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We investigate the stability and accuracy of a machine-learning-based turbulence closure
model. To this end, we construct a turbulence closure model for a shell model, which is
a toy model of turbulence, based on the inference of sub-grid scale (SGS) variables using
a recurrent neural network, and conduct an extensive parameter survey of the constructed
model. The model stably and accurately reproduces the statistics of grid-scale variables
when the cutoff wave number κc is higher than 0.2η−1, where η denotes the Kolmogorov
length. This is because in this case, SGS variables are subordinate to grid-scale ones. On
the other hand, when κc is lower than 0.2η−1, the model becomes stochastically unstable.
However, an appropriate regularization in the inference step of SGS variables realizes a
sufficiently long lifetime of the model.

DOI: 10.1103/PhysRevFluids.9.104601

I. INTRODUCTION

Since turbulence is ubiquitous, predicting its behavior is crucial in many systems. For a relatively
compact system, we may conduct direct numerical simulations (DNS), where we numerically
integrate the Navier-Stokes equation without any modeling. However, the number of grid points
for DNS drastically increases with the Reynolds number. Hence, for applications with flow at high
Reynolds numbers, we often employ large-eddy simulations (LES) to reduce the computational cost
by resolving only large-scale fluid motion.

LES requires a turbulence closure model. More precisely, we must describe the dynamics of
variables in length scales [i.e., grid-scales, (GS)] larger than a given length rc or, equivalently,
in the wave number range lower than the cutoff wave number κc (=2π/rc) in a closed form. In
other words, the impact of sub-grid scales (SGS) on GS must be characterized using only GS
variables. According to Kolmogorov-Richardson phenomenology (Chap. 7 of Ref. [1]), larger-scale
eddies generate smaller-scale ones through scale-by-scale energy transfer, i.e., energy cascade.
Therefore, the smaller-scale dynamics are governed by the larger-scale ones. Simultaneously, the
energy cascade makes the statistics in sufficiently small scales independent of the forcing type and
boundary conditions. The dependence of smaller-scale flow on larger-scale ones and the universality
in small scales provide the basis of turbulence models. Indeed, various turbulence models have been
proposed relying on these properties and demonstrated significant success in numerous situations
[2]. However, we must not forget that turbulence models are grounded on a closure theory, and
the closure problem remains unresolved despite extensive studies since the pioneering studies by
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Heisenberg [3], Kraichnan [4,5], and many others [6]. Therefore, some assumptions are needed
to deduce a turbulence model from the Navier-Stokes equation, and ensuring their validity is
generally challenging. In contrast, based on turbulence properties, such as the smaller-scale-flow
subordination to a large-scale one and the universality, machine learning (ML) can construct a
closure with high generalization performance using only the given data without such assumptions.
Furthermore, this advantage allows ML to be applied to cases where universality does not hold, such
as low-Reynolds number turbulence or turbulence affected by boundary conditions. Indeed, many
studies [7–10] have shown that ML is a useful tool for turbulence modeling.

Here, we emphasize the following: when we say that ML works, we mostly mean that it can work
in some cases. In fact, it is known that ML-based turbulence models can become unstable without
ad hoc stabilization [11–14]. For example, Maulik et al. [11] conducted turbulence modeling for
decaying two-dimensional turbulence using a feed-forward neural network (FNN). More concretely,
they inferred the SGS terms in the vorticity equations by FNN and time evolved the GS variables
using the inferred values. Although FNN accurately inferred SGS terms, a stable LES was not
realized without correcting the inferred SGS terms to prevent enstrophy back scatter. Similar results
were reported by Guan et al. [12] and Ayapilla and Hattori [13] when performing ML-based
turbulence modeling for two-dimensional turbulence. Miyazaki and Hattori [14] used FNN to infer
the SGS stress for three-dimensional homogeneous isotropic turbulence. Although the inferred SGS
stress correlates well with true values, their model becomes unstable without restraining energy
back-scattering.

We also emphasize that it is not necessarily clear whether the cause of model instability is due
to the nature of turbulence or ML. The main aim of the present study is to clarify this. However,
conducting an extensive parameter survey on high-Reynolds number turbulence governed by the
Navier-Stokes equation is impractical due to the enormous computational cost. Since, in the present
study, we rely on the Kolmogorov similarity [15] to evaluate the accuracy of the constructed model,
we must realize the DNS of turbulence with the clear similarity, but it is still challenging [16]. There-
fore, we conduct turbulence modeling for a dynamical system (i.e., the so-called shell model), which
exhibits the Kolmogorov similarity despite small degrees of freedom, and evaluate the stability and
accuracy of an ML-based turbulence model by varying the Reynolds number, cutoff wave number,
and ML hyper-parameters. Here, we refer to an important previous study by Ortali et al. [17], who
conducted turbulence modeling for the Sabra shell model [18]. They simulated the relatively short
GS dynamics by inferring the SGS variables using long short-term memory (LSTM) [19] to con-
clude that their model accurately reproduced the turbulence statistics. Then, they claimed to prove
the feasibility of ML-based turbulence models. While their research focused on the dynamics for the
turnover time TL of the largest eddies, exploring whether the dynamics could be correctly simulated
for longer than TL is essential to discuss the stability of ML-based turbulence models. We therefore
reconsider their research focusing on the long (say, 6000TL) dynamics and discuss the stability and
accuracy of the ML-based turbulence model. Incidentally, we construct the turbulence model for
a shell model using reservoir computing (RC) [20–22] instead of LSTM. Since RC requires lower
training costs while achieving effective inference, it suits our extensive parameter survey.

II. FRAMEWORK

A. Target system: sparse-coupling shell model

Shell models are low-dimensional dynamical systems that mimic energy cascade in wave number
space while reducing the degrees of freedom by representing modes in a wave number shell by a
few variables and assuming local nonlinear interactions between shells [18,23–25]. For example, in
the Sabra shell model [18], each wave number shell contains only a single variable u� (∈ C), which
corresponds to the Fourier coefficients of the velocity at wave number k�, and u� is coupled only
with u�±2 and u�±1 as(

d

dt
+ νk2

�

)
u� = i(ak�+1u�+2u∗

�+1 + bk�u�+1u∗
�−1 − ck�−1u�−1u�−2) + f�. (1)
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Here, ν and f� are the kinematic viscosity and forcing, respectively. The constant coefficients a, b,
and c satisfy a + b + c = 0 so that energy conserves when ν = 0 and f� = 0. It is remarkable that
the Sabra shell model (1) reproduces important properties of turbulence, such as not only the −5/3
power-law energy spectrum but also its correction due to intermittency effects. However, it does
not strictly exhibit the Kolmogorov similarity. In fact, the probability density functions (PDF) and
two-time autocorrelation functions normalized according to the Kolmogorov similarity depend on
wave numbers (Appendix A). This property makes it difficult to evaluate the statistical difference
between the constructed model and the true system.

The violation of the Kolmogorov similarity of the Sabra shell model (1) is due to dense nonlinear
coupling. Recall that the Fourier coefficients ui(k, t ) of the velocity field in a periodic cube with side
L obeys the Navier–Stokes equation,

∂

∂t
ui(k, t ) =

3∑
j=1

3∑
m=1

Mi jm(k)
∑
p, q

(p+q+k=0)

u j (−p, t )um(−q, t ) − ν|k|2ui(k, t ), (2)

with

Mi jm(k) = − i

2

(
2π

L

)3(
kmδi j + k jδim − 2kik jkm

k2

)
. (3)

In Eq. (2), u(k, t ) interacts with u(p, t ) only through u(−k − p, t ). Since the number of Fourier
modes is huge in turbulence, the nonlinear coupling is very sparse. In contrast, the nonlinear
coupling in the Sabra shell model (1) is dense because the degrees of freedom are too reduced.
When the nonlinear coupling is dense, variables have long-term autocorrelation [26], resulting in
the violation of the Kolmogorov similarity [Fig. 10(c) in Appendix A]. Therefore, in the present
study, we employ the sparse-coupling shell model (SSM) [27], which exhibits clear Kolmogorov
similarity [see Fig. 1(c) below].

SSM increases the degrees N of freedom in each shell so that the nonlinear coupling becomes
sparse. The temporal evolution of the variables {X (�)

i (∈ R)}1�i�N in the �-th shell (� = 1, . . . , Lmax)
corresponding to a wave number k� = exp(�/2) follows(

d

dt
+ νk2

�

)
X (�)

i = 2k�

N∑
j=1

N∑
m=1

ci jmX (�)
j X (�+1)

m + k�−1

N∑
j=1

N∑
m=1

ci jmX (�−1)
j X (�−1)

m + f (�)
i , (4)

where f (�)
i (= X (�)

i δ�1) is the forcing. We define the Reynolds number as Re = 1/ν. The nonlinear
coupling coefficient tensor ci jm is sparse such that any pair of variables have a single direct inter-
action at the most and satisfies the following four conditions: ci jm = cim j , ci jm + c jmi + cmi j = 0,
ci j j = 0, and ci jm = cmod{i+m′,N}mod{ j+m′,N}mod{m+m′,N}, where mod{i, N} is the remainder of i divided
by N .

Here, we demonstrate that the statistics of SSM obey clear Kolmogorov similarity. We show, for
example, results with N = 10, Re = 103, and Lmax = 14. Figure 1(a) shows the energy spectrum

E (k�) = 1

2k�

N∑
i=1

〈(
X (�)

i (t )
)2〉

t
, (5)

where 〈 · 〉t represents the time average. We can confirm in this figure that the energy spectrum obeys

the −5/3 power law, E (k�) ∝ k
− 5

3
� , in the inertial range (3 � � � 5). Figure 1(b) shows PDF P (X (�)

i )
of the shell variables in the inertial range (� = 3, 4, 5). They converge to a normal distribution when
normalized by the energy dissipation rate ε = 2ν

∑Lmax
�=1 k3

�E (k�) and wave number k�. Figure 1(c)
shows two-time autocorrelation functions,

C(�)
i (τ ) = 〈

X (�)
i (t + τ )X (�)

i (t )
〉
t
, (6)
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(a)

(b) (c)

FIG. 1. Statistics of SSM for Re = 103. (a) Energy spectrum. The dotted line indicates the −5/3 power law
and the inset shows the compensated spectrum. (b) PDF of the shell variables in the inertial range. From the
lighter (and thicker) to darker (and thinner) lines, P (X (3)

1 ), P (X (4)
1 ), and P (X (5)

1 ). (c) Two-time autocorrelation
functions of the shell variables in the inertial range. From the lighter (and thicker) to darker (and thinner) lines,
C (3)

1 , C (4)
1 , and C (5)

1 . We use the energy dissipation rate ε, Kolmogorov length η, and characteristic timescale

T� = ε− 1
3 k

− 2
3

� for the normalization.

of the shell variables in the inertial range (� = 3, 4, 5). They collapse onto a curve when normalized

by the characteristic timescale T� = ε− 1
3 k

− 2
3

� of each shell. Thus, SSM exhibits clear Kolmogorov
similarity, although it does not show any intermittency effect. The perfect collapse of the PDF and
two-time autocorrelation functions in the inertial range [Figs. 2(b) and 2(c)] is suitable when we
evaluate the error of the constructed ML-based model.

B. Modeling method

In SSM (4), the variables X (�) interact directly with X (�±1) in adjacent shells. Therefore, we need
information of X (�c+1) to integrate the governing equations for the variables in the wave number
range lower than the cutoff wave number κc = k�c . Here, �c denotes the cutoff shell number. Since
energy transfers from lower to higher wave numbers, the states of X (�c+1) are mostly affected by

104601-4



STABLE REPRODUCIBILITY OF TURBULENCE DYNAMICS …

(a)

(b) (c)

FIG. 2. Modeling results for Re = 103 with a relatively high cutoff wave number (κc = k9 ≈ 0.36η−1).
(a) Temporal evolution of X (1)

1 . The red solid and black dotted lines are the results of RCTM and truth,
respectively. (b) PDF of the shell variables in the inertial range. From the red lighter (and thicker) to red darker
(and thinner) lines, P (X (3)

1 ), P (X (4)
1 ), and P (X (5)

1 ) results of RCTM; the black line is the truth. (c) Two-time
autocorrelation functions of the shell variables X (3)

1 , X (4)
1 , and X (5)

1 in the inertial range. From the red lighter (and
thicker) to red darker (and thinner) lines, results C (3)

1 , C (4)
1 , and C (5)

1 of the RCTM; the black dashed line is the
truth. We use the characteristic timescale T�, energy dissipation rate ε, and wave number k� for normalization.

X (�c ). Hence, we construct the ML-based turbulence model for SSM by iterating the following two
steps:

(i) we infer the SGS variables X (�c+1) by RC with X (�c ) as inputs, and

(ii) integrate Eq. (4) using the inferred values X̂
(�c+1)

.
We standardize the inputs X (�c ) using the mean and standard deviation evaluated from the training

data. In this paper, we call the model constructed by the above procedure the reservoir computing-
based turbulence model (RCTM).

The training and test data for RCTM are generated by integrating Eq. (4) using the second-order
Adams-Bashforth method. In the present study, we examine three cases with the Reynolds number
Re, resolution Lmax, and time increment �t as (Re, Lmax,�t ) = (102, 10, 10−3), (103, 14, 5 ×
10−4), and (104, 17, 10−4). In all cases, we set the degrees N of freedom in each shell to 10.

We show the training and test conditions in Table I. We also show in Table I the turnover time
TL = 〈k1‖X (1)‖〉−1

t , where ‖ · ‖ denotes the L2 norm, of the largest eddies. Since we focus on the
long-time stability of the constructed model, we set the test time Ttest much longer than TL (Ttest ≈
6000TL). The details of RC are described in Appendix B. Our framework uses six hyper-parameters:
the number Nr of reservoir nodes, the spectrum radius ρ of reservoir weights, the magnitude σ of
input weights, the bias magnitude ξ , the leakage rate α, and the regularization parameter β. We
determine these parameters as follows. First, we fix Nr = 500 and ρ = 0.90. Then, σ , ξ , and α are
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TABLE I. Training and test conditions: Re, TL , �τ , Ttrain, Qtrain, κc, �Ttest , Ttest , and Qtest are the Reynolds
number, turnover time of the largest eddies, sampling time interval, training data length, number of the training
data, cutoff wave number, test time increment, test time, and number of the test data, respectively.

Re TL �τ Ttrain Qtrain κc �Ttest Ttest Qtest

102 0.39 10−3 2 × 103 2 × 106 k1, . . . , k8 10−3 2 × 103 2 × 106

103 0.32 5 × 10−4 2 × 103 4 × 106 k1, . . . , k12 5 × 10−4 2 × 103 4 × 106

104 0.31 10−4 2 × 103 2 × 107 k1, . . . , k15 10−4 2 × 103 2 × 107

determined to minimize the maximum element of the inference error vector,

e(�c )
i = 1

Qtest

Qtest∑
q=1

[
X̂ (�c+1)

i (q�τ ) − X (�c+1)
i (q�τ )

]2
, (7)

where Qtest and �τ denote the number of the test data and sampling time interval, respectively. We
discuss in Sec. III A modeling results with β = 0, and in Secs. III B and III C results with finite β

between 10−9 and 10−3. We also show in Appendix C the inference results of the SGS variables,
that is the first step (i) of the modeling method.

Even if the RC weights are adequately optimized, the inferred values X̂
(�c+1)

for the same input
signal differ depending on the random numbers that determine the RC weights. Therefore, we
consider the results of 500 trials with different random number seeds below.

III. RESULTS

A. Stability dependence on cutoff wave number without L2 regularization

In this subsection, we present modeling results and demonstrate that the stability of RCTM
depends on the cutoff wave number κc. First, as an example, we show the modeling results for
Re = 103 when the cutoff wave number is relatively high (κc = k9 ≈ 0.36η−1). Figure 2(a) shows
the temporal evolution of X (1)

1 in this case. Although the model result deviates from the true time
series after an initial period (�T1) due to the chaotic nature of the sensitivity to initial conditions,
the amplitudes and timescales of fluctuations of the modeled time series agree well with the truth.
Similar results are obtained for the temporal evolution of other GS variables (figures are omitted). To
demonstrate the evidence of the model’s accuracy, we show in Figs. 2(b) and 2(c) PDF and two-time
autocorrelation functions of the shell variables X (3)

1 , X (4)
1 , and X (5)

1 in the inertial range, respectively.
Here, we regard the statistics evaluated from a time series of length 100Ttest obtained by direct
simulation of Eq. (4) as the truth. In Fig. 2(b), although the tails of the PDF of RCTM fluctuate due
to the lack of data, the PDF well coincide with the true ones. The two-time autocorrelation functions
are also in excellent agreement with the truth. These results imply that RCTM can accurately
reproduce the one- and two-time statistics in the inertial range.

To quantify the reproducibility of RCTM for PDF, we define the Jensen-Shannon divergence
(JSD) [28], which measures the distance between the true PDF PT and the RCTM PDF PR, as

J = D(PT‖M) + D(PR‖M)

2
with M = PT + PR

2
, (8)

where D is the Kullback-Leibler divergence [29],

D(P1‖P2) =
∫ ∞

−∞
P1(x) log

(P1(x)

P2(x)

)
dx. (9)

We evaluate the mean JSD in each shell as J� = ∑N
i=1 J

(�)
i /N , where J (�)

i is the JSD of P (X (�)
i ).

Figure 3(a) shows J� (red squares) for Re = 103 and κc ≈ 0.36η−1. In this figure, we also show the
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(a) (b)

FIG. 3. Quantification of the modeling accuracy for Re = 103 and κc = k9 ≈ 0.36η−1. (a) Mean JSD of
PDF and (b) mean relative error of the two-time autocorrelation function. The red squares are the model results.
The black circles are the lower limits of J� and E� for data of length Ttest , which are evaluated by the two directly
simulated time series of length Ttest and a sufficiently long length (100Ttest). Error bars are standard deviations
within each shell. Here, k� is normalized by the Kolmogorov length η.

JSD (black circles) between the PDF evaluated from time series data of the length 100Ttest (i.e., the
truth) and Ttest , both obtained by direct simulation of Eq. (4). This value quantifies the JSD due to
the different data lengths and it gives the lower limit of the JSD evaluated by the data of length Ttest .
Therefore, even if RCTM ideally reproduces the true dynamics of SSM, the JSD for such RCTM
cannot be smaller than this value. Although J� for � ≈ �c is slightly larger than the value, J� is
almost identical to it in all other shells. Therefore, we conclude that RCTM reproduces the one-time
statistics of GS variables correctly.

Next, we quantify the reproducibility of RCTM for the two-time autocorrelation functions with
the average relative error,

E� = 1

N

N∑
i=1

∣∣I (�)
Ti − I (�)

Ri

∣∣
I (�)

Ti

, (10)

of integral time,

I (�)
i =

∫ Tε

0

C(�)
i (t )

C(�)
i (0)

dt, (11)

where IT and IR denote the true value and that with RCTM, respectively, and Tε is the first zero-
crossing time of C(�)

i (t ). Figure 3(b) shows E� (red squares) for Re = 103 and κc ≈ 0.36η−1 along
with the lower limit (black circles) of E� for data of length Ttest , which is evaluated as the relative
error in the integral time of the autocorrelation functions of the above-mentioned two-time series.
Although E� near �c is slightly larger than the lower limit, E� is as small as it is in all other shells. We
therefore conclude that RCTM can also reproduce the two-time statistics of GS variables correctly.

Results shown in Figs. 2 and 3 imply that ML can construct an accurate model for high-Reynolds
number turbulence when the cutoff wave number is relatively high (i.e., κc ≈ 0.36η−1). However,
for lower κc, the temporal evolution of GS variables can diverge before Ttest . Hereafter, when such
divergence occurs, we regard RCTM as unstable. To quantify the stability of RCTM, we count
the number NF of cases where the temporal evolution diverges before Ttest , and define the modeling
failure probability PF using NF divided by 500, the total number of trials, i.e., PF = NF/500. Figure 4
shows the dependence of PF on the cutoff wave number κc for the three values of the Reynolds
number: Re = 102, 103, and 104. Irrespective of Re, when κc � 0.2η−1, PF is almost zero, which
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10−3 10−2 10−1 1
κcη

0

0.5

1.0

P
F

FIG. 4. Dependence of the modeling failure probability PF on the cutoff wave number κc for β = 0. The
black circles, gray squares, and light gray triangles are the modeling failure probability for Re = 102, 103, and
104, respectively. Here, κc is normalized by the Kolmogorov length η.

implies that RCTM stably simulates the dynamics of GS variables up to Ttest (≈6000TL) in these
cases. Recall that for κc � 0.2η−1, PDF and two-time autocorrelation functions agree well with
the true statistics (Figs. 2 and 3). In contrast, PF = 1 for κc � 0.2η−1, meaning that the temporal
evolution of GS variables diverges before Ttest in all trials. These results imply that the stability of
RCTM changes at a critical wave number k∗ ≈ 0.2η−1.

Previous studies [30–34] have already discussed the importance of the critical wave number k∗
as a metric that characterizes the subordination of small- to large-scale dynamics in turbulence. For
example, data assimilation studies of turbulence [30–32] examined the possibility of reconstructing
the dynamics in the wave number range higher than ka using data from the lower wave number range.
These studies demonstrated that the success or failure of reconstructions depends on whether ka is
higher or lower than k∗. Inubushi et al. [33] pointed out that k∗ does not depend on data assimilation
schemes and used the transverse Lyapunov exponents to show that this is due to the nature of
the Navier–Stokes equation. Furthermore, Yoneda et al. [34] investigated the energy transfer in
turbulence in a periodic cube and showed that eddies smaller than a scale r∗ ∼ 1/k∗ do not transfer
energy to further smaller eddies. The present results (Fig. 4) and these known facts are consistent,
implying that ML-based turbulence models are stable when κc � 0.2η−1 regardless of ML methods.

B. Stabilization by L2 regularization

The previous subsection has shown that RCTM can stably simulate GS dynamics when the cutoff
wave number κc is higher than 0.2η−1, while it becomes unstable when κc is lower than 0.2η−1. In
this subsection, we consider a method to stabilize RCTM with low cutoff wave numbers (κc �
0.2η−1).

The instability of ML-based models was also reported in modeling studies [35–41] of nonlinear
dynamical systems, such as the logistic map and Kuramoto-Sivasinsky equation and stabilization
methods such as regularizations and applying noise to the training data were proposed [35,39–
41]. However, RCTM cannot be significantly stabilized even though white noise with a standard
deviation of 1 to 10% of that of the input is added to the training data. Therefore, we stabilize
RCTM by introducing L2 regularization in step (i) of the procedure described in Sec. II B.

1. Model stability with L2 regularization

Figure 5 shows the dependence of the failure probability PF for Re = 103 on the regularization
parameter β. Here, we set the test time Ttest = 2000 ≈ 6000TL as in the previous subsection. The
lighter meshes indicate smaller PF and the white ones represent PF = 0. When κc � 0.2η−1, PF ≈ 0

104601-8
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0.7 1.8 4.8 13.1 35.7 97.0
κcη

0

10−9

10−8

10−7

10−6

10−5

10−4

10−3

β

×10−2

1
500

0.2

0.4

0.6

0.8

1.0

P
F

FIG. 5. Modeling failure probability PF for Re = 10−3 and Ttest ≈ 6000TL . The lighter meshes indicate a
smaller modeling failure probability and the white meshes represent PF = 0. The bottom row corresponds to
the gray line in Fig. 4. Here, κc is normalized by the Kolmogorov length η.

regardless of β. This implies that RCTM can stably simulate the dynamics of GS variables up to
Ttest for κc � 0.2η−1 with or without L2 regularization. In contrast, when κc � 0.2η−1, the choice
of β becomes important. Looking at the case for κc � 0.02η−1, we notice that when β is extremely
small (i.e., the L2 regularization effect is too weak) or β is extremely large, PF becomes larger. For
0.02η−1 � κc � 0.2η−1, PF becomes smaller when β is larger than 10−6. Moreover, PF is almost
zero when β ≈ 10−5 for all cutoff wave numbers. Thus, with an appropriate regularization, i.e.,
β ≈ 10−5 in this case, RCTM can stably simulate GS dynamics up to Ttest irrespective of κc.

2. Reproducibility of statistics with L2 regularization

We evaluate the modeling accuracy for the most stable case with β = 10−5. Figure 6(a) shows the
average 〈J�〉S of JSD over 500 trials. Here, 〈 · 〉S denotes the ensemble average excluding the failed
trials. The horizontal and vertical axes represent κc and the wave number of the evaluated variable,
respectively. In addition, the shell numbers are provided in parentheses on the vertical axis. Lighter
meshes indicate smaller 〈J�〉S, i.e., RCTM more accurately reproduces the PDF. Note that the black
meshes correspond to the wave numbers higher than κc, which are out of the target of RCTM. We
first notice that the meshes for � = �c are darker. This is because the RC inference errors directly
impact the temporal evolution of X (�c ) through Eq. (4). Moreover, for any κc, 〈J�〉S for � = 1 is
slightly larger than 10−3 due to the direct influence of the forcing. Except for these cases, 〈J�〉S is
as small as 10−3. This result implies that RCTM correctly reproduces the one-time statistics of GS
variables, even though introducing the L2 regularization degrades the inference accuracy of SGS
variables (Appendix C).

Next, we show the conditional average 〈E�〉S over 500 trials in Fig. 6(b). As in Fig. 6(a), the
lighter meshes indicate that RCTM accurately reproduces the two-time autocorrelation functions.
The dark range is wider compared to Fig. 6(a). More concretely, 〈E�〉S for � = �c − 1 as well as
� = �c is large due to the RC inference error. In addition, similar to 〈J�〉S, 〈E�〉S for � = 1 is larger
due to the direct influence of the forcing. However, except in these regions, 〈E�〉S � 0.01. This
implies that RCTM also reproduces the two-time statistics of GS variables accurately even when κc

is smaller than 0.2η−1, if we introduce an appropriate L2 regularization.
We also investigate the dependence of the RCTM accuracy on the Reynolds number. Figure 7

shows 〈J1〉S and 〈E1〉S for Re = 102, 103, and 104. Here, we choose an appropriate β that minimizes
PF for each Re. More concretely, we set β = 4 × 10−6, 10−5, and 6 × 10−5 for Re = 102, 103, and
104, respectively. We confirm in Fig. 7 that 〈J1〉S and 〈E1〉S, as functions of κc, are independent of
Re when κc is normalized by the forcing wave number κ f and that they are sufficiently small for
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(a)

(b)

FIG. 6. (a) Mean JSD and (b) mean relative error of the two-time autocorrelation function for Re = 103

and β = 10−5. The lighter meshes indicate a small mean JSD or relative error; the black meshes represent
the SGS range. The shell numbers are given in parentheses on the vertical axis. Here, κc is normalized by the
Kolmogorov length η.

κc � κ f and κc � 4κ f , respectively. These results imply that with an appropriate L2 regularization,
ML can construct stable and accurate turbulence models for high-Reynolds number turbulence by
setting κc sufficiently higher than κ f even when κc � 0.2η−1.

C. Survival time analysis

The previous subsection has demonstrated that RCTM with an appropriate L2 regularization can
correctly give GS dynamics and reproduce its statistics. However, the test time has been fixed at
Ttest ≈ 6000TL. If RCTM is unstable stochastically, the test will fail for longer Ttest . Therefore, we
perform a survival time analysis for RCTM. More concretely, we measure time tS until the temporal
evolution diverges and evaluate the survival function S�c (tS) for each cutoff wave number. Here,
S�c (tS) gives the probability that RCTM stably simulates GS dynamics beyond tS. Figures 8(a) and
8(b) show the survival functions S�c (tS) for κc = k1 ≈ 0.007η−1 and k4 ≈ 0.03η−1, respectively,
when varying β from 10−7 to 10−3. For visibility, we separately show the results for 10−7 � β �
10−5 in Figs. 8(a1) and 8(b1) and for 10−5 < β � 10−3 in Figs. 8(a2) and 8(b2). In each panel, the
darker (thinner) lines indicate larger β, and the black dotted lines are the fitting with exponential
functions. Here, we do not plot the survival function for 10−6 < β < 10−3 in Fig. 8(b) for κc = k4

because there is no case of the diverging GS variables in this range of β. Regardless of β and κc, the
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(a) (b)

FIG. 7. Dependence of RCTM accuracy on Reynolds number: (a) mean JSD and (b) relative error of the
two-time autocorrelation function. The black circles, gray squares, and light gray triangles are the results for
Re = 102, 103, and 104, respectively. We choose β that minimizes the modeling failure probability PF for each
Re. More concretely, we set β = 4 × 10−6, 10−5, and 6 × 10−5 for Re = 102, 103, and 104, respectively. Error
bars are the standard deviation over the trials, excluding the failed trials. Here, κc is normalized by the forcing
wave number κ f .

survival function decays exponentially, implying that RCTM is unstable even with finite β. More
concretely, in both cases of κc, for β ≈ 10−7, S�c (tS) decays exponentially after a sharp decrease
at tS ≈ 0; for β ≈ 10−6, S�c (tS) decays exponentially from tS = 0. For β ≈ 10−5 and κc = k1 or
β = 10−3 and κc = k4, S�c (tS) remains almost 1, but it agrees with the exponential function. For
10−4 � β � 10−3 and κc = k1, while S�c (tS) decreases very slowly for tS � 70TL and deviates from
the fitting with exponential functions for tS � 150TL, it decays according to an exponential function
for 70TL � tS � 150TL. Thus, we may conclude that RCTM has finite lifetime even with the L2

regularization.
Although the above result may negate the feasibility of ML-based turbulence models, when we

define the lifetime T of RCTM by fitting the survival function with an exponential function as
S�c (tS) ∝ exp(−tS/T ), T drastically increases and becomes sufficiently long for β ≈ 10−5. We
show the evidence of this fact in Fig. 9(a), where the black circles and gray squares indicate the
results for κc = k1 and k4, respectively. When κc = k1, T is maximized for β ≈ 10−5 and becomes
much longer than the turnover time TL of the largest eddies. Furthermore, when κc = k4, T increases
more significantly than the case of κc = k1, and becomes considerably long to be measured with
Ttest ≈ 6000TL. Recall that the PDF and two-time autocorrelation functions for β = 10−5 coincide
with the truth as shown in Sec. III B. These results imply that an appropriate L2 regularization pushes
the RCTM lifetime sufficiently long and enables RCTM to accurately reproduce the statistics of GS
variables.

A noteworthy point is that the appropriate β (≈10−5) where the RCTM lifetime is longest does
not give the most accurate inference results of the SGS variables (Appendix C). The lifetime is
shorter for smaller β in the range β � 10−5, whereas the inference is more accurate for smaller
β. These results imply that it is important to introduce a stabilization method such as the L2

regularization, even at the expense of accuracy in inferring SGS variables.
The amount of training data is also important for the RCTM stability. Figure 9(b) shows the

dependence of the RCTM lifetime T on the regularization parameter β when the training data
length is Ttrain = 50 (≈150TL ). Comparing the cases with Ttrain = 2000 (≈6000TL ) [Fig. 9(a)] and
Ttrain ≈ 150TL [Fig. 9(b)], we notice that the increase trend of the RCTM lifetime with β is the same
in both, while the length of the RCTM lifetime is longer when Ttrain ≈ 6000TL. The finding that a
large amount of training data stabilizes ML-based turbulence models is consistent with the results
by Guan et al. [12].
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(a1) (a2)

(b1) (b2)

FIG. 8. Survival functions for (a) κc = k1 ≈ 0.007η−1 and (b) κc = k4 ≈ 0.03η−1. From the
lighter (and thicker) to darker (and thinner) lines, (a1) β = 10−7, 2 × 10−7, 4 × 10−7, 6 ×
10−7, 8 × 10−7, 10−6, 2 × 10−6, 4 × 10−6, 6 × 10−6, 8 × 10−6, and 10−5; (a2) β = 2 × 10−5, 4 ×
10−5, 6 × 10−5, 8 × 10−5, 10−4, 2 × 10−4, 4 × 10−4, 6 × 10−4, 8 × 10−4, and 10−3; (b1) β =
10−7, 2 × 10−7, 4 × 10−7, 6 × 10−7, 8 × 10−7, and 10−6; (b2) β = 10−3. The dotted lines are the
fitting with exponential functions. Here, tS is normalized using the turnover time TL of the largest eddies.

(a) (b)

FIG. 9. Dependence of the RCTM lifetime T on the regularization parameter β for (a) Ttrain = 2000 ≈
6000TL and (b) Ttrain = 50 ≈ 150TL . The black circles and gray squares are results for κc = k1 ≈ 0.007η−1 and
k4 ≈ 0.03η−1, respectively.
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IV. CONCLUSIONS

Large-eddy simulations with turbulence models, based on deductive closure theories on the
Navier–Stokes equation, have had tremendous success. However, deductive arguments require
assumptions valid only in the universal range of scales. Since we desire a turbulence model
applicable to cases where the universality does not hold due to the smallness of the Reynolds number
or boundary conditions, expectations for ML-based turbulence models are rising. Although their
progress is, in fact, remarkable [7–10], some recent studies [11–14] have reported that ML-based
turbulence models can become unstable. Exploring the cause of this instability is the main purpose
of the present study. To this end, we have constructed a turbulence model (RCTM, Sec. II B) using
RC (Appendix B) and thoroughly evaluated its stability and accuracy.

The target of RCTM in the present study is the sparse-coupling shell model (SSM, Sec. II A),
which has considerably fewer degrees of freedom than real turbulence, allowing ease of parameter
survey, and retains the Kolmogorov similarity, making it clear to evaluate the accuracy of RCTM.

Although the sensitivity to initial conditions restricts the instantaneous coincidence of temporal
evolution within finite time [Fig. 2(a)], RCTM can accurately reproduce the statistics, such as the
PDF [Figs. 2(b) and 3(a)] and two-time autocorrelation functions [Figs. 2(c) and 3(b)], of GS
variables.

The key findings are that (I) RCTM is stable when the cutoff wave number κc is in the viscous
range (κc � 0.2η−1) and unstable when κc � 0.2η−1 (Fig. 4); (II) when κc is in the inertial range,
the temporal evolution diverges stochastically (Fig. 8). The property of (I) is explained by the nature
of turbulence because the dynamics in the wave number range higher than 0.2η−1 are subordinate
to those in the lower wave number range [33], which is physically related to the fact that eddies in
the wave number range higher than 0.2η−1 do not transfer energy to further lower ones [34].

To overcome the instability of RCTM with κc in the inertial range, we have introduced L2

regularization into step (i) of the procedure described in Sec. II B. An appropriate regularization
parameter β does make the RCTM lifetime, evaluated from the exponent of the survival function,
longer even for κc � 0.2η−1 (Figs. 5 and 9). Furthermore, RCTM accuracy does not decrease
even with the L2 regularization (Fig. 6), and this result is independent of the Reynolds number
(Fig. 7). Although RCTM becomes unstable stochastically even with the appropriate β (Fig. 8),
their lifetime can be sufficiently long for the appropriately chosen β (Fig. 9). We therefore
conclude that RCTM gives extremely long dynamics of GS variables with an appropriate L2

regularization.
We reemphasize that the critical wave number 0.2η−1 for the stability of RCTM arises from the

nature of turbulence rather than ML. Therefore, we anticipate that the stability of ML-based models
for real turbulence governed by the Navier-Stokes equation depends on the cutoff wave number and
that we need special treatments for the stability when we set it in the inertial range. Although it
is much more challenging to construct an ML-based model for Navier-Stokes turbulence because
of the nonlocality of the nonlinear interactions, the investigation of its stability is the target of our
near-future study.
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APPENDIX A: SABRA SHELL MODEL

In this Appendix, we show the statistics of the Sabra shell model (1) for Re = 103 and Lmax = 14.
Here, we set a = 1, b = −1/2, c = −1/2, and the forcing f� = u�δ�1 in Eq. (1). Figure 10(a) shows
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(a)

(b) (c)

FIG. 10. Statistics of the Sabra shell model (1) for Re = 103. (a) Energy spectrum. The dotted line indicates
the −5/3 power law and the inset shows the compensated spectrum. (b) PDF of the real part of shell variables
in the inertial range. From the lighter (and thicker) to darker (and thinner) lines, P (Ru3), P (Ru4) and P (Ru5).
(c) Two-time autocorrelation functions of the real part of shell variables in the inertial range. From the
lighter (and thicker) to darker (and thinner) lines, C3, C4, and C5. Here, we use the energy dissipation rate
ε, Kolmogorov length η, and characteristic timescale T� for normalization.

the energy spectrum,

E (k�) = 1

2k�

|u�|2. (A1)

Although we observe the −5/3 power law, E (k�) ∝ k
− 5

3
� , in the inertial range, we can see unnatural

zigzag deviations from the power law. Figure 10(b) shows the PDF P (Ru�) of the real part of shell
variables in the inertial range (� = 3, 4, 5). They depend on wave numbers even when normalized
by the energy dissipation rate ε and wave number k�. Figure 10(c) shows two-time autocorrelation
functions,

C�(τ ) = 〈Ru�(t + τ )Ru�(t )〉t , (A2)

of the real part of shell variables in the inertial range (� = 3, 4, 5). We notice that the functional
shape of the two-time autocorrelation function depends on wave numbers. In other words, a clear
collapse cannot be observed even when normalized by the characteristic timescale T� of each shell.
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When we evaluate the RCTM accuracy, these properties make it difficult to consider the cause of
differences between the true and RCTM statistics. Therefore, we use SSM, which exhibits clear
Kolmogorov similarity (Fig. 1).

APPENDIX B: RESERVOIR COMPUTING

In this Appendix, we describe the overview of reservoir computing (RC) [20–22], a training
framework of recurrent neural networks. RC utilizes a random recurrent network to achieve low
training costs and effective inference. More precisely, the weights of the input layer and a recurrent
layer called the reservoir are determined by random numbers, and only the output weights are
optimized. Therefore, the training cost is significantly lower than that of other types of RNN, such
as LSTM, which is suitable for the extensive parameter survey.

RC learns the relation between the input signals s(t ) (∈ RNs ) and the output signals y(t ) (∈ RNy )
from a finite dataset {s(t ), y(t )} for 0 � t � Ttrain. For this, the output weights Wout (∈ RNy×Nr ) is
optimized so that the output ŷ(t ) with the given input approximates y(t ), where ŷ(t ) is expressed as
the linear combination of the reservoir state r (∈ RNr ),

ŷ(t ) = Woutr(t ). (B1)

We define the loss function as

E (Wout ) = 1

Qtrain

Qtrain∑
q=1

‖y(q�τ ) − Woutr(q�τ )‖2 + β[Tr(WoutW
�

out )], (B2)

where Tr denotes the trace. The second term on the right-hand side is the L2 regularization term,
and β adjusts the strength of its effect. We can obtain the optimized output weights W ∗

out by solving
the minimization problem in Eq. (B2) as

W ∗
out = (R + βI )−1S, (B3)

where Ri j = 〈ri(t )r j (t )〉t and Si j = 〈ri(t )y j (t )〉t .
In the present study, we employ the echo state network [20], which is one of the standard

structures of the reservoir [22]. The temporal evolution of the reservoir state r follows

r(t ) = α tanh [Ar(t − �τ ) + Wins(t ) + b] + (1 − α)r(t − �τ ), (B4)

where A (∈ RNr×Nr ) and Win (∈ RNr×Ns ) are connection weights between nodes in the network.
In the present study, we determine them by random numbers sampled from a normal distribution
with mean zero and standard deviation ρ/

√
Nr and a uniform distribution in the range [−σ, σ ],

respectively. In Eq. (B4), b (∈ RNr ) is the bias, which is determined by random numbers sampled
from a uniform distribution in the range [−ξ, ξ ], and α (∈ [0, 1]) is the leakage rate [35].

APPENDIX C: INFERENCE OF SGS VARIABLES

In this Appendix, we show the inference results of SGS variables X (�c+1) for Re = 103. Here,
the inputs to RC are the true values X (�c ) sampled from the test data; that is, we present the test
results of the first step (i) of the modeling method described in Sec. II B. Figure 11(a) shows the
time series of the inferred variables X̂ (11)

1 for β = 10−7, 10−5, and 10−3 with κc = k10 ≈ 0.7η−1.
When β is small, the inferred time series coincides with the truth. In fact, that for 10−7 correctly
captures the true large and short-timescale fluctuations. In contrast, the amplitude of the inferred
time series for β = 10−5 is always smaller than that of the truth, and that for β = 10−3 is almost

zero. This may raise a naive question of whether X̂
(�c+1) = 0 would be acceptable because PF = 0

for 0.05η−1 � κc � 0.2η−1 even when β = 10−3. However, the results of the closure with setting

X̂
(�c+1) = 0 are different from the RCTM results with the inference of X̂

(�c+1)
. More concretely,

when κc � 0.2η−1, GS variables in the simple closure with X̂
(�c+1) = 0 diverge in time because this
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(a) (b)

FIG. 11. Inference of SGS variables for Re = 103. (a) Time series of the inferred variable X̂ (11)
1 for κc =

k10 ≈ 0.7η−1. From the red lighter (and thicker) to red darker (and thinner) lines, the results for β = 10−7, 10−5,
and 10−3; the black-dotted line is the truth. (b) Dependence of the correlation coefficients between the truth and
RC inference on the cutoff wave numbers κc. The circles, squares, and triangles are the results for β = 10−7,
10−5, and 10−3, respectively. Error bars are the standard deviation over 500 trials. We use the turnover time TL

of the largest eddies and Kolmogorov length η for normalization in (a) and (b), respectively.

approximately corresponds to the inviscid truncated system with forcing. On the other hand, when
κc � 0.2η−1, although GS variables do not diverge up to Ttest , their statistical properties significantly
differ from those of the truth.

To quantify the inference accuracy of RC, we evaluate the correlation coefficients between the
true and inferred time series. Figure 11(b) shows the ensemble average 〈R〉 of the correlation
coefficients over 500 trials for β = 10−7, 10−5, and 10−3. Regardless of κc, 〈R〉 is smaller for larger
β, implying that the regularization reduces the inference accuracy. Incidentally, except κc = k1, 〈R〉
increases with κc, and the increase rate for κc � 0.2η−1 is larger than for κc � 0.2η−1. This may
also reflect the subordination of smaller-scale dynamics to larger-scale ones [30–34].

We emphasize that the optimal β for the inference accuracy of SGS variables differs from that for
the stability of RCTM. More concretely, for κc = k4 ≈ 0.03η−1, among β = 10−7, 10−5, and 10−3,
the highest inference accuracy is achieved with the smallest β (=10−7), while the model lifetime is
longest for β = 10−5 (Fig. 9). This result implies that it is crucial to introduce a stabilization method,
such as the L2 regularization, even when sacrificing the inference accuracy of SGS variables.
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