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Abstract 19 

Road travel cost can be defined as a function of condition and volume:capacity factors. Asset managers 20 

intervene on heavily trafficked and poor condition roads based on criteria to optimize network travel and 21 

intervention (social) costs. These criteria may involve a trade-off between improving road condition or 22 

capacity. Road performance is known through periodic inspection and stochastic modeling to estimate 23 

deteriorated future condition. The predicted future condition and traffic growth rates change pavement 24 
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section intervention (capacity or condition improvement) priority over time. The optimal road 25 

intervention choice can be determined using algorithms including the greedy algorithm and Monte Carlo 26 

simulations. Greedy algorithms search through the entire sample space locally and step-wise to 27 

approximate global optima, whereas Monte Carlo simulations randomly sample candidate sections to 28 

generate more globally optimum interventions. This study proposes a road asset management model using 29 

Monte Carlo methods to optimally choose road network interventions considering condition and traffic 30 

changes over a planning horizon. The study includes an empirical application using real world data and 31 

compares the proposed Monte Carlo simulations approach to the greedy algorithm. 32 

Introduction 33 

Optimum road network intervention decisions involve choices on improving road condition and capacity 34 

to shorten travel times from origins to destinations. These decisions should be done over longer planning 35 

periods because limited road management budgets may not permit working on all candidate sections at 36 

once. Therefore, road managers have to carefully develop intervention decision models that optimise 37 

travel and agency (social) costs while ensuring user safety. Intervention decisions for a few sections may 38 

be easily determined; however, as the number of sections increases, arriving at an optimum solution 39 

becomes computationally more cumbersome. 40 

Effective and efficient road condition and capacity improvement decisions are important to ensure 41 

smooth movement. Chandra (2004) elaborated the effect of road condition on capacity and travel cost 42 

with condition degenaration leading to capacity reduction and travel cost increase. The Bureau of Public 43 

Roads (BPR 1964) function modeling the exponential relationship between travel time and traffic volume: 44 

capacity ratio was conveniently modified by Obunguta et al. (2022) to incorporate a condition term to 45 

model the joint condition deterioration and congestion effects on travel time. Condition improvement 46 

costs less than capacity increase because the latter involves new pavement construction. Higher travel 47 

speeds are achievable on good roads which in turn increases flow rates and road capacity (Chandra 2004). 48 
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However, road width expansions significantly increase capacity due to the creation of additional lanes, 49 

unclogging major road network bottlenecks resulting in greater travel time reduction compared to 50 

condition improvement. Chandra and Kumar (2003) empirically showed an increasing linear relationship 51 

between capacity and carriageway width for Indian roads attributable to the greater freedom of movement 52 

on wider roads. A trade-off exists between capacity increase and condition improvement since the former 53 

may contribute to a bigger reduction in social costs, whereas the latter increases travel costs if neglected 54 

due to a build up of negative effects (Obunguta et al. 2022). 55 

For sections on the same road link/group, working on sections simultaneously may generate multiple 56 

intervention effects due to the interaction between these sections. If a poor condition section is improved, 57 

it not only improves traffic flow on the improved section but also on neighboring sections as traffic build 58 

up is slowed down. Algorithms such as Monte Carlo simulations that incorporate randomness enable the 59 

evaluation of multiple effects (Zhang et al. 2018). 60 

Additionally, intervening on road sections at the same time and in the same workzone reduces total 61 

agency costs as spatial and temporal consolidations generate cost savings due to usage of the same 62 

equipment and staff, and reduced traffic interruptions as a result of fewer work zone repair instances 63 

(Mizutani et al. 2020). Lethanh et al. (2018) determined optimal sets of work zones for large 64 

infrastructure networks consisting of multiple objects using a linear optimization model directly linked to 65 

a geographical information system framework. To lower social costs while maximizing cost savings, road 66 

agencies need to work on more sections in the same work zone and at the same time by developing 67 

optimum road section group intervention strategies. 68 

This research extends work by Obunguta et al. (2022) to evaluate the effects of pavement deterioration 69 

and traffic volume growth on the condition-capacity intervention choice trade-off and explores the effect 70 

of condition improvement on capacity that had been simplified. The past model assumed independence 71 

between condition and capacity enhancements. Additionally, the study proposes a Monte Carlo simulation 72 

approach to improve the efficiency of optimal solution search and includes a comparison between the 73 
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proposed Monte Carlo to the greedy algorithm applied in the past.  74 

Research Objectives  75 

The main research objective is to build a road pavement asset management model to optimally determine 76 

intervention choice for multiple road sections concurrently over a planning horizon while incorporating 77 

network changes at each discrete time point. Specifically, the study objectives are: 78 

1) Develop an asset management model to determine near-optimum road intervention choices by 79 

optimizing social costs using Monte Carlo methods over a planning horizon. 80 

2) Compare the proposed Monte Carlo simulations approach to a greedy algorithm in arriving at a close 81 

to globally optimal solution. 82 

3) Evaluate traffic growth, budget increase and condition deterioration effects on the condition-capacity 83 

intervention choice trade-off for multiple pavement sections. 84 

4) Empirically evaluate intervention effects and show the applicability of the model in obtaining 85 

socially optimum intervention policies on an actual road network. 86 

To the best of the authors’ knowledge, no past study builds a model that evaluates the effects of 87 

stochastic pavement deterioration on the intervention (capacity or condition improvement) choice for 88 

multiple sections simultaneously for a large network over a finite planning horizon. The rest of the paper 89 

is organized as follows. Related literature is reviewed in the next section. The following section develops 90 

the road pavement intervention model after which an empirical application is described. Lastly, the 91 

conclusions, future work and other possible model applications are presented. 92 

Related Literature 93 

Road asset management involves optimizing the usage of road assets including pavements, bridges and 94 

tunnels to maximize their value. In the optimization, intervention planning is preceded by deterioration 95 

estimation for which stochastic models such as the probabilistic Markov hazard model are popular due to 96 
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pavement deterioration uncertainty (Tsuda et al. 2006, Kobayashi et al. 2010, Obunguta and Matsushima 97 

2020). For optimum pavement intervention planning; the usage, risk, travel and agency costs may be 98 

optimized (Kobayashi et al. 2013, Mizutani et al. 2020, Obunguta et al. 2022, Moghtadernejad et al. 2022).  99 

Optimal solution search algorithms can be broadly divided into exact and approximate algorithms. 100 

Exact methods include iterative approaches, whereas approximate methods include randomized, heuristic 101 

and meta-heuristic algorithms. Approximate solution search algorithms involve randomness and arrive at 102 

near optimal solutions in a comparatively shorter computational time compared to exact methods 103 

(Moghtadernejad et al. 2022). Obunguta et al. (2022) applied a greedy algorithm at one time-point to 104 

simultaneously optimize multiple road section interventions by proposing works on a given section while 105 

fixing all other section states and generated section specific social costs. Their study then selected 106 

candidate sections based on total social cost minimization. Marzouk and Osama (2017) developed a 107 

fuzzy-based Monte Carlo methodology to perform integrated infrastructure management through failure 108 

risk prediction and life cycle cost (LCC) optimization. Monte Carlo simulations were utilized to assess 109 

road infrastructure project risk considering cost, time and quality as the main parameters in LCC analysis 110 

(Arba et al. 2019) and to evaluate the benefits of battery swapping services in comparison to electric 111 

vehicle charge stations (Zhang et al. 2018). Research by Zhang et al. (2018) encouraged swapping as it 112 

was more profitable for large electric vehicle populations. Likewise, Monte Carlo simulations could be 113 

used to evaluate the trade-off between two competing road infrastructure management alternatives such as 114 

condition and capacity improvement. Greedy algorithms (Rinnooy Kan et al. 1993) search through the 115 

entire sample space to evaluate all intervention possibilities locally and step-wise to determine social cost 116 

minimization actions approximating global optima, whereas Monte Carlo simulations randomly sample 117 

candidate road section works to generate more globally optimum interventions without having to search 118 

the entire sample space and so could be more efficient for significantly large road networks. 119 

Kuhn (2009) determined optimal policies for simple infrastructure management problems with value 120 

functions for a Markov decision problem and Nozhati et al. (2019) generated near-optimal post-hazard 121 
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actions for electrical infrastructure considering action interconnectedness and cascading effects. Both 122 

studies applied approximate dynamic programming. Similarly, road sections are interconnected and 123 

actions on one section may affect the travel time on sections on the same road link. Hackl et al. (2018) 124 

employed simulated annealing (SA) to determine near-optimal transportation asset restoration programs 125 

after destructive events such as natural disasters by minimizing direct and indirect costs. SA is a meta-126 

heuristic procedure that searches for the global optimum of a discrete optimization problem similar to the 127 

physical annealing process of finding low energy states of a heated solid. Moghtadernejad et al. (2022) 128 

applied discrete particle swarm optimization (DPSO) to generate optimal post disaster interventions for 129 

transportation networks. DPSO searches for an optimal solution through agents (particles) mimicking a 130 

flying swarm of birds in search for food, whose trajectories are adjusted stochastically and 131 

deterministically. Yeo et al. (2013) looked at selecting the optimum, first or second best alternative 132 

intervention for facilities in a planning horizon within a budget constraint. 133 

Road travel cost is dependent on condition and traffic volume:capacity ratio as their degradation 134 

increases congestion and travel time (Obunguta et al. 2022). Chandra (2004) showed that road capacity is 135 

influenced by condition, geometry and driver behaviour through an empirical study that concluded that a 136 

1,000 mm/km increase in road surface roughness resulted in the decrease of capacity by 300 Passenger 137 

Car Units per hour (PCU/h) for two-lane Indian roads using regression analysis. If condition improves, 138 

traffic flow increases improving road capacity, and vice versa. Ravi et al. (2017) generated adjustment 139 

factors using regression models considering carriageway width, road condition (roughness), shoulder 140 

condition and the effect of rise and fall as the key factors affecting Indian road capacity. 141 

Asset management involves sequencing infrastructure interventions for optimum usage over the 142 

lifetime of the infrastructure. Such problems may be solved through dynamic programming (Bellman 143 

1954). Bellman developed an efficient optimum intervention sequence (policy) generation model that 144 

does not require the cumbersome process of evaluating every possible policy. For a dynamic system, 145 

Bellman noted that sequencing decisions could be broken down into solvable sub tasks because of the 146 
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optimality principle which states that ‘an optimal policy has the property that whatever the initial state 147 

and initial decisions are, the remaining decisions must constitute an optimal policy with regard to the state 148 

resulting from the first decisions (Bellman 1954)’. This principle is applicable in finding optimal 149 

decisions in shorter time periods and summing them up to obtain the aggregate optimum decision for the 150 

entire time horizon. 151 

Other works such as Martani et al. (2022) quantitatively evaluated highway designs incorporating 152 

uncertainties in future mobility patterns including autonomous vehicles, and management flexibility using 153 

real options.  Adey et al. (2020) looked at maximizing net benefits of infrastructure asset management 154 

through appropriate definitions of road service taking into account how relevant stakeholders including 155 

owners, users and the public are impacted. Similarly, this study aims to maximize social benefits by 156 

efficiently determining close-to-optimal interventions for numerous road network sections concurrently. 157 

Road Pavement Intervention Model 158 

Model Definition 159 

Consider a road network with a total of 𝐾𝐺  road sections and each 𝑘𝑔 = 1𝑔, … , 𝐾𝐺 belongs to group 𝑔 =160 

1, … , 𝐺 which could be road links. Each 𝑘𝑔 has pavement condition 𝑖𝑡
𝑘𝑔 , and traffic volume:capacity ratio 161 

𝑣𝑡
𝑘𝑔/𝑐𝑡

𝑘𝑔  at time point 𝑡 (𝑡 = 0, 1, 2, … , 𝑇) defined by functions 𝑓(. ). The travel time 𝜏𝑡
𝑘𝑔 , condition 𝑖𝑡

𝑘𝑔 , 162 

traffic volume 𝑣𝑡
𝑘𝑔and capacity 𝑐𝑡

𝑘𝑔of a section 𝑘𝑔  at every time point 𝑡 vary due to deterioration and 163 

improvement effects. The transition of condition state 𝑖𝑡
𝑘𝑔(𝑖𝑡

𝑘𝑔 = 1,… , 𝐽𝑡
𝑘𝑔), with 𝐽𝑡

𝑘𝑔as the absorbing state, 164 

follows the Markov deterioration process after time interval 𝑟. Road managers decide the appropriate 165 

action 𝐴𝑡
𝑘𝑔(𝐴𝑡

𝑘𝑔 = 𝐴𝑖 , 𝐴𝑐 , 𝐴0)   on a section with 𝑨𝑡  being the vector of interventions at 𝑡 . Action 𝐴𝑖 166 

improves condition, 𝐴𝑐 increases capacity, and 𝐴0 is no action which attracts an intervention unit cost 167 

𝐶𝐴𝑡
𝑘𝑔

 that increase monotonically as 𝐶𝐴0 = 0 < 𝐶𝐴𝑖  < 𝐶𝐴𝑐 and are discounted using a discount rate 𝜌 168 

(Fig. 1). Let 𝑨 = (𝐴𝑡=0
11 , . . . , 𝐴𝑇

𝐾𝐺) be the string of interventions, policy, for all sections in the network 169 
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over the entire planning horizon 𝑇. The goal is to find a set of optimum interventions 𝑨∗, an optimum 170 

policy, that minimizes total social costs ∑ 𝜉𝑡
𝑇
𝑡=0 . Interventions for all 𝐾𝐺  should reduce annual social costs 171 

𝜉𝑡 within budget limit 𝛺𝑡. If the entire budget is spent on improving condition, a total of 𝑁𝐴𝑖 = 𝛺𝑡 𝐶
𝐴𝑖⁄  172 

sections will be chosen and if it is spent on enhancing capacity, a total of 𝑁𝐴𝑐 = 𝛺𝑡 𝐶
𝐴𝑐⁄  sections will be 173 

selected. The management goal is to select 𝜂𝐴𝑖 condition and 𝜂𝐴𝑐 capacity improvement candidates within 174 

𝛺𝑡  optimally while preserving road user safety. A safety threshold is set based on condition in which 175 

sections in the worst state have their condition improved (batch 1) after which optimization which 176 

involves near-optimal condition and capacity enhancement (batch 2) is carried out within 𝛺𝑡 following 177 

Obunguta et al. (2022). The social cost is defined as a summation of the travel and intervention cost and 178 

incorporates savings accrued due to spatial and temporal consolidations by interconnecting/ grouping 179 

sections on the same road link. 180 

Working on sections has the effect of improving the general road link condition because a single 181 

deteriorated section affects traffic flow on the entire road link. This phenomenon is modeled by obtaining 182 

a representative group section with the worst condition, average congestion and average travel time. In 183 

Fig. 2, road section 𝑘𝑔 = 21 belonging to group 𝑔 = 1 is inaccessible despite being in good condition due 184 

to the poorer condition of neighboring 𝑘𝑔 = 11and 𝑘𝑔 = 31; hence, it is of no value. To make road link 185 

𝑔 = 1 more valuable, the worse condition neighboring sections need improvement. If road link 𝑔 = 1 has 186 

more traffic compared to 𝑔 = 2, it is more optimal to repair 𝑘𝑔 = 31 instead of 𝑘𝑔 = 12 despite the latter 187 

being in poorer condition than the former as repairing 𝑘𝑔 = 31 accrues more social benefits. 188 

Problem Description  189 

The infrastructure planning problem posed in this paper involves determining near-optimum intervention 190 

decisions for multiple interconnected road sections over planning horizon 𝑇. In the general framework 191 

(Fig. 3), condition data including explanatory variables such as traffic loading are input into the Markov 192 

deterioration model to output the expected pavement life. Intervention planning is then proposed with the 193 
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greedy or Monte Carlo algorithm utilized for optimal solution search with the infrastructure state updated 194 

at each 𝑡 . The model output comprises of total social costs, optimum policy and selection of an 195 

appropriate solution algorithm. The road network has state 𝑺𝑡 in which each section 𝑘𝑔 has a unique state 196 

𝑠𝑡
𝑘𝑔(𝑖𝑡

𝑘𝑔 , 𝑣𝑡
𝑘𝑔 , 𝑐𝑡

𝑘𝑔). Road managers have to take optimal actions for all road sections simultaneously at 𝑡. 197 

The road system then attains a new state at each subsequent 𝑡 due to condition or capacity improvement, 198 

condition deterioration and traffic volume growth. The goal of the managers is to decide actions 𝑨𝑡 for the 199 

entire road system to improve the next state 𝑺𝑡+𝑟 within 𝛺𝑡 after every time interval 𝑟. 200 

Travel Time Function 201 

Travel time is important in the estimation of travel costs and intervention effects. The adopted travel time 202 

function incorporates a condition term in the original BPR function (Obunguta et al. 2022) 203 

𝜏𝑡
𝑘𝑔 = 𝜏𝑘

𝑔,0 [{1 + 𝛼1𝑓(𝑖𝑡
𝑘𝑔)} {1 + 𝛼2(𝑓(𝑣𝑡

𝑘𝑔/𝑐𝑡
𝑘𝑔))

𝑛
} ]                                     (1) 204 

𝑓(𝑖𝑡
𝑘𝑔) = {

0                      𝑖𝑓  𝐼𝑅𝐼𝑡
𝑘𝑔  ≤ 𝑖𝑘

𝑔∗ 

(𝑖𝑡
𝑘𝑔 − 𝑖𝑘

𝑔∗)𝑦    𝑖𝑓  𝐼𝑅𝐼𝑡
𝑘𝑔  > 𝑖𝑘

𝑔∗ 
     205 

𝑓(𝑣𝑡
𝑘𝑔/𝑐𝑡

𝑘𝑔)  = {
0                                              𝑖𝑓  (𝑣𝑘

𝑔
/𝑐𝑡

𝑘𝑔)  ≤ (𝑣𝑘
𝑔
/𝑐𝑘

𝑔
)∗ 

(𝑣𝑡
𝑘𝑔/𝑐𝑡

𝑘𝑔)  − (𝑣𝑘
𝑔
/𝑐𝑘

𝑔
)∗  𝑖𝑓  (𝑣𝑡

𝑘𝑔/𝑐𝑡
𝑘𝑔)  > (𝑣𝑘

𝑔
/𝑐𝑘

𝑔
)∗ 

 206 

where 𝛼1  and 𝛼2  = unknowns collected in parameter 𝜶;  𝜏𝑘
𝑔,0  = free-flow travel time on 𝑘𝑔  when 207 

traveling at free-flow speed (FFS); 𝐼𝑅𝐼𝑡
𝑘𝑔 = International Roughness Index (IRI) for 𝑘𝑔 at 𝑡; 𝑓(𝑖𝑡

𝑘𝑔) and 208 

𝑓(𝑣𝑡
𝑘𝑔/𝑐𝑡

𝑘𝑔) = condition and volume:capacity functions, respectively; 𝑦 = index; and 𝑖𝑘
𝑔∗ and (𝑣𝑘

𝑔
/𝑐𝑘

𝑔
)∗ 209 

= condition and volume:capacity significant values. 210 

Pavement section capacity is affected by condition and traffic as discussed earlier. The capacity in 211 

PCU/h is defined linearly as (Ravi et al. 2017) 212 

𝑐𝑡
𝑘𝑔 = 𝑓(𝑖𝑡

𝑘𝑔)                                            (2) 213 
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= 𝑐0 − 𝛾0𝑖𝑡
𝑘𝑔                                             214 

where 𝑐0 = basic two-lane road capacity; and 𝛾0 = model coefficient. 215 

Road Pavement Intervention 216 

Condition betterment improves both condition and capacity as highlighted before due to travel time 217 

reduction which increases traffic flow and road capacity. Capacity improvements were assumed to 218 

improve only the road capacity. When intervention 𝐴𝑡
𝑘𝑔 ∈ [𝐴0, 𝐴𝑖, 𝐴𝑐] is performed, the condition and 219 

capacity improve based on 220 

𝑖𝑡
𝑘𝑔 =

{
 
 

 
 
𝑖𝑡
𝑘𝑔 − ∇                        

𝑐𝑡
𝑘𝑔 = 𝑓(𝑖𝑡

𝑘𝑔 − ∇)     
𝑖𝑓 𝐴𝑖 𝑜𝑛 𝑘

𝑔 𝑎𝑡 𝑡 

𝑖𝑡
𝑘𝑔                                

𝑐𝑡
𝑘𝑔                               

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

       (3) 221 

𝑐𝑡
𝑘𝑔 = {

𝑚𝑐𝑡
𝑘𝑔              𝑖𝑓    𝐴𝑐 𝑜𝑛 𝑘

𝑔 𝑎𝑡 𝑡      

𝑐𝑡
𝑘𝑔                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   

 (4) 222 

where 𝑚 = percentage capacity increase; and ∇ = condition improvement. 223 

Markov Transition Process 224 

The stochastic Markov deterioration model is suitable to estimate future road condition because it is 225 

probabilistic and appropriately models uncertain pavement deterioration processes. The Markov 226 

Transition Probability (MTP) from condition state ℎ(𝑡) = 𝑖𝑡
𝑘𝑔  observed at discrete time 𝑡 to condition 227 

state ℎ(𝑡 + 𝑟) = 𝑗𝑡+𝑟
𝑘𝑔  at a future time 𝑡 + 𝑟 assuming no repair is (Madanat 1993 and Tsuda et al. 2006)  228 

𝑃𝑟𝑜𝑏[ℎ(𝑡 + 𝑟) = 𝑗𝑡+𝑟
𝑘𝑔  |ℎ(𝑡) = 𝑖𝑡

𝑘𝑔 , 𝐴𝑡
𝑘𝑔] = {

𝜋
𝑖𝑡
𝑘𝑔 ,𝑗𝑡

𝑘𝑔    𝑖𝑓 𝐴𝑡
𝑘𝑔 = 𝐴0

0     𝑖𝑓  𝐴𝑡
𝑘𝑔 ∈ [𝐴𝑖 , 𝐴𝑐] 

                       (5) 229 

The MTP from 𝑖𝑡
𝑘𝑔  to 𝑗𝑡

𝑘𝑔 is explicitly expressed as a function of hazard rates (Tsuda et al. 2006) 230 
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𝜋
𝑖𝑡
𝑘𝑔 ,𝑗𝑡

𝑘𝑔 = ∑ ∏
𝜃𝑚̃

𝜃𝑚̃ − 𝜃𝑘̃

𝑘̃−1

𝑚̃=𝑖𝑡
𝑘𝑔

𝑗𝑡
𝑘𝑔

𝑘̃=𝑖𝑡
𝑘𝑔

∏
𝜃𝑚̃

𝜃𝑚̃+1 − 𝜃𝑘̃

𝑗𝑡
𝑘𝑔−1

𝑚̃=𝑘̃

𝑒𝑥𝑝(−𝜃𝑘̃𝑟)                               (6)  231 

𝑖𝑡
𝑘𝑔 ≤ 𝑘̃ ≤ 𝑚̃ ≤ 𝑗𝑡

𝑘𝑔 232 

where 𝜃
𝑖𝑡
𝑘𝑔  = hazard rate; and 𝑘̃ and 𝑚̃ = indices. 233 

For a given set (𝑖𝑡
𝑘𝑔 = 1,… , 𝐽𝑡

𝑘𝑔), the MTP matrix 𝚷 can be defined using transition probabilities between 234 

(𝑖𝑡
𝑘𝑔 , 𝑗𝑡

𝑘𝑔) pairs. 235 

𝚷 = [

π11 ⋯ π
1𝐽𝑡
𝑘𝑔

⋮ ⋱ ⋮
0 ⋯ π

𝐽𝑡
𝑘𝑔𝐽𝑡

𝑘𝑔

]                                 (7) 236 

Because 𝚷 follows Markov process properties and due to the nature of pavement deterioration, all the 237 

conditions below must be met. The first ensures non-negativity, the second specifies no transition to better 238 

state for no repair and the third ensures all probabilities sum to 1. 239 

𝜋
𝑖𝑡
𝑘𝑔 ,𝑗𝑡

𝑘𝑔  ≥ 0

𝜋
𝑖𝑡
𝑘𝑔 ,𝑗𝑡

𝑘𝑔 = 0 (𝑤ℎ𝑒𝑛 𝑖𝑡
𝑘𝑔 > 𝑗𝑡

𝑘𝑔)

∑ 𝜋
𝑖𝑡
𝑘𝑔 ,𝑗𝑡

𝑘𝑔

𝐽𝑡
𝑘𝑔

𝑗𝑡
𝑘𝑔=1

 = 1
}
 
 

 
 

                            (8)  240 

The Markov transition from 𝑡 to 𝑡 + 𝑟 depends only on ℎ(𝑡) and not on earlier history (is memoryless). 241 

To predict future pavement condition, MTP at 𝑡 + 𝑟 is 242 

𝚷(𝑟) = 𝚷𝑟                                           (9) 243 

To ensure non-negative hazard rates and subsequently expected life expectancies, the hazard rate for each 244 

𝑘𝑔 and 𝑖𝑡
𝑘𝑔  is expressed in exponential form 245 

𝜃
𝑖𝑡
𝑘𝑔
𝑘𝑔 = 𝑒𝑥𝑝(𝒙𝑘

𝑔
𝜷
𝑖𝑡
𝑘𝑔
′  )                                                                   (10) 246 

(𝑖𝑡
𝑘𝑔 = 1,… , 𝐽𝑡

𝑘𝑔 − 1) 247 
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where 𝜷
𝑖𝑡
𝑘𝑔 = (𝛽𝑖𝑡𝑘

𝑔
,1
, … , 𝛽

𝑖𝑡
𝑘𝑔 ,𝑀

)  = row vector of unknown parameters with symbol [′]  signifying the 248 

transpose; and 𝒙𝑘
𝑔
 = row vector of explanatory variables. 249 

The parameters can be determined by expressing the log-likelihood function 250 

𝑙𝑛[𝑳(𝜷)] = 𝑙𝑛 [ ∏ ∏ ∏ {𝜋
𝑖𝑡
𝑘𝑔 ,𝑗𝑡

𝑘𝑔(𝑟̅
𝑘𝑔 , 𝒙̅𝑘

𝑔
: 𝜷)}

𝛿
𝑖𝑡
𝑘𝑔,𝑗𝑡

𝑘𝑔
𝑘𝑔𝐾𝐺

𝑘𝑔=1𝑔

𝐽𝑡
𝑘𝑔

𝑗𝑡
𝑘𝑔=𝑖𝑡

𝑘𝑔

𝐽𝑡
𝑘𝑔−1

𝑖𝑡
𝑘𝑔=1

]                                    (11) 251 

= ∑ ∑ ∑ 𝛿
𝑖𝑡
𝑘𝑔 ,𝑗𝑡

𝑘𝑔
𝑘𝑔 𝑙𝑛 [𝜋

𝑖𝑡
𝑘𝑔 ,𝑗𝑡

𝑘𝑔(𝑟̅
𝑘𝑔 , 𝒙̅𝑘

𝑔
: 𝜷)]

𝐾𝐺

𝑘𝑔=1𝑔

𝐽𝑡
𝑘𝑔

𝑗𝑡
𝑘𝑔=𝑖𝑡

𝑘𝑔

𝐽𝑡
𝑘𝑔−1

𝑖𝑡
𝑘𝑔=1

   252 

𝛿
𝑖𝑡
𝑘𝑔 ,𝑗𝑡

𝑘𝑔
𝑘𝑔 = { 1   𝑤ℎ𝑒𝑛 ℎ(𝑡) = 𝑖𝑡

𝑘𝑔  𝑎𝑛𝑑  ℎ(𝑡 + 𝑟) =  𝑗𝑡
𝑘𝑔

0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                             
 253 

where 𝛿
𝑖𝑡
𝑘𝑔 ,𝑗𝑡

𝑘𝑔
𝑘𝑔  = dummy variable; and the symbol [ ]̅ denotes a measured quantity. 254 

The 𝜷
𝑖𝑡
𝑘𝑔  parameters are obtained by maximising the log-likelihood using iterative methods. 255 

𝜕𝑙𝑛[𝑳(𝜷̂)]

𝜕𝛽
𝑖𝑡
𝑘𝑔 ,𝑚

= 0                                                                             (12) 256 

(𝑖𝑡
𝑘𝑔 = 1,… , 𝐽𝑡

𝑘𝑔 − 1;𝑚 = 1,… ,𝑀) 257 

The optimal 𝜷̂ can be obtained through approximating optimality using Newton’s method (Tsuda et al. 258 

2006) or Bayesian methods such as Markov Chain Monte Carlo (MCMC) using the Metropolis-Hastings 259 

(MH) algorithm (Kobayashi et al. 2010). The MCMC method randomly samples 𝜷
𝑖𝑡
𝑘𝑔  from a probability 260 

distribution using the MH algorithm until equilibrium where the Markov chain converges. 261 

The life expectancy (𝑅𝑀𝐷
𝑖𝑡
𝑘𝑔
𝑘𝑔 ) in 𝑖𝑡

𝑘𝑔  for 𝑘𝑔 is obtained as the inverse of the hazard rate (Lancaster 1990) 262 

𝑅𝑀𝐷
𝑖𝑡
𝑘𝑔
𝑘𝑔 =

1

𝜃
𝑖𝑡
𝑘𝑔
𝑘𝑔
                               (13) 263 
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The average life expectancy 𝐸𝑇
𝑗𝑡
𝑘𝑔
𝑘𝑔 (𝑗𝑡

𝑘𝑔 = 2,… , 𝐽𝑡
𝑘𝑔) is obtained by summing up life expectancies from 264 

𝑖𝑡
𝑘𝑔 = 1 to 𝑗𝑡

𝑘𝑔.  265 

𝐸𝑇
𝑗𝑡
𝑘𝑔
𝑘𝑔 = ∑

1

𝜃
𝑖𝑡
𝑘𝑔
𝑘𝑔

𝑗𝑡
𝑘𝑔

𝑖𝑡
𝑘𝑔=1

                              (14) 266 

The estimated MTPs and life expectancies can be used to predict future condition 𝑗𝑡
𝑘𝑔as 𝑖𝑡

𝑘𝑔transitions to 267 

𝑖𝑡
𝑘𝑔 + 1 at the end of pavement life. 268 

Social Cost Optimization 269 

The social cost 𝜉𝑡(𝑨𝑡) at time 𝑡, also simply represented as 𝜉𝑡, is presented as a summation of travel and 270 

intervention cost. Assuming repair was done once a year 271 

𝜉𝑡 = ∑(1 + 𝜌)−𝑡 {(𝜔𝑘𝑔𝑣𝑡
𝑘𝑔̅̅ ̅̅ ̅ ∗ 𝜏𝑡

𝑘𝑔̅̅ ̅̅̅) + ∑ ∑𝑎𝑡
𝑘𝑔𝐶𝐴𝑡

𝑘𝑔

𝐴𝑡

𝐾𝑔

𝑘𝑔=1𝑔

}

𝐺

𝑔=1

              (15) 272 

where 𝜔 = unit travel time monetary value; 𝜏𝑡
𝑘𝑔̅̅ ̅̅̅ = average travel time on 𝑘𝑔sections in 𝑔; 𝑣𝑡

𝑘𝑔̅̅ ̅̅ ̅ = average 273 

volume on 𝑘𝑔sections in 𝑔; 𝐶𝐴𝑡
𝑘𝑔

= unit cost of 𝐴𝑡
𝑘𝑔;  𝑎𝑡

𝑘𝑔  = section area improved; and 𝜌 = discount rate. 274 

The objective is to minimize the total social costs ∑ 𝜉𝑡
𝑇
𝑡=0  over planning horizon 𝑇. The optimum set of 275 

actions, policy, can be obtained by optimizing 276 

𝑨∗ =
𝑎𝑟𝑔 𝑚𝑖𝑛
𝑨𝑡

  ∑𝜉𝑡

𝑇

𝑡=0

                                        (16) 277 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 278 

𝑨 ∈ 𝚪                                             (17) 279 

∑ ∑ ∑𝑎𝑡
𝑘𝑔𝐶𝐴𝑡

𝑘𝑔

𝐴𝑡

𝐾𝑔

𝑘𝑔=1𝑔

𝐺

𝑔=1

∈  𝛺𝑡          ∀𝑡         (18) 280 
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where 𝚪 = set of all feasible actions; and 𝛺𝑡 = budget limit. 281 

Solution Algorithms 282 

Greedy Algorithm 283 

The optimal solution for the above sequential optimization problem can be determined by obtaining the 284 

social costs for all possibilities and then using a greedy algorithm to select interventions with the biggest 285 

social cost reduction first (Fig. 4). The greedy algorithm searches for a globally optimal solution locally 286 

and step-wise. When one section intervention is proposed, the state of all other sections is fixed and total 287 

social costs at 𝑡 estimated. This proposal step is done for all sections considering all possible interventions 288 

after which candidates are selected using a social cost minimization greedy algorithm with steps: 289 

Step 1: Propose 𝐴𝑖, 𝐴𝐶  and 𝐴0 for each 𝑘𝑔 at every 𝑡 and fix the state 𝑠𝑡
𝑘𝑔of all other sections. 290 

Step 2: Estimate social costs 𝜉𝑡(𝐴𝑡
𝑘𝑔) each time an action is proposed. 291 

Step 3: From all 𝜉𝑡(𝐴𝑡
𝑘𝑔) estimates, determine the social cost reduction ∆ 𝜉𝑡(𝐴𝑡

𝑘𝑔) by subtracting 𝜉𝑡(𝐴𝑡
𝑘𝑔) 292 

from previous social cost 𝜉𝑡−𝑟. 293 

Step 4: Use a greedy algorithm to select candidates with the biggest ∆ 𝜉𝑡(𝐴𝑡
𝑘𝑔) and update 𝑺𝑡. 294 

Step 5: Lastly, estimate the total social costs ∑ 𝜉𝑡
𝑇
𝑡=0  that include spatial-temporal consolidations, 295 

determine final state 𝑺𝑇 and optimum policy 𝑨∗. 296 

The solution to this problem is quite complex and the evaluation of all possible actions is inefficient. 297 

For a network consisting of 2,000 road sections with three interventions over a 15 year planning period, 298 

there are 90,000 possible interventions in the first year, then 84,000 in the second year and so on. This 299 

becomes cumbersome if inputs including number of elements, actions and length of the analysis period 300 

are increased. Methods that incorporate sampling such as Monte Carlo simulations may be more efficient. 301 

Monte Carlo Algorithm 302 

The more efficient Monte Carlo simulations approach involves randomly sampling interventions 𝑨𝑡 303 

without having to scan through the entire sample space. The algorithm applies Bellman’s principle of 304 
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optimality by determining optimal annual interventions and then summing up to generate total optimal 305 

interventions for the entire planning horizon.  306 

Firstly, the optimum intervention in the initial year  307 

𝑨𝑡=0
∗ ∈

𝑎𝑟𝑔 𝑚𝑖𝑛
𝑨𝑡=0

𝐽0(𝑨𝑡=0)                          (19) 308 

where the cost-to-go function 𝐽0 is defined as 309 

𝐽0(𝑨𝑡=0) =
𝑚𝑖𝑛

𝑨0, … , 𝑨𝑇
  ∑𝜉𝑡

𝑇

𝑡=0

  310 

Next, the optimum intervention after the first year  311 

𝑨1
∗ ∈

𝑎𝑟𝑔 𝑚𝑖𝑛
𝑨1

𝐽1(𝑨𝑡=0
∗, 𝑨1)                    (20) 312 

where 313 

𝐽1(𝑨𝑡=0
∗, 𝑨1) =

𝑚𝑖𝑛
𝑨1, … , 𝑨𝑇

  ∑𝜉𝑡

𝑇

𝑡=0

  314 

Following the above procedure incrementally 𝑇 times, the optimum intervention 𝑨𝑇
∗ at 𝑇 is  315 

𝑨𝑇
∗ ∈

𝑎𝑟𝑔 𝑚𝑖𝑛
𝑨𝑇

𝐽𝑇(𝑨𝑡=0
∗, 𝑨1

∗, … , 𝑨𝑇)            (21) 316 

where 317 

𝐽𝑇(𝑨𝑡=0
∗, 𝑨1

∗, … , 𝑨𝑇) =
𝑚𝑖𝑛
𝑨𝑇

  ∑𝜉𝑡

𝑇

𝑡=0

  318 

with 319 

𝐽𝑡(𝑨) =∑𝜉𝑡

𝑇

𝑡=0

 320 

The optimum policy 𝑨∗ over 𝑇 can then be determined as the combination of all the optimum solutions to 321 

the annual sub problems. 322 

𝑨∗ = (𝑨𝑡=0
∗, 𝑨1

∗, … , 𝑨𝑇
∗)                    (22) 323 
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The Monte Carlo solution steps are detailed in Fig. 5. 324 

Empirical Application 325 

Model Inputs 326 

The road pavement intervention model was empirically applied to Uganda’s surveyed national road 327 

network. Obunguta et al. (2022) obtained 𝛼1 and 𝛼2 as 0.3331 and 0.3481, respectively with n fixed to 1 328 

as the best loss minimizing result; and the significant values 𝑖𝑘
𝑔∗  and (𝑣𝑘

𝑔
/𝑐𝑘

𝑔
)∗  were fixed at 4.00 329 

mm/m IRI and 0.5, respectively for Ugandan national roads. This study applied Ugandan national road 330 

life expectancies for 1,993 sample 1 km road sections shown in Table 7 in the Appendix (Obunguta and 331 

Matsushima 2020). The estimated benchmark life expectancy was 10.69 years for the sampled roads with 332 

IRI (in mm/m) discretized as 1. Good (0 – 3.50), 2. Fair (3.51 – 5.00), 3. Poor (5.01 – 6.50), and 4. Bad (> 333 

6.50) according to the Ministry of Works and Transport (MoWT 2017). Based on Obunguta et al.’s (2022) 334 

evidence-based study, Ugandan road sections were categorized as non-congested (NC), moderately 335 

congested (MC), congested (CO) and heavily congested (HC) as shown in Table 1. 336 

The costs 𝐶𝐴𝑖 and 𝐶𝐴𝑐 were set to US$280,000 per km (here after $ is used) and $1,652,000 per km, 337 

respectively; variable 𝜔  was set to $34.56/PCU/h, and the initial annual budget was fixed at $75.06 338 

million following Obunguta et al. (2022). According to traffic levels measured in PCU/h in 2017 and 339 

2018, the estimated traffic growth rate fluctuated with traffic increasing, decreasing, or remaining 340 

stagnant on a given route (see Table 7 in the Appendix). In this study application, the traffic growth rate 341 

was set to 0.1% to minimize 𝐴𝑐 selection bias. The free flow travel time (FFT) was assumed to be the 342 

minimum achievable within a given road group because this may approximate free flow conditions. The 343 

budget was considered to increase by 20% each year to create more optimization space by increasing the 344 

candidate pool and a 10% discount rate was considered (Bank of Uganda 2018). Following Ravi et al. 345 

(2017), the parameters 𝑐0 and 𝛾0 were set to 2,956 and 199, for two-lane roads and 5,082 and 275, for 346 
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four-lane roads, respectively, assuming similarity between Indian and Ugandan roads. If a section 347 

underwent condition improvement, the condition improved to good with IRI randomly sampled assuming 348 

a uniform distribution in the condition state IRI range. Capacity was assumed to double if increased. In 349 

case of no action, the condition state deteriorated based on life expectancy and the section attained a 350 

randomly sampled IRI in the next state assuming a uniform distribution. Section volume:capacity ratio 351 

changed according to condition change and traffic volume growth rates. The greedy algorithm searched 352 

through the entire search space, whereas the Monte Carlo algorithm sampled 𝑁 candidates in worse state. 353 

Both algorithms were run in Python 3.10.9 using a computer with processor: 13th Gen Intel(R) Core(TM) 354 

i9-13900K CPU @ 3.00 GHz, memory (RAM): 64.0 GB and operating system: Windows 11 Pro (64-bit). 355 

Model Results 356 

Estimated Social Costs 357 

The Table 2 and Table 3 show results of the estimated social costs; annual undiscounted and aggregate 358 

discounted, respectively; using the greedy and Monte Carlo algorithm with traffic growth fixed or 359 

considered for a 15 year planning horizon. For the Monte Carlo algorithm, 10 and 1 iteration were set for 360 

computational reasons. With traffic growth fixed, estimated annual social costs decreased for both 361 

algorithms due to social cost optimization and previous work effects. The Monte Carlo simulation with 362 

one iteration generated larger social costs in comparison to the greedy algorithm because of fewer optimal 363 

solution search instances. However, the greedy algorithm was suboptimal and resulted in larger social 364 

costs compared to the Monte Carlo simulation approach with 10 iterations. This showed the efficiency of 365 

Monte Carlo methods in arriving at more optimal solutions considering more iterations despite this 366 

requiring a higher computational time cost (Table 4). The Monte Carlo algorithm was extensive and 367 

robust in its optimal solution search with higher exploration abilities and incorporated multiple 368 

intervention effects as it proposed interventions for several road sections simultaneously and randomly. 369 

On the other hand, the greedy algorithm was myopic and restricted as it proposed intervention for a given 370 
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section while fixing the states of other sections which limited the evaluation of multiple intervention work 371 

effects concurrently. The greedy algorithm produced locally optimal choices step-wise that did not 372 

approximate global optima. 373 

The change in social costs for either algorithm is graphically shown in Fig. 6 considering fixed traffic. 374 

As expected, the agency costs were lower (less than 2% of total social costs) compared to travel costs. To 375 

show the impact of intervention works, undiscounted social costs without the influence of discount factors 376 

were applied. The fluctuation in social costs between the initial and third year was due to model 377 

adjustments as capacity was defined as a function of condition and because of randomness in 378 

determination of condition and volume: capacity ratio after intervention. The greedy algorithm (Fig. 6 a) 379 

showed a general reduction in social costs with steeper reductions in the third and eleventh year after 380 

which the costs stagnated. This stagnation was probably due to the algorithm getting trapped in local 381 

optima as mentioned above. The Monte Carlo simulations approach (Fig. 6 b) achieved a huge reduction 382 

in social costs in the third year after which the social costs gradually reduced over time. This result shows 383 

that timely interventions for vital sections optimally selected unblocks critical bottlenecks in the road 384 

network that lowers total social costs even with limited budgets, which highlights the importance of 385 

timely and decisive network interventions before the build up of negative effects. 386 

The Appendix shows how the incorporation of multiple interventions for group 𝑔 = 1 by the random 387 

Monte Carlo algorithm makes it superior to the greedy algorithm. The Monte Carlo algorithm selected 388 

vital combinations of condition or capacity improvement works each year that unclogged road network 389 

bottlenecks unlike the greedy algorithm that deferred condition and capacity interventions to the 11th and 390 

7th to 9th year, respectively (Table 8 and Table 9 in the Appendix). It should be noted that, the Monte 391 

Carlo methods were unstable especially for much fewer iterations compared to the greedy algorithm. This 392 

instability is attributable to the randomness of Monte Carlo simulations. 393 

Similar results were shown considering traffic growth, however, the total social costs exponentially 394 

increased due to the enormous increase in travel costs. The enormous social costs were due to the fixed 395 
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network length and limited budget assumptions. As a result, with traffic growth, the social costs 396 

exponentially increased due to larger section volume: capacity ratios. Additionally, the limited budget did 397 

not permit working on all critical sections hence the joint negative effects of higher volume: capacity and 398 

condition for many critical sections not intervened on further increased the social costs exponentially. In 399 

future, the case of network length extension through the construction of entirely new routes could be 400 

studied. 401 

Algorithm efficiency was examined through computational time comparison with one iteration set for 402 

the Monte Carlo algorithm as computational costs increase with increase in iterations despite the greater 403 

possibility of generating more optimal solutions (Table 4). The greedy algorithm needed about 24 minutes, 404 

whereas Monte Carlo simulations required about 11 minutes (53.38% shorter) for a single iteration for a 405 

15 year planning horizon. The Monte Carlo algorithm didn’t have to search through the entire sample 406 

space as probable candidates were randomly sampled in a more defined sample space which optimized 407 

computational time. However, the program run time was about an hour longer when 10 iterations were set 408 

for the Monte Carlo simulations compared to the greedy algorithm. The greedy algorithm presented a 409 

locally optimal solution in a relatively shorter time despite this not closely approximating the globally 410 

optimal solution because it was stuck in local optima. As iterations increased, optimal solution search 411 

instances for the Monte Carlo algorithm were increased with higher probability of lowering social costs to 412 

generate a more stable true global optima; however, this required a larger computational cost. 413 

Section Intervention 414 

The Table 5 and Table 6 show the number of candidates selected for intervention by the greedy and 415 

Monte Carlo algorithm for a 15 year planning horizon with traffic growth rate fixed and considered, 416 

respectively. The first batch contains candidates in terminal state that need improvement to ensure road 417 

user safety and the second batch contains sections selected for condition and or capacity enhancement 418 

through social cost optimization. For both algorithms, batch 1 decreased after the first year due to 419 
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significant improvement of sections in the worst to the best state and the subsequent annual works that 420 

prevented section deterioration preserving road safety. For batch 2, heavily deteriorated sections were 421 

selected for condition improvement and highly trafficked sections were prioritized for capacity increase to 422 

optimize social costs. The greedy algorithm was suboptimal to the Monte Carlo simulations as the greedy 423 

algorithm was trapped in local optima. The increase in batch 2 over the years was due to budget increment. 424 

The trade-off between condition improvement and capacity increase was shown by the variation in the 425 

number of candidates each year and the 𝜂𝐴𝑖/𝜂𝐴𝑐ratio. If 𝜂𝐴𝑖/𝜂𝐴𝑐 is greater than 1, more sections were 426 

selected for condition improvement than for capacity increase, and vice versa. The greedy algorithm 427 

selected more sections for condition improvement in batch 2 in year 2 and 11 due to their deteriorated 428 

state, whereas capacity enhancements optimized social costs in the other years considering fixed traffic. 429 

The increase in condition improvement candidates in the eleventh year was due to a build up of 430 

deteriorated sections not selected in earlier years probably due to the confinement of the greedy algorithm 431 

in local optima. With traffic growth, the condition improvement peak in the eleventh year disappeared as 432 

it was more optimal to select sections for capacity increase because of relatively higher traffic levels. For 433 

the Monte Carlo simulations, candidate selection for either improvement showed a gradual 𝜂𝐴𝑖/𝜂𝐴𝑐 434 

decrease and the advantage of timely interventions on critical sections that lower social costs while 435 

maintaining road safety. This result demonstrates the supremacy of the Monte Carlo algorithm in 436 

generating more optimal interventions even within limited budgets. 437 

Condition and Congestion of Network Sections 438 

Network section condition over the fifteen-year planning period was obtained comparing the greedy and 439 

Monte Carlo algorithm with traffic growth fixed or considered (Fig. 7). For both algorithms, the entire 440 

network condition improved to good at the end of the planning horizon save for the greedy algorithm with 441 

traffic growth. The greedy algorithm generated poorer condition as 29.25% of the network stayed in fair 442 

to bad condition until the tenth year with traffic fixed (Fig. 7 a1) and 29.35% of the network was in fair to 443 
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bad condition until the end of the planning horizon with traffic considered (Fig. 7 a2). The latter case 444 

showed a stagnating trend which suggested that better network condition was unachievable in the 445 

foreseeable future unless the budget was significantly increased to accommodate more works including 446 

condition improvement. On the other hand, the Monte Carlo algorithm resulted in a gradual improvement 447 

in road pavement condition in that by the seventh year, 90% of the network had achieved good state 448 

regardless of traffic growth (Fig. 7 b1, b2). This result shows the superiority of the Monte Carlo algorithm 449 

in determining intervention works that better road condition and safety despite incurring a higher 450 

computational cost compared to the myopic greedy algorithm whose optimal solution search gets trapped 451 

in local optima. 452 

Also, network section congestion over the fifteen-year period applying either algorithm was estimated 453 

with traffic growth fixed or considered (Fig. 8). The initial drop in moderately congested sections was due 454 

to condition deterioration. The gradual reduction in congestion thereafter is attributable to capacity 455 

increase due to the combined effects of capacity and condition improvement. With traffic fixed, both 456 

algorithms achieved about 68% of the network in moderate and non-congested state at the end of the 457 

planning period (Fig. 8 a1, b1). However, with traffic growth, 40.44% and 33.86% of the network 458 

degenerated to congested and heavily congested state for the greedy (Fig. 8 a2) and Monte Carlo 459 

algorithm (Fig. 8 b2), respectively. This 6.58% improvement in network congestion by the Monte Carlo 460 

algorithm showed its superiority in optimal solution search with positive cascading impacts of timely 461 

condition improvement resulting in road capacity gains. 462 

Conclusions 463 

This study built a model to generate near-optimal intervention decisions for a road infrastructure group 464 

while incorporating network state variability over time. The proposed model incorporated road 465 

infrastructure and traffic conditions through a modified BPR travel time function to optimally decide 466 

intervention decisions for an infrastructure group over a planning horizon using Monte Carlo simulations. 467 
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The model included the variability of infrastructure and traffic conditions over time through condition 468 

deterioration estimation using the Markov hazard model, traffic growth rate and intervention effects. The 469 

modified BPR function enabled the evaluation of the trade-off of intervention works; i.e., capacity 470 

increase and condition improvement for multiple road sections within a planning horizon, and the 471 

generation of more optimal interventions. The evaluation of capacity and condition improvement trade-off 472 

is an important tool for road managers due to competing management decisions and budget limitations. 473 

The convenience of the model in generating close-to-optimal intervention decisions while evaluating the 474 

trade-off between competing alternatives and the incorporation of infrastructure and traffic condition 475 

variability represented real situations which makes the model highly applicable in the real world. The 476 

model betterment using Monte Carlo methods permitted the evaluation of competing alternative 477 

interventions effortlessly with the modeler having autonomy to decide model accuracy levels, robustness 478 

and computational cost through setting appropriate iterations and solution space size.  479 

The empirical results showed the superiority of the Monte Carlo in generating much lower social costs 480 

due to the incorporation of multiple intervention effects compared to the greedy algorithm despite the 481 

Monte Carlo methods incurring a higher computational cost for more iterations. The Monte Carlo 482 

simulations approach supremacy was also shown by better network condition and congestion state. The 483 

results also showed the importance of traffic level in making road infrastructure decisions which 484 

highlights the need for regulators to control traffic growth rates to avoid the exponential increase in social 485 

costs (negative effects) as a result of more traffic congestion. 486 

The Monte Carlo algorithm’s solution search could be improved by defining a better search space and 487 

increasing the number of iterations. Model outputs may change if the exogeneous parameters are adjusted; 488 

therefore, the accuracy of model inputs should be carefully ensured through detailed historical data 489 

analysis and probably expert recommendations. 490 

This proposed decision model can be applied to other civil infrastructures including bridges, tunnels 491 

and water distribution systems to evaluate the trade-off between multiple interventions and in other fields 492 
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such as health that require the generation of optimal choices for competing treatments over a given time 493 

horizon. In future, it will be interesting to investigate and improve the instability of Monte Carlo methods 494 

for fewer iterations and evaluate the case of construction of entirely new network routes. 495 
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Notation 505 

The following symbols are used in this paper: 506 

𝑔 = road group 507 

𝑘𝑔 = section in 𝑔 508 

𝑡 = time point 509 

𝑟 = time interval 510 

𝑇 = analysis period 511 

𝜏𝑡
𝑘𝑔  = travel time on 𝑘𝑔 at 𝑡 512 

𝑖𝑡
𝑘𝑔  = condition of 𝑘𝑔 at 𝑡 513 

𝑣𝑡
𝑘𝑔  = traffic volume on 𝑘𝑔 at 𝑡 514 

𝑐𝑡
𝑘𝑔  = capacity of 𝑘𝑔 at 𝑡 515 
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𝐽𝑡
𝑘𝑔  = absorbing state at any 𝑡 516 

𝐴𝑡
𝑘𝑔  = intervention on 𝑘𝑔 at 𝑡 517 

𝑨𝑡 = vector of interventions at 𝑡 518 

𝐶𝐴𝑡
𝑘𝑔

 = unit cost of intervention on 𝑘𝑔 at 𝑡 519 

𝑎𝑡
𝑘𝑔  = area of 𝑘𝑔 improved at 𝑡 520 

𝜌 = discount rate 521 

𝑨 = string of all interventions over 𝑇 522 

𝑨∗ = optimum set of interventions/ policy over 𝑇 523 

𝜂𝐴𝑖 = number of candidates for condition improvement 524 

𝜂𝐴𝑐  = number of candidates for capacity increase 525 

𝜉𝑡 = social cost at 𝑡 526 

𝛺𝑡 = budget limit at 𝑡 527 

𝑺𝑡 = road network state at 𝑡 528 

𝑠𝑡
𝑘𝑔  = state of 𝑘𝑔 at 𝑡 529 

𝜏𝑘
𝑔,0 = free-flow travel time 530 

𝛼1 = condition parameter 531 

𝛼2 = volume: capacity parameter 532 

𝐼𝑅𝐼𝑡
𝑘𝑔 = IRI of 𝑘𝑔 at 𝑡 533 

𝑓(. ) = function 534 

𝐽𝑡(. ) = cost-to-go function 535 

𝜋
𝑖𝑡
𝑘𝑔 ,𝑗𝑡

𝑘𝑔  = Markov transition probability 536 

𝜃
𝑖𝑡
𝑘𝑔
𝑘𝑔  = hazard rate for 𝑘𝑔 in 𝑖𝑡

𝑘𝑔  537 

𝚷 = Markov transition probability matrix 538 
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𝑅𝑀𝐷
𝑖𝑡
𝑘𝑔
𝑘𝑔  = life expectancy for 𝑘𝑔 in 𝑖𝑡

𝑘𝑔  539 

𝑧 = iterations 540 

𝜔 = monetary value of one unit of travel time 541 
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Table 1. Volume:capacity grouping for Ugandan roads. 615 

Category 𝑣𝑘
𝑔
/𝑐𝑘

𝑔
 

NC 0 – 0.50 

MC 0.51 – 1.00 

CO 1.01 – 1.50 

HC > 1.50 

  616 
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Table 2. Estimated undiscounted annual social costs considering the greedy and Monte Carlo algorithm. 617 

t Social cost (millions of $) 

with traffic growth with traffic fixed 

Greedy Monte Greedy Monte 

0 4.6350 × 104 4.6350 × 104 4.6350 × 104 4.6350 × 104 

1 4.5682 × 104 4.7740 × 104 4.1846 × 104 4.2045 × 104 

2 3.8180 × 104 5.8594 × 104 5.0201 × 104 4.9777 × 104 

3 3.6820 × 104 4.5488 × 104 4.1855 × 104 1.4346 × 104 

4 3.5677 × 104 4.3566 × 104 4.0306 × 104 1.2201 × 104 

5 3.5969 × 104 3.7274 × 104 3.8845 × 104 9.2666 × 103 

6 4.2842 × 104 3.7293 × 104 3.7900 × 104 8.6321 × 103 

7 9.3505 × 104 4.1063 × 104 3.7038 × 104 8.6007 × 103 

8 4.4738 × 105 7.9496 × 104 3.6218 × 104 9.2609 × 103 

9 3.0688 × 106 4.2234 × 105 3.5838 × 104 8.5934 × 103 

10 2.2363 × 107 2.9465 × 106 3.5199 × 104 9.2461 × 103 

11 1.6716 × 108 2.1454 × 107 2.2767 × 104 8.5721 × 103 

12 1.2018 × 109 1.5712 × 108 2.2723 × 104 9.2309 × 103 

13 8.9991 × 109 1.1516 × 109 2.2879 × 104 8.5408 × 103 

14 6.4644 × 1010 8.4412 × 109 2.2668 × 104 9.1836 × 103 

15 4.8194 × 1011 6.1876 × 1010 2.2776 × 104 8.5066 × 103 

  618 
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Table 3. Estimated total discounted social costs considering the greedy and Monte Carlo algorithm. 619 

Total social cost (millions of $) 

with traffic growth with traffic fixed 

Greedy Monte 

(10 iterations) 

Monte 

(1 iteration) 

Greedy Monte 

(10 iterations) 

Monte 

(1 iteration) 

1.3545 × 1011 1.7428 × 1010 1.9483 × 1010 3.2831 × 105 1.8427 × 105 3.8871 × 105 

  620 



32 
 

Table 4. Algorithm computation time. 621 

 computation time (s) % 

reduction 

in time 

Greedy Monte 

(10 iterations) 

Monte 

(1 iteration) 

1,399.8678 5,118.0281 652.6725 53.38 

  622 
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Table 5. Number of sections selected for intervention with traffic fixed. 623 

t Greedy Monte 

*Batch 1 **Batch 2 𝜂𝐴𝑖/𝜂𝐴𝑐 Batch 1 Batch 2 𝜂𝐴𝑖/𝜂𝐴𝑐 

𝐴𝑖 𝐴𝑖 𝐴𝑐 𝐴𝑖 𝐴𝑖 𝐴𝑐 

1 61 10 23 3.09 61 52 16 7.06 

2 3 312 0 infinite 3 124 32 3.97 

3 0 3 63 0.05 0 121 44 2.75 

4 0 4 72 0.06 0 115 54 2.13 

5 0 4 81 0.05 0 95 66 1.44 

6 0 5 90 0.06 0 106 73 1.45 

7 0 5 99 0.05 0 83 86 0.97 

8 0 6 108 0.06 0 79 96 0.82 

9 0 6 117 0.05 0 51 110 0.46 

10 0 7 126 0.06 0 44 120 0.37 

11 0 583 37 15.76 0 33 131 0.25 

12 0 0 145 0.00 0 25 142 0.18 

13 0 1 154 0.01 0 11 153 0.07 

14 0 0 163 0.00 0 6 163 0.04 

15 0 1 172 0.01 0 0 173 0.00 

*Batch 1: Sections in the absorbing state worked on for safety reasons. 624 

**Batch 2: Candidate sections selected through optimization. 625 

  626 
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Table 6. Number of sections selected for intervention with traffic growth. 627 

t Greedy Monte 

*Batch 1 **Batch 2 𝜂𝐴𝑖/𝜂𝐴𝑐 Batch 1 Batch 2 𝜂𝐴𝑖/𝜂𝐴𝑐 

𝐴𝑖 𝐴𝑖 𝐴𝑐 𝐴𝑖 𝐴𝑖 𝐴𝑐 

1 61 10 23 3.09 61 70 13 10.08 

2 3 312 0 infinite 3 148 28 5.39 

3 0 3 63 0.05 0 154 38 4.05 

4 0 4 72 0.06 0 113 54 2.09 

5 0 4 81 0.05 0 105 64 1.64 

6 0 5 90 0.06 0 91 76 1.20 

7 0 5 99 0.05 0 79 87 0.91 

8 0 6 108 0.06 0 62 99 0.63 

9 0 0 118 0.00 0 49 110 0.45 

10 0 1 127 0.01 0 27 123 0.22 

11 0 1 136 0.01 0 15 134 0.11 

12 0 2 145 0.01 0 15 143 0.10 

13 0 2 154 0.01 0 9 153 0.06 

14 0 3 163 0.02 0 8 163 0.05 

15 0 3 172 0.02 0 0 173 0.00 

  628 
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Appendix 629 

The Table 7 shows a summary of Ugandan national roads data from Obunguta and Matsushima (2020), 630 

Table 8 and Table 9 show the selection of candidates from group A001 (𝑔 = 1) for intervention using a 631 

greedy and Monte Carlo algorithm; respectively, with traffic fixed. 632 

Table 7. Summary of Ugandan national roads data (Obunguta and Matsushima 2020). 633 

𝑔 Road 

group 

No. of 

sections 

FFT (s) Average traffic 

(‘000 PCU/h) 

Traffic 

growth 

rate (%) 

Life expectancy (years) 

Condition state  

2017 2018 1 2 3 Total 

1 A001 87 54.55 5.46 4.92 -9.81 3.20 3.02 4.41 10.64 

2 A002 355 46.15 2.25 1.72 -23.34 3.64 2.60 3.35 9.60 

3 A003 11 67.92 8.03 5.48 -31.66 3.09 1.07 2.20 6.36 

4 A004 77 52.17 1.34 1.35 0.79 4.09 3.81 4.18 12.08 

5 A005 94 46.75 0.75 0.89 18.78 4.22 3.91 4.53 12.66 

6 A006 348 49.32 1.11 1.31 17.90 3.95 3.40 3.92 11.27 

7 A007 93 50.70 1.15 1.15 0.00 4.01 3.42 4.02 11.45 

8 A008 235 48.65 0.56 0.82 45.57 3.96 3.56 3.86 11.38 

9 B100 23 64.29 2.90 3.01 3.91 2.98 2.05 2.04 7.07 

10 B103 9 54.55 0.28 1.04 276.77 3.44 2.99 2.90 9.33 

11 B150 77 50.70 0.40 0.47 19.30 4.19 4.01 4.37 12.57 

12 B151 41 52.94 0.27 0.58 117.93 3.23 2.69 2.53 8.46 

13 B152 49 51.43 0.27 0.41 53.48 3.84 3.55 3.73 11.13 

14 B153 77 52.94 0.27 0.46 73.02 3.61 3.20 3.21 10.02 

15 B200 41 51.43 0.24 0.24 0.00 4.20 4.04 4.37 12.61 
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16 B300 63 50.70 0.12 0.16 32.71 4.14 3.99 4.28 12.41 

17 B303 8 120.00 0.81 0.73 -9.39 2.49 1.73 1.29 5.51 

18 B307 55 53.73 0.64 0.64 0.75 3.44 2.87 2.90 9.21 

19 B308 17 52.17 0.87 0.87 0.00 3.69 3.12 3.44 10.25 

20 C004 19 65.45 0.87 0.47 -45.20 3.12 2.33 2.22 7.67 

21 C157 3 189.47 0.47 0.47 0.00 2.36 1.55 1.12 5.03 

22 C158 1 103.40 0.47 0.47 0.00 2.37 1.56 1.14 5.06 

23 C170 2 87.80 0.47 0.47 0.00 2.86 2.13 1.80 6.80 

24 C198 3 102.86 0.47 0.47 0.00 2.66 1.90 1.52 6.08 

25 C199 1 356.16 0.47 0.47 0.00 2.28 1.47 1.04 4.79 

26 C210 1 189.47 0.20 0.20 0.00 2.40 1.63 1.17 5.19 

27 C232 1 281.65 0.15 0.15 0.00 2.34 1.57 1.10 5.01 

28 C308 11 54.55 0.11 0.11 0.00 3.93 3.69 3.82 11.44 

29 C309 7 72.00 0.11 0.11 0.00 3.16 2.58 2.29 8.03 

30 C350 52 56.25 0.46 0.55 21.28 3.68 3.27 3.29 10.24 

31 C354 2 61.02 0.21 0.21 0.00 3.46 2.98 2.85 9.28 

32 C356 14 56.25 0.22 0.36 65.15 3.71 3.36 3.36 10.44 

33 C410 17 46.75 0.31 0.36 15.08 3.56 3.16 3.23 9.95 

34 C412 10 55.38 0.07 0.21 212.69 3.79 3.50 3.55 10.84 

35 C420 2 180.00 0.07 0.07 0.00 2.43 1.67 1.20 5.30 

36 C457 4 60.00 0.07 0.07 0.00 3.27 2.77 2.56 8.61 

37 C511 9 53.73 0.13 0.13 0.00 3.46 3.07 3.02 9.55 

38 C517 1 137.52 0.13 0.13 0.00 2.43 1.67 1.20 5.30 

39 C540 63 53.73 0.38 0.38 0.00 3.61 3.22 3.21 10.03 
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40 C684 4 90.00 0.30 0.30 0.00 2.82 2.11 1.74 6.67 

41 C744 6 57.14 0.43 0.43 0.00 3.75 3.36 3.44 10.55 

  634 
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Table 8. Selection of candidates from group A001 (𝑔 = 1) for intervention using a greedy algorithm. 635 

𝑘𝑔 Greedy (with traffic fixed) 

Year 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

11 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

21 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

31 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

41 1,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

51 1,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

61 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

71 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

81 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

91 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

101 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

111 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

121 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

131 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

141 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

151 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

161 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

171 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

181 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

191 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

201 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

211 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

221 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

231 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

241 1,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

251 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

261 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

271 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

281 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

291 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

301 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

311 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

321 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

331 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

341 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

351 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

361 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

371 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

381 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

391 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

401 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 1,0 0,0 0,0 0,0 0,0 

411 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

421 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 
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431 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

441 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

451 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

461 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

471 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

481 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

491 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

501 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

511 1,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

521 1,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

531 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

541 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

551 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

561 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

571 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

581 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

591 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

601 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

611 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

621 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

631 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

641 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

651 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

661 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

671 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

681 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

691 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

701 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

711 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

721 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

731 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

741 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

751 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

761 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

771 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

781 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

791 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

801 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

811 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 1,0 0,0 0,0 0,0 0,0 

821 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

831 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 

841 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

851 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

861 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

871 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 

No. 

𝐴𝑖 
8 0 0 0 0 0 0 0 0 0 34 0 0 0 0 
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No. 

𝐴𝑐 
0 0 0 0 0 0 51 27 28 0 0 0 1 0 0 

Note: Action 𝐴0= (0,0); 𝐴𝑖 = (1,0); 𝐴𝑐 = (0,1); 𝐴𝑖  and 𝐴𝑐 = (1,1). Bold highlights sections worked on. 636 

  637 



41 
 

Table 9. Selection of candidates from group A001 (𝑔 = 1) for intervention using Monte Carlo methods. 638 

𝑘𝑔 Monte (with traffic fixed) 

Year 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

11 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

21 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 

31 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 

41 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

51 1,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 

61 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

71 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

81 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 

91 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 

101 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 

111 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

121 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 

131 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,0 

141 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

151 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,0 0,0 0,0 

161 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 

171 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 

181 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

191 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

201 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

211 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

221 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

231 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

241 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 

251 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

261 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,0 0,0 0,0 

271 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

281 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,0 0,0 

291 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

301 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,1 0,0 

311 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

321 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

331 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

341 0,0 0,0 0,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

351 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

361 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

371 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 

381 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 

391 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 

401 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,1 0,1 

411 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

421 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 
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431 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 

441 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 

451 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,1 0,0 0,0 0,0 0,0 

461 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

471 0,0 0,0 0,1 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

481 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

491 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 

501 0,0 1,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

511 1,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 

521 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

531 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,0 0,0 

541 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

551 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

561 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 

571 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

581 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 

591 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

601 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

611 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,1 

621 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

631 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

641 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 

651 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

661 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

671 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

681 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 

691 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

701 1,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 

711 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,0 0,0 

721 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 

731 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

741 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 

751 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,1 

761 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

771 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 

781 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,0 0,0 0,0 

791 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,0 

801 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

811 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

821 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

831 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 

841 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 

851 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,0 

861 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 

871 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

No. 

𝐴𝑖 
10 3 3 1 7 5 0 6 4 2 0 1 0 0 0 
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No. 

𝐴𝑐 
0 0 1 0 2 3 4 3 4 5 6 15 7 11 8 

  639 
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Fig. 1. Layout of pavement sections over time. 640 

Fig. 2. Road sections in two road groups (links). 641 

Fig. 3. General framework. 642 

Fig. 4. Flow diagram of the greedy algorithm. 643 

Fig. 5. Monte Carlo solution algorithm. 644 

Fig. 6. Undiscounted social costs over planning horizon for greedy (a) and Monte Carlo (b) algorithm 645 

with traffic fixed. 646 

Fig. 7. Condition of Ugandan road network for greedy (a) and Monte Carlo (b) algorithm. 647 

Fig. 8. Congestion of Ugandan road network for greedy (a) and Monte Carlo (b) algorithm. 648 

 649 

Fig. 1. Layout of pavement sections over time. 650 
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 651 

Fig. 2. Road sections in two road groups (links). 652 

 653 

Fig. 3. General framework. 654 
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 655 

Fig. 4. Flow diagram of the greedy algorithm. 656 
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 657 

Fig. 5. Monte Carlo solution algorithm. 658 

 659 

Fig. 6. Undiscounted social costs over planning horizon for greedy (a) and Monte Carlo (b) algorithm 660 

with traffic fixed. 661 
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 662 

Fig. 7. Condition of Ugandan road network for greedy (a) and Monte Carlo (b) algorithm. 663 

 664 

Fig. 8. Congestion of Ugandan road network for greedy (a) and Monte Carlo (b) algorithm. 665 


