

Title	Generating Near-Optimal Road Condition-Capacity Improvement Decisions Using Monte Carlo Simulations
Author(s)	Obunguta, Felix; Kaito, Kiyoyuki; Sasai, Kotaro et al.
Citation	Journal of Infrastructure Systems. 2024, 30(4), p. 04024027
Version Type	AM
URL	https://hdl.handle.net/11094/98428
rights	© 2024 American Society of Civil Engineers
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

1 **Generating Near–Optimal Road Condition–Capacity Improvement Decisions using**
2 **Monte Carlo Simulations**

3 Felix Obunguta, Ph.D., A.M.ASCE¹; Kiyoyuki Kaito, Ph.D.²; Kotaro Sasai³; Kiyoshi Kobayashi, Ph.D.⁴;
4 Kakuya Matsushima, Ph.D.⁵; and Hilary Bakamwesiga, Ph.D.⁶

5 ¹Specially Appointed Assistant Professor, Graduate School of Engineering, Osaka University, Suita Campus,
6 2-1 Yamada-oka, Osaka 565-0871, Japan (corresponding author). E-mail: obongutafelix@gmail.com/
7 f.obunguta@civil.eng.osaka-u.ac.jp

8 ²Professor, Graduate School of Engineering, Osaka University, Suita Campus, 2-1 Yamada-oka, Osaka 565-
9 0871, Japan. E-mail: kaito@galena.eng.osaka-u.ac.jp

10 ³Specially Appointed Assistant Professor, Graduate School of Engineering, Osaka University, Suita Campus,
11 2-1 Yamada-oka, Osaka 565-0871, Japan. E-mail: k.sasai@civil.eng.osaka-u.ac.jp

12 ⁴Professor Emeritus, Graduate School of Management, Kyoto University, Yoshida Campus, Yoshida
13 Honmachi, Sakyo-ku, Kyoto-shi, Kyoto 606-8501, Japan. Email: kobayashi.kiyoshi.6n@kyoto-u.ac.jp

14 ⁵Program-specific Professor, Disaster Prevention Research Institute, Kyoto University, Uji Campus,
15 Gokasho, Kyoto 611-0011, Japan. Email: matsushima.kakuya.7u@kyoto-u.ac.jp

16 ⁶Lecturer, Department of Civil and Environmental Engineering, College of Engineering, Design, Art and
17 Technology, Makerere University, P.O. Box 7062, Kampala, Uganda. Email:
18 hilary.bakamwesiga@mak.ac.ug

19 **Abstract**

20 Road travel cost can be defined as a function of condition and volume:capacity factors. Asset managers
21 intervene on heavily trafficked and poor condition roads based on criteria to optimize network travel and
22 intervention (social) costs. These criteria may involve a trade-off between improving road condition or
23 capacity. Road performance is known through periodic inspection and stochastic modeling to estimate
24 deteriorated future condition. The predicted future condition and traffic growth rates change pavement

25 section intervention (capacity or condition improvement) priority over time. The optimal road
26 intervention choice can be determined using algorithms including the greedy algorithm and Monte Carlo
27 simulations. Greedy algorithms search through the entire sample space locally and step-wise to
28 approximate global optima, whereas Monte Carlo simulations randomly sample candidate sections to
29 generate more globally optimum interventions. This study proposes a road asset management model using
30 Monte Carlo methods to optimally choose road network interventions considering condition and traffic
31 changes over a planning horizon. The study includes an empirical application using real world data and
32 compares the proposed Monte Carlo simulations approach to the greedy algorithm.

33 **Introduction**

34 Optimum road network intervention decisions involve choices on improving road condition and capacity
35 to shorten travel times from origins to destinations. These decisions should be done over longer planning
36 periods because limited road management budgets may not permit working on all candidate sections at
37 once. Therefore, road managers have to carefully develop intervention decision models that optimise
38 travel and agency (social) costs while ensuring user safety. Intervention decisions for a few sections may
39 be easily determined; however, as the number of sections increases, arriving at an optimum solution
40 becomes computationally more cumbersome.

41 Effective and efficient road condition and capacity improvement decisions are important to ensure
42 smooth movement. Chandra (2004) elaborated the effect of road condition on capacity and travel cost
43 with condition degeneration leading to capacity reduction and travel cost increase. The Bureau of Public
44 Roads (BPR 1964) function modeling the exponential relationship between travel time and traffic volume:
45 capacity ratio was conveniently modified by Obunguta et al. (2022) to incorporate a condition term to
46 model the joint condition deterioration and congestion effects on travel time. Condition improvement
47 costs less than capacity increase because the latter involves new pavement construction. Higher travel
48 speeds are achievable on good roads which in turn increases flow rates and road capacity (Chandra 2004).

49 However, road width expansions significantly increase capacity due to the creation of additional lanes,
50 unclogging major road network bottlenecks resulting in greater travel time reduction compared to
51 condition improvement. Chandra and Kumar (2003) empirically showed an increasing linear relationship
52 between capacity and carriageway width for Indian roads attributable to the greater freedom of movement
53 on wider roads. A trade-off exists between capacity increase and condition improvement since the former
54 may contribute to a bigger reduction in social costs, whereas the latter increases travel costs if neglected
55 due to a build up of negative effects (Obunguta et al. 2022).

56 For sections on the same road link/group, working on sections simultaneously may generate multiple
57 intervention effects due to the interaction between these sections. If a poor condition section is improved,
58 it not only improves traffic flow on the improved section but also on neighboring sections as traffic build
59 up is slowed down. Algorithms such as Monte Carlo simulations that incorporate randomness enable the
60 evaluation of multiple effects (Zhang et al. 2018).

61 Additionally, intervening on road sections at the same time and in the same workzone reduces total
62 agency costs as spatial and temporal consolidations generate cost savings due to usage of the same
63 equipment and staff, and reduced traffic interruptions as a result of fewer work zone repair instances
64 (Mizutani et al. 2020). Lethanh et al. (2018) determined optimal sets of work zones for large
65 infrastructure networks consisting of multiple objects using a linear optimization model directly linked to
66 a geographical information system framework. To lower social costs while maximizing cost savings, road
67 agencies need to work on more sections in the same work zone and at the same time by developing
68 optimum road section group intervention strategies.

69 This research extends work by Obunguta et al. (2022) to evaluate the effects of pavement deterioration
70 and traffic volume growth on the condition-capacity intervention choice trade-off and explores the effect
71 of condition improvement on capacity that had been simplified. The past model assumed independence
72 between condition and capacity enhancements. Additionally, the study proposes a Monte Carlo simulation
73 approach to improve the efficiency of optimal solution search and includes a comparison between the

74 proposed Monte Carlo to the greedy algorithm applied in the past.

75 **Research Objectives**

76 The main research objective is to build a road pavement asset management model to optimally determine
77 intervention choice for multiple road sections concurrently over a planning horizon while incorporating
78 network changes at each discrete time point. Specifically, the study objectives are:

79 1) Develop an asset management model to determine near-optimum road intervention choices by
80 optimizing social costs using Monte Carlo methods over a planning horizon.

81 2) Compare the proposed Monte Carlo simulations approach to a greedy algorithm in arriving at a close
82 to globally optimal solution.

83 3) Evaluate traffic growth, budget increase and condition deterioration effects on the condition-capacity
84 intervention choice trade-off for multiple pavement sections.

85 4) Empirically evaluate intervention effects and show the applicability of the model in obtaining
86 socially optimum intervention policies on an actual road network.

87 To the best of the authors' knowledge, no past study builds a model that evaluates the effects of
88 stochastic pavement deterioration on the intervention (capacity or condition improvement) choice for
89 multiple sections simultaneously for a large network over a finite planning horizon. The rest of the paper
90 is organized as follows. Related literature is reviewed in the next section. The following section develops
91 the road pavement intervention model after which an empirical application is described. Lastly, the
92 conclusions, future work and other possible model applications are presented.

93 **Related Literature**

94 Road asset management involves optimizing the usage of road assets including pavements, bridges and
95 tunnels to maximize their value. In the optimization, intervention planning is preceded by deterioration
96 estimation for which stochastic models such as the probabilistic Markov hazard model are popular due to

97 pavement deterioration uncertainty (Tsuda et al. 2006, Kobayashi et al. 2010, Obunguta and Matsushima
98 2020). For optimum pavement intervention planning; the usage, risk, travel and agency costs may be
99 optimized (Kobayashi et al. 2013, Mizutani et al. 2020, Obunguta et al. 2022, Moghtadernejad et al. 2022).

100 Optimal solution search algorithms can be broadly divided into exact and approximate algorithms.

101 Exact methods include iterative approaches, whereas approximate methods include randomized, heuristic
102 and meta-heuristic algorithms. Approximate solution search algorithms involve randomness and arrive at
103 near optimal solutions in a comparatively shorter computational time compared to exact methods
104 (Moghtadernejad et al. 2022). Obunguta et al. (2022) applied a greedy algorithm at one time-point to
105 simultaneously optimize multiple road section interventions by proposing works on a given section while
106 fixing all other section states and generated section specific social costs. Their study then selected
107 candidate sections based on total social cost minimization. Marzouk and Osama (2017) developed a
108 fuzzy-based Monte Carlo methodology to perform integrated infrastructure management through failure
109 risk prediction and life cycle cost (LCC) optimization. Monte Carlo simulations were utilized to assess
110 road infrastructure project risk considering cost, time and quality as the main parameters in LCC analysis
111 (Arba et al. 2019) and to evaluate the benefits of battery swapping services in comparison to electric
112 vehicle charge stations (Zhang et al. 2018). Research by Zhang et al. (2018) encouraged swapping as it
113 was more profitable for large electric vehicle populations. Likewise, Monte Carlo simulations could be
114 used to evaluate the trade-off between two competing road infrastructure management alternatives such as
115 condition and capacity improvement. Greedy algorithms (Rinnooy Kan et al. 1993) search through the
116 entire sample space to evaluate all intervention possibilities locally and step-wise to determine social cost
117 minimization actions approximating global optima, whereas Monte Carlo simulations randomly sample
118 candidate road section works to generate more globally optimum interventions without having to search
119 the entire sample space and so could be more efficient for significantly large road networks.

120 Kuhn (2009) determined optimal policies for simple infrastructure management problems with value
121 functions for a Markov decision problem and Nozhati et al. (2019) generated near-optimal post-hazard

122 actions for electrical infrastructure considering action interconnectedness and cascading effects. Both
123 studies applied approximate dynamic programming. Similarly, road sections are interconnected and
124 actions on one section may affect the travel time on sections on the same road link. Hackl et al. (2018)
125 employed simulated annealing (SA) to determine near-optimal transportation asset restoration programs
126 after destructive events such as natural disasters by minimizing direct and indirect costs. SA is a meta-
127 heuristic procedure that searches for the global optimum of a discrete optimization problem similar to the
128 physical annealing process of finding low energy states of a heated solid. Moghtadernejad et al. (2022)
129 applied discrete particle swarm optimization (DPSO) to generate optimal post disaster interventions for
130 transportation networks. DPSO searches for an optimal solution through agents (particles) mimicking a
131 flying swarm of birds in search for food, whose trajectories are adjusted stochastically and
132 deterministically. Yeo et al. (2013) looked at selecting the optimum, first or second best alternative
133 intervention for facilities in a planning horizon within a budget constraint.

134 Road travel cost is dependent on condition and traffic volume:capacity ratio as their degradation
135 increases congestion and travel time (Obunguta et al. 2022). Chandra (2004) showed that road capacity is
136 influenced by condition, geometry and driver behaviour through an empirical study that concluded that a
137 1,000 mm/km increase in road surface roughness resulted in the decrease of capacity by 300 Passenger
138 Car Units per hour (PCU/h) for two-lane Indian roads using regression analysis. If condition improves,
139 traffic flow increases improving road capacity, and vice versa. Ravi et al. (2017) generated adjustment
140 factors using regression models considering carriageway width, road condition (roughness), shoulder
141 condition and the effect of rise and fall as the key factors affecting Indian road capacity.

142 Asset management involves sequencing infrastructure interventions for optimum usage over the
143 lifetime of the infrastructure. Such problems may be solved through dynamic programming (Bellman
144 1954). Bellman developed an efficient optimum intervention sequence (policy) generation model that
145 does not require the cumbersome process of evaluating every possible policy. For a dynamic system,
146 Bellman noted that sequencing decisions could be broken down into solvable sub tasks because of the

147 optimality principle which states that ‘an optimal policy has the property that whatever the initial state
148 and initial decisions are, the remaining decisions must constitute an optimal policy with regard to the state
149 resulting from the first decisions (Bellman 1954)’. This principle is applicable in finding optimal
150 decisions in shorter time periods and summing them up to obtain the aggregate optimum decision for the
151 entire time horizon.

152 Other works such as Martani et al. (2022) quantitatively evaluated highway designs incorporating
153 uncertainties in future mobility patterns including autonomous vehicles, and management flexibility using
154 real options. Adey et al. (2020) looked at maximizing net benefits of infrastructure asset management
155 through appropriate definitions of road service taking into account how relevant stakeholders including
156 owners, users and the public are impacted. Similarly, this study aims to maximize social benefits by
157 efficiently determining close-to-optimal interventions for numerous road network sections concurrently.

158 **Road Pavement Intervention Model**

159 **Model Definition**

160 Consider a road network with a total of K^G road sections and each $k^g = 1^g, \dots, K^G$ belongs to group $g =$
161 $1, \dots, G$ which could be road links. Each k^g has pavement condition $i_t^{k^g}$, and traffic volume:capacity ratio
162 $v_t^{k^g}/c_t^{k^g}$ at time point t ($t = 0, 1, 2, \dots, T$) defined by functions $f(\cdot)$. The travel time $\tau_t^{k^g}$, condition $i_t^{k^g}$,
163 traffic volume $v_t^{k^g}$ and capacity $c_t^{k^g}$ of a section k^g at every time point t vary due to deterioration and
164 improvement effects. The transition of condition state $i_t^{k^g}$ ($i_t^{k^g} = 1, \dots, J_t^{k^g}$), with $J_t^{k^g}$ as the absorbing state,
165 follows the Markov deterioration process after time interval r . Road managers decide the appropriate
166 action $A_t^{k^g}$ ($A_t^{k^g} = A_i, A_c, A_0$) on a section with \mathbf{A}_t being the vector of interventions at t . Action A_i
167 improves condition, A_c increases capacity, and A_0 is no action which attracts an intervention unit cost
168 $C^{A_t^{k^g}}$ that increase monotonically as $C^{A_0} = 0 < C^{A_i} < C^{A_c}$ and are discounted using a discount rate ρ
169 (**Fig. 1**). Let $\mathbf{A} = (A_{t=0}^{1^1}, \dots, A_T^{K^G})$ be the string of interventions, policy, for all sections in the network

170 over the entire planning horizon T . The goal is to find a set of optimum interventions \mathbf{A}^* , an optimum
171 policy, that minimizes total social costs $\sum_{t=0}^T \xi_t$. Interventions for all K^G should reduce annual social costs
172 ξ_t within budget limit Ω_t . If the entire budget is spent on improving condition, a total of $N_{A_i} = \Omega_t/C^{A_i}$
173 sections will be chosen and if it is spent on enhancing capacity, a total of $N_{A_c} = \Omega_t/C^{A_c}$ sections will be
174 selected. The management goal is to select η_{A_i} condition and η_{A_c} capacity improvement candidates within
175 Ω_t optimally while preserving road user safety. A safety threshold is set based on condition in which
176 sections in the worst state have their condition improved (batch 1) after which optimization which
177 involves near-optimal condition and capacity enhancement (batch 2) is carried out within Ω_t following
178 Obunguta et al. (2022). The social cost is defined as a summation of the travel and intervention cost and
179 incorporates savings accrued due to spatial and temporal consolidations by interconnecting/ grouping
180 sections on the same road link.

181 Working on sections has the effect of improving the general road link condition because a single
182 deteriorated section affects traffic flow on the entire road link. This phenomenon is modeled by obtaining
183 a representative group section with the worst condition, average congestion and average travel time. In
184 **Fig. 2**, road section $k^g = 2^1$ belonging to group $g = 1$ is inaccessible despite being in good condition due
185 to the poorer condition of neighboring $k^g = 1^1$ and $k^g = 3^1$; hence, it is of no value. To make road link
186 $g = 1$ more valuable, the worse condition neighboring sections need improvement. If road link $g = 1$ has
187 more traffic compared to $g = 2$, it is more optimal to repair $k^g = 3^1$ instead of $k^g = 1^2$ despite the latter
188 being in poorer condition than the former as repairing $k^g = 3^1$ accrues more social benefits.

189 **Problem Description**

190 The infrastructure planning problem posed in this paper involves determining near-optimum intervention
191 decisions for multiple interconnected road sections over planning horizon T . In the general framework
192 (**Fig. 3**), condition data including explanatory variables such as traffic loading are input into the Markov
193 deterioration model to output the expected pavement life. Intervention planning is then proposed with the

194 greedy or Monte Carlo algorithm utilized for optimal solution search with the infrastructure state updated
 195 at each t . The model output comprises of total social costs, optimum policy and selection of an
 196 appropriate solution algorithm. The road network has state \mathbf{S}_t in which each section k^g has a unique state
 197 $s_t^{k^g}(i_t^{k^g}, v_t^{k^g}, c_t^{k^g})$. Road managers have to take optimal actions for all road sections simultaneously at t .
 198 The road system then attains a new state at each subsequent t due to condition or capacity improvement,
 199 condition deterioration and traffic volume growth. The goal of the managers is to decide actions \mathbf{A}_t for the
 200 entire road system to improve the next state \mathbf{S}_{t+r} within Ω_t after every time interval r .

201 **Travel Time Function**

202 Travel time is important in the estimation of travel costs and intervention effects. The adopted travel time
 203 function incorporates a condition term in the original BPR function (Obunguta et al. 2022)

$$204 \quad \tau_t^{k^g} = \tau^{k^g,0} \left[\left\{ 1 + \alpha_1 f(i_t^{k^g}) \right\} \left\{ 1 + \alpha_2 \left(f(v_t^{k^g}/c_t^{k^g}) \right)^n \right\} \right] \quad (1)$$

$$205 \quad f(i_t^{k^g}) = \begin{cases} 0 & \text{if } IRI_t^{k^g} \leq i^{k^g*} \\ (i_t^{k^g} - i^{k^g*})^y & \text{if } IRI_t^{k^g} > i^{k^g*} \end{cases}$$

$$206 \quad f(v_t^{k^g}/c_t^{k^g}) = \begin{cases} 0 & \text{if } (v_t^{k^g}/c_t^{k^g}) \leq (v^{k^g}/c^{k^g})^* \\ (v_t^{k^g}/c_t^{k^g}) - (v^{k^g}/c^{k^g})^* & \text{if } (v_t^{k^g}/c_t^{k^g}) > (v^{k^g}/c^{k^g})^* \end{cases}$$

207 where α_1 and α_2 = unknowns collected in parameter α ; $\tau^{k^g,0}$ = free-flow travel time on k^g when
 208 traveling at free-flow speed (FFS); $IRI_t^{k^g}$ = International Roughness Index (IRI) for k^g at t ; $f(i_t^{k^g})$ and
 209 $f(v_t^{k^g}/c_t^{k^g})$ = condition and volume:capacity functions, respectively; y = index; and i^{k^g*} and $(v^{k^g}/c^{k^g})^*$
 210 = condition and volume:capacity significant values.

211 Pavement section capacity is affected by condition and traffic as discussed earlier. The capacity in
 212 PCU/h is defined linearly as (Ravi et al. 2017)

$$213 \quad c_t^{k^g} = f(i_t^{k^g}) \quad (2)$$

214

$$= c_0 - \gamma_0 i_t^{k^g}$$

215 where c_0 = basic two-lane road capacity; and γ_0 = model coefficient.

216 **Road Pavement Intervention**

217 Condition betterment improves both condition and capacity as highlighted before due to travel time
 218 reduction which increases traffic flow and road capacity. Capacity improvements were assumed to
 219 improve only the road capacity. When intervention $A_t^{k^g} \in [A_0, A_i, A_c]$ is performed, the condition and
 220 capacity improve based on

$$221 \quad i_t^{k^g} = \begin{cases} i_t^{k^g} - \nabla & \text{if } A_i \text{ on } k^g \text{ at } t \\ c_t^{k^g} = f(i_t^{k^g} - \nabla) & \\ i_t^{k^g} & \text{otherwise} \\ c_t^{k^g} & \end{cases} \quad (3)$$

$$222 \quad c_t^{k^g} = \begin{cases} mc_t^{k^g} & \text{if } A_c \text{ on } k^g \text{ at } t \\ c_t^{k^g} & \text{otherwise} \end{cases} \quad (4)$$

223 where m = percentage capacity increase; and ∇ = condition improvement.

224 **Markov Transition Process**

225 The stochastic Markov deterioration model is suitable to estimate future road condition because it is
 226 probabilistic and appropriately models uncertain pavement deterioration processes. The Markov
 227 Transition Probability (MTP) from condition state $h(t) = i_t^{k^g}$ observed at discrete time t to condition
 228 state $h(t+r) = j_{t+r}^{k^g}$ at a future time $t+r$ assuming no repair is (Madanat 1993 and Tsuda et al. 2006)

$$229 \quad Prob[h(t+r) = j_{t+r}^{k^g} | h(t) = i_t^{k^g}, A_t^{k^g}] = \begin{cases} \pi_{i_t^{k^g}, j_t^{k^g}} & \text{if } A_t^{k^g} = A_0 \\ 0 & \text{if } A_t^{k^g} \in [A_i, A_c] \end{cases} \quad (5)$$

230 The MTP from $i_t^{k^g}$ to $j_t^{k^g}$ is explicitly expressed as a function of hazard rates (Tsuda et al. 2006)

231

$$\pi_{i_t^{k^g}, j_t^{k^g}} = \sum_{\tilde{k}=i_t^{k^g}}^{j_t^{k^g}} \prod_{\tilde{m}=i_t^{k^g}}^{\tilde{k}-1} \frac{\theta_{\tilde{m}}}{\theta_{\tilde{m}} - \theta_{\tilde{k}}} \prod_{\tilde{m}=\tilde{k}}^{j_t^{k^g}-1} \frac{\theta_{\tilde{m}}}{\theta_{\tilde{m}+1} - \theta_{\tilde{k}}} \exp(-\theta_{\tilde{k}}r) \quad (6)$$

232

$$i_t^{k^g} \leq \tilde{k} \leq \tilde{m} \leq j_t^{k^g}$$

233 where $\theta_{i_t^{k^g}}$ = hazard rate; and \tilde{k} and \tilde{m} = indices.

234 For a given set $(i_t^{k^g} = 1, \dots, J_t^{k^g})$, the MTP matrix Π can be defined using transition probabilities between
235 $(i_t^{k^g}, j_t^{k^g})$ pairs.

236

$$\Pi = \begin{bmatrix} \pi_{11} & \cdots & \pi_{1J_t^{k^g}} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \pi_{J_t^{k^g} J_t^{k^g}} \end{bmatrix} \quad (7)$$

237 Because Π follows Markov process properties and due to the nature of pavement deterioration, all the
238 conditions below must be met. The first ensures non-negativity, the second specifies no transition to better
239 state for no repair and the third ensures all probabilities sum to 1.

240

$$\left. \begin{array}{l} \pi_{i_t^{k^g}, j_t^{k^g}} \geq 0 \\ \pi_{i_t^{k^g}, j_t^{k^g}} = 0 \text{ (when } i_t^{k^g} > j_t^{k^g} \text{)} \\ \sum_{j_t^{k^g}=1}^{J_t^{k^g}} \pi_{i_t^{k^g}, j_t^{k^g}} = 1 \end{array} \right\} \quad (8)$$

241 The Markov transition from t to $t + r$ depends only on $h(t)$ and not on earlier history (is memoryless).
242 To predict future pavement condition, MTP at $t + r$ is

243

$$\Pi(r) = \Pi^r \quad (9)$$

244 To ensure non-negative hazard rates and subsequently expected life expectancies, the hazard rate for each
245 k^g and $i_t^{k^g}$ is expressed in exponential form

246

$$\theta_{i_t^{k^g}}^{k^g} = \exp(x^{k^g} \beta'_{i_t^{k^g}}) \quad (10)$$

247

$$(i_t^{k^g} = 1, \dots, J_t^{k^g} - 1)$$

248 where $\boldsymbol{\beta}_{i_t^{k^g}} = (\beta_{i_t^{k^g},1}, \dots, \beta_{i_t^{k^g},M})$ = row vector of unknown parameters with symbol ['] signifying the
 249 transpose; and \mathbf{x}^{k^g} = row vector of explanatory variables.

250 The parameters can be determined by expressing the log-likelihood function

$$251 \quad \ln[\mathbf{L}(\boldsymbol{\beta})] = \ln \left[\prod_{i_t^{k^g}=1}^{J_t^{k^g}-1} \prod_{j_t^{k^g}=i_t^{k^g}}^{J_t^{k^g}} \prod_{k^g=1^g}^{K^G} \left\{ \pi_{i_t^{k^g}, j_t^{k^g}}(\bar{r}^{k^g}, \bar{\mathbf{x}}^{k^g}; \boldsymbol{\beta}) \right\}^{\delta_{i_t^{k^g}, j_t^{k^g}}^{k^g}} \right] \quad (11)$$

$$252 \quad = \sum_{i_t^{k^g}=1}^{J_t^{k^g}-1} \sum_{j_t^{k^g}=i_t^{k^g}}^{J_t^{k^g}} \sum_{k^g=1^g}^{K^G} \delta_{i_t^{k^g}, j_t^{k^g}}^{k^g} \ln \left[\pi_{i_t^{k^g}, j_t^{k^g}}(\bar{r}^{k^g}, \bar{\mathbf{x}}^{k^g}; \boldsymbol{\beta}) \right]$$

$$253 \quad \delta_{i_t^{k^g}, j_t^{k^g}}^{k^g} = \begin{cases} 1 & \text{when } h(t) = i_t^{k^g} \text{ and } h(t+r) = j_t^{k^g} \\ 0 & \text{otherwise} \end{cases}$$

254 where $\delta_{i_t^{k^g}, j_t^{k^g}}^{k^g}$ = dummy variable; and the symbol ['] denotes a measured quantity.

255 The $\boldsymbol{\beta}_{i_t^{k^g}}$ parameters are obtained by maximising the log-likelihood using iterative methods.

$$256 \quad \frac{\partial \ln[\mathbf{L}(\boldsymbol{\beta})]}{\partial \beta_{i_t^{k^g}, m}} = 0 \quad (12)$$

$$257 \quad (i_t^{k^g} = 1, \dots, J_t^{k^g} - 1; m = 1, \dots, M)$$

258 The optimal $\hat{\boldsymbol{\beta}}$ can be obtained through approximating optimality using Newton's method (Tsuda et al.
 259 2006) or Bayesian methods such as Markov Chain Monte Carlo (MCMC) using the Metropolis-Hastings
 260 (MH) algorithm (Kobayashi et al. 2010). The MCMC method randomly samples $\boldsymbol{\beta}_{i_t^{k^g}}$ from a probability
 261 distribution using the MH algorithm until equilibrium where the Markov chain converges.

262 The life expectancy ($RMD_{i_t^{k^g}}^{k^g}$) in $i_t^{k^g}$ for k^g is obtained as the inverse of the hazard rate (Lancaster 1990)

$$263 \quad RMD_{i_t^{k^g}}^{k^g} = \frac{1}{\theta_{i_t^{k^g}}^{k^g}} \quad (13)$$

264 The average life expectancy $ET_{j_t^{k^g}}^{k^g}(j_t^{k^g} = 2, \dots, j_t^{k^g})$ is obtained by summing up life expectancies from
 265 $i_t^{k^g} = 1$ to $j_t^{k^g}$.

266

$$ET_{j_t^{k^g}}^{k^g} = \sum_{i_t^{k^g}=1}^{j_t^{k^g}} \frac{1}{\theta_{i_t^{k^g}}^{k^g}} \quad (14)$$

267 The estimated MTPs and life expectancies can be used to predict future condition $j_t^{k^g}$ as $i_t^{k^g}$ transitions to
 268 $i_t^{k^g} + 1$ at the end of pavement life.

269 **Social Cost Optimization**

270 The social cost $\xi_t(\mathbf{A}_t)$ at time t , also simply represented as ξ_t , is presented as a summation of travel and
 271 intervention cost. Assuming repair was done once a year

272

$$\xi_t = \sum_{g=1}^G (1 + \rho)^{-t} \left\{ \left(\omega k^g \bar{v}_t^{k^g} * \bar{\tau}_t^{k^g} \right) + \sum_{k^g=1^g}^{K^g} \sum_{A_t} a_t^{k^g} C^{A_t^{k^g}} \right\} \quad (15)$$

273 where ω = unit travel time monetary value; $\bar{\tau}_t^{k^g}$ = average travel time on k^g sections in g ; $\bar{v}_t^{k^g}$ = average
 274 volume on k^g sections in g ; $C^{A_t^{k^g}}$ = unit cost of $A_t^{k^g}$; $a_t^{k^g}$ = section area improved; and ρ = discount rate.

275 The objective is to minimize the total social costs $\sum_{t=0}^T \xi_t$ over planning horizon T . The optimum set of
 276 actions, policy, can be obtained by optimizing

277

$$\mathbf{A}^* = \arg \min_{\mathbf{A}_t} \sum_{t=0}^T \xi_t \quad (16)$$

278 *Subject to*

279

$$\mathbf{A} \in \Gamma \quad (17)$$

280

$$\sum_{g=1}^G \sum_{k^g=1^g}^{K^g} \sum_{A_t} a_t^{k^g} C^{A_t^{k^g}} \in \Omega_t \quad \forall t \quad (18)$$

281 where Γ = set of all feasible actions; and Ω_t = budget limit.

282 **Solution Algorithms**

283 **Greedy Algorithm**

284 The optimal solution for the above sequential optimization problem can be determined by obtaining the
285 social costs for all possibilities and then using a greedy algorithm to select interventions with the biggest
286 social cost reduction first (**Fig. 4**). The greedy algorithm searches for a globally optimal solution locally
287 and step-wise. When one section intervention is proposed, the state of all other sections is fixed and total
288 social costs at t estimated. This proposal step is done for all sections considering all possible interventions
289 after which candidates are selected using a social cost minimization greedy algorithm with steps:

290 Step 1: Propose A_i , A_C and A_0 for each k^g at every t and fix the state $s_t^{k^g}$ of all other sections.

291 Step 2: Estimate social costs $\xi_t(A_t^{k^g})$ each time an action is proposed.

292 Step 3: From all $\xi_t(A_t^{k^g})$ estimates, determine the social cost reduction $\Delta \xi_t(A_t^{k^g})$ by subtracting $\xi_t(A_t^{k^g})$
293 from previous social cost ξ_{t-r} .

294 Step 4: Use a greedy algorithm to select candidates with the biggest $\Delta \xi_t(A_t^{k^g})$ and update \mathbf{S}_t .

295 Step 5: Lastly, estimate the total social costs $\sum_{t=0}^T \xi_t$ that include spatial-temporal consolidations,
296 determine final state \mathbf{S}_T and optimum policy \mathbf{A}^* .

297 The solution to this problem is quite complex and the evaluation of all possible actions is inefficient.
298 For a network consisting of 2,000 road sections with three interventions over a 15 year planning period,
299 there are 90,000 possible interventions in the first year, then 84,000 in the second year and so on. This
300 becomes cumbersome if inputs including number of elements, actions and length of the analysis period
301 are increased. Methods that incorporate sampling such as Monte Carlo simulations may be more efficient.

302 **Monte Carlo Algorithm**

303 The more efficient Monte Carlo simulations approach involves randomly sampling interventions \mathbf{A}_t
304 without having to scan through the entire sample space. The algorithm applies Bellman's principle of

305 optimality by determining optimal annual interventions and then summing up to generate total optimal
 306 interventions for the entire planning horizon.

307 Firstly, the optimum intervention in the initial year

308
$$\mathbf{A}_{t=0}^* \in \arg \min_{\mathbf{A}_{t=0}} J_0(\mathbf{A}_{t=0}) \quad (19)$$

309 where the cost-to-go function J_0 is defined as

310
$$J_0(\mathbf{A}_{t=0}) = \min_{\mathbf{A}_0, \dots, \mathbf{A}_T} \sum_{t=0}^T \xi_t$$

311 Next, the optimum intervention after the first year

312
$$\mathbf{A}_1^* \in \arg \min_{\mathbf{A}_1} J_1(\mathbf{A}_{t=0}^*, \mathbf{A}_1) \quad (20)$$

313 where

314
$$J_1(\mathbf{A}_{t=0}^*, \mathbf{A}_1) = \min_{\mathbf{A}_1, \dots, \mathbf{A}_T} \sum_{t=0}^T \xi_t$$

315 Following the above procedure incrementally T times, the optimum intervention \mathbf{A}_T^* at T is

316
$$\mathbf{A}_T^* \in \arg \min_{\mathbf{A}_T} J_T(\mathbf{A}_{t=0}^*, \mathbf{A}_1^*, \dots, \mathbf{A}_T) \quad (21)$$

317 where

318
$$J_T(\mathbf{A}_{t=0}^*, \mathbf{A}_1^*, \dots, \mathbf{A}_T) = \min_{\mathbf{A}_T} \sum_{t=0}^T \xi_t$$

319 with

320
$$J_t(\mathbf{A}) = \sum_{t=0}^T \xi_t$$

321 The optimum policy \mathbf{A}^* over T can then be determined as the combination of all the optimum solutions to
 322 the annual sub problems.

323
$$\mathbf{A}^* = (\mathbf{A}_{t=0}^*, \mathbf{A}_1^*, \dots, \mathbf{A}_T^*) \quad (22)$$

324 The Monte Carlo solution steps are detailed in **Fig. 5**.

325 **Empirical Application**

326 **Model Inputs**

327 The road pavement intervention model was empirically applied to Uganda's surveyed national road
328 network. Obunguta et al. (2022) obtained α_1 and α_2 as 0.3331 and 0.3481, respectively with n fixed to 1
329 as the best loss minimizing result; and the significant values i^{k^g*} and $(v^{k^g}/c^{k^g})^*$ were fixed at 4.00
330 mm/m IRI and 0.5, respectively for Ugandan national roads. This study applied Ugandan national road
331 life expectancies for 1,993 sample 1 km road sections shown in **Table 7** in the Appendix (Obunguta and
332 Matsushima 2020). The estimated benchmark life expectancy was 10.69 years for the sampled roads with
333 IRI (in mm/m) discretized as 1. Good (0 – 3.50), 2. Fair (3.51 – 5.00), 3. Poor (5.01 – 6.50), and 4. Bad (>
334 6.50) according to the Ministry of Works and Transport (MoWT 2017). Based on Obunguta et al.'s (2022)
335 evidence-based study, Ugandan road sections were categorized as non-congested (NC), moderately
336 congested (MC), congested (CO) and heavily congested (HC) as shown in **Table 1**.

337 The costs C^{A_i} and C^{A_c} were set to US\$280,000 per km (here after \$ is used) and \$1,652,000 per km,
338 respectively; variable ω was set to \$34.56/PCU/h, and the initial annual budget was fixed at \$75.06
339 million following Obunguta et al. (2022). According to traffic levels measured in PCU/h in 2017 and
340 2018, the estimated traffic growth rate fluctuated with traffic increasing, decreasing, or remaining
341 stagnant on a given route (see **Table 7** in the Appendix). In this study application, the traffic growth rate
342 was set to 0.1% to minimize A_c selection bias. The free flow travel time (FFT) was assumed to be the
343 minimum achievable within a given road group because this may approximate free flow conditions. The
344 budget was considered to increase by 20% each year to create more optimization space by increasing the
345 candidate pool and a 10% discount rate was considered (Bank of Uganda 2018). Following Ravi et al.
346 (2017), the parameters c_0 and γ_0 were set to 2,956 and 199, for two-lane roads and 5,082 and 275, for

347 four-lane roads, respectively, assuming similarity between Indian and Ugandan roads. If a section
348 underwent condition improvement, the condition improved to good with IRI randomly sampled assuming
349 a uniform distribution in the condition state IRI range. Capacity was assumed to double if increased. In
350 case of no action, the condition state deteriorated based on life expectancy and the section attained a
351 randomly sampled IRI in the next state assuming a uniform distribution. Section volume:capacity ratio
352 changed according to condition change and traffic volume growth rates. The greedy algorithm searched
353 through the entire search space, whereas the Monte Carlo algorithm sampled N candidates in worse state.
354 Both algorithms were run in Python 3.10.9 using a computer with processor: 13th Gen Intel(R) Core(TM)
355 i9-13900K CPU @ 3.00 GHz, memory (RAM): 64.0 GB and operating system: Windows 11 Pro (64-bit).

356 Model Results

357 Estimated Social Costs

358 The **Table 2** and **Table 3** show results of the estimated social costs; annual undiscounted and aggregate
359 discounted, respectively; using the greedy and Monte Carlo algorithm with traffic growth fixed or
360 considered for a 15 year planning horizon. For the Monte Carlo algorithm, 10 and 1 iteration were set for
361 computational reasons. With traffic growth fixed, estimated annual social costs decreased for both
362 algorithms due to social cost optimization and previous work effects. The Monte Carlo simulation with
363 one iteration generated larger social costs in comparison to the greedy algorithm because of fewer optimal
364 solution search instances. However, the greedy algorithm was suboptimal and resulted in larger social
365 costs compared to the Monte Carlo simulation approach with 10 iterations. This showed the efficiency of
366 Monte Carlo methods in arriving at more optimal solutions considering more iterations despite this
367 requiring a higher computational time cost (**Table 4**). The Monte Carlo algorithm was extensive and
368 robust in its optimal solution search with higher exploration abilities and incorporated multiple
369 intervention effects as it proposed interventions for several road sections simultaneously and randomly.
370 On the other hand, the greedy algorithm was myopic and restricted as it proposed intervention for a given

371 section while fixing the states of other sections which limited the evaluation of multiple intervention work
372 effects concurrently. The greedy algorithm produced locally optimal choices step-wise that did not
373 approximate global optima.

374 The change in social costs for either algorithm is graphically shown in **Fig. 6** considering fixed traffic.
375 As expected, the agency costs were lower (less than 2% of total social costs) compared to travel costs. To
376 show the impact of intervention works, undiscounted social costs without the influence of discount factors
377 were applied. The fluctuation in social costs between the initial and third year was due to model
378 adjustments as capacity was defined as a function of condition and because of randomness in
379 determination of condition and volume: capacity ratio after intervention. The greedy algorithm (**Fig. 6 a**)
380 showed a general reduction in social costs with steeper reductions in the third and eleventh year after
381 which the costs stagnated. This stagnation was probably due to the algorithm getting trapped in local
382 optima as mentioned above. The Monte Carlo simulations approach (**Fig. 6 b**) achieved a huge reduction
383 in social costs in the third year after which the social costs gradually reduced over time. This result shows
384 that timely interventions for vital sections optimally selected unblocks critical bottlenecks in the road
385 network that lowers total social costs even with limited budgets, which highlights the importance of
386 timely and decisive network interventions before the build up of negative effects.

387 The Appendix shows how the incorporation of multiple interventions for group $g = 1$ by the random
388 Monte Carlo algorithm makes it superior to the greedy algorithm. The Monte Carlo algorithm selected
389 vital combinations of condition or capacity improvement works each year that unclogged road network
390 bottlenecks unlike the greedy algorithm that deferred condition and capacity interventions to the 11th and
391 7th to 9th year, respectively (**Table 8** and **Table 9** in the Appendix). It should be noted that, the Monte
392 Carlo methods were unstable especially for much fewer iterations compared to the greedy algorithm. This
393 instability is attributable to the randomness of Monte Carlo simulations.

394 Similar results were shown considering traffic growth, however, the total social costs exponentially
395 increased due to the enormous increase in travel costs. The enormous social costs were due to the fixed

396 network length and limited budget assumptions. As a result, with traffic growth, the social costs
397 exponentially increased due to larger section volume: capacity ratios. Additionally, the limited budget did
398 not permit working on all critical sections hence the joint negative effects of higher volume: capacity and
399 condition for many critical sections not intervened on further increased the social costs exponentially. In
400 future, the case of network length extension through the construction of entirely new routes could be
401 studied.

402 Algorithm efficiency was examined through computational time comparison with one iteration set for
403 the Monte Carlo algorithm as computational costs increase with increase in iterations despite the greater
404 possibility of generating more optimal solutions (**Table 4**). The greedy algorithm needed about 24 minutes,
405 whereas Monte Carlo simulations required about 11 minutes (53.38% shorter) for a single iteration for a
406 15 year planning horizon. The Monte Carlo algorithm didn't have to search through the entire sample
407 space as probable candidates were randomly sampled in a more defined sample space which optimized
408 computational time. However, the program run time was about an hour longer when 10 iterations were set
409 for the Monte Carlo simulations compared to the greedy algorithm. The greedy algorithm presented a
410 locally optimal solution in a relatively shorter time despite this not closely approximating the globally
411 optimal solution because it was stuck in local optima. As iterations increased, optimal solution search
412 instances for the Monte Carlo algorithm were increased with higher probability of lowering social costs to
413 generate a more stable true global optima; however, this required a larger computational cost.

414 Section Intervention

415 The **Table 5** and **Table 6** show the number of candidates selected for intervention by the greedy and
416 Monte Carlo algorithm for a 15 year planning horizon with traffic growth rate fixed and considered,
417 respectively. The first batch contains candidates in terminal state that need improvement to ensure road
418 user safety and the second batch contains sections selected for condition and or capacity enhancement
419 through social cost optimization. For both algorithms, batch 1 decreased after the first year due to

420 significant improvement of sections in the worst to the best state and the subsequent annual works that
421 prevented section deterioration preserving road safety. For batch 2, heavily deteriorated sections were
422 selected for condition improvement and highly trafficked sections were prioritized for capacity increase to
423 optimize social costs. The greedy algorithm was suboptimal to the Monte Carlo simulations as the greedy
424 algorithm was trapped in local optima. The increase in batch 2 over the years was due to budget increment.

425 The trade-off between condition improvement and capacity increase was shown by the variation in the
426 number of candidates each year and the η_{A_i}/η_{A_c} ratio. If η_{A_i}/η_{A_c} is greater than 1, more sections were
427 selected for condition improvement than for capacity increase, and vice versa. The greedy algorithm
428 selected more sections for condition improvement in batch 2 in year 2 and 11 due to their deteriorated
429 state, whereas capacity enhancements optimized social costs in the other years considering fixed traffic.
430 The increase in condition improvement candidates in the eleventh year was due to a build up of
431 deteriorated sections not selected in earlier years probably due to the confinement of the greedy algorithm
432 in local optima. With traffic growth, the condition improvement peak in the eleventh year disappeared as
433 it was more optimal to select sections for capacity increase because of relatively higher traffic levels. For
434 the Monte Carlo simulations, candidate selection for either improvement showed a gradual η_{A_i}/η_{A_c}
435 decrease and the advantage of timely interventions on critical sections that lower social costs while
436 maintaining road safety. This result demonstrates the supremacy of the Monte Carlo algorithm in
437 generating more optimal interventions even within limited budgets.

438 Condition and Congestion of Network Sections

439 Network section condition over the fifteen-year planning period was obtained comparing the greedy and
440 Monte Carlo algorithm with traffic growth fixed or considered (Fig. 7). For both algorithms, the entire
441 network condition improved to good at the end of the planning horizon save for the greedy algorithm with
442 traffic growth. The greedy algorithm generated poorer condition as 29.25% of the network stayed in fair to
443 to bad condition until the tenth year with traffic fixed (Fig. 7 a1) and 29.35% of the network was in fair to

444 bad condition until the end of the planning horizon with traffic considered (**Fig. 7 a2**). The latter case
445 showed a stagnating trend which suggested that better network condition was unachievable in the
446 foreseeable future unless the budget was significantly increased to accommodate more works including
447 condition improvement. On the other hand, the Monte Carlo algorithm resulted in a gradual improvement
448 in road pavement condition in that by the seventh year, 90% of the network had achieved good state
449 regardless of traffic growth (**Fig. 7 b1, b2**). This result shows the superiority of the Monte Carlo algorithm
450 in determining intervention works that better road condition and safety despite incurring a higher
451 computational cost compared to the myopic greedy algorithm whose optimal solution search gets trapped
452 in local optima.

453 Also, network section congestion over the fifteen-year period applying either algorithm was estimated
454 with traffic growth fixed or considered (**Fig. 8**). The initial drop in moderately congested sections was due
455 to condition deterioration. The gradual reduction in congestion thereafter is attributable to capacity
456 increase due to the combined effects of capacity and condition improvement. With traffic fixed, both
457 algorithms achieved about 68% of the network in moderate and non-congested state at the end of the
458 planning period (**Fig. 8 a1, b1**). However, with traffic growth, 40.44% and 33.86% of the network
459 degenerated to congested and heavily congested state for the greedy (**Fig. 8 a2**) and Monte Carlo
460 algorithm (**Fig. 8 b2**), respectively. This 6.58% improvement in network congestion by the Monte Carlo
461 algorithm showed its superiority in optimal solution search with positive cascading impacts of timely
462 condition improvement resulting in road capacity gains.

463 **Conclusions**

464 This study built a model to generate near-optimal intervention decisions for a road infrastructure group
465 while incorporating network state variability over time. The proposed model incorporated road
466 infrastructure and traffic conditions through a modified BPR travel time function to optimally decide
467 intervention decisions for an infrastructure group over a planning horizon using Monte Carlo simulations.

468 The model included the variability of infrastructure and traffic conditions over time through condition
469 deterioration estimation using the Markov hazard model, traffic growth rate and intervention effects. The
470 modified BPR function enabled the evaluation of the trade-off of intervention works; i.e., capacity
471 increase and condition improvement for multiple road sections within a planning horizon, and the
472 generation of more optimal interventions. The evaluation of capacity and condition improvement trade-off
473 is an important tool for road managers due to competing management decisions and budget limitations.
474 The convenience of the model in generating close-to-optimal intervention decisions while evaluating the
475 trade-off between competing alternatives and the incorporation of infrastructure and traffic condition
476 variability represented real situations which makes the model highly applicable in the real world. The
477 model betterment using Monte Carlo methods permitted the evaluation of competing alternative
478 interventions effortlessly with the modeler having autonomy to decide model accuracy levels, robustness
479 and computational cost through setting appropriate iterations and solution space size.

480 The empirical results showed the superiority of the Monte Carlo in generating much lower social costs
481 due to the incorporation of multiple intervention effects compared to the greedy algorithm despite the
482 Monte Carlo methods incurring a higher computational cost for more iterations. The Monte Carlo
483 simulations approach supremacy was also shown by better network condition and congestion state. The
484 results also showed the importance of traffic level in making road infrastructure decisions which
485 highlights the need for regulators to control traffic growth rates to avoid the exponential increase in social
486 costs (negative effects) as a result of more traffic congestion.

487 The Monte Carlo algorithm's solution search could be improved by defining a better search space and
488 increasing the number of iterations. Model outputs may change if the exogeneous parameters are adjusted;
489 therefore, the accuracy of model inputs should be carefully ensured through detailed historical data
490 analysis and probably expert recommendations.

491 This proposed decision model can be applied to other civil infrastructures including bridges, tunnels
492 and water distribution systems to evaluate the trade-off between multiple interventions and in other fields

493 such as health that require the generation of optimal choices for competing treatments over a given time
494 horizon. In future, it will be interesting to investigate and improve the instability of Monte Carlo methods
495 for fewer iterations and evaluate the case of construction of entirely new network routes.

496 **Data Availability Statement**

497 Some or all data, models, or code used during the study were provided by a third party. Direct requests for
498 these materials may be made to the provider as indicated in the Acknowledgments. The restricted data
499 include Ugandan pavement condition, travel time, traffic volume, and inventory data.

500 **Acknowledgements**

501 The Uganda National Roads Authority (UNRA) kindly provided Ugandan national roads data including
502 condition, travel time, traffic volume, and pavement inventory data for this study.

503 **Declaration of Interest Statement**

504 There was no conflict of interest reported by the authors.

505 **Notation**

506 *The following symbols are used in this paper:*

507 g = road group

508 k^g = section in g

509 t = time point

510 r = time interval

511 T = analysis period

512 $\tau_t^{k^g}$ = travel time on k^g at t

513 $i_t^{k^g}$ = condition of k^g at t

514 $v_t^{k^g}$ = traffic volume on k^g at t

515 $c_t^{k^g}$ = capacity of k^g at t

- 516 $J_t^{k^g}$ = absorbing state at any t
- 517 $A_t^{k^g}$ = intervention on k^g at t
- 518 \mathbf{A}_t = vector of interventions at t
- 519 $C^{A_t^{k^g}}$ = unit cost of intervention on k^g at t
- 520 $a_t^{k^g}$ = area of k^g improved at t
- 521 ρ = discount rate
- 522 \mathbf{A} = string of all interventions over T
- 523 \mathbf{A}^* = optimum set of interventions/ policy over T
- 524 η_{A_i} = number of candidates for condition improvement
- 525 η_{A_c} = number of candidates for capacity increase
- 526 ξ_t = social cost at t
- 527 Ω_t = budget limit at t
- 528 \mathbf{S}_t = road network state at t
- 529 $s_t^{k^g}$ = state of k^g at t
- 530 $\tau^{k^g,0}$ = free-flow travel time
- 531 α_1 = condition parameter
- 532 α_2 = volume: capacity parameter
- 533 $IRI_t^{k^g}$ = IRI of k^g at t
- 534 $f(\cdot)$ = function
- 535 $J_t(\cdot)$ = cost-to-go function
- 536 $\pi_{i_t^{k^g}, j_t^{k^g}}$ = Markov transition probability
- 537 $\theta_{i_t^{k^g}}^{k^g}$ = hazard rate for k^g in $i_t^{k^g}$
- 538 $\mathbf{\Pi}$ = Markov transition probability matrix

539 $RMD_{i_t^{k^g}}^{k^g}$ = life expectancy for k^g in $i_t^{k^g}$

540 z = iterations

541 ω = monetary value of one unit of travel time

542 **References**

543 Adey, B. T., Burkhalter, M., and Martani, C. 2019. “Defining road service to facilitate road infrastructure
544 asset management.” *Infrastruct. Asset Manag.* 7 (4): 240–255. <https://doi.org/10.1680/jinam.18.00045>.

545 Arba, R., Jecan, S., Rusu, L., and Sitar-Taut, D. A. 2019. “A Monte Carlo simulation method for risk
546 management in road pavement maintenance projects.” *Environ. Eng. Manage. J.* 18 (8): 1639–1646.
547 <http://89.44.47.69/index.php/EEMJ/article/view/3920>.

548 Bank of Uganda. 2018. Annual Report; https://www.bou.or.ug/bou/bouwebsite/bouwebsitecontent/publications/Annual_Reports/All/Bank-of-Uganda-Annual-Report-2018.pdf.

550 Bellman, R. 1954. “The theory of dynamic programming.” *Bulletin of the American Mathematical
551 Society*, 60 (6): 503–515. <https://www.ams.org/journals/bull/1954-60-06/S0002-9904-1954-09848-8/>.

552 BPR (Bureau of Public Roads). 1964. *Traffic assignment manual*. Washington, DC: US Department of
553 Commerce.

554 Chandra, S. 2004. “Effect of road roughness on capacity of two-lane roads.” *J. Transp. Eng.* 130 (3):
555 360–364. [https://doi.org/10.1061/\(ASCE\)0733-947X\(2004\)130:3\(360\)](https://doi.org/10.1061/(ASCE)0733-947X(2004)130:3(360)).

556 Chandra, S. and Kumar, U. 2003. “Effect of Lane Width on Capacity under Mixed Traffic Conditions in
557 India.” *J. Transp. Eng.* 129(2): 155–160. [https://doi.org/10.1061/\(ASCE\)0733-947X\(2003\)129:2\(155\)](https://doi.org/10.1061/(ASCE)0733-947X(2003)129:2(155)).

558 Hackl, J., Adey, B. T., and Lethanh, N. 2018. “Determination of near-optimal restoration programs for
559 transportation networks following natural hazard events using simulated annealing.” *Comput.-Aided
560 Civ. Infrastruct. Eng.* 33 (8): 618-637. <https://doi.org/10.1111/mice.12346>.

- 561 Kobayashi, K., Do, M., Han, D. 2010. “Estimation of Markovian transition probabilities for pavement
562 deterioration forecasting”. *KSCE J. Civ. Eng.* 14 (3): 343–351. <https://doi.org/10.1007/s12205-010-0343-x>.
- 564 Kobayashi, K., Eguchi, M., Oi, A., Aoki, K., Kaito, K. 2013. “The optimal implementation policy for
565 inspecting pavement with deterioration uncertainty.” *J. Japan Soc. Civ. Eng.* 1 (1): 551–568.
566 https://doi.org/10.2208/journalofjsce.1.1_551.
- 567 Kuhn, KD. 2009. “Network-level infrastructure management using approximate dynamic programming.”
568 *J. Infrastruct. Syst.* 16 (2):103–11. [https://doi.org/10.1061/\(ASCE\)IS.1943-555X.0000019](https://doi.org/10.1061/(ASCE)IS.1943-555X.0000019).
- 569 Lancaster, T. 1990. *The Econometric Analysis of Transition Data*. New York: Cambridge University
570 Press.
- 571 Lethanh, N., Adey, B. T., and Burkhalter, M. 2018. “Determining an optimal set of work zones on large
572 infrastructure networks in a GIS framework.” *J. Infrastruct. Syst.* 24 (1): 04017048.
573 [https://doi.org/10.1061/\(ASCE\)IS.1943-555X.0000410](https://doi.org/10.1061/(ASCE)IS.1943-555X.0000410).
- 574 Lu, G., Xiong, Y., Ding, C., and Wang, Y. 2016. “An Optimal Schedule for Urban Road Network Repair
575 Based on the Greedy Algorithm.” *PLoS One* 11 (10): e0164780.
576 <https://doi.org/10.1371/journal.pone.0164780>.
- 577 Madanat, S. 1993. “Optimal Infrastructure Management Decisions Under Uncertainty.” *Transp. Res.*
578 *Part C Emerging Technol.* 1 (1): 77–88. [https://doi.org/10.1016/0968-090X\(93\)90021-7](https://doi.org/10.1016/0968-090X(93)90021-7).
- 579 Martani, C., Eberle, S., and Adey, B. T. 2022. “Evaluating highway design considering uncertain
580 mobility patterns and decision flexibility.” *Infrastruct. Asset Manag.* 9 (3): 135–155.
581 <https://doi.org/10.1680/jinam.21.00018>.

- 582 Marzouk, M. and Osama, A. 2017. "Fuzzy-based methodology for integrated infrastructure asset
583 management." *Int. J. Comput. Intell. Syst.* 10: 745-759. <https://doi.org/10.2991/ijcis.2017.10.1.50>.
- 584 Mizutani, D., Nakazato, Y., and Lee, J. 2020. "Network-level synchronized pavement repair and work
585 zone policies: Optimal solution and rule-based approximation." *Transp. Res. Part C Emerging*
586 *Technol.* 120: 102797. <https://doi.org/10.1016/j.trc.2020.102797>.
- 587 Moghtadernejad, S., Adey, B. T., and Hackl, J. 2022. "Prioritizing Road Network Restorative
588 Interventions Using a Discrete Particle Swarm Optimization." *J. Infrastruct. Syst.* 28 (4): 04022039.
589 [https://doi.org/10.1061/\(ASCE\)IS.1943-555X.0000725](https://doi.org/10.1061/(ASCE)IS.1943-555X.0000725).
- 590 MoWT (Ministry of Works and Transport). 2017. *Annual sector performance reports*. Kampala, Uganda:
591 MoWT. <http://www.works.go.ug/document-category/jtsrw/>.
- 592 Nozhati, S., Sarkale, Y., Ellingwood, B., Chong, K.P.E., and Mahmoud, H. 2019. "Near-optimal planning
593 using approximate dynamic programming to enhance post-hazard community resilience management."
594 *Reliab. Eng. Syst. Saf.* 181: 116–126, <https://doi.org/10.1016/j.ress.2018.09.011>.
- 595 Obunguta, F., and Matsushima, K. 2020. "Optimal pavement management strategy development with a
596 stochastic model and its practical application to Ugandan national roads." *Int. J. Pavement Eng.* 23
597 (7): 2405–2419. <https://doi.org/10.1080/10298436.2020.1857759>.
- 598 Obunguta, F., Matsushima, K., and Bakamwesiga, H. 2022. "Social Cost Optimization Model and
599 Empirical Evaluation of Intervention Effects on Ugandan Road Pavements." *J. Infrastruct. Syst.* 28
600 (4): 05022005. [https://doi.org/10.1061/\(ASCE\)IS.1943-555X.0000707](https://doi.org/10.1061/(ASCE)IS.1943-555X.0000707).
- 601 Ravi, S., Velmurugan, S., Chandra, S., Balakrishna, K. and Nataraju, J. 2017. "Capacity models and
602 Adjustment Factors for Interurban Bidirectional Roads, in Capacity Models and Adjustment Factors
603 for Interurban Bidirectional Roads." *J. Indian Roads Congr.* 78 (2): 59 –70. DOI:
604 10.13140/RG.2.2.30242.94408.

605 Rinnooy Kan, A. H. G., Stougie, L. and Vercellis, C. 1993. "A class of generalized greedy algorithms for
606 the multi-knapsack problem." *Discrete Appl. Math.* 42 (3): 279–290. [https://doi.org/10.1016/0166-218X\(93\)90051-O](https://doi.org/10.1016/0166-218X(93)90051-O).
607

608 Tsuda, Y., Kaito, K., Aoki, K., and Kobayashi, K. 2006. "Estimating Markovian Transition Probabilities
609 for Bridge Deterioration Forecasting." *Struct. Eng./Earthquake Eng.* 23 (2): 241s–256s.
610 <https://doi.org/10.2208/jsceseee.23.241s>.

611 Zhang, T., Chen, X., Yu, Z., Zhu, X., and Shi, D. 2018. "A Monte Carlo Simulation Approach to Evaluate
612 Service Capacities of EV Charging and Battery Swapping Stations." *IEEE Trans. Ind. Inf.* 14 (9):
613 3914–3923. doi: 10.1109/TII.2018.2796498.

614

Table 1. Volume:capacity grouping for Ugandan roads.

Category	v^{kg}/c^{kg}
NC	0 – 0.50
MC	0.51 – 1.00
CO	1.01 – 1.50
HC	> 1.50

Table 2. Estimated undiscounted annual social costs considering the greedy and Monte Carlo algorithm.

t	Social cost (millions of \$)			
	with traffic growth		with traffic fixed	
	Greedy	Monte	Greedy	Monte
0	4.6350×10^4	4.6350×10^4	4.6350×10^4	4.6350×10^4
1	4.5682×10^4	4.7740×10^4	4.1846×10^4	4.2045×10^4
2	3.8180×10^4	5.8594×10^4	5.0201×10^4	4.9777×10^4
3	3.6820×10^4	4.5488×10^4	4.1855×10^4	1.4346×10^4
4	3.5677×10^4	4.3566×10^4	4.0306×10^4	1.2201×10^4
5	3.5969×10^4	3.7274×10^4	3.8845×10^4	9.2666×10^3
6	4.2842×10^4	3.7293×10^4	3.7900×10^4	8.6321×10^3
7	9.3505×10^4	4.1063×10^4	3.7038×10^4	8.6007×10^3
8	4.4738×10^5	7.9496×10^4	3.6218×10^4	9.2609×10^3
9	3.0688×10^6	4.2234×10^5	3.5838×10^4	8.5934×10^3
10	2.2363×10^7	2.9465×10^6	3.5199×10^4	9.2461×10^3
11	1.6716×10^8	2.1454×10^7	2.2767×10^4	8.5721×10^3
12	1.2018×10^9	1.5712×10^8	2.2723×10^4	9.2309×10^3
13	8.9991×10^9	1.1516×10^9	2.2879×10^4	8.5408×10^3
14	6.4644×10^{10}	8.4412×10^9	2.2668×10^4	9.1836×10^3
15	4.8194×10^{11}	6.1876×10^{10}	2.2776×10^4	8.5066×10^3

Table 3. Estimated total discounted social costs considering the greedy and Monte Carlo algorithm.

Total social cost (millions of \$)					
with traffic growth			with traffic fixed		
Greedy	Monte	Monte	Greedy	Monte	Monte
	(10 iterations)	(1 iteration)		(10 iterations)	(1 iteration)
1.3545×10^{11}	1.7428×10^{10}	1.9483×10^{10}	3.2831×10^5	1.8427×10^5	3.8871×10^5

Table 4. Algorithm computation time.

Greedy	computation time (s)		reduction in time
	Monte (10 iterations)	Monte (1 iteration)	
1,399.8678	5,118.0281	652.6725	53.38

Table 5. Number of sections selected for intervention with traffic fixed.

t	Greedy			Monte				
	*Batch 1		**Batch 2	η_{A_i}/η_{A_c}	Batch 1		Batch 2	η_{A_i}/η_{A_c}
	A_i	A_i	A_c		A_i	A_i	A_c	
1	61	10	23	3.09	61	52	16	7.06
2	3	312	0	infinite	3	124	32	3.97
3	0	3	63	0.05	0	121	44	2.75
4	0	4	72	0.06	0	115	54	2.13
5	0	4	81	0.05	0	95	66	1.44
6	0	5	90	0.06	0	106	73	1.45
7	0	5	99	0.05	0	83	86	0.97
8	0	6	108	0.06	0	79	96	0.82
9	0	6	117	0.05	0	51	110	0.46
10	0	7	126	0.06	0	44	120	0.37
11	0	583	37	15.76	0	33	131	0.25
12	0	0	145	0.00	0	25	142	0.18
13	0	1	154	0.01	0	11	153	0.07
14	0	0	163	0.00	0	6	163	0.04
15	0	1	172	0.01	0	0	173	0.00

*Batch 1: Sections in the absorbing state worked on for safety reasons.

**Batch 2: Candidate sections selected through optimization.

Table 6. Number of sections selected for intervention with traffic growth.

t	Greedy			Monte				
	*Batch 1		**Batch 2	η_{A_i}/η_{A_c}	Batch 1		Batch 2	η_{A_i}/η_{A_c}
	A_i	A_i	A_c		A_i	A_i	A_c	
1	61	10	23	3.09	61	70	13	10.08
2	3	312	0	infinite	3	148	28	5.39
3	0	3	63	0.05	0	154	38	4.05
4	0	4	72	0.06	0	113	54	2.09
5	0	4	81	0.05	0	105	64	1.64
6	0	5	90	0.06	0	91	76	1.20
7	0	5	99	0.05	0	79	87	0.91
8	0	6	108	0.06	0	62	99	0.63
9	0	0	118	0.00	0	49	110	0.45
10	0	1	127	0.01	0	27	123	0.22
11	0	1	136	0.01	0	15	134	0.11
12	0	2	145	0.01	0	15	143	0.10
13	0	2	154	0.01	0	9	153	0.06
14	0	3	163	0.02	0	8	163	0.05
15	0	3	172	0.02	0	0	173	0.00

629 **Appendix**

630 The **Table 7** shows a summary of Ugandan national roads data from Obunguta and Matsushima (2020),
 631 **Table 8** and **Table 9** show the selection of candidates from group A001 ($g = 1$) for intervention using a
 632 greedy and Monte Carlo algorithm; respectively, with traffic fixed.

633 **Table 7.** Summary of Ugandan national roads data (Obunguta and Matsushima 2020).

g	Road group	No. of sections	FFT (s)	Average traffic ('000 PCU/h)	Traffic growth	Life expectancy (years)				
						Condition state				
						2017	2018	rate (%)	1	2
1	A001	87	54.55	5.46	4.92	-9.81	3.20	3.02	4.41	10.64
2	A002	355	46.15	2.25	1.72	-23.34	3.64	2.60	3.35	9.60
3	A003	11	67.92	8.03	5.48	-31.66	3.09	1.07	2.20	6.36
4	A004	77	52.17	1.34	1.35	0.79	4.09	3.81	4.18	12.08
5	A005	94	46.75	0.75	0.89	18.78	4.22	3.91	4.53	12.66
6	A006	348	49.32	1.11	1.31	17.90	3.95	3.40	3.92	11.27
7	A007	93	50.70	1.15	1.15	0.00	4.01	3.42	4.02	11.45
8	A008	235	48.65	0.56	0.82	45.57	3.96	3.56	3.86	11.38
9	B100	23	64.29	2.90	3.01	3.91	2.98	2.05	2.04	7.07
10	B103	9	54.55	0.28	1.04	276.77	3.44	2.99	2.90	9.33
11	B150	77	50.70	0.40	0.47	19.30	4.19	4.01	4.37	12.57
12	B151	41	52.94	0.27	0.58	117.93	3.23	2.69	2.53	8.46
13	B152	49	51.43	0.27	0.41	53.48	3.84	3.55	3.73	11.13
14	B153	77	52.94	0.27	0.46	73.02	3.61	3.20	3.21	10.02
15	B200	41	51.43	0.24	0.24	0.00	4.20	4.04	4.37	12.61

16	B300	63	50.70	0.12	0.16	32.71	4.14	3.99	4.28	12.41
17	B303	8	120.00	0.81	0.73	-9.39	2.49	1.73	1.29	5.51
18	B307	55	53.73	0.64	0.64	0.75	3.44	2.87	2.90	9.21
19	B308	17	52.17	0.87	0.87	0.00	3.69	3.12	3.44	10.25
20	C004	19	65.45	0.87	0.47	-45.20	3.12	2.33	2.22	7.67
21	C157	3	189.47	0.47	0.47	0.00	2.36	1.55	1.12	5.03
22	C158	1	103.40	0.47	0.47	0.00	2.37	1.56	1.14	5.06
23	C170	2	87.80	0.47	0.47	0.00	2.86	2.13	1.80	6.80
24	C198	3	102.86	0.47	0.47	0.00	2.66	1.90	1.52	6.08
25	C199	1	356.16	0.47	0.47	0.00	2.28	1.47	1.04	4.79
26	C210	1	189.47	0.20	0.20	0.00	2.40	1.63	1.17	5.19
27	C232	1	281.65	0.15	0.15	0.00	2.34	1.57	1.10	5.01
28	C308	11	54.55	0.11	0.11	0.00	3.93	3.69	3.82	11.44
29	C309	7	72.00	0.11	0.11	0.00	3.16	2.58	2.29	8.03
30	C350	52	56.25	0.46	0.55	21.28	3.68	3.27	3.29	10.24
31	C354	2	61.02	0.21	0.21	0.00	3.46	2.98	2.85	9.28
32	C356	14	56.25	0.22	0.36	65.15	3.71	3.36	3.36	10.44
33	C410	17	46.75	0.31	0.36	15.08	3.56	3.16	3.23	9.95
34	C412	10	55.38	0.07	0.21	212.69	3.79	3.50	3.55	10.84
35	C420	2	180.00	0.07	0.07	0.00	2.43	1.67	1.20	5.30
36	C457	4	60.00	0.07	0.07	0.00	3.27	2.77	2.56	8.61
37	C511	9	53.73	0.13	0.13	0.00	3.46	3.07	3.02	9.55
38	C517	1	137.52	0.13	0.13	0.00	2.43	1.67	1.20	5.30
39	C540	63	53.73	0.38	0.38	0.00	3.61	3.22	3.21	10.03

40	C684	4	90.00	0.30	0.30	0.00	2.82	2.11	1.74	6.67
41	C744	6	57.14	0.43	0.43	0.00	3.75	3.36	3.44	10.55

634

Table 8. Selection of candidates from group A001 ($g = 1$) for intervention using a greedy algorithm.

k^g	Greedy (with traffic fixed)														
	Year														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0
2 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	1,0	0,0	0,0	0,0	0,0
3 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0
4 ¹	1,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
5 ¹	1,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0
6 ¹	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
7 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0
8 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0
9 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
10 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
11 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0
12 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0
13 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0
14 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0
15 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0
16 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
17 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0
18 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0
19 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0
20 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0
21 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0
22 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0
23 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0
24 ¹	1,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0
25 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0
26 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0
27 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0
28 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0
29 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
30 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0
31 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
32 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0
33 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
34 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0
35 ¹	1,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
36 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0
37 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0
38 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0
39 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0
40 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	1,0	0,0	0,0	0,0	0,0
41 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0
42 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0

No.	0	0	0	0	0	51	27	28	0	0	0	1	0	0
A_c														

636 Note: Action $A_0 = (0,0)$; $A_i = (1,0)$; $A_c = (0,1)$; A_i and $A_c = (1,1)$. Bold highlights sections worked on.

637

Table 9. Selection of candidates from group A001 ($g = 1$) for intervention using Monte Carlo methods.

k^g	Monte (with traffic fixed)														
	Year														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
2 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0
3 ¹	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0
4 ¹	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
5 ¹	1,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0
6 ¹	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
7 ¹	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0
8 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0
9 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0
10 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0
11 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
12 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0
13 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,0
14 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
15 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,0	0,0	0,0
16 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0
17 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0
18 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
19 ¹	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
20 ¹	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
21 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
22 ¹	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
23 ¹	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
24 ¹	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0
25 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
26 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,0	0,0	0,0
27 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
28 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,0	0,0
29 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
30 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,1	0,0
31 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
32 ¹	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0
33 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
34 ¹	0,0	0,0	0,0	0,0	1,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
35 ¹	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
36 ¹	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
37 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
38 ¹	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0
39 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0
40 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,1	0,1
41 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
42 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0

43 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1
44 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0
45 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,1	0,0	0,0	0,0	0,0
46 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
47 ¹	0,0	0,0	0,1	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
48 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
49 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0
50 ¹	0,0	1,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
51 ¹	1,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0
52 ¹	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
53 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,0	0,0	0,0
54 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
55 ¹	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
56 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
57 ¹	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
58 ¹	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1
59 ¹	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
60 ¹	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
61 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1
62 ¹	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
63 ¹	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
64 ¹	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0
65 ¹	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
66 ¹	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
67 ¹	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
68 ¹	0,0	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1
69 ¹	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
70 ¹	1,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0
71 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,0	0,0	0,0
72 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1
73 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
74 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0
75 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,1
76 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
77 ¹	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0
78 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,0	0,0	0,0	0,0
79 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,0	0,0
80 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
81 ¹	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0
82 ¹	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
83 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0
84 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0
85 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,0
86 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1
87 ¹	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
No. <i>A_i</i>	10	3	3	1	7	5	0	6	4	2	0	1	0	0	0

No. A_c	0	0	1	0	2	3	4	3	4	5	6	15	7	11	8
--------------	---	---	---	---	---	---	---	---	---	---	---	----	---	----	---

639

640 **Fig. 1.** Layout of pavement sections over time.

641 **Fig. 2.** Road sections in two road groups (links).

642 **Fig. 3.** General framework.

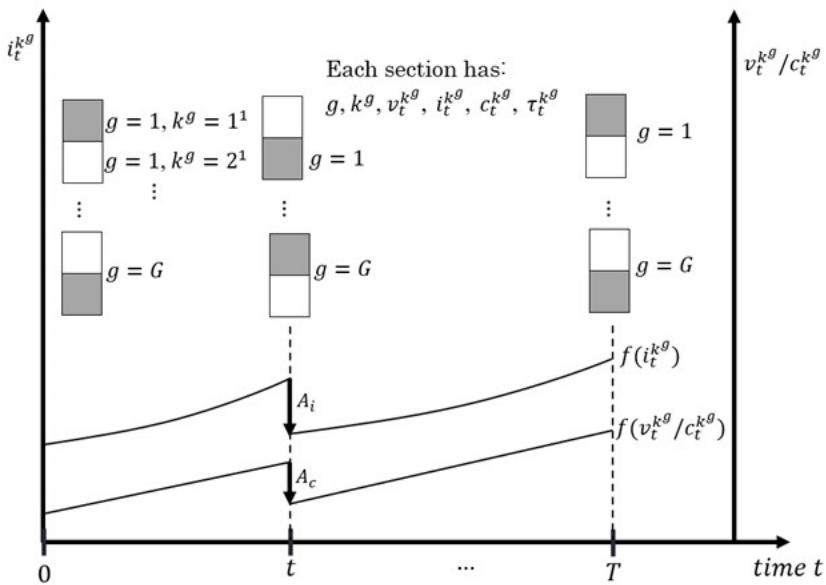
643 **Fig. 4.** Flow diagram of the greedy algorithm.

644 **Fig. 5.** Monte Carlo solution algorithm.

645 **Fig. 6.** Undiscounted social costs over planning horizon for greedy (a) and Monte Carlo (b) algorithm
646 with traffic fixed.

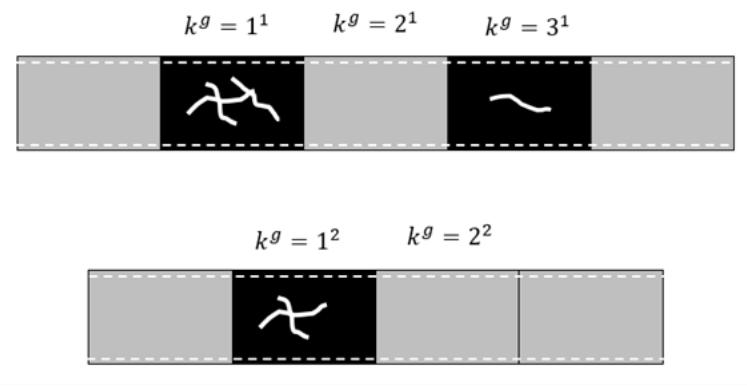
647 **Fig. 7.** Condition of Ugandan road network for greedy (a) and Monte Carlo (b) algorithm.

648 **Fig. 8.** Congestion of Ugandan road network for greedy (a) and Monte Carlo (b) algorithm.



649

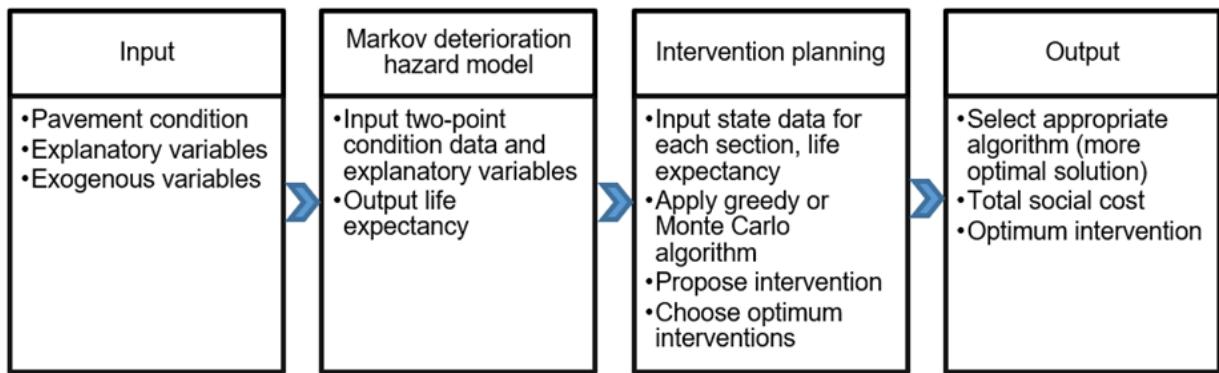
650 Fig. 1. Layout of pavement sections over time.



651

652

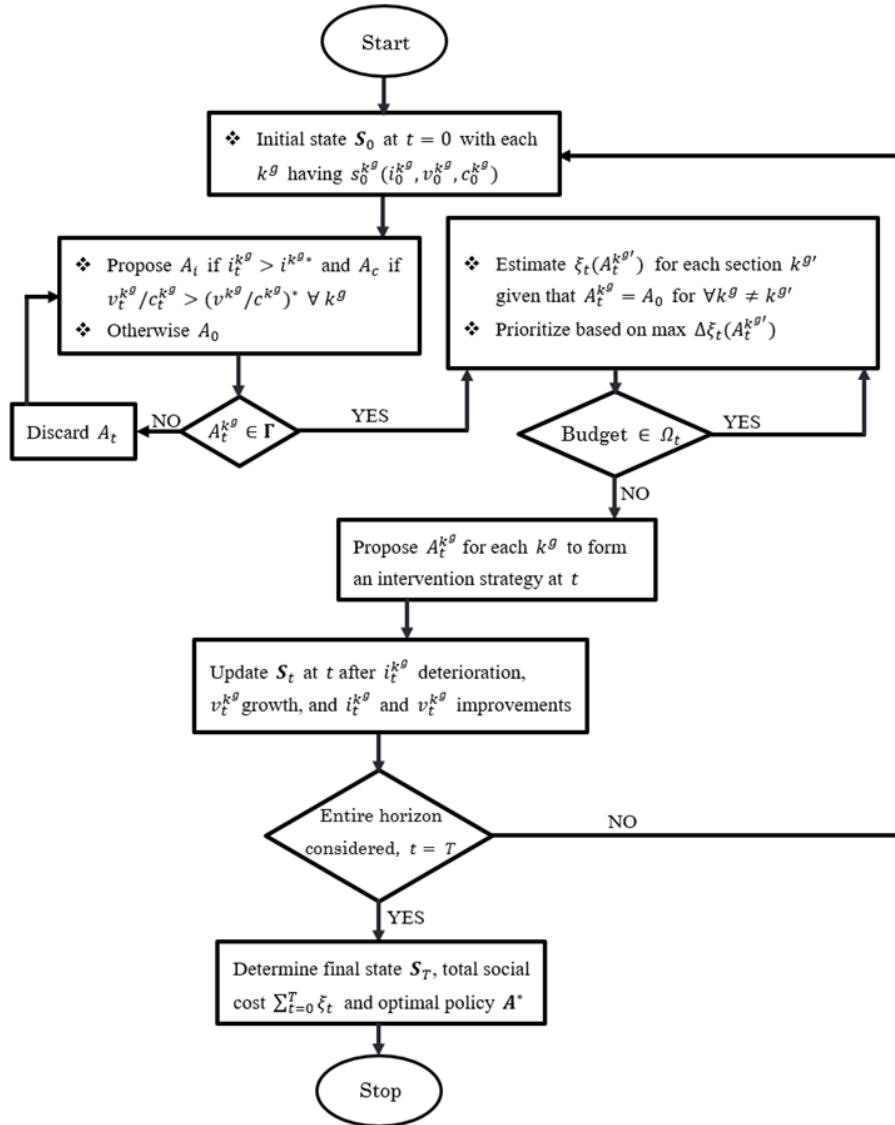
Fig. 2. Road sections in two road groups (links).



653

654

Fig. 3. General framework.



655

656

Fig. 4. Flow diagram of the greedy algorithm.

 Algorithm: Monte Carlo simulation

Start

 Input: $RMD_{i_t}^{k^g}, \Omega_t, s_{t=0}^{k^g}(i_0^{k^g}, v_0^{k^g}, c_0^{k^g}), FFT_t^{k^g}, g, v_{rate}, C^{A_t^{k^g}}$ and initialization

 Step 1: Determine the initial state $s_{t=0}^{k^g}(i_0^{k^g}, v_0^{k^g}, c_0^{k^g})$ for each k^g and calculate the initial social cost $\xi_{t=0}$ considering g data.

 Step 2: Do for $t = 0, 1, \dots, T$

 Step 3: for iterations $z = 1, \dots, Z$, randomly sample $N = (N_{A_i} + N_{A_c})$ interventions

 A_t and select $\eta = (\eta_{A_i} + \eta_{A_c})$ candidates within budget Ω_t then estimate the social cost $\xi_t(A_t)$ at time point t

 Step 4: The sampled interventions A_t are selected if the social cost is minimized

$$A_t = \begin{cases} A_t \text{ if } \xi_t < \xi_{t-r} \\ \text{otherwise go to next } z \end{cases}$$

 Step 5: By optimizing the cost-to-go function J_t determine A_t^* subject to Ω_t and $A_t^{k^g} \in \Gamma$ constraints

$$A_t^* = \underset{A_t}{\operatorname{argmin}} \xi_t \quad \forall z$$

 Step 6: Update the state information $s_{t+r}^{k^g}$ for each k^g at time point $t+r$ as follows

$$i_t^{k^g} \rightarrow i_{t+r}^{k^g} \text{ based on } A_t^{k^g} \in [A_0, A_i] \text{ or } RMD_{i_t}^{k^g}$$

$$v_t^{k^g} \rightarrow v_{t+r}^{k^g} \text{ based on growth rate } v_{rate}$$

$$c_t^{k^g} \rightarrow c_{t+r}^{k^g} \text{ based on } A_t^{k^g} \in [A_0, A_i, A_c]$$

Step 7: Go to Step 2

 Step 8: Propose A^* for the entire planning horizon T

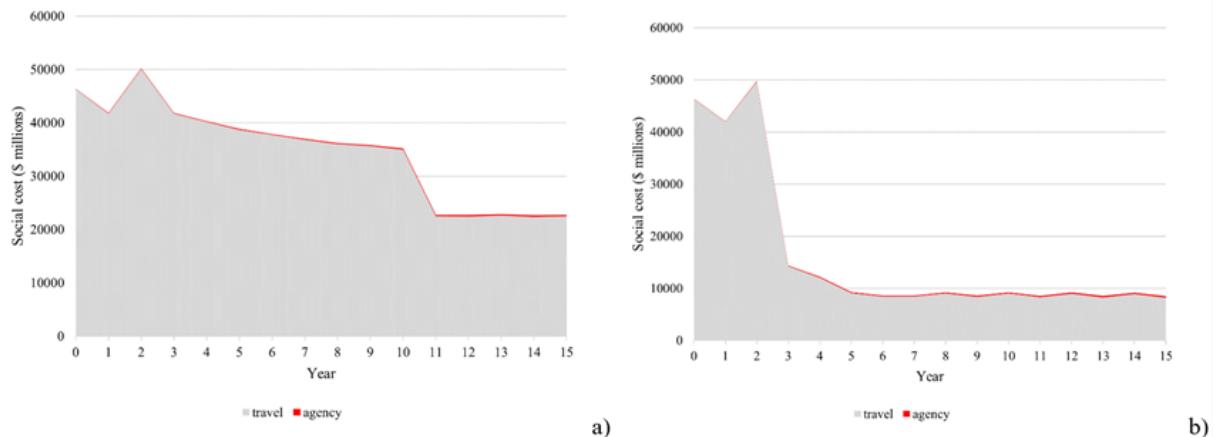
 Output: $A^*, s_T^{k^g}(i_T^{k^g}, v_T^{k^g}, c_T^{k^g}), \xi_t \quad \forall t$

End

657

658

Fig. 5. Monte Carlo solution algorithm.



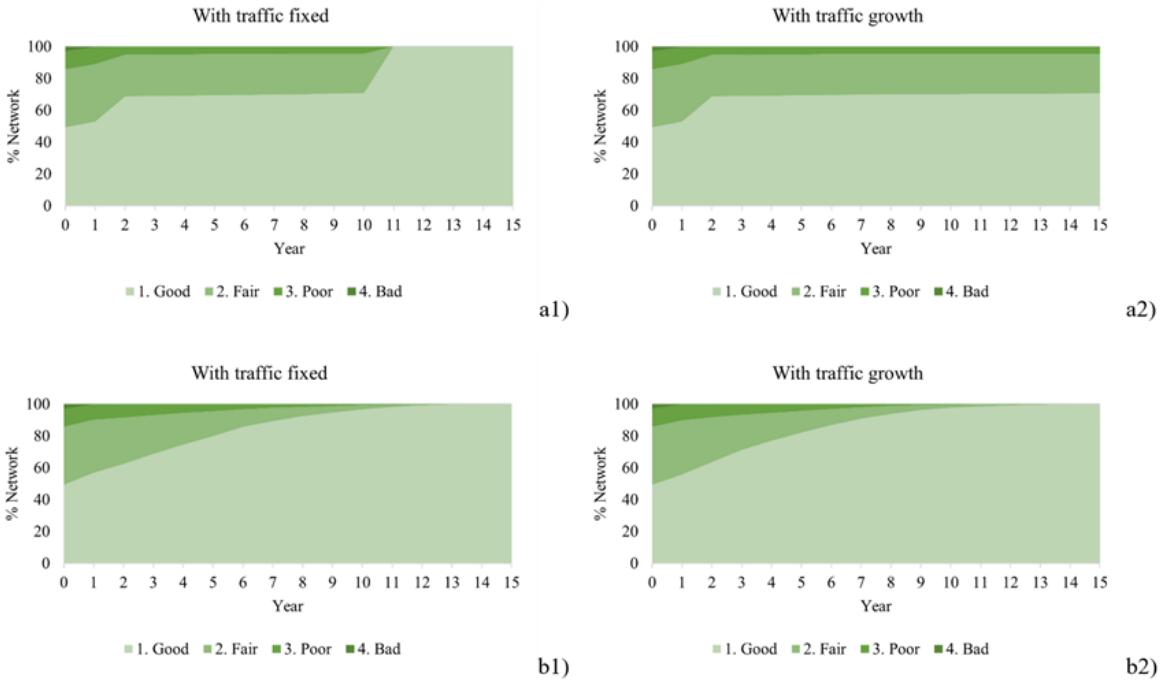
659

660

Fig. 6. Undiscounted social costs over planning horizon for greedy (a) and Monte Carlo (b) algorithm

661

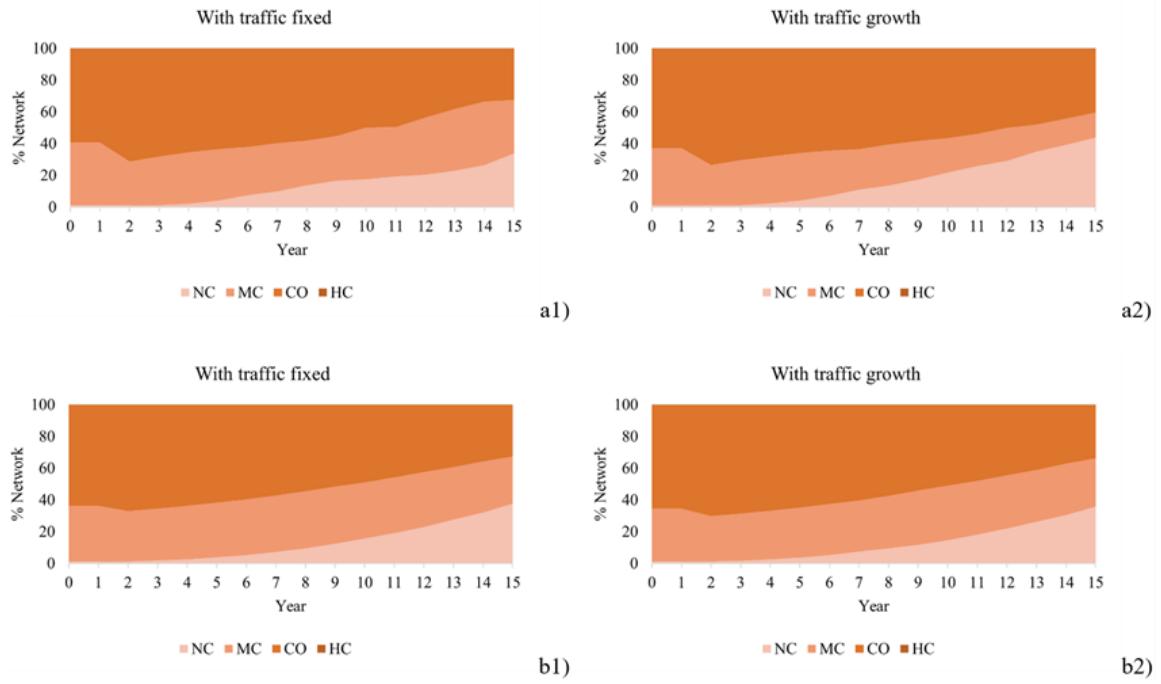
with traffic fixed.



662

663

Fig. 7. Condition of Ugandan road network for greedy (a) and Monte Carlo (b) algorithm.



664

665

Fig. 8. Congestion of Ugandan road network for greedy (a) and Monte Carlo (b) algorithm.