et al. 1993) search through the
entire sample space to evaluate all intervention possibilities locally and step-wise to determine social cost
minimization actions approximating global optima, whereas Monte Carlo simulations randomly sample
candidate road section works to generate more globally optimum interventions without having to search
the entire sample space and so could be more efficient for significantly large road networks.

Kuhn (2009) determined optimal policies for simple infrastructure management problems with value

functions for a Markov decision problem and Nozhati et al. (2019) generated near-optimal post-hazard
5



122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

actions for electrical infrastructure considering action interconnectedness and cascading effects. Both
studies applied approximate dynamic programming. Similarly, road sections are interconnected and
actions on one section may affect the travel time on sections on the same road link. Hackl et al. (2018)
employed simulated annealing (SA) to determine near-optimal transportation asset restoration programs
after destructive events such as natural disasters by minimizing direct and indirect costs. SA is a meta-
heuristic procedure that searches for the global optimum of a discrete optimization problem similar to the
physical annealing process of finding low energy states of a heated solid. Moghtadernejad et al. (2022)
applied discrete particle swarm optimization (DPSO) to generate optimal post disaster interventions for
transportation networks. DPSO searches for an optimal solution through agents (particles) mimicking a
flying swarm of birds in search for food, whose trajectories are adjusted stochastically and
deterministically. Yeo et al. (2013) looked at selecting the optimum, first or second best alternative
intervention for facilities in a planning horizon within a budget constraint.

Road travel cost is dependent on condition and traffic volume:capacity ratio as their degradation
increases congestion and travel time (Obunguta et al. 2022). Chandra (2004) showed that road capacity is
influenced by condition, geometry and driver behaviour through an empirical study that concluded that a
1,000 mm/km increase in road surface roughness resulted in the decrease of capacity by 300 Passenger
Car Units per hour (PCU/h) for two-lane Indian roads using regression analysis. If condition improves,
traffic flow increases improving road capacity, and vice versa. Ravi et al. (2017) generated adjustment
factors using regression models considering carriageway width, road condition (roughness), shoulder
condition and the effect of rise and fall as the key factors affecting Indian road capacity.

Asset management involves sequencing infrastructure interventions for optimum usage over the
lifetime of the infrastructure. Such problems may be solved through dynamic programming (Bellman
1954). Bellman developed an efficient optimum intervention sequence (policy) generation model that
does not require the cumbersome process of evaluating every possible policy. For a dynamic system,

Bellman noted that sequencing decisions could be broken down into solvable sub tasks because of the
6
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optimality principle which states that ‘an optimal policy has the property that whatever the initial state
and initial decisions are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decisions (Bellman 1954)°. This principle is applicable in finding optimal
decisions in shorter time periods and summing them up to obtain the aggregate optimum decision for the
entire time horizon.

Other works such as Martani et al. (2022) quantitatively evaluated highway designs incorporating
uncertainties in future mobility patterns including autonomous vehicles, and management flexibility using
real options. Adey et al. (2020) looked at maximizing net benefits of infrastructure asset management
through appropriate definitions of road service taking into account how relevant stakeholders including
owners, users and the public are impacted. Similarly, this study aims to maximize social benefits by

efficiently determining close-to-optimal interventions for numerous road network sections concurrently.

Road Pavement Intervention Model
Model Definition

Consider a road network with a total of K¢ road sections and each k9 = 19, ..., K¢ belongs to group g =
1, ..., G which could be road links. Each k9 has pavement condition i¥’, and traffic volume:capacity ratio
vk /ck? at time point t (t = 0,1, 2, ..., T) defined by functions f(.). The travel time t£?, condition i¥’,
traffic volume v¥?and capacity c¥’of a section k9 at every time point t vary due to deterioration and

improvement effects. The transition of condition state i*’ (i’ = 1, ..., J&%), with J}as the absorbing state,

follows the Markov deterioration process after time interval . Road managers decide the appropriate

action A (A’ = 4;,A.,4,) on a section with A, being the vector of interventions at t. Action 4;

improves condition, A, increases capacity, and A, is no action which attracts an intervention unit cost

g
CAY that increase monotonically as C4 = 0 < C4 < CAcand are discounted using a discount rate p

(Fig. 1). Let A = (ALL,,..., AX") be the string of interventions, policy, for all sections in the network
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over the entire planning horizon T. The goal is to find a set of optimum interventions A*, an optimum
policy, that minimizes total social costs Y.7_, &. Interventions for all K¢ should reduce annual social costs

& within budget limit £2,. If the entire budget is spent on improving condition, a total of N,, = n,/c4
sections will be chosen and if it is spent on enhancing capacity, a total of N, = 0, /C4c sections will be
selected. The management goal is to select ,, condition and 7, capacity improvement candidates within

0, optimally while preserving road user safety. A safety threshold is set based on condition in which
sections in the worst state have their condition improved (batch 1) after which optimization which
involves near-optimal condition and capacity enhancement (batch 2) is carried out within £, following
Obunguta et al. (2022). The social cost is defined as a summation of the travel and intervention cost and
incorporates savings accrued due to spatial and temporal consolidations by interconnecting/ grouping
sections on the same road link.

Working on sections has the effect of improving the general road link condition because a single
deteriorated section affects traffic flow on the entire road link. This phenomenon is modeled by obtaining
a representative group section with the worst condition, average congestion and average travel time. In
Fig. 2, road section k9 = 21 belonging to group g = 1 is inaccessible despite being in good condition due
to the poorer condition of neighboring k9 = 1'and k9 = 31; hence, it is of no value. To make road link
g = 1 more valuable, the worse condition neighboring sections need improvement. If road link g = 1 has
more traffic compared to g = 2, it is more optimal to repair k9 = 3! instead of k9 = 12 despite the latter

being in poorer condition than the former as repairing k9 = 3! accrues more social benefits.

Problem Description

The infrastructure planning problem posed in this paper involves determining near-optimum intervention
decisions for multiple interconnected road sections over planning horizon T. In the general framework
(Fig. 3), condition data including explanatory variables such as traffic loading are input into the Markov

deterioration model to output the expected pavement life. Intervention planning is then proposed with the
8
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greedy or Monte Carlo algorithm utilized for optimal solution search with the infrastructure state updated
at each t. The model output comprises of total social costs, optimum policy and selection of an
appropriate solution algorithm. The road network has state S; in which each section k9 has a unique state

k9 (k% vk?, ck?). Road managers have to take optimal actions for all road sections simultaneously at t.
The road system then attains a new state at each subsequent ¢ due to condition or capacity improvement,

condition deterioration and traffic volume growth. The goal of the managers is to decide actions A, for the

entire road system to improve the next state S,.,,- within 2, after every time interval r.

Travel Time Function

Travel time is important in the estimation of travel costs and intervention effects. The adopted travel time

function incorporates a condition term in the original BPR function (Obunguta et al. 2022)

o =0 {1+ au fEEDH1 + o (F @l 1)} ] €

F(iE) = { y if IRIF® < ik
‘ ik — KTy if IRIES > ik

Fok et :{0 el < ey

W [ct?) = @M 1) if W fek’) > W ey

where a; and a, = unknowns collected in parameter a; t%?° = free-flow travel time on k9 when
traveling at free-flow speed (FFS); IRI¥’ = International Roughness Index (IRI) for k9 at ¢; £(i¥’) and
(v’ /ck?y = condition and volume:capacity functions, respectively; y = index; and i*’* and (v*? /c¥?)*

= condition and volume:capacity significant values.

Pavement section capacity is affected by condition and traffic as discussed earlier. The capacity in

PCU/h is defined linearly as (Ravi et al. 2017)

T= 1) @
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where ¢, = basic two-lane road capacity; and y, = model coefficient.

Road Pavement Intervention

Condition betterment improves both condition and capacity as highlighted before due to travel time
reduction which increases traffic flow and road capacity. Capacity improvements were assumed to
improve only the road capacity. When intervention A¥ € [A,, A;, A.] is performed, the condition and

capacity improve based on

it —v
{ tkg 19 if Ajonkd att
.kg_zct :f(lt _V) 3
it :
9 otherwise
Ct
k9 . g
ok _ {mct if A.onk9att @
‘ ck? otherwise

where m = percentage capacity increase; and V = condition improvement.

Markov Transition Process
The stochastic Markov deterioration model is suitable to estimate future road condition because it is

probabilistic and appropriately models uncertain pavement deterioration processes. The Markov
Transition Probability (MTP) from condition state h(t) = i¥’ observed at discrete time ¢ to condition
state h(t + r) = j&7, at a future time ¢ 4 r assuming no repair is (Madanat 1993 and Tsuda et al. 2006)

J
0 if A €[A,A]

. g
T 9 if AR = 4,
t Jt

Prob[h(t + 1) = j [h(6) = i, 4E] = ®)

The MTP from i¥? to j¥° is explicitly expressed as a function of hazard rates (Tsuda et al. 2006)

10
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]t k-1

Tk K = Z 1_[ 0 —ek 1_[ 9m+1 5 &P (=0 (6

k9

K <k<m<jk

where 6 ;s = hazard rate; and k and 71 = indices.
t

For a given set (i¥’ = 1, ..., /&%), the MTP matrix IT can be defined using transition probabilities between

(i%°, j%%Y pairs.

Ttll T[ljgcg
n=|: - : )
i

Because II follows Markov process properties and due to the nature of pavement deterioration, all the
conditions below must be met. The first ensures non-negativity, the second specifies no transition to better

state for no repair and the third ensures all probabilities sum to 1.

T[.kg k9 =0

g
nkg]kg = 0 (when i¥? > jk)
]t
Ty 9 =1
Zjl‘gzl lgc ]g(

The Markov transition from t to t + r depends only on h(t) and not on earlier history (is memoryless).

(8)

To predict future pavement condition, MTP at t + r is

nr) =1 €))

To ensure non-negative hazard rates and subsequently expected life expectancies, the hazard rate for each

k9 and i’g‘g is expressed in exponential form
0% kg = exp(x* ﬁ k9 ) (10)
@ =1,...,7K -1

11
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where Bixs = (Bys ;s Bixa,,) = row vector of unknown parameters with symbol [] signifying the
t t t
transpose; and x*’ = row vector of explanatory variables.

The parameters can be determined by expressing the log-likelihood function

k9 _ k9
Jt 1 k9

Jt KG
In[L(B)] = In 1—[ 1—[ 1_[ {0 o (74, 7 /3)}64‘“".1"?" 1)

k9 _ . k9 _.k9 K9=19
g =1j =it

g g
JE -1 Jf KS
k9 ~k9 —k9I
= 0 g gln [7'[. g .k9\T X"
Z Z Z ik jk i (7, %" B)

k9 _ ., :k9_.k9 k9=19
it =1 jf =if” k=1

k9 _ { 1 when h(t) = i{‘g and h(t+71) = jfg
0

k9 .k9 .
e Jt otherwise

where 61,’5;’; i = dummy variable; and the symbol [] denotes a measured quantity.
t Jt

The B ko parameters are obtained by maximising the log-likelihood using iterative methods.
t

dln[L(B)]
-5 o =0 (12)

=10 -1,m=1,..,M)
The optimal 8 can be obtained through approximating optimality using Newton’s method (Tsuda et al.
2006) or Bayesian methods such as Markov Chain Monte Carlo (MCMC) using the Metropolis-Hastings

(MH) algorithm (Kobayashi et al. 2010). The MCMC method randomly samples B xg from a probability
t

distribution using the MH algorithm until equilibrium where the Markov chain converges.

The life expectancy (RMDl,’;‘Z) in i’ for k9 is obtained as the inverse of the hazard rate (Lancaster 1990)
t
ko _ 1
RMDjyo =37 (13)
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The average life expectancy ETX kg {‘g =2, .., {‘g) is obtained by summing up life expectancies from

Y =1to
it
k9 _ 1
Eljgo = 0% o
=y it

The estimated MTPs and life expectancies can be used to predict future condition j%’as i*’transitions to
k9 4 1 at the end of pavement life.
Social Cost Optimization

The social cost &;:(A;) at time ¢, also simply represented as &, is presented as a summation of travel and

intervention cost. Assuming repair was done once a year

G K9
g
£ = 2(1 + )7 (kv + ) + z z ak? c4f (15)
g=1 k9=19 At
where w = unit travel time monetary value; rtW = average travel time on k9sections in g; v? = average

.. K9 . . i :
volume on k9sections in g; CAt = unit cost of A¥’; ak’ = section area improved; and p = discount rate.

The objective is to minimize the total social costs Y.7_, &, over planning horizon T. The optimum set of

actions, policy, can be obtained by optimizing

. arg min
A th (16)
Subject to
AerT (17)
G K9
K9 Ak
ag C% € vt (18)
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where T' = set of all feasible actions; and 2, = budget limit.

Solution Algorithms

Greedy Algorithm

The optimal solution for the above sequential optimization problem can be determined by obtaining the
social costs for all possibilities and then using a greedy algorithm to select interventions with the biggest
social cost reduction first (Fig. 4). The greedy algorithm searches for a globally optimal solution locally
and step-wise. When one section intervention is proposed, the state of all other sections is fixed and total
social costs at t estimated. This proposal step is done for all sections considering all possible interventions
after which candidates are selected using a social cost minimization greedy algorithm with steps:

Step 1: Propose A4;, A and A, for each k9 at every t and fix the state s¥° of all other sections.

Step 2: Estimate social costs &,(AX") each time an action is proposed.

Step 3: From all &,(4%%) estimates, determine the social cost reduction A &,(A%") by subtracting &,(A%")

from previous social cost &;_,-.

Step 4: Use a greedy algorithm to select candidates with the biggest A &,(A%") and update .
Step 5: Lastly, estimate the total social costs Y.I_,¢&, that include spatial-temporal consolidations,
determine final state S and optimum policy A*.

The solution to this problem is quite complex and the evaluation of all possible actions is inefficient.
For a network consisting of 2,000 road sections with three interventions over a 15 year planning period,
there are 90,000 possible interventions in the first year, then 84,000 in the second year and so on. This
becomes cumbersome if inputs including number of elements, actions and length of the analysis period
are increased. Methods that incorporate sampling such as Monte Carlo simulations may be more efficient.
Monte Carlo Algorithm
The more efficient Monte Carlo simulations approach involves randomly sampling interventions A;

without having to scan through the entire sample space. The algorithm applies Bellman’s principle of
14
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optimality by determining optimal annual interventions and then summing up to generate total optimal

interventions for the entire planning horizon.

Firstly, the optimum intervention in the initial year

« _argmin
Ay € Jo(A¢=o)

where the cost-to-go function J, is defined as

in

m
]O(At=0) = Ay, ..., Ar ¢t

o~
IIMH
o

Next, the optimum intervention after the first year

. _ arg min X
A, € ?4 1(A¢=0", A1)
1

where

X min
]1(At=0 :Al) = A JAp th

1y vee
t=0

Following the above procedure incrementally T times, the optimum intervention A;" at T is

. _argmin Ak
AT € ‘?4 T(Atzo FA]_ ) "'FAT)
T
where
. T
. ok min
]T(Atzo PA1 ) ---;AT) = A ZEt
T
t=0
with

Mm=ia
t=0

(19)

(20)

(21

The optimum policy A* over T can then be determined as the combination of all the optimum solutions to

the annual sub problems.

A* = (Atzo*’Al*’ ...,AT*)

(22)
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The Monte Carlo solution steps are detailed in Fig. 5.
Empirical Application

Model Inputs
The road pavement intervention model was empirically applied to Uganda’s surveyed national road

network. Obunguta et al. (2022) obtained a; and a, as 0.3331 and 0.3481, respectively with n fixed to 1

as the best loss minimizing result; and the significant values i*’* and (v¥? /c*?)* were fixed at 4.00
mm/m IRI and 0.5, respectively for Ugandan national roads. This study applied Ugandan national road
life expectancies for 1,993 sample 1 km road sections shown in Table 7 in the Appendix (Obunguta and
Matsushima 2020). The estimated benchmark life expectancy was 10.69 years for the sampled roads with
IRI (in mm/m) discretized as 1. Good (0 — 3.50), 2. Fair (3.51 — 5.00), 3. Poor (5.01 — 6.50), and 4. Bad (>
6.50) according to the Ministry of Works and Transport (MoWT 2017). Based on Obunguta et al.’s (2022)
evidence-based study, Ugandan road sections were categorized as non-congested (NC), moderately

congested (MC), congested (CO) and heavily congested (HC) as shown in Table 1.

The costs C4i and C4< were set to US$280,000 per km (here after $ is used) and $1,652,000 per km,
respectively; variable w was set to $34.56/PCU/h, and the initial annual budget was fixed at $75.06
million following Obunguta et al. (2022). According to traffic levels measured in PCU/h in 2017 and
2018, the estimated traffic growth rate fluctuated with traffic increasing, decreasing, or remaining
stagnant on a given route (see Table 7 in the Appendix). In this study application, the traffic growth rate
was set to 0.1% to minimize A, selection bias. The free flow travel time (FFT) was assumed to be the
minimum achievable within a given road group because this may approximate free flow conditions. The
budget was considered to increase by 20% each year to create more optimization space by increasing the
candidate pool and a 10% discount rate was considered (Bank of Uganda 2018). Following Ravi et al.

(2017), the parameters c, and y, were set to 2,956 and 199, for two-lane roads and 5,082 and 275, for
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four-lane roads, respectively, assuming similarity between Indian and Ugandan roads. If a section
underwent condition improvement, the condition improved to good with IRI randomly sampled assuming
a uniform distribution in the condition state IRI range. Capacity was assumed to double if increased. In
case of no action, the condition state deteriorated based on life expectancy and the section attained a
randomly sampled IRI in the next state assuming a uniform distribution. Section volume:capacity ratio
changed according to condition change and traffic volume growth rates. The greedy algorithm searched
through the entire search space, whereas the Monte Carlo algorithm sampled N candidates in worse state.
Both algorithms were run in Python 3.10.9 using a computer with processor: 13th Gen Intel(R) Core(TM)

19-13900K CPU @ 3.00 GHz, memory (RAM): 64.0 GB and operating system: Windows 11 Pro (64-bit).

Model Results

Estimated Social Costs

The Table 2 and Table 3 show results of the estimated social costs; annual undiscounted and aggregate
discounted, respectively; using the greedy and Monte Carlo algorithm with traffic growth fixed or
considered for a 15 year planning horizon. For the Monte Carlo algorithm, 10 and 1 iteration were set for
computational reasons. With traffic growth fixed, estimated annual social costs decreased for both
algorithms due to social cost optimization and previous work effects. The Monte Carlo simulation with
one iteration generated larger social costs in comparison to the greedy algorithm because of fewer optimal
solution search instances. However, the greedy algorithm was suboptimal and resulted in larger social
costs compared to the Monte Carlo simulation approach with 10 iterations. This showed the efficiency of
Monte Carlo methods in arriving at more optimal solutions considering more iterations despite this
requiring a higher computational time cost (Table 4). The Monte Carlo algorithm was extensive and
robust in its optimal solution search with higher exploration abilities and incorporated multiple
intervention effects as it proposed interventions for several road sections simultaneously and randomly.

On the other hand, the greedy algorithm was myopic and restricted as it proposed intervention for a given
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section while fixing the states of other sections which limited the evaluation of multiple intervention work
effects concurrently. The greedy algorithm produced locally optimal choices step-wise that did not
approximate global optima.

The change in social costs for either algorithm is graphically shown in Fig. 6 considering fixed traffic.
As expected, the agency costs were lower (less than 2% of total social costs) compared to travel costs. To
show the impact of intervention works, undiscounted social costs without the influence of discount factors
were applied. The fluctuation in social costs between the initial and third year was due to model
adjustments as capacity was defined as a function of condition and because of randomness in
determination of condition and volume: capacity ratio after intervention. The greedy algorithm (Fig. 6 a)
showed a general reduction in social costs with steeper reductions in the third and eleventh year after
which the costs stagnated. This stagnation was probably due to the algorithm getting trapped in local
optima as mentioned above. The Monte Carlo simulations approach (Fig. 6 b) achieved a huge reduction
in social costs in the third year after which the social costs gradually reduced over time. This result shows
that timely interventions for vital sections optimally selected unblocks critical bottlenecks in the road
network that lowers total social costs even with limited budgets, which highlights the importance of
timely and decisive network interventions before the build up of negative effects.

The Appendix shows how the incorporation of multiple interventions for group g = 1 by the random
Monte Carlo algorithm makes it superior to the greedy algorithm. The Monte Carlo algorithm selected
vital combinations of condition or capacity improvement works each year that unclogged road network
bottlenecks unlike the greedy algorithm that deferred condition and capacity interventions to the 11%" and
7" to 9™ year, respectively (Table 8 and Table 9 in the Appendix). It should be noted that, the Monte
Carlo methods were unstable especially for much fewer iterations compared to the greedy algorithm. This
instability is attributable to the randomness of Monte Carlo simulations.

Similar results were shown considering traffic growth, however, the total social costs exponentially

increased due to the enormous increase in travel costs. The enormous social costs were due to the fixed
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network length and limited budget assumptions. As a result, with traffic growth, the social costs
exponentially increased due to larger section volume: capacity ratios. Additionally, the limited budget did
not permit working on all critical sections hence the joint negative effects of higher volume: capacity and
condition for many critical sections not intervened on further increased the social costs exponentially. In
future, the case of network length extension through the construction of entirely new routes could be
studied.

Algorithm efficiency was examined through computational time comparison with one iteration set for
the Monte Carlo algorithm as computational costs increase with increase in iterations despite the greater
possibility of generating more optimal solutions (Table 4). The greedy algorithm needed about 24 minutes,
whereas Monte Carlo simulations required about 11 minutes (53.38% shorter) for a single iteration for a
15 year planning horizon. The Monte Carlo algorithm didn’t have to search through the entire sample
space as probable candidates were randomly sampled in a more defined sample space which optimized
computational time. However, the program run time was about an hour longer when 10 iterations were set
for the Monte Carlo simulations compared to the greedy algorithm. The greedy algorithm presented a
locally optimal solution in a relatively shorter time despite this not closely approximating the globally
optimal solution because it was stuck in local optima. As iterations increased, optimal solution search
instances for the Monte Carlo algorithm were increased with higher probability of lowering social costs to

generate a more stable true global optima; however, this required a larger computational cost.

Section Intervention

The Table 5 and Table 6 show the number of candidates selected for intervention by the greedy and
Monte Carlo algorithm for a 15 year planning horizon with traffic growth rate fixed and considered,
respectively. The first batch contains candidates in terminal state that need improvement to ensure road
user safety and the second batch contains sections selected for condition and or capacity enhancement

through social cost optimization. For both algorithms, batch 1 decreased after the first year due to
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significant improvement of sections in the worst to the best state and the subsequent annual works that
prevented section deterioration preserving road safety. For batch 2, heavily deteriorated sections were
selected for condition improvement and highly trafficked sections were prioritized for capacity increase to
optimize social costs. The greedy algorithm was suboptimal to the Monte Carlo simulations as the greedy
algorithm was trapped in local optima. The increase in batch 2 over the years was due to budget increment.

The trade-off between condition improvement and capacity increase was shown by the variation in the
number of candidates each year and the 1, /n4 ratio. Ifn,,/n,_ is greater than 1, more sections were
selected for condition improvement than for capacity increase, and vice versa. The greedy algorithm
selected more sections for condition improvement in batch 2 in year 2 and 11 due to their deteriorated
state, whereas capacity enhancements optimized social costs in the other years considering fixed traffic.
The increase in condition improvement candidates in the eleventh year was due to a build up of
deteriorated sections not selected in earlier years probably due to the confinement of the greedy algorithm
in local optima. With traffic growth, the condition improvement peak in the eleventh year disappeared as
it was more optimal to select sections for capacity increase because of relatively higher traffic levels. For
the Monte Carlo simulations, candidate selection for either improvement showed a gradual 14, /7,4,
decrease and the advantage of timely interventions on critical sections that lower social costs while
maintaining road safety. This result demonstrates the supremacy of the Monte Carlo algorithm in

generating more optimal interventions even within limited budgets.

Condition and Congestion of Network Sections

Network section condition over the fifteen-year planning period was obtained comparing the greedy and
Monte Carlo algorithm with traffic growth fixed or considered (Fig. 7). For both algorithms, the entire
network condition improved to good at the end of the planning horizon save for the greedy algorithm with
traffic growth. The greedy algorithm generated poorer condition as 29.25% of the network stayed in fair

to bad condition until the tenth year with traffic fixed (Fig. 7 al) and 29.35% of the network was in fair to
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bad condition until the end of the planning horizon with traffic considered (Fig. 7 a2). The latter case
showed a stagnating trend which suggested that better network condition was unachievable in the
foreseeable future unless the budget was significantly increased to accommodate more works including
condition improvement. On the other hand, the Monte Carlo algorithm resulted in a gradual improvement
in road pavement condition in that by the seventh year, 90% of the network had achieved good state
regardless of traffic growth (Fig. 7 b1, b2). This result shows the superiority of the Monte Carlo algorithm
in determining intervention works that better road condition and safety despite incurring a higher
computational cost compared to the myopic greedy algorithm whose optimal solution search gets trapped
in local optima.

Also, network section congestion over the fifteen-year period applying either algorithm was estimated
with traffic growth fixed or considered (Fig. 8). The initial drop in moderately congested sections was due
to condition deterioration. The gradual reduction in congestion thereafter is attributable to capacity
increase due to the combined effects of capacity and condition improvement. With traffic fixed, both
algorithms achieved about 68% of the network in moderate and non-congested state at the end of the
planning period (Fig. 8 al, bl). However, with traffic growth, 40.44% and 33.86% of the network
degenerated to congested and heavily congested state for the greedy (Fig. 8 a2) and Monte Carlo
algorithm (Fig. 8 b2), respectively. This 6.58% improvement in network congestion by the Monte Carlo
algorithm showed its superiority in optimal solution search with positive cascading impacts of timely

condition improvement resulting in road capacity gains.

Conclusions

This study built a model to generate near-optimal intervention decisions for a road infrastructure group
while incorporating network state variability over time. The proposed model incorporated road
infrastructure and traffic conditions through a modified BPR travel time function to optimally decide

intervention decisions for an infrastructure group over a planning horizon using Monte Carlo simulations.
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The model included the variability of infrastructure and traffic conditions over time through condition
deterioration estimation using the Markov hazard model, traffic growth rate and intervention effects. The
modified BPR function enabled the evaluation of the trade-off of intervention works; i.e., capacity
increase and condition improvement for multiple road sections within a planning horizon, and the
generation of more optimal interventions. The evaluation of capacity and condition improvement trade-off
is an important tool for road managers due to competing management decisions and budget limitations.
The convenience of the model in generating close-to-optimal intervention decisions while evaluating the
trade-off between competing alternatives and the incorporation of infrastructure and traffic condition
variability represented real situations which makes the model highly applicable in the real world. The
model betterment using Monte Carlo methods permitted the evaluation of competing alternative
interventions effortlessly with the modeler having autonomy to decide model accuracy levels, robustness
and computational cost through setting appropriate iterations and solution space size.

The empirical results showed the superiority of the Monte Carlo in generating much lower social costs
due to the incorporation of multiple intervention effects compared to the greedy algorithm despite the
Monte Carlo methods incurring a higher computational cost for more iterations. The Monte Carlo
simulations approach supremacy was also shown by better network condition and congestion state. The
results also showed the importance of traffic level in making road infrastructure decisions which
highlights the need for regulators to control traffic growth rates to avoid the exponential increase in social
costs (negative effects) as a result of more traffic congestion.

The Monte Carlo algorithm’s solution search could be improved by defining a better search space and
increasing the number of iterations. Model outputs may change if the exogeneous parameters are adjusted;
therefore, the accuracy of model inputs should be carefully ensured through detailed historical data
analysis and probably expert recommendations.

This proposed decision model can be applied to other civil infrastructures including bridges, tunnels

and water distribution systems to evaluate the trade-off between multiple interventions and in other fields
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such as health that require the generation of optimal choices for competing treatments over a given time
horizon. In future, it will be interesting to investigate and improve the instability of Monte Carlo methods

for fewer iterations and evaluate the case of construction of entirely new network routes.
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Notation

The following symbols are used in this paper:
g = road group

k9 =sectionin g

t = time point

r = time interval

T = analysis period

X% = travel time on k9 at ¢
i’ = condition of k9 at ¢

vk = traffic volume on k9 at ¢
¢k’ = capacity of k9 at t
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Jk? = absorbing state at any ¢
AX? = intervention on k9 at ¢t

A, = vector of interventions at t

¢4 = unit cost of intervention on k9 at ¢

al’ = area of k9 improved at t

p = discount rate

A = string of all interventions over T

A" = optimum set of interventions/ policy over T

14, = Number of candidates for condition improvement

14, = number of candidates for capacity increase
. =social costat t

0, = budget limit at ¢

S: = road network state at t

sk’ = state of k9 at t

7*%0 = free-flow travel time

a, = condition parameter

a, = volume: capacity parameter

IRI}F = IRl of k9 at t

f () =function

J¢(.) = cost-to-go function

k9 k9 = Markov transition probability
t Jt
Hi'ifq = hazard rate for k9 in i’

t

I1 = Markov transition probability matrix
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RMDL,’fq = life expectancy for k9 in i’
t

z = iterations

w = monetary value of one unit of travel time
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Table 1. Volume:capacity grouping for Ugandan roads.

Category vk9 ckd
NC 0-0.50
MC 0.51-1.00
CO 1.01-1.50
HC > 1.50
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618

Table 2. Estimated undiscounted annual social costs considering the greedy and Monte Carlo algorithm.

t

Social cost (millions of $)

with traffic growth with traffic fixed

Greedy Monte Greedy Monte
0 4.6350 x 10*  4.6350 x 10*  4.6350 x 10*  4.6350 x 10*
1 45682 x 10*  4.7740 x 10 4.1846 x 10*  4.2045 x 10*
2 3.8180 x 10*  5.8594 x 10*  5.0201 x 10*  4.9777 x 10*
3 3.6820 x 10*  4.5488 x 10*  4.1855 x 10*  1.4346 x 10*
4 3.5677 x 10*  4.3566 x 10*  4.0306 x 10*  1.2201 x 10*
5 3.5969 x 10*  3.7274 x 10*  3.8845x 10*  9.2666 x 10°
6 42842 x 10*  3.7293 x 10*  3.7900 x 10*  8.6321 x 10°
7 9.3505 x 10*  4.1063 x 10*  3.7038 x 10*  8.6007 x 10°
8 44738 x 10°  7.9496 x 10*  3.6218 x 10*  9.2609 x 10°
9 3.0688 x 106 4.2234 x 10°  3.5838 x 10*  8.5934 x 10°
10 2.2363x 10" 2.9465x10°  3.5199 x 10*  9.2461 x 10°
11 1.6716 x 108 2.1454 x 10"  2.2767 x 10* 85721 x 10°
12 1.2018 x 10°  15712x10°  2.2723x10*  9.2309 x 10°
13 8.9991 x 10°  1.1516 x 10° 22879 x 10*  8.5408 x 10°
14 6.4644 x 10'° 8.4412x10°  2.2668 x 10*  9.1836 x 10°
15 4.8194 x 10 6.1876 x 10  2.2776 x 10*  8.5066 x 10°
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619 Table 3. Estimated total discounted social costs considering the greedy and Monte Carlo algorithm.

Total social cost (millions of $)

with traffic growth with traffic fixed
Greedy Monte Monte Greedy Monte Monte
(10 iterations) (1 iteration) (10 iterations) (1 iteration)

1.3545 x 101 1.7428 x 101°  1.9483 x 10*° 3.2831x 10°  1.8427 x 10°  3.8871 x 10°

620
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622

Table 4. Algorithm computation time.

computation time (s) %

Greedy Monte Monte reduction

(10 iterations) (1 iteration) in time

1,399.8678 5,118.0281 652.6725 53.38
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623 Table 5. Number of sections selected for intervention with traffic fixed.

t Greedy Monte

*Batchl  **Batch2 n,/n, Batchl Batch 2 Na;/Ma,

A; A A, A; 4; A
1 61 10 23 3.09 61 52 16 7.06
2 3 312 0 infinite 3 124 32 3.97
3 0 3 63 0.05 0 121 44 2.75
4 0 4 72 0.06 0 115 54 2.13
5 0 4 81 0.05 0 95 66 1.44
6 0 5 90 0.06 0 106 73 1.45
7 0 5 99 0.05 0 83 86 0.97
8 0 6 108 0.06 0 79 96 0.82
9 0 6 117 0.05 0 51 110 0.46
10 0 7 126 0.06 0 44 120 0.37
11 0 583 37 15.76 0 33 131 0.25
12 0 0 145 0.00 0 25 142 0.18
13 0 1 154 0.01 0 11 153 0.07
14 0 0 163 0.00 0 6 163 0.04
15 0 1 172 0.01 0 0 173 0.00

624 *Batch 1: Sections in the absorbing state worked on for safety reasons.

625 **Batch 2: Candidate sections selected through optimization.
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Table 6. Number of sections selected for intervention with traffic growth.

t Greedy Monte
*Batchl  **Batch2 n,/n, Batchl Batch 2 Na;/Ma,

A; A, A, A; 4, A
1 61 10 23 3.09 61 70 13 10.08
2 3 312 0 infinite 3 148 28 5.39
3 0 3 63 0.05 0 154 38 4.05
4 0 4 72 0.06 0 113 54 2.09
5 0 4 81 0.05 0 105 64 1.64
6 0 5 90 0.06 0 91 76 1.20
7 0 5 99 0.05 0 79 87 0.91
8 0 6 108 0.06 0 62 99 0.63
9 0 0 118 0.00 0 49 110 0.45
10 0 1 127 0.01 0 27 123 0.22
11 0 1 136 0.01 0 15 134 0.11
12 0 2 145 0.01 0 15 143 0.10
13 0 2 154 0.01 0 9 153 0.06
14 0 3 163 0.02 0 8 163 0.05
15 0 3 172 0.02 0 0 173 0.00
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Appendix

The Table 7 shows a summary of Ugandan national roads data from Obunguta and Matsushima (2020),

Table 8 and Table 9 show the selection of candidates from group A001 (g = 1) for intervention using a

greedy and Monte Carlo algorithm; respectively, with traffic fixed.

Table 7. Summary of Ugandan national roads data (Obunguta and Matsushima 2020).

g Road No. of FFT(s) Average traffic Traffic Life expectancy (years)
group  sections (‘000 PCU/h)  growth  Condition state

2017 2018 rate (%) 1 2 3 Total
1 A001 87 54.55 5.46 4.92 -9.81 320 3.02 441 10.64
2 A002 355 46.15 2.25 1.72 -23.34 3.64 260 335 9.60
3 A003 11 67.92 8.03 5.48 -31.66 3.09 107 220 6.36
4 A004 77 52.17 1.34 1.35 0.79 409 3.81 418 12.08
5 A005 94 46.75 0.75 0.89 18.78 422 391 453 12.66
6 A006 348 49.32 1.11 1.31 17.90 395 340 392 11.27
7 A007 93 50.70 1.15 1.15 0.00 401 342 4.02 1145
8 A008 235 48.65 0.56 0.82 45.57 396 356 386 11.38
9 B100 23 64.29 2.90 3.01 3.91 298 2.05 204 7.07
10 B103 9 54.55 0.28 1.04 276.77 344 299 290 933
11 B150 77 50.70 0.40 0.47 19.30 419 401 437 1257
12 B151 41 52.94 0.27 0.58 117.93 323 269 253 8.6
13 B152 49 51.43 0.27 0.41 53.48 384 355 373 11.13
14 B153 7 52.94 0.27 0.46 73.02 361 320 321 10.02
15 B200 41 51.43 0.24 0.24 0.00 420 4.04 437 1261
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16 B300 63 50.70  0.12 0.16 32.71 414 399 428 1241
17 B303 8 120.00 0.81 0.73 -9.39 249 173 129 551
18 B307 55 53.73  0.64 0.64 0.75 344 287 290 921
19 B308 17 52.17  0.87 0.87 0.00 3.69 312 344 1025
20 C004 19 6545 0.87 0.47 -45.20 312 233 222 167
21 Ci157 3 189.47 0.47 0.47 0.00 236 155 112 503
22 C158 1 103.40 0.47 0.47 0.00 237 156 114 5.06
23 Cl170 2 87.80  0.47 0.47 0.00 286 2.13 180 6.80
24 C198 3 102.86 0.47 0.47 0.00 266 190 152 6.08
25 C199 1 356.16 0.47 0.47 0.00 228 147 104 479
26 C210 1 189.47 0.20 0.20 0.00 240 163 117 519
27 C232 1 281.65 0.15 0.15 0.00 234 157 110 501
28 C308 11 5455 011 0.11 0.00 393 369 382 1144
29 C309 7 7200 011 0.11 0.00 316 258 229 8.03
30 C350 52 56.25  0.46 0.55 21.28 3.68 327 329 1024
31 C3%4 2 61.02 0.21 0.21 0.00 346 298 285 9.28
32 C35% 14 56.25 0.22 0.36 65.15 371 336 336 1044
33 C410 17 46.75  0.31 0.36 15.08 35 316 323 9.95
34 C412 10 55.38  0.07 0.21 212.69 379 350 355 1084
35 C420 2 180.00 0.07 0.07 0.00 243 167 120 530
36 C457 4 60.00 0.07 0.07 0.00 327 277 256 861
37 C511 9 53.73  0.13 0.13 0.00 346 3.07 3.02 955
38 C517 1 137.52 0.13 0.13 0.00 243 167 120 530
39 C540 63 53.73  0.38 0.38 0.00 3.61 322 321 10.03
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635 Table 8. Selection of candidates from group A001 (g = 1) for intervention using a greedy algorithm.

k9 Greedy (with traffic fixed)
Year

1 2 3 4 5 6 7 8 9 10 |11 |12 |13 |14 |15
1! 00/00]00/00]0000]00/01]00/00]0070,01]0,0/0,010,0
2! 00/001]00/|00]0000]00/01]001/00]101/0,0 (0,0 /0,0 |0,0
3! 00/00]00/00]0000]00/00]00/00]10/00]0,0/0,0]0,0
4t 10/00(00]00(00]0001]001]00/001]00/00 |00 /0,0 |00
5! 10/00/|00)00|00]00]01]01]00/00]00]001]000,010,0
6! 101]00(00]00(00]00]00]001]00/001]00/00 |00 /00|00
7! 00/00]00/00]0000]01/00]00/00]10/0,0]0,0/0,0]0,0
gt 00/00]00/00]0000]00/01]00/00]007/0,01]0,0/0,010,0
o! 0010010000 1]00/001]00/001]001/001]00/00 (00|00 |00
101 00/00]00/00]0000]01/00]001/001]001/0,01]0,0/0,01]0,0
111 00/00]00/|00]0000]01/00]01/00]00/00 (00|00 |0,0
121 00/00]00/00]0000]01/00]01/00]0010,01(0,0/0,010,0
13! 00001000000 00]01/00]01/001]00/00 (00|00 |0,0
141 00/001]00/|00]0000]01/00]01/00]00/00 (00|00 |0,0
151 00/00]00/00]0000]01/00]01/00]001/0,01(0,0/0,010,0
161 00/001]00/|00]00/00]01/001]00/001]00/00 (00|00 |0,0
17* 00/00]00/00]0000]01/01]001/00]00/001]0,0/0,010,0
18! 00/001]00/|00]0000]00/01]01/00]00/00 (00|00 |0,0
191 00/00]00/00]0000]00/00]00/00]10/0,01]0,0/0,010,0
20! 0000100000000 ]00/01]00/00]100,0 (0,0 0,0 |0,0
211 0000100 /|00]00/00]00/01]00/00|10/0,0 (0,0 0,0 |0,0
221 00/001]00/00]0000]00/00]00/00]10/0,01]0,0/0,010,0
23! 0000100000000 ]01/00]001/00]10/0,0 (0,0 0,0 |0,0
241 10/00/|00)00(00]00]01]00]01/00]00]001]00/0,010,0
25! 00/00]00/|00]00/00]01/00]01 /001000000 |00 0,0
261 00/00]00/00]0000]01/00]01/00]007/0,01]0,0/0,010,0
271 00/00]00/00]0000]01/00]01/00]001/0,01(0,0/0,010,0
28! 00/00]00/|00]00/00]01/00]01/001]00/00 (00|00 |0,0
29! 00/00]00/00]0000]01/00]001/001]007/0,01(0,0/0,010,0
30! 00/00]00/|00]0000]01/01]001/00]00/00 |00 |00 0,0
31t 00/00]00/00]0000]00/00]00/001]007/001]0,0/0,010,0
32! 0000100000000 ]01/00]0000]10/0,0 (00|00 |0,0
33! 0010010000 1]00/001]00/001]001/001]00/00|00 /0,0 |0,0
341 00/001]00/00]0000]01/00]00/00]10/0,0(0,00,010,0
35! 101]00/|00]00(00]00]00|01]00/001]00/00]00/0,0 0,0
36! 00/001]00/00]0000]00/01]00/00]10/0,0 (0,0 /0,010,0
37t 0010010000 1]00/001]00/001]0000(10/0,0 (00|00 |0,0
38! 00/001]00/00]0000]01/00]00/00]10/0,0(0,0/0,010,0
39! 00/001]00/|00]0000]01/00]01/001]00/00]00 /0,0 |0,0
40! 0000100 /|00]0000]01/00]01/00]10/0,0 (0,000 |0,0
41% 00001000000 00]01/00]01 /0010010000 /0,010,0
421 000000000000 ]01/00]01/00]00/00 (0000 |0,0




43! 001(00/|001]00001(00/021(00001]00 0010000100 ]0,0
441 00 (000000000001 0000001000 (00|00 |00
45! 001(00(001}00(00/(00/01(00/011]00 /0010000100 ]0,0
46! 000000000000 (0,1|00(00|00(00 000000 |00
47! 001(00|001}00|00/(00/011(01/001]00 0010000100 ]0,0
48! 000000000000 (000001000000 (00|00 |00
49! 000000000000 (00|00 (0000100000 |00 |00
50! 001(00(|001]00/001(00/01(00 0010021010000 1|00 0,0
51! 1000)0000)001)001)021]001)0,1]0,0)0,0]0,0]0,0]0,01]0,0
521 100000100 001(00/011]00/001]00 /0010000 |00 ]0,0
53! 000000000000 (0101 (000000000000 |00
54! 001]00/001]00|001(00/001(01001]00 0010000100 ]0,0
55! 00 (000000000000 (0100001000 (00|00 |00
561 00 (000000000000 (01 (00|00 (1000 (00|00 (0,0
571 001]00(001]00001(00001(01001]002101]00 00|00 ]0,0
581 00 (000000000000 (01 (00|00 (1000 (00|00 (0,0
59! 001(00(001]00|00/(00001(01001]002101]00 00|00 ]0,0
60! 00 (000000000000 (0100001000 (00|00 |00
61! 001(00(001]00|00/(00001(01|001]002101]00 00100 ]0,0
621 001]00001]00001(00/001(00001]002101]00 00|00 ]0,0
63! 00 (000000000001 (0000001000 (00|00 |00
64! 001(00001]00|001(00001(01/001]00 0010000100 ]0,0
65! 00 (000000000000 (01 (00001000 (00|00 |00
66! 001(00001]00|001(00001(01|001]00/2101]00 00100 ]0,0
67* 00 (000000000000 (|00 (00001000 (00|00 (0,0
68! 001(00(|001]00(001(00/021(00001]00/2101]00 00|00 ]0,0
69! 1,0(00001(00 /0010000100700 1]00/001]00 /00|00 ]0,0
70! 000000000000 (0,1(00 (00|00 (10000000 |00
711 001(00|001}00|00/(00/021(00/011]00 /0010000100 ]0,0
721 00 (000000000001 (00(021 0000000000 0,0
73! 001(00|001}00|00/(00/021(00/011]00 /001000000 ]0,0
741 00 (000000000001 (00(01 0000000000 0,0
75! 00 (000000000001 (00(021 0000000000 0,0
76! 001(00|001}00|00/(00/021(00/011]00 /0010000100 ]0,0
77t 00 (000000000001 (00(021 0000000000 0,0
78! 001(00|001]00(001(00/021(00 001000010000 |00 0,0
79! 000000000000 |01(01 (000000000000 0,0
80! 001(00|001]00|00/(0000/(01/011]00 0010000100 ]0,0
81! 001(00(001]00|001(0000/(00/011]002101]00 00100 ]0,0
82! 00 (000000000000 |00 (00|00 (1000 (00|00 (0,0
83! 001(00|001]00|00/(00021(00001]002101]00 00100 ]0,0
84! 00 (000000000001 (00(01 |00 (00000000 0,0
85! 001(00|001]00|001(00021|00001]00 0010000100 ]0,0
86! 000000000000 |01(01 (000000000000 0,0
87! 001(00|001]00 (001000010000 1]00/001]00/011]00 10,0
No. 8 0 0 0 0 0 0 0 0 0 34 |0 0 0 0
A;
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637

No.
A

0

0

0

0

0

0

51

27

28

0

0

0

1

0

0

Note: Action A,= (0,0); A; = (1,0); A, = (0,1); A; and A, = (1,1). Bold highlights sections worked on.
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638

Table 9. Selection of candidates from group A001 (g = 1) for intervention using Monte Carlo methods.

k9 Monte (with traffic fixed)
Year

1 2 3 |4 |5 6 7 8 9 10 |11 |12 |13 |14 |15
11 00(00|00|00|00]|00]00]00 0000|0000 |00]|00]00
2! 00(00]00]00|00]00]00]0000/20/00/00(00(0,0]00
3! c0(00|00|00{10|00]00]00 0000010001 |00]00
4t 10/00/00|00]00|00]00]00]00 000000000000
5! 10/00/00|00]00]|01]|00]00]0000/01 0000|0000
6! 10/00/00|00]00|00]00]00]00 000000000000
7! 00(00|00|00|00|10]00]00 0100|0000 00]00]00
8! 00(00|00|00|00]|00]00]00 0001|0001 |00]00]00
o! 00(00]00]00|00]00]00]0000/00|00]0100]0,0]00
10* 0,0 /0,0]00 |0,0/00]00 (0000000000101 00]01]0,0
11t 00(00]00]00|00]00]00]0000/00|00/00(00](00]00
12* 10,0 /0,000 (0,000,000 (01]00]00 0100100 /00]0010,0
13* |00]00]00]00]00]00]00]00]00]00]00]00]01]0,1]0,0
14* 10,01]00]00]00]00]00]00]00]00]00]00]00]00]00]00
15* 10,0 /0,000 |0,0/00]00 (000000000101 /001]000,0
16 10,0]00]00]00]00]00]00]00]00]00]00]00]00]01]0,0
17* 10,0 /0,000 |0,0/0,0]00|0,0]00]00|00]001]0000]01]0,0
18 |0,0]00]00]00]00]00]00]00]00]00]00]00]00]00]00
19* 10,0 /0,0]00 |00 /1000 (00]00]00 0000100000000
20 |/00/00/00/00/00/20/00/00/001/001/001/0,010010,010,0
21* 10,0/00/00/00/00/00/00/20/00/00/001/0,010,010,01/0,0
22! 100000000 /00[10(00/00]00 (00001000000 10,0
23 100/00/00/00/20/00/00/00/001/001/001/0,010,010,010,0
24* 100 /00(10]00 /0000000000 (0000101000000
25! 10,0/00/00/00/00/00/001/00/001/001/001/0,01/0,010,010,0
26 00 /00]00]00/00]00[00] 00000001101 00]0010,0
27t 100/00]00]00 /0000000000 (00]001]00 00100100
28 10,0/00/00/00/00/00/00/00/001/001/00/01/01/0,010,0
29' 10,0 /001]00]00 /0000000000 [00]001]0000]0010,0
30! |00/00/00/00/001/001/001/00/01/001]001/001/001]041]/00
31* 001000000 (00/00]0000/001]00 0010010000100
32t |00/00/00/00/0020/000001/0010,01/001/0010,010,0
33t |0,0/00/00/00/00/001/00/001/001001/001/001/0,010,01/0,0
34 100100000011 /00/00 0000100 |001]001]00 00100
35! 10]001]00]00]00]00]00]00]00]00/00]0000]00]00
3 |[001]00/00]00(00/00]0010]001]00 0010010000100
37* |0,0/00 /000000000000 20/001/001000,01001/00
38 001000000 (00/00]00[10/001]00 00100100 01]0,0
39! |0,0/00/00/001/001/001/001/001/001/001/001/001/001]041]/00
40 |0,0 /0,000 /00/00/001/001/001/001/001/001/120/00]041]/01
41* 1001000000 (0000000000100 |001]001]00 00100
42 |10,0/00/00/00/00/00/00/01/00/01/0010,010,010,0100
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43! 001]00/001]00/001]00/001(00 /001000010000 1]00]0,1
441 000000000000 (000000100000 (00|00 |00
45! 001]00|001]00001(00/001(01001]00/011]00 00|00 ]0,0
46! 000000000000 (000000000000 (00 |00 |00
47! 001(00(0211]00001(01001(00 001000010000 1|00 0,0
48! 000000000000 (000000000000 (00 |00 |00
49! 000000000000 (00|00 (1000000000 |00 |00
50! 00(10/|001]00/0211(00 /0010000100 /001]00 00100 ]0,0
51! 1000)0000)001)001]021]001/)0,01)0,0)0,01]0,1]0,0]0,01]0,0
521 1,0(00001(00 /0010000100700 1]00 /0010000 |00 0,0
53! 000000000000 (00|00 (000000010100 0,0
54! 001]00/001]00001(00001(00 001000010000 1]00 0,0
55! 0000|0000 000000 (100000000000 |00 |00
561 00 (000000000000 (|00 (10|00 (00|00 (00|00 0,0
571 001(00|001]00(101(00 0000001000000 00|00 ]0,0
581 000000000010 (00|00 (000000000000 |01
59! 001(10001]00 0010000000000 0010000100 ]0,0
60! 00 (000000000000 (|10 (00|00 (00|00 (00|00 0,0
61! 001]00001]00|001(0000/(00|2101]00 001000000 ]0,1
621 001(00|001]00 1010000000000 00100000000
63! 001000000000 (000000000000 (00 |00 0,0
64! 001(00|001]00|001(01001(00 001000010100 ]00]0,0
65! 1000100 00]00]001]001]0,0)0,0]0,0)0,0/]0,0]0,0]0,0]0,0
66! 001(00(|101]00 0010000000000 /0010000100 ]0,0
67* 000000001000 (00|00 (000000000000 |00
68! 001(00(101]00 0010000000000 0010000100 ]0,1
69! 1,0(00001(00 /0010000100700 1]00/001]00 /00|00 ]0,0
70! 10001)0000)00]001]021]001)001]0,1)0,0]0,0]0,0]0,01]0,0
711 001]00|001]00|001(00/00/(00001]00001]01 0100 ]0,0
721 00 (000000000000 (000000 (0000000001
73! 001]00001]00|001(00001(00001]00 /0010000100 ]0,0
741 00 (000000000000 (000000 (00010000 0,0
75! 000000000000 (00000000 (0001000001
76! 001(00(001]00|001(00/001(00 001000010000 |00 0,0
77t 00 (000000000001 (00(021 0000000000 0,0
78! 001(00(001]00|001(00/00/(00/001]00/011]01 00|00 ]0,0
79! 00 (000000000000 (|00 (00|00 (0000010100
80! 0010000100 |001(0000/(00 001000010000 |00 ]0,0
81! 001(00|001(20001(00001(01001]00/001]00 /00|00 ]0,0
82! 1000100000000 ]001]0,0/)0,0]0,0/]0,0]0,0]0,0]0,0]0,0
83! 001(00|001]00|00/(0000/(10001]0100 1000000 ]0,0
84! 000000000000 (00|00 (00|00 (00010000 0,0
85! 001(00(001]00 0010000100 001]00001]00/011]01]0,0
86! 0000|0000 |00|00|00 (|00 (00|00 (00|00 (000101
87! 001(00001]00 0010000000000 /0010000100 ]0,0
No. 10 |3 3 1 7 5 0 6 4 2 0 1 0 0 0
A;
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640  Fig. 1. Layout of pavement sections over time.
641  Fig. 2. Road sections in two road groups (links).
642  Fig. 3. General framework.

643  Fig. 4. Flow diagram of the greedy algorithm.

644  Fig. 5. Monte Carlo solution algorithm.
645  Fig. 6. Undiscounted social costs over planning horizon for greedy (a) and Monte Carlo (b) algorithm

646  with traffic fixed.
647  Fig. 7. Condition of Ugandan road network for greedy (a) and Monte Carlo (b) algorithm.

648  Fig. 8. Congestion of Ugandan road network for greedy (a) and Monte Carlo (b) algorithm.
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650 Fig. 1. Layout of pavement sections over time.
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Fig. 2. Road sections in two road groups (links).
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656

%+ Initial state S, at t = 0 with each

i LT SR SN
k9 having s§ (i ,v§ ,¢f )

|

% Propose A; if if° > i*"" and A, if
vF® JeF® > (v jekey W k9

< Otherwise Ay

4 Estimate {,(A¥") for each section k9’
given that A¥’ = A, for Vk9 # k9’

L gt
< Prioritize based on max A& (AF")

Discard A,

Budget € 02,

an intervention strategy at t

Propose AF ? for each k9 to form

l

Update §; at t after i{‘g deterioration,

vk’ growth, and i¥° and vX’ improvements

Entire horizon

NO

considered, t = T

Determine final state Sr. total social
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Fig. 4. Flow diagram of the greedy algorithm.
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Algorithm: Monte Carlo simulation
Start

g Y 9 k9 g k9 R e
Input: RMDﬁ(g, 0, s{So (17, vE", k"), FFT?, g, vrare, CA¢ and initialization
t

Step 1: Determine the initial state s[‘fo(i’(fg, v(’,‘g, c{,‘g) for each k9and calculate the
initial social cost &;_, considering g data.

Step2: Do fort =0,1,...,T

Step 3: for iterations z = 1, ..., Z, randomly sample N = (NA,» + NAc)interventions
A; and selectn = (nA'. + ’7Ac) candidates within budget 2, then estimate the social
cost &,(A;) at time point t

Step 4: The sampled interventions A, are selected if the social cost is minimized

_{At if &< §er

t ™ |otherwise go tonext z

Step 5: By optimizing the cost-to-go function J, determine A, subject to 2, and
AK€ T constraints
. _argmin
Step 6: Update the state information sk?. for each k9at time point t + 7 as follows
if" - i¥/. based on A¥’ € [A,, A;] or RMDY,
it

& Vz

g g
vE” - vk, based on growth rate v, 4,

ck® - ¢k based on A¥’ € [Ay, A1 AL
Step 7: Go to Step 2
Step 8: Propose A" for the entire planning horizon T
Output: A*, s§’ (57, vk, k"), & vt

657 End
658 Fig. 5. Monte Carlo solution algorithm.
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660 Fig. 6. Undiscounted social costs over planning horizon for greedy (a) and Monte Carlo (b) algorithm

661 with traffic fixed.
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663 Fig. 7. Condition of Ugandan road network for greedy (a) and Monte Carlo (b) algorithm.
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665 Fig. 8. Congestion of Ugandan road network for greedy (a) and Monte Carlo (b) algorithm.
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