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0. Introduction

K. Fukaya introduced in [11] a topology on a set of metric spaces equipped

with Borel measures, called the measured Hausdorff topology and discussed the
continuity of the eigenvalues of the Laplace operators of Riemannian manifolds
with uniformly bounded curvature. The purpose of the present paper is to
study more closely the Laplace operators of Riemannian manifolds which col-
lapse in this topology to a space of lower dimension while keeping their curvature
bounded.
0.1. According to [16], a map #: X—Y of metric spaces is said to be an
&-Hausdorff approximation if |dis(x, x")—dis(h(x), A(x"))| =& for all x,x" €X
and the &-neighborhood of the image 4(X) coincides with Y. A sequence
of compact metric spaces {X;} converges, by definition, to a compact metric
space Y in the Hausdorff distance if there are a sequence of positive numbers
{é(?)} going to zero as ¢ tends to infinity and &(¢)-Hausdorff approximations
h;: X;—Y of X; into Y. Moreovre when each metric space X; is equipped
with a Borel measure y; of unit mass, according to [11], we say that {(X, x;)}
converges to Y with a Borel measure y.. of unit mass in the measured Hausdorft
topology, if in addition, these maps A;: X;—Y are Borel measurable and the
push-forward measure ;. pu; converges to u. in the weak* topology.

Now we shall consider a sequence of compact Riemannian manifolds
{(M;,g:)} of dimension m whose sectional curvature K, is bounded uniformly
in its absolute value by a constant, say 1, and assume that tihs sequence converges
to a compact metric space M., in the Hausdorff distance. When the volume of
M; is bounded uniformly away from zero by a positive constant, Gromov’s
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614 A. Kasue

convergence theorem says that the Lipschitz distance between M; and M.
actually goes to zero as 7 tends to infinity (cf. [16]). Moreover, we see that
M., is a smooth manifold with a metric g.. of class C** (0<a<1) and in fact
of the Sobolev spaces W?? (1< p<0)), and there exists a diffeomorphism
fit M;—M.. (for large i) such that f.(g;) converges to g.. with respect to the C**
topology (cf. [27], [15], [21], and also [3]). In this case, we will be able to say
that the Laplace operator of M; is sufficiently close to that of M., for large i.
We remark that harmonic coordinates with certain properties (cf. §1.1) play
an important role in a proof of this convergence theorem.

On the other hand, when the volume of M; goes to zero as 7 tends to infinity,
the geometric situation is more complicated. We recall here some parts of the
fibration theorem by Fukaya [10, 12, 13]. We first mention that there exists a
smooth manifold F.. with a metric of class C** (and in fact of the Sobolev spaces
W??) on which the orthogonal group O(m) acts by isometries in such a way
that M., is isometric to the quotient space F../O(m). Secondly if M.. becomes
a smooth manifold of positive dimension n (<m), then there exists a fibration
fi: Mi— M., (for large 7) such that (2) for all ¥ €M.., the diameter of f7'(2)=
&(7); (#%%) f; is an &(7)-almost Riemannian submersion, that is, for all zE& M.,
x€ fi'(2) and XeT . M; normal to f7(2), (1—&@))|dfy(X)| =< | X | =(1+€())
|df(X)]; (%#2) the second fundamental form Ddf; of f; is bounded uniformly in
t, namely, | Ddf;| =C, where {&(i)} is a sequence of positive numbers going to
zero as ¢ tends to infinity, and C is a posotive constant independent of 7. See
also a recent paper of Cheeger, Fukaya and Gromov [6: §2] for a new proof of the
fibration theorem. In particular, we refer to it for the last assertion. At this
stage, we equip each manifold M; with the canonical probability measure p;
(namely, u;=the volume element divided by the volume), and we assume in ad-
dition that {M;} converges to M. with a Borel measure p.. with respect to the
measured Hausdorff topology. Then we may assume that the push-forward
measure f.(u;) of u; by the above fibration f; converges weakly to w. as ¢ tends
to infinity. According to Fukaya [11, 13], the Laplace operator A; (acting on
functions) of M; is closely related to an operator L. on M., defined by

Loh— XL div(X. grad k) = A. h-tgrad(log X..) %,

where X.. denotes the density of the limit measure u. which turns out to be a
positive function of class C** and in fact of the Sobolev spaces W?? (cf. §1.4
of this paper). A main result in [11] says that for all k=1, 2, +--, the k-th
eigenvalue of A; conevrges to that of L. as 7 goes to infinity. See also [13].
In this paper, we want to study more closely relationships between the Laplace
operator of M; and the operator L. on M..

0.2. Let us now state our main results.
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Theorem A. Let {M};.,,.. be a sequence of m-dimensional compact Rie-
mannian manifolds the sectioanl curvature of which is bounded in its absolute value
by 1. Suppose M; with the canonical probability measure p; converges to a com-
pact metric space M., with a Borel measure p.. of unit mass with respect to the mea-
sured Hausdorff topology, and further that M., is a smooth manifold of dimension
n  (0<n<m) (with a metric of class C** (any a (0, 1)). Then for large i, there
exists a fibration ®;: M;—M.. with the following properties :

(I) for all x&M,,

dis(f(x), Pi(x))=€(),

where f;: M;—M., is the fibration mentioned as above and {€(i)} is a sequence of
positive constants which tends to zero as i goes to infinity ;
(II) given a<[0, 1), there exist a sequence {€'(i)} of positive constants tend-

ing to zero as i goes to infinity and a positive constant C depending only on o,m,n
and M., such that for all he C*(M..),

(i) (1—&'(G))D¥(|dh|)< | dD¥(h) | < (1-+&'(D)D¥(| dh]),
(1—&'(@)@¥(| Dik|)—¢&'())@F(|dR])
< | DAD¥(k)| <(1-+€'6)BH(| Ddh|)+CD¥(| dh])

on M;,
(i) | BHB) | hcaup S C LB oy (k=0, 1,2)
(i) |ADFR)—DHLA)| SEG)DH(| D]+ |dh]),

on M;, where A; stands for the Laplace operator of M; and L. is the operator
defined in 0.1.

We remark that the constant C in this theorem actually can be chosen in
such a way that it depends only on a, m, n, the “curvature” (in generalized
sense) of M(cf. Fact 1.5 in §1.3) and the injectivity radius of M...

Let M;, M. and &; be as in Theorem 4. For heC~(M;), we define a
function ®,(k) on M.. by

1
ON) = oiarie) T

(*&Ms). Then we have the following

Theorem B. Let M;, A;y Mw, L., ®; and ©;: C=(M;)—>C=(M..) be as
above. Given a<(0,1) and pE(1, o0), there exists a sequence {E(2)} of positive con-
stants tending to zero as i goes to infinity such that for large i and all he C=(M,),

@) [8:(h)| crmp =(1+E@) [ Bl craarp »
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(ii) ”gi(h)”WZ"’(M“,F‘“) = (1 +E(i))”h| IWz”’(M,-,I"i) —|-E(i) I h I cL®(y) »
(iii) | -La®;(h)—O;(Ah) | =€(2) {8,(| Ddk|)+(1+6y(| Dy;|)) | 2 cracarn}

on M., where y; denotes the mean curvature vector field along the fibers of @,
on M;,

(iv)  |-LeBy(h)—Bi( Ak Lrcar 1) = ECE) (|| Dbl Locas, up+ | | cracary) 5
) | h—DFo8;(h)| oy = E(F) | 2] cormcnry

(vi) | h—&Fo8;(h)| carp < E(E) | k| croar,y »

(vil)  [|h—D¥Fo8;(A)llwescar, uy < EE) (|2 cocarp+ | Akt | comins) -

We should here explain the notations used in this theorem. For a smooth
function % on a Riemannian manifold M with a Borel measure y, we set

Wllsem =] 1h12du]” (<p<oo);
Wl = [ { St (D012 ]

When p is the Riemannian voluem element of M, we write simply ||A||yts00)
for [|A]lyw2car,m-

Theorems A and B will be proved, respectively, in Sections 2 and 3, after
some preliminaries in Section 1. As mentioned before, in case the injectivity
radii of the given manifolds in the theorems are bounded away from zero uniform-
ly, we can cover each of them with harmonic coordinates of certain uniform geo-
metric estimates. This fact has proved useful as the literature shows. Howe-
ver this is not the case in our theorems. The main idea of proving them is to con-
struct local fibrations by harmonic functions with geometric data, instead of
harmonic coordinate systems or local diffeomorphisms by harmonic functions.
0.3. Let {M;} be a sequence of compact Riemannian manifold as in Theorem
A which converges to a metric space M., in the Hausdorff distance. According
to [12], we consider the frame bundle FM; of M; equipped with the canonical
Riemannian metric so that the fibers of FM; are totally geodesic and the section-
al curvature of FM; remains bounded by a constant depending only on m. Let
F.. be a metric space to which a subsequence of {FM.}, denoted again by
{FM}, converges with respect to the Hausdorff distance. Then F. turns out
to be a smooth manifold with a metric of class C** and the orthogonal group
O(m) acts on F., as isometries in such a way that M., is isometric to the quotient
space F..[(O(m). Moreover there exists an O(m) equivariant fibration f;: FM;—
F.. with the same properties as the fibration f;: M;—M., mentioned in 0.1 when
M.. is a manifold. See [12, 13] and also [6: §2] for details. When FM; with
the canonical probability measure Z; converges, with respect to the measured
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Hausdorff topology, to F.. with a Borel measure /.. of unit mass (which is clearly
O(m)-invariant), we can apply Theorems 4 and B to FM,, F.. and f;: FM,—F.,
and we have a fibration &;: FM,—F.. which approximates f; in the C° topology
(in fact, C** topology). We remark that in this case, the constant C in Theo-
rem A depends only on &, m, dim F., and the injectivity radius of F.. and that
M, with the measure u; converges, in the measured Hausdorff topology, to M.
with the push-formward measure of /. by the projection of F. onto M.
Through this fibration &;, we are able to compare approximately the space of
O(m)-invariant (smooth) functions of F.. with that of O(m)-invariant (smooth)
functions of the frame bundle FM; which can be identified with the space of
(smooth) functions of M;.

0.4. As an application, we can generalize the main result in [11] and show
that if a sequence of compact Riemannian m-manifolds with uniformly bounded
curvature and diameter converges with respect to the measured Hausdorff to-
pology, then not only the eigenvalues but their eigenfunctions converge in a
stronger topology than that of [11]. See [22] for details. Moreover in Sec-
tion 4, we investigate the energy spectrum of harmonic mappings into non-
positively curved manifolds and show certain continuity of the energy spectrum
in the topology of measured Hausdorff convergence (cf. Theorem 4.1).

Finally we would like to explain briefly a primary motivation of studying
the relationships between the Laplace operator of M; and the operator L. on
M., as in Theorems 4 and B. Let R"|T be a flat noncompact Riemannian
manifold of nontrivial fundamental group. This space can be seen as the total
space of a flat vector bundle over a compact flat Riemannian manifold, say 3, of
dimension £>0. Let =,(r>0) be the hypersurfaces of the points which have
equidistance 7 to the base 3, and consider a family {5,} of compact Riemannian

manifolds by setting i,zl S,. Then this family provides us a typical example
r

of Riemannian manifolds collapsing to a lower dimensional space while keeping
their curvatures and diameters bounded as 7 goes to infinity. In fact as r goes
to infinity, 3, converges, with respect to the measured Hausdorff topology, to the
quotient space . of the unit sphere S™~*-! (1) by a closed subgroup K of
O(m—Fk), where K is determined by the action of T' and the limit measure is
the purh-forward of the canonical measure on S™~*-1(1) by the projection of
S™-#-1(1) onto =.. On the other hand, the space of harmonic functions on
R"|T" (and its perturbation) is closely related to the eigenvalues and the eigen-
functions of the operator associated with the measure on the quotient space ...
In view of this example, we expect that Theorems 4 and B (and their local
forms) would be of some use in investigating function theoretic properties of
noncompact Riemannian manifolds. Subsequently, based on the results of this
paper, we want to discuss harmonic functions of polynomial growth on certain



618 A, Kasue

open Riemannian manifolds (cf. [22], [23, II]).

During the preparation of the first version of this paper, the author re-
ceived the preprint of [6], Theorem 2.6 in which allowed him to make the ori-
ginal arguments of this paper clearer. He is grateful to Kenji Fukaya for send-
ing it. The last section is concerned with harmonic mappings and it has been
added in this revised one. The author would like to thank Hisashi Naito for
helpful conversations on this subject.
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1. Preliminaries

We will recall here some known results and give a few lemmas on manifolds
of bounded curvature, to prove Theorems 4 and B.

1.1. Harmonic coordinates
Let (M, g) be a complete Riemannian manifold of dimension m such that the
sectional curvature K, satisfies: | K| <A} for a positive constant A, Let x
be a point of M and exp,: T,M—M the exponential map of M at x. We will
identify the tangent space T,M with Euclidean space R™ by a linear isometry.
Then for a positive number 7 less than z/A,, the exponential map induces a local
diffeomorphism from the Euclidean ball B"(r) onto the geodesic ball B(x,7) of
M with radius 7 around x. Let g* be the pull-back metric on B™(r). If we take
7 so small that 7 is less than a positive constant C, depending only on m and A,,
then we can find a (harmonic) coordinate system g@=/(x,, ***, &,,) on B"(r) which
has the following properties (see [19], [20] for details):

(i) All components x; are harmonic functions with respect to g*.

(i) If we write the metric g* in this coordinate system as

&* = X k-1 £h(x) dw;day
then the coefficients g () satisfy:
o [EPS S ghle) HESCHE
1
| g5i(x)— 8] =Cyr?
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for all x&@(B"(r)) and E=(&, -+, ") R"™, where C, and C, are positive con-
stants depending only on 7 and A,.

(iii) Given a€(0, 1), there exists a positive constant C; depending only
on m, Ay and « such that the Holder norms of g% satisfy

| &%l craezmem=Cs,

and given pE(1, o), there exists a positive constant C, depending only on m,
A and p such that the Sobolev norms satisfy

llghllwzr e em=C,.

(iv) If we assume that the n-th covariant derivative of the Ricci tensor
Ric,, of M satisfies:

| D"Ricy | A,

for a constant A,, then there is a constant C;, depending only on m, n, o, A,,
and A, such that

| &hl crmaezmn =Cs,,, .

Here and after when we consider the Holder and Sobolev norms of functions
on a fixed coordinate neighborhood as above, we follow the usual notaions for
them (cf. [14]).

In relation with the regularity properties of Riemannian metrics in terms of
the harmonic coordinates described as in (i)~(iii), we recall here the following

Fact 1.1. On the set of complete Riemannian manifolds M= (M, g) of dimen-
sion m with |Ky| =1, there exists for all £>0, a smoothing operator, g—S,(g)=
g', such that

(i) ety <y
(i) |D—D'|s¢
(i) ID"R|SA(m, &) (n=1,2,-),

where D (resp., D) denotes the Riemannian connection of g (resp., g'), R’ stands
for the curvature tensor of g', and {A,(m,E)} is a sequnece of positive constants
depending only on m and €. Moreover at xEM, the value of g’ depends only
ong|B(x,t). Finally any isometry of g is also an isometry of g'.

This theorem is due to Abresch [1]. See also [4], [6; §1].

1.2. A regularity estimate on manifolds of bounded curvature
Let M=(M,g) be a complete Riemannian manifold of dimension m with
| Ky | <Af. We will use the same notations as in 1.1, and in addition, we denote
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by dv* the volume element of the Riemannian metric g* on B"(r). Let us first
show the following

Lemma 1.2. For a positive number a less than z|4A, and for a nonnegative
continuous function f on a geodesic ball B(x, 4a), it holds :

_ 1 P PR N < 1 * gy
V*(4a) Sam)f Y =Vol(B(x, a)) Ssu,a)f =TV*a) SB"‘(u)f @,

where f*=foexp, and V*(a) stands for the volume of a ball B"(a) with respect to
the pull-back metric g*.

Proof. We first observe that for a positive number a less than z/2A, and
for all ye B(x, a),

(1.1) #{vEB"(2a): exp, v = y} 2 #{v=B"(a): exp, v = x},
(1.2) #{vEB"(24): exp, v = x} Z#{vEB"(a): exp, v = y}.
Then it follows from (1.1) that

SB"'(Za)f* dv* = Sa(z,u)f(y) #{‘Z)EB"‘(za): exXp, v = y}
= SB(x,a)f () ${vEB"(2a): exp, v =y}

= #{v=B"(a): exp, v = x} SB(M)f.

In particular, we have
V*(2a)=#{veB"(a): exp, v = x} Vol(B(x, a)) .

Similarly by (1.2), we have

* Jo* "0a): — .
Sg"'(,,)f dv*<${veB"(2a): exp, v = x} SB(M)f,
V*(a)<#{v=B"(2a): exp, v = x} Vol(B(x, a)) .

Thus it is easy to see that the lemma holds.

Now using harmonic coordinates with the properties described in 1.1 (i)~
(iii), and combining Lemma 1.2 together with the elliptic regularity theory (cf.
[14]) and the standard covering argument, we have the following

Lemma 1.3. Let M be a complete Riemannian manifold of dimension m such
that the sectional curvature K, is bounded in its absolute value by a positive constant
Ay Then for given positive numbers p& (1, o), d, and d,, there is a positive con-
stant C depending only on m, A, p, d, and d, such that for all smooth functions f on
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a geodesic ball B(x, b) around a point x with radius b<d, and for all a with 0<a<b
and b—az=d,,

¢ Vol(B(x, a))V?

P(B(x,a0) =
”f”W2 2(B(x,a)) VO].(B(x, b))IIP

{”f“LP(B(x,b))‘I"”AfI lL’(B(z,b))},

where A f stands for the Laplacian of f.

1.3. Smooth Hausdorff approximations
In this section, we recall some basic results, that we need in this paper, on
collapsing Riemannian manifolds while keeping their curvature bounded. See
[10, 12, 13] and [6: §2] for details.

Let {M;} be a sequence of compact Riemannian manifolds of dimension m
with |K,| <1 and assume that {}M;} converges to a metric space M, in the
HausdorfI topology as 7 goes to infinity. We first recall the following

Fact 1.4 (Fukaya [12,13]). Let {M,} and M.. be as above. Then there exists a
smooth manifold F., with a metric of class C** (0<a<<1) on which the orthogonal
group O(m) acts by isometries in such a way that M., is isometric to the quotient
space F..[O(m).

When M.. becomes a manifold, M., is a smooth manifold with a metric g
of class C¢(0<a<1) and in fact of the Sobolev spaces W*?(1<p<<oo). To
show Fact 1.4, Fukaya [12] considered the frame bundle FM; of M; equipped
with the canonical Riemannian metric so that the sectional curvature of FM;
remains bounded by a constant depending only on m. F, is a limit of {FM}
with respect to the Hausdorff distance. Although the smoothness of the met-
rics of the limit spaces can not be expected, we are able to make use of Fact 1.1.
Actually, we have

Fact 1.5 (Fukaya [13]). Let {M;} and M., be as above. Suppose M., is
a smooth manifold. Then there is a sequence of smooth approximations {g®} (0<38)
for the metric g.. of M.. such that they have the same properties as in (i) and (i)
of Fact 1.1 and also

| the sectional curvature of g2 < A,
for some positive constant A, which is independent of (small) 8.

We should mention further the following

Fact 1.6 (Fukaya [10,12,13]). Let {M;} and M. be as above. Suppose M.
is @ smooth manifold of positive dimension n (0<n<<m). Then there exists a fibra-
tion f;: M;— M., ( for every large i) satisfying

(i) for all 2 M., the diameter of f7'(z) < &(i);
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(i) f; s an &(7)-almost Riemannian submersion, that is, for all z€M.,
x€ f7Y(2), and X € T, M; normal to f7%(2),

(1—=e@)dfi(X)| = | X| =(1+€@) | dfi(X)] ;

(i) the second fundamental form Ddf; of f; is bounded uniformly in i,
namely,
| Ddf;| =C,

where {E(2)} is a sequence of positive constants going to zero as i tends to infinity,
and C is a positive constant depending only on m, n, Ay as in Fact 1.5 and the
lower bound of the injectivity radius of M..

See Cheeger, Fukaya and Gromov [6: §2] and also the arguments therein
for a new proof of this fact and in particular the last assertion in this form.

RemArk 1.7. Consider the case M., is not a smooth manifold, and assume
that a sequence of the frame bundles {FM;} converges to a metric space F.
with respect to the Hausdorff distance. As we mentioned above, F., is in fact a
smooth manifold with a metric of class C** and the orthogonal group O(m)
acts on it as isometries in such a way that .. is isometric to the quotient space
F..|O(m). Moreover there exists an O(m) equivariant fibration f;: FM,—F.,
(for large 7) which satisfies the assertions of Fact 1.6 (the constant C there depends
in this case only on m, n and the lower bound of the injectivity radius of F..).
See the references cited above for these facts.

1.4. Regularity of limit measure in measured Hausdorff convergence

Let {M;}, M., and f; be as in Fact 1.6, and let M; be equipped with the canoni-
cal probability measure u; (=the volume element/Vol(}M;)). Suppose in addi-
tion that {M;} converges to M. with a Borel measure w. in the measured
Hausdorff topology, that is, the push-forward measure f;«u; converges weakly to
pe. We denote by g; (resp., £%) the Riemannian metric of M; (resp., the ap-
proximations of g; as in Fact 1.1). When we consider M; with g (8 being
fixed), taking a subsequence if neccesarily, we may assume that (M;, g*) con-
verges to the smooth Riemannian manifold (M., g2’) in the measured HausdorfF
topology. Then we have a fibration f$»: (M;, g¥)—>(Mw, g2) as in Fact 1.6 and
the limit measure p’ to which the push-forward measure f{¥uf® of the cannoni-
cal probability measure u$¥ converges weakly. In this case, Fukaya [13] shows
that the density X of the limit measure x¥ is a smooth positive function on
M., and as for the regularity of the limit measure x., the arguments there sug-
gest that the density X.. is of class C** (0<a<(1) and actually of the Sobolev
spaces W*? (1<p< oo). Since this does not seem to be clear from the argu-
ments there and we need some estimates on X.. in the proof of Theorem A4, we
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will prove it. In what follows, we assume that the injectivity radius of M., is
bounded from below by a positive constant ¢.

Since what we need are mainly some local properties of the limit measure,
we first discuss locally on the problem. Consider M., equipped with the metric
&® for a while. Let us take a point p.. of M., and choose a (harmonic) coordi-
nate system r=(2, *-+, 2,) which has the properties described in 1.1 (i)~(iii).
We may assume that ) is defined on a geodesic ball B(pw, Cs) and yo(B(p«, Cs))
contains a Euclidean ball B*(C;), where C; and Cs depend only on 7, A, and ..
Here A, is as in Fact 1.5. Note that the constants C,~C, in 1.1 (ii) and (iii)
depend also on ¢ in this case. We write the metric g& in this coordinate system
(2 +*+y 2,) 88

ggf) == 2;.];-1 gg)jk dz‘jdz,, .

We want ot obtain certain regularity estimates for the limit measures ux{® (and
then ) on the ball B*(Cy), using the regulairty properties of g, (j, k=
1, e, n)

Let f®: (M, g9)— (M., %) be a fibration as above and define a function
6® on M.. by 6(2)=Vol((f¥)~%(2)). Then 6 satisfies

(1.3) |d log 89| =C,

because of Fact 1.1 (for f’), where C, is a positive constant depending only on
m,n, Agand ¢. Moreover we define a function ¢ on B*(Cy) by

e — 6P 0! )
C Vol ((f®)HB(pw) Cs))

Then by (1.3) and the fact that f¥ is an &(7)-almost Riemannian submersion
with &(7) tending to zero as ¢ goes to infinity, we have

1 <w=c,
(14) Cs
|dgP| =C,

for some positive constants Cg and C, depending only on m,n, A and ¢. Let
us here define an elliptic differential operator L% of second order by

i m 1 0 |: ix O ]
(8) — SVi.k=1 v (is)G(a) (8)jk & ,
-L" " g(t_B)G(B) 62’,- C £ 62’,,

where G®=det[g®;,]¥? and [g¥/*] is the inverse matrix of [g®;]. Given r&
(0, Cy), we solve the following Dirichlet problems:
LR =0 in B%(r)

(1.5) BY =z, on 9B(r)
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(j=1,++,m). Then it turns out from (1.4) and the standard elliptic regularity
theory (cf.[14] and also [17]) that for a positive constant C), depending only
on m,n, A, and ¢, the following assertions (1.6) (i)~(iii) hold on B*(r,) for
7,=Cy:
(i) HP=(h, -, BP") defines a diffeomorphism of B(r,) onto itself;
(it) given a€(0, 1),

(1'6) IH(vS) l CcL¥(B"(zq)) =Cy,

for a positive constant C;; depending only on m, n, Ay, ¢ and «;
(iii) for all j=1, «+-, m,

| dhPi—dz;| < Copy

for a positive constant C;, depending only on m, n, A, and ..

In addition, we may assume that for all j, k=1, ---, n,
(1.7) | ¢® (grad K, grad KP*)—8 ] <—

10n
(cf. (1.6) (iii) and 1.1 (ii)). We assume now that the measure {Pdz A -+ Adz,
converges weakly to a measure, as 7 goes to infinity. Then the density ¢® of the
limit measure coincides with #X% and it satisfies (1.4), where & is a positive
number given by b=lim, . Vol(M,)/Vol( f¥)"{(B(p~, Cs)). We remark that by
Bishop-Gromov’s inequality,

Cu=b=1,

where Cy; is a positive constant depending only on m, C; and diam(M..). More-
over we may assume thta H® converges, as 7 goes to infinity, to a diffeomorphism
H® of B'(r,) onto itself in the C* topology (0<a<1). Each component
h®7 of HY is the solution of the Dirichlet problem:

LORDI = 0 in B(r,)

1. j
( 8) hg)! - zj on GB”(TO) ’

where L@ is the operator given by

" 1 a % 0
L =4 EOG® 5;;‘ I:CQ)G(G)gg)Jk 6_2,,] .

Let us consider in turn the manifold M; equipped with the metric g@®.
Choose a point p; in such a way that f(p,)=p.. Let exp,: T, M,—M, be the
exponential mapping at p;. As in 1.1, we will identify the tangent space T, M,
with Euclidean space R" by a linear isometry and use a harmonic coordinate
system @=(x,, ***, %,,) with the propeties described in 1.1. Then taking a sub-
sequence if neccesarily, we may assume that on B"(r) (r=C,), the pull-back
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metric g®* converges to a (smooth) metric g&*, We set f$*=f®oexp;,. Then
as 7 goes to infinity, f® converges to a submersion II® from B"(r) onto a neigh-
borhood U® of p... By choosing 7§ and r, appropriately, we may assume that
B(rg) c UP=II®(B"(r,)) C B"(r,), wheie r{ and r, are positive constants depend-
ing only on m, n, A, and ¢. We observe that II® is actually a Riemannian sub-
mersion with respect to the metrics g®* and g®, and that the mean curvature
vector field »&* of the fibers is basic, namely, horizontal and projectable, since
¥ coincides with the projection of B™(r,) onto U® by the isometric action of
a Lie group germ (cf. [16], [12, 13]). Moreover if we denote by 7(II®) the ten-
sion field of TI®, then +(I1¥)=—d I (®*)=(grad log {P)oII®. This implies
that each component of H®II® is harmonic (with respect to the metric g®%).
Hence given a< (0, 1), we have

|H DomI® l CIBB () = Cu

for a positive constant Cj;, depending only on m, n, Ay and ¢ (cf. 1.1(i)~(iii)).
Thus taking account of (1.7), we see that given pE(1, o),

7&*|lprecam,n = Cis

from which it follows that

[12;°TI2||ps.pemtry = Cis »
[llog £ |wzeamen =Clz,
”Hsf)l |W3'1’(B"(ro)) = C;g .

Here Cy,~Cj; are positive constants depending only on m, n, A,, ¢ and p.

We have discussed so far the sequence of Riemannian manifolds (4;, g)
and its limit (M., g&) with respect to the measured Hausdorff topology, while
keeping a (small) positive number § fixed. However as we have shown, all
constants in the above estimates are able to be taken independently of §. Thus
the following results hold.

Lemma 1.8. Let g®*, g% and NI®: B"(r)—>UQL (p.€UPCM.) be as
above. Suppose that for a sequence {8} going to zero, g&* (resp., g37) converges in
the C** topology to a metric g¥ (resp., g..) of class C** (0<<a<1) and further T1&?
converges to a map Il..: B"(r\)—U.. of B"(r,) onto a neighborhood U., of p... Then
I1.. is a Riemannian submersion of class C** with respect to the limit metrics g% and
& such that the mean curvature vector field % along the fibres of Il.. is basic and
the tension field v(I1..) is given by 7(Il.)=—dIl.(n%)=(grad log X..)oIl... More-
over given pE (1, o), the covariant derivative Dy (with respect to g¥) satisfies

|| Dol pzmen =C

where C is a positive constant depending only on m (=dim M;), n (=dim ML),
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Aq (as in Fact 1.5), ¢ (= a lower bound of the injectivity radius of (M., g.)) and p.

Lemma 1.9. Let M., be as in Theorem A and let m,n, A, and ¢ be as above.
(i) The density X of the limit measure p.. on M., satisfies

[log X | coar,y =C
|dlog Xo| oy =C',
where C is a positive constant depending only on m,n, A, ¢ and d (=an upper bound

of the diameter of M..), and also C' is a positive constant depending only on m,
n, A and ¢, Furthermore given pE (1, ),

[1Dd log Xollzoat, wy =C”

where C" is a positive constant depending only on m, n, A,, ¢, d and p.

(ii) For all points p.. of M., there are a positive constant r, (<tc) depending
only on m,n, A, and ¢, and a coordinate system G=(hy, ++, h,): B(Pe, 7o)
O(B(Pws 70)) Such that any component k; of ¢ satisfies

Lok = (Antgradlog X.) h; =0
where A, stands for the Laplace operator of M.. Moreover given pE(1, o),

“hj“WS"(B(pw.ro),M“)é Cc® >

where C® is a positive constant depending only on m, n, A, ¢ and p.

2. Construction of Fibration and Proof of Theorem A

Let {(M;. )}, (M, pe) and Lo(=Aw+grad log X..) be as in Theorem
4 and let f;: (M, g,)—>(M.., g..) be a fibration as in Fact 1.6. In order to prove
Theorem A, we first perturb this fibration locally and then construct a submer-
sion with certain additional properties, making use of a center-of-mass technique.

2.1. Local fibrations by harmonic functions

We begin with the construction of local fibrations, using certain harmonic func-
tions. We fix a sufficiently small positive number 7 as in Lemma 1.9 (ii).
Let p. be a point of M. and p; a point of M; such that fi(p,)=p.. Set
U;:=f7Y(B(p=, 7)) (CM,) for simplicity. For a given function & C%*(B(pw, 7))
which satisfies: L., h:=(A.+grad log X..) k=0 in B(p.,7), consider a unique
solution #; of the Dirichlet problem:

Afhi == O in U,'
b =hof, on 8U,.

Then applying a gradinet estimate by Cheng-Yau [7] to /;, we have
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1

i (=) = Gt B o)

) {ma.xB(pw,) h—minB(,w,) h}

for all 2EB(p., r) and all x< f;(2), where C, is a constant depending only on
the dimension m of M;. This implies that for all 2 B(p.., 7),

max; -1y By—ming, -1y #; <

1
cy(1
(+ dis(z, 0B(pwr 7))

@10 ) diam(f71(s)) {masxs,.. » h—minge, ) B}

As in Section 1.1, let exp;: T, M;—M; denote the exponential map of M; at
P;» and identify the tangent space T, M; with Euclidean m-space R"™ by choos-
ing an orthonormal basis of T, M;. Moreover we use a harmonic coordinate
system (#,, -, x,,) defined on the ball B"(3r) in R™ which has the properties de-
scribed in 1.1 (i)~(iii) (» is asumed to be small enough). We consider a family
of functions AF:=h;0exp; (for large 7) on domains U¥:=exp7}(U;) N B"(2r). We
first observe that the C** norm of A¥ on U¥ and the C** norm of %¥ on a fixed
compact subdomain V* of U¥ are bounded uniformly in i. More precisely,
given a€(0, 1), there is a positive constant C, depending only on m, the con-
stant C in Fact 1.6 (iii), « and the C** norm of the given solution % such that

(2.2) |h¥ | oegm = Cy

and in addition, there is a positive constant C, depending only on m, «,
dis(V*, 0U¥) and the C° norm of % on B(pw, r) such that

(2-3) Ih? | c3"”(v~)§cs .

These estimates are derived from the standard elliptic regularity theory (cf.
[14]) and the regularity properties of the pull-back metrics g¥=exp¥g; in
terms of the harmonic coordinates as above.

To make our arguments here clearer, we will descuss under the following
hypothesis: as 7 goes to infinity, a sequence of the pull-back metrics {g¥} con-
verges in the C* topology to a C** metric g* on B"(3r) and moreover a family
of the mappings {f¥} defined by f¥:=f;oexp;: B"(3r)—>M.. converges in the
C™* topology to a fibration II..: B"(3r)—M.. which is a Riemannina submersion
of class C*# with respect to the limit metric g¥. As noted at the end of 1.4,
the mean curvature vector field 5% of the fibres of Il.. is basic and satisfies:

”DﬂzuL’(BmQr)) = C4 )

where C, is a positive constant depending only on m and 7, and furthermore
the tension field 7(II..) satisfies:

7([le) = —dIl.(7%) = (grad log X.)oIl.
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Obviously {U¥} converges to U*:=II-(B(p, r)) N B"(2r). Now we claim that
{h¥} converges to the harmonic function A¥:=hoIl.. (with respect to the limit
metric g¥) in such a way that for any compact subdomain V* of U*.

(2.4) My o | B —R%| oy = 0.

Indeed, for a given subsequence, say {k¥}, of {h¥}, by (2.2) and (2.3), we can
find a subsequence of {#¥} which converges to some %'€C(U*)NC**(U*) in
the same manner as in (2.4). It is clear that 2’ is harmonic with respect to the
limit metric g%, and A'=h* on 9U* N B"(2r). Moreover by (2.1), we see that A’ is
constant along the fibers of the projection Il.., namely there is 4" € CY(B(pw, 7))
N C®*(B(p=, 7)) such that A'=h"oIl.. and #’=h on 8B(p.,r). Since h” also
satisfies: L. #/’=0 on B(p.., ), the uniqueness of solution of Dirichlet problem
shows that 4" coincides with 2. Thus our claim is clear.

Based on what we have just observed, we shall next construct a local fibra-
tion of a neighborhood of p; over that of p... By Lemma 1.9(ii), we have a co-
ordinate system H={h,, -+, k,} defined on B.(p=,7) whose components are solu-
tions of equation: L.hs=0. We may assume that H(B(p.., r))=B"(1) (C R")
and all components /4, belong to C>%(B(pw, 7)), and further that H(B(p., r/5))C
B"(2/5)c B"(3/5)C H(B(p., 4r/5)), by taking r small enough. Let U, and U¥ as
above. Let &; g(B8=1, -+, n) be solutions of the following Dirichlet problems:

Aihl',ﬂ = 0 in U"
hi-B = hﬂo_f' on 6U, .
Moreover we put H;:={h;,, -, b; ,}: U;—B"(1), F;:=H o H;: U—~B(po, 1)

and F¥:=F;cexp;: Uf>B(p.,7). Then {HoF¥} converges to HolIl. in the
same manner as in (2.4). In particular, we have

| H oFf | C3%(B™(4r/5)) =C;

25 ,
( ) hm,-_,w |H°Fik—H°Hoo | ca-'”(B"'(ws)):O ’

where C; depends only on m and r. This implies that if we set W;:=
F7Y(B(pw, 4r/5)) for simplicity, F;: W;—B(p.., 47/5) becomes a submersion satis-
fying

max {dis(f(#), Fy(#)): x€ Wi} S&(),

where {&(#)} denotes a sequence of positive numbers which goes to zero as ¢
tends to infinity, and moreover it will be kept to stand for such a sequence in
what follows. To describe some other properties of the submersions F;, it is
convenient to fix several notations here. For a point x& W, and a tangent vec-
tor EE T, M;, we denote by Vy(x), H;(x), V;E, and Y(;E, respectively, the sub-
space of T,M; which consists of vectors tangent to the fiber F;?(Fy(x)) through
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x, the orthogonal complement of <V,(x) in T, M;, the CV;(x)-component of E, the
Hli(x)-component of E. We may call V,(x) and J{,(x), respectively, the vertical
subspace at x and the horizontal subspace at x (of the fibration F;: W,—
B(p., 4r[5)). Correspondingly we have two distributions CV; and J; called the
vertical distribution and the horizontal distribution. CV; and 4, also denote the

projections onto them. For a vector field X on B(p., 47/5), we denote by X the
vector field on W; satisfying

X(x) € Hy(x), dF(X(%)) = XoFy(x) (xEW,).

As in [26], we define (2,1) tensor fields A(F;) and T(F;) on W; whose values
on vector fields E,, E, are, respectively, given by

A(F,)(Ey, Ey) := D g5 VE,+VD g4pp HE,,
T(F;)(Ey, Ey) := HADcyp VE,+VDcyp HE, .
Moreover it is also convenient to define a (2, 1) tensor field B(F;) on W, by
B(F,)(E,, Ey) := HADg E,—[Dyr,zpdF(E,)]" .
We observe that
dFy(B(F;)(E,, E;)) = —DdF(E,, E,) .

We remark here that the tensor B(F) of a submersion F: N—M between Rieman-
nian manifolds N and M vanishes on the horizontal distribution if it is a Rieman-
nain submersion (cf. [26]). In particular, since the projection IL.: (U*, g¥)—
B(p.,r) is a2 Riemannian submersion (of class C*®), the tensor field B(Il.) of
this fibration vanishes on the horizontal distributions of Il.. Namely we
have

B(IL.)(X*, Y*) =0

for all horizontal vectors X* and Y* of the fibration II..
We are now in a position to summarize what we have observed so far in the
following assertions (i)~(vi):
(i) max {dis(f(x), Fi(#)): #€ FT(B(p., 4r/5))} SE();
(i) F;is an &(7)-almost Riemannian submersion;
(iii) if we denote by #,(x) the mean curvature at a point x of the fiber
F(F () in M,
max {| dF;(n;(x))+(grad log X..)oFy(x)| : € F7Y(B(pa, 47/5))} =&(1);
(iv) max{(|BF)(X, V)|: X, YEH(), |X|=|Y|=1, xEFB(p«,
4r[5)} =&(0);
(v) max{|DdF;|(x): x€F7(B(p., 4r/5))} =C; in particular,
max {| A(F;)| (x): xEF7(B(p=, 47[5))} =C;
max{| T(F,)|(2): *€F7YB(p, 4[5} =C,
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where C is a positive constant depending only onm and . In addition, by Lem-
ma 1.2, we see that given pe(1, o),

1
Vol(B(p;, 41/5)) S B(p;4r/5)

1
Vol(B(p;, 4r/5)) SB(,,.,Ms)

(vi) | Dy [?=C" 5

| DDAF,|?<C"

where C’ is a positive constant dependign only on m, r and p.

2.2. Construction of global fibration

In this section, we will construct a global fibration of M; onto M., by apply-
ing a center-of-mass technique to the local fibrations constructed in 2.1. In
general, the metric g.. of M.. may not be smooth. In order to carry out our con-
struction, we will use a family of smooth Riemannian metrics {g&} on M., which
has the properties described in Fact 1.5. Let us fix a small positive constant r
as in 2.1 and take a (finite) family of points {p.p} of M.. in such a way that
diS(Peogs Pooy) 27/10 if P P, and the union of the geodesic balls B(pug, 7/5)
covers M... Let Hy=(hf, -+, B3): B(p.p, r)—>B"(1) be a coordinate system such
that the components of Hy are the solutions of equation: Lhf=0 on B(p..g, 7)
(v=1, ---,m). Asin 2.2, if we set U; g:=f7(B(pup, 7)) (CM;) and define maps
F; g: U; g—>B(pwp, r) in such a way that A;(HgoF; 5)=0 on U; g and F; z=f; on
08U, g, then F; 4 gives a fibration over B(p..g, 47/5) (for large 7) and has the pro-
perties (i)~(vi) described at the end of 2.1. Let us now fix a smooth function
£(s) on R which satisfies: £(s)=1 if |s]| <2/5, &(s)=0if |s] =3/5 and 0=<E(s)=<1
for all s. Define smooth functions {£; g} on M; by

E g = E(|HpoF;61) .
' SE(|HyoF,,|)

Then by (2.3), we get a partition of unity {§; g}z on M; subordinate to the
covering {W; g:=F7Y(B(p«p, 47/5))} such that given a<(0, 1) and pE(1, o),
I gi.ﬂ l c29(M,) = Cs

2.6
(26) 1 sllwtcae,my C

where Cy (resp., C;) is a positive constant depending only on m, r and « (resp,
m, r, diam M., and p). We fix sufficiently large 7 and small § for a while. Then
it is not hard to see that for any point x&€ W; g N W; , and tangent vectors X, Y €
T, M; of unit Inegth,

(2.7) |dF; o(X)— PEdF; (X)) | <€()+(8)
(2.8) | DOdF; (X, Y)—P(DVdF; (X, Y))| =&@)+7(8) -
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Here {r(8)} denotes a sequence of positive numbers which goes to zero as &
tends to zero. Since F; g has the property (i) at the end of 2.1, there is a unique
minimal geodesic (with respect to g&) joining F; 4(x) with F; g(x) for any xE
W;sNW,;y. P§) denotes the parallel displacement along it. Moreover D®
stands for the Riemannian connection with respect to g&.

Now for sufficiently large 7 and small §, we have a smooth map &;, of
M; onto M., which is the center-of-mass with respect to {F;g, & ¢} and g@.
Namely, ®; ; is defined by

PIINEY) expf,f'_),sw"‘F‘.ﬂ(x) =0

(»€M;), where exp® denotes the exponential map with respect to g& (cf.
[5]). Itis obvious that &®; ; satisfies

(2.9 max {dis(f;(x), @; s(¥)): xEM,;} &) .

We denote by A,(8) and A,(8), respectively, the upper bounds of the norms of
the covariant derivatives D®Ry and D®D®R; of the curvature tensor R, of g®.
Let us here take a sequence {§;} in such a way that both A,(;)é(¢) and
Ay(8,)6()* go to zero as 7 tends to infinity. We write ®; for @®; . Then the
properties of {F; g} stated at the end of 2.1 and the standard comparison argu-
ments applied to the center-of-mass @®; (cf. Lemmas A.1~A.3 in Appendix)
together with (2.6)~(2.9) yield the following

Theorem A'. Let {M;} and M., be as in Theorem A. Then for large i,
there exists a fibration ®;: M;— M., such that
(1) max{dis(fy(x), Dy(x)): xEM;} &) ;
(il) D, /s an &(i)-almost Riemannian submersion ;
(i) if »; denotes the mean curvature vector field along the fibers of ®;, it
holds that

max {| d;(7;(x))+ (grad long X.)o®,(x)| : x€ M} S&();
(iv) the tensor field B(®;) satisfies
max{| B(®))| (x): ¥€ M;} <&();
(v) the second fundamental form Dd®; of ®; satisfies
|Dd®;| =C,
and in particular it holds that
[A@)|=C, [T(®)|=C.

Here B(®;), A(®;) and T(D;) are respectively the (2, 1) tensor fields on M; defined
as in 2.1, {€(2)} is a sequence of positive numgers going to zero as i tends to infinity,
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and C is a positive constant depending only on m (=dim M), n(=dim M.,), “the
curvature bound” A, for M., as in Fact 1.5 and a lower bound ¢ of the injectivity
radius of M. In addition, given pE(1, o), ®; saiisfies :

(vi) 11 Dy | 122cas,mp=C”
Il | DDA®; | || o, mp=C",

where C' is a positive constant depending only on m, n, A,, ¢, diam M., and p.

It is not hard to derive Theorem A from this.

3. Proof of Theorem B

Let ®;: M;—M., be as in Theorem A (or A’). For a smooth function %
on M;. we define a smooth function 8,(%) on M., by

. 1
O (%) = i@y Do

In the following, we denote as before by 5; the mean curvature vector field
along the fibers of @;, and also by &(¢) a sequence of positive numbers tending
to zero as ¢ goes to infinity.

3.1. Proofs of (i), (v) and (vi) in Theorem B

Let X be a vector field on M., and X the horizontal lift of X with respect to
the fibration ®;: M;—M... Then a direct computation shows that

(1) dk)(X) = O,(dh(X))—~8,(igi(X, 1)) +8,m8:( g%, m.)) -

Hence we have by Theorem A’ (i) and (ii) that

(3.2) |46,(k) (X)—©(dh(X))| &) |84(h)|

from which the first assertion of the theorem follows easily. The estimate (v)
is a direct consequence of the fact that diam(®7(2))<&(¢) for all z&M... To
prove the estimate (vi), we need the following

Lemma 3.1. Let k be a smooth function on M;. Then:
(1) for all vertical vector V &CV(x) at a point x& M;,
[ah(V)| <€G) |kl creap | V| 5

(ii) for all vectors X tangent to M., at a point 2, and for all points x, y&

D7l(=),
|dh(X)—dhyR)| <&(i) | k] oy | X |.

This lemma will be proved later. Now we want to complete the proof of the

estimate (vi). By virtue of the first assertion of Lemma 3.1, it suffices to show
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that
|d©,(h) (X)—dh(X)| <&@) | 7| creeny) X |

for a tangent vector X of M., at a point 2 and a point xE®7Y(2). This follows
from (3.2) and the second assertion (ii) of Lemma 3.1. Indeed,

|d8,(h)(X)—dh.(X)| < |dO,(h)(X)—O,(dh(X))| + | ©,(dh(X))—dh(X)]
<&()|8,(h)| | X | +104dh(X)—dh,(X))|
<&(5)|0,(k)| | X | +8() | 2] crocaep | X |
<&() |k croqup] X |-

Proof of Lemma 3.1. Let B(p;,7) be a geodesic ball around a point p;
with radius 7, which is less than {C,, where C, is a positive constant as in 1.1
(Ap=1). As before, we will identify the tangent space at p; with R", denoted by
exp; the exponential mapping at p; and use a harmonic coordinate system
(%1, +++, %,,) with the properties described in 1.1. For a point x of B(p;,7) and a
unit vertical vector V at x, we take x* & B"(r) with exp; x*=x, and then denote
by V* the vector at x* such that dexp,(V*)=V. Let £*(s) be a unique goedesic
(with respect to the pull-back metric g¥) starting at x* to the direction of V*.
In terms of the coordinates (x,, --+, x,,), the components £¥(s) of £*(s) satisfy:

X'+ Ta EVEN TE) =0 (I=1,-,m),

where {T'};} stands for the Christoffel symbols of the metric g¥. Clearly there
is a positive constant C, scuh that

(3.3) [EF1=Cy, |E|=Cy,

(=1, -+, m), where C, is a constant depending only on m. We set z*:=hoexp;,.
Then we have

| (B*oE*)’ (S)—(h*°f*)’ (0)1
(34) =

(x*)HE ()I+I (x*)HE*'(S) Er(0)
S Cy(s® +5),h|c"“(M,-) ’

where C, is a constant depending only on m. Suppose |dh(V)| does not vanish,
and take two positive numbers d and d’, respectively, such that

ldk(V) | =d || che(M,) »

and

Cy(d*+d’) §—;—d .

Then we get
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[(B*oE*)" ()| 2 |dR(V)| — | (A*oE¥)’ (s)—(h*oE¥)" (0)]
= {d—Cy(s*+9)} | B cvacup
—Z-%d lhlc""(M,-) ’

for any s&[0,d']. Therefore it follows that

(3.5) | (o8O~ ¥) 2 ds [hlvscuy (0Ss=d).

On the other hand, we see that

[ (*oE*) (s)—h*(x*)| = |h(E(s))—h(x)| (§(s) := exp; E¥(s))
(3.6) < 1] gusy dis(E(s), %)
= || cvaq, {diam(F (x))-+dis(&(s), Fi(x))},
where & (x) stands for the fiber of the fibration &;: M;—M,, through x. Ob-
serve that

(3.7) dis(E(s), Fi(x)<C; &

because of Theorem A’ (v), where C, is a constant depending only on the con-
stant C in Theorem A’ (v). Thus it follows from (3.5), (3.6) and (3.7) that

(3.8) c,sz—%dprs,.go for any s€[0,d"],

where we have set §;:=max {diam(F(x)): ¥&M,}. Therefore we can find
positive constants C, and C; depending only on C; in such a way that if d is
less than C,, then d must be less than C;8}/%. 'This implies that

ldk(V)l §2C’58§'/2 lhlc'-"(M,-) ’

which proves the first assertion of the lemma. As for the second one, we claim
that when |X|=1, the covariant derivative of X in the direction of a unit ver-
tical vector V is uniformly bounded by a constant Cg depending only on the
constant C as above. Indeed, for any unit vertical vector W, we have

| 8:(DyX, W)| = | g X, H(DyW)| <(14£()) |dD(DyW)|
<(1+&(i)) | DAV, W)|
=<C;.

Similarly, for any unit horizontal vector Y, we have

|84 DyX, V)| S(1+6(1)) | g(dDy(DyX), dD,(Y))|
=(1+6(1)) | g-(DdD(V, X), dd(Y))|
=C;.
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These show our claim. Now it is easy to see that the second assertion of the
lemma holds to be ture. This completes the proof of Lemma 3.1.

3.2. Proof of (ii), (iii), (iv) and (vii) in Theorem B
We first carry out direct computations of the hessain Dd®,(h) of ©,(k) and get

(3.9) Dd®(k) (X, X) = ©,(Ddh(X, X))+,(k; X, X)+
y(k; X, X)+10k; X, X)),

where we have put

IL(k; X, X) = ©(dh(B[®,)(X, X)))+O,(hg(BI®](X, X), m:))+
8,(h)8y(2/B[®](X, X), 7.))+6,(dh(A[®](X, X)),

Ty(k; X, X) = 20,(dh(X)g/(X, 7)) —28,(dh(X))8,(g(X, 7))+ O (kg X, 7.Y) +
20,(1)8,(gX, 7:))*—20,(hg (X, 7,.))0:(&(X, 7)) —8,(M)® (g(X, 7)),
I(k; X, X) = ©,(k)8,(g(X, Din,))—8,(hg(X, Dx7,)) -
Applying Theorme A’ and Lemma 3.1(i) to II,(%; X, X), we have
| TL,(h; X, X)| <&G) || cvoany | X |2
Moreover using Theorem A’ as in (3.2), we see that
| T3 X, X)| S&G) |kl oy | X2
Since I(k; X, X)=II,(h—c; X, X) for any constant , it is clear that
|TL(k; X, X)| <€) | k] comaep®(| Dy )| X |2 .
Hence it follows from these inequalities and (3.9) that
(3.10) | DdO(k)(X, X)—O(Ddh(X, X)| <&()(1+0,| Dy 1)) 1 1] cracaep| X |2
In particular, we have

[1DA® (M) Lo cu; ey < (14-E(@)N1O( | DR ) zocar, 0p+
8(1') {1+”@i(| D’?l )”L"(M,-,l‘-,-))' |k | ch®(M;)
<(1+&@) ||| Dah | [|z#car,9+8G) 1Bl cvocany »

where we have used Theorem A’ and the fact that for any f € C~(M,),

Hei(f)“LP(M,,#,-) =( +5(7'))”f||1.’(u,-.ui) .

This can be also derived from Theorem A’. Thus we have shown the estimate
(ii) in theorem B.
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We are now in a position of verify the third estimate (iii) in Theorem B.
For this, we denote by tr 4Ddh (resp. trg,Ddk) the trace of Ddh restricted to the

horizontal subspace # (resp. the vertical subspace ¢’) with resepct to the fibra-
tion @;: M;—M.. Then we observe that along each fiber of ®;. trg,Ddh+-

dh(z;) coincides with the Laplacina of the restriction of % to the fiber, and
hence it holds that

Let {X,},,,.,4 be orthonormal frame fields in an open set of M.. Then it fol-
lows from (3.9) that

‘Ewef(h)—gi(Aih) =
8,31 Ddh(X,, X,)—tr 4 Ddh)+0 (dh(z,))+dO,(h) (r..)+ II(k) ,

where we put

7. = grad log X.. ,
HS(h) = :-1 HZ(h’ Xm Xa)+H3(h; Xa: Xa)+n4(h; Xaa Xa) .

Theorem A’(i) implies that
|©,(2%. DA(X,, X,)—tr 4, Ddh)| <&() ©(| Ddhl),
and also Theorem A’(iii) and (3.1) show that

|8:(dh(n;))+d8;(h) (7w) | < | O(dR(s+4)) | +
| Bi(hgi(Feor 7)) —Oi(B)Oy(£i(Fos 7)) |
=&@) {8,(12])+0;(|dr|)}.

Moreover by (3.10), we see that
| TIs(7) | =&() (1+8(1 Dn: ) | 2] comean; -
Thus we have
(B.11) | L.8:(h)—8,(Aih)| <&() {8,(| Ddh|)+(1+8(| Dyi)) | 2] cracar} s

from which Theorem B (iii) follows. Combining this with Theorem A’ (vi), we
can derive the fourth assertion (iv) of the theorem.

It remains to prove the last inequality (vii) of the theorem. For this, we
express the Laplacian of (Id. —®¥0®,)(%) as follows:

A(Ild. —@F08,)(h)) = (Id. —DF08;)(Ah)+DFo(8;0A;—L.08;) (h)+
' (‘Dﬁ-fw_APq’?) (ei(h)) .

Applying teh estimate (v) of this theorem to (Id. —®¥8,)(A;k), we get
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[(Id. —®,08,)(Ah) | <&(1)| Ak co% )
By (3.11) and Theorem A’ (ii), (vi), we can see that
[|@F0(8;0A;—-L08,) ()| Locar, 1p < (5) {1 Ddh|| 2, my+ | | crocap} -
Moreover it turns out from Theorem A’ (iii) and (3.10) that
|(®FoLo—A;0@F)(8y(h))| =) {| DdS,(h)| +|dO;(h)| } oD,
=&(@) {84(| Ddh|)+(1+0,(| Dn; 1)) | 2| cracap} o D;
and hence it follows from Theorem A’(ii), (vi) again that
||(¢:F°-Cm"Ai°¢':'k) (@ih))”LP(M,-M,-) =< ¢&(2) {l|Ddh| IL’(M;,M,-)‘*— |k lcl“‘(M,-)} .
Therefore we have
1A;(Id. —@F8;) ()| L ar,, 1y < EE) {1 2] cOcary+ | Ash| co-masp} -
Finally applying Lemma 1.2 to (Id. —®;°8;) (%), we get
”(Id- —q)’uk°®i) (h)”LP(M,-,M-,-)
SC{(I(Id. —@F8,) (h)|| e, mp+ 1 Ai(Id. — DF8;) (7)) |22, 80}
=&@) {Ih|cocarpt 1 Ask] coxap} -
This completes the proof of Theorem B.

3.3. Remark
Let M; be a compact Riemannian manifold as in Theorem A. Let w; be a
positive smooth function on M; such that

Sde#i:L

and
'del’l éC ’

on M;, where ¢ is a positive constant (independent of 7). Suppose that M
equipped with the measute o;u; converges as 7 goes to infinity to a compact
metric space M. with a measure £, with respect to the measured Hausdorff
topology, and suppose that M., is a smooth manifold. Then the density w. of
the limit measure £, is of class C** (for any o €(0, 1)). Moreover if the Laplace
operator A; of M; and the operator L., on M., considered so far are respectively
replaced with the following operators:

Lif = A; f+grad (log o) (f) 5
L.k = A h+grad (log .) (A),
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then the same assertions as in Theorems A and B hold. This fact will be used
in [23, IT].

4. Energy spectrum of harmonic mappings into nonpositively
curved manifolds

In this section, we study the energy spectrum of harmonic mappings into
manifolds with nonpositive sectional curvature, and as an application of Theo-
rems A and B, we shall show certain continuity of the energy spectrum in the
topology of measured Hausdorff convergence.

4.1. Review on some basic results on harmonic mappings

Let M=(M,g) and N=(N, %) be two compact Riemannian manifold. Given
a smooth mapping ¢ of M into N, the energy density e(¢p) is a function
defined by the trace of the induced tensor ¢*% with respect to the metric g,
and the energy E(¢) of ¢ is given by

E(¢) = SM «($) dvol, .

A smooth mapping ¢: M—N is said to be harmonic if the energy functional
E is stationary at ¢, or equivalently if the tension filed 7(¢) vanishes.

From now on we assume that /N has nonpositive sectional curvature. A
fundamental theorme due to Eells and Sampson [8] asserts that any smooth map-
ping ¢: M—N is homotopic to a harmonic mapping which has minimum energy
in its homotopy class. In addition, Hartman [18] showed a uniqueness theorem
saying that if ¢, and ¢, are homotopic harmonic mappings, then they are
smoothly homotopic through harmonic mappings; and the energy is constant on
any arcwise connected set of harmonic mappings (in fact, if {¢,:s€[0, 1]} is
a smooth family of harmonic mappings joining ¢, with ¢,, then the energy
density e(¢,) (x) at a point x€M is independent of 5s). We denote by (M, N)
the set of all harmonic mappings of M into N, and consider the energy spec-
trum {E(¢): p€H(M, N)}. In view of the above results, we may set E(C)
=E(¢p) for a component C of (M, N), where ¢ belongs to C. According
to Adachi and Sunada [2], there are explicit positive constants C, and C, depend-
ing only on the diameters diam(M), diam(/V), the volumes Vol(M), Vol(N), and
the lower bounds on the Ricci curvature of M, N.such that

${CcH(M, N): E(C)SA\} =C, exp Co\

for any A. For the latter purpose, we put the connected components {C,, C,,
Cy, +++} of Y(M, N) in order as follows:

E(C,)<E(C,), if »=<»'

(hence C, consists of constant mappings). In addition, we set
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a',(M ’ ]V) = Ei"x(c‘a) ’

where p, stands for the canonical probability measure Vol(M)~* dvol, of M and

Euu®)= | e(®)duu.

Here for convenience, we understand o(M, N)=oo if »—1 is greater than the
number of the components of (M, N).

Before stating our result in this section, we shall recall briefly the Eells
-Sampson’s method to prove the above existence theorem. Given a C! mapping
¢: M—N, we consider solutions of the heat equation

oy _
(4.1) Py T(d’t)
¢’t| t=0 = Po .

Then they showed that this equation has a unique solution (¢,) defined for all
t=0; ¢, is continuous at =0, along with its first order space derivatives, and
moreover that the limit

ODo(x) = limy, e Py(x)

exists C* uniformly (for all 2=0) and defines a harmonic mapping ¢..: M—>N
homotopic to ¢,. An important observation in their proof of this result is
that the energy density e(¢,) of a solution (¢,) satisfies

iegt_ﬁi —Ae(p,)S2(m—1)p* e(dy) ,

where a positive constant p is taken in such a way that the Ricci curvature
of M is bounded below by —(m—1)p?. This derives the following estimates:

sup e(¢,) < C; sup e(p,) for t€[0,1],
sup e(¢p)=C, gu e(¢h) dvol, for =1,

where C; and C, are positive constants depending only on M and N. In fact,
when the diameter diam(M) of M is bounded from above by a constant D, we
have a explicit positive constant C(m, p, D) depending only on m, p and D
such that C,<C(m, p, D) and C,<C(m, p, D)/Vol(M). This can be verified
by the same arguments as in [8, §9] together with the heat kernel estimate due to
Li and Yau [24, Corollary 3.1] and the Bishop-Gromov’s volume comparison
theorem [16, 5.3. bis Lemme]. Hence we have

sup e(¢,) < C(m, p, D) sup e(¢b,) for t<[0,1],

(*+2) sup e(¢,) <C(m, p, D) Ep, (o) for t=1.
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This implies in particular that for a harmonic mapping ¢ € H(M, N),
(4.3) sup () <C(m, p, D) Euy(9),

which is observed also in [2].

4.2. Statements of results
We are now in a position to state

Theorem 4.1. Let {M};_,,,.. be a sequence of m-dimensional compact Rie-
mannian manifolds the sectional curvature of which is bounded in the absolute value
by 1. Suppose M; with the canonical measure p;=py, converges to a compact
metric space M., with a Borel measure .. of unit mass with respect to the measured
Hausdorff topology. Let N be a compact Riemannian manifold of nompositive sec-
tional curvature. Then for any v, the limit of o(M;, N) as i goes to infinity exists
if o=o00 or if w<oo and v<w; and o,(M;, N) diverges otherwise, where w stands
for the number of the arcwise connected components of continuous mappings of M.
into N if it is finite, and w= oo otherwise.

Before the proof of the theorem, we make some remarks. Let M., u.. and
N be as above and let g.. be the Riemannian metric of class C**(a€ (0, 1)) on
M.\3, where 3, denotes the singular set of M... Then for any Lipschitz mapp-
ing $=C*Y(M.., N), the energy density e(¢) can be defined almost everywhere
on M.\Z and it is bounded there. Hence we can define the energy of ¢ with
respect to the measure g. by

E @)=, . «®n,

which may be written as

E(#)=, e®)u-,

since pw(=)=0. Then correspondingly to the Eells-Sampson’s and Hartman’s
results, we have the following

Assertion 4.2. There exists a Lipschitz mapping ¢ in a given homotopy
class 0 of C*Y(M.., N) such that

(44) By (¢) = inf {Es_(9): $<0}.
Such a mapping ¢ is of class C**(a (0, 1)) on M \Z, and it satisfies there
(4.5) 7o($)+dd(grad log X.) = 0,

where T.(p) denotes the tension field of the mapping ¢: M N\Z—N, and X.
stands for the density of the measure p.. with respect to the Riemannian measure
dvol,_ as in §1.4; in addiiton,
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(4.6) e(P)=CEu(9),

on M\3, where C is a positive constant depending only on m and the diameter
of M... Moreover the set of Lipschitz mappings satisfying (4.4) is arcwise connected.

When the limit space M., is a smooth manifold, we may assume that the
metric g., and the density X.. of the measure u.. are also smooth, because we can
approximate them respectively by smooth ones as mentioned in 1.3 and 1.4. Hence
the above assertion (except that the constant C' in (4.6) depends only on the
dimension m and the diameter of M..) can be derived from the Eells-Sampson’s
and Hartman’s results. See [25] or [9, (10.20)] for details. Letting G,(£>0)
be Riemannian metrics on the product manifold M. X S' of M. and the unit
circle S'=(S?, d6?) defined by

G, = g t+EX2d67,

we note that a map ¢: M_— N satisfies equation (4.5) if and only if ¢oz: M. X
SN is harmonic with respect to G, for any £€>0, where z: M. X S'->M.,
denotes the canonical projection. Assertion 4.2 in the general case will be
verified in the proof of Theorem 4.1.

In view of Assertion 4.2, we set

Ey (6) = inf {Ea (¥): -6}

for a connected component 6 of C**(M.., N). Then we can put as before the
components {6, 6, 6, -} in order so that

E. (6,)<E._(6,y) if »=v'.
Theorem 4.1 implies actually that for each v,
limg,., 0y(M;, N) = 0(M.; peey N) 5
where we set
oYM piws N) = Ep (6,) -

4.3. Proof of Theorem 4.1: the case M., is smooth
Let (M;, ;) and (M., p.) be as in Theorem 4.1. We shall first consider the
case the limit space M., is a smooth manifold. Let &;: M;—M., be a smooth
submersion over M., as in Theorem A, and let &¥: [M., N]—[M;, N] be the
induced map of the set of homotopy classes [M.., N] of Lipschitz mappings
C*Y(M.., N) into the set of homotopy classes [M;, N] of Lipschitz mappings
C®Y(M;,, N) defined by ®¥([¢])=[D¥(¢)] for p=C* (M., N).

We take first a sequence {&(¢)} converging to zero in such a way that the
diameter of the fiber ®;'(z) over a point 2 of M., is bounded from above by &(z).
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Let 4 be a smooth mapping of M, into N, and let +),, be the solution of equa-
tion (4.1) with 4py=+fr. Then it follows from (4.2) that for every t&(0, o], the
energy density e(«r,) satisfies

e(W)SCssupe(y)  if t=(0,1]
(W) <Cs Eu(y)  if tE[l, o]

on M;, where C, is a positive constant depending only on m and an upper bound,
say D, for the diameters of M;. Therefore for all £=1 and for every M.,
and all x, yE ®7(2), we have

disy(yri(%), ¥:(y)) S EGE)C(m, D)Ep ().

Let w: N>R’ be an isometric embedding of N into some Euclidean pace R*.
Then we have a smooth family of mappongs ©;(we+;) of M., into R? satisfying

&@) Cisup e(p)*  if te(0,1],

l@i(wo'\ll‘,)°¢,‘_w°'\l"tl é { 8(1) Cw5 E“‘(,‘P.)llz if tE[l, oo] .

Let N, be a tubular r-neighborhood of w(N) in R? such that the projection
map II: N,—N can be defined. In what follows, we fix a positive constant K
and we assume that E,_ () is less than K. Take large ¢ so that &z)C(m, D)K*?
is less than 7, then we can define a smooth family of mappings A;(y,) (2€[1, o])
of M., into N by

Ai(Yry) := oBy(yry) -
We observe first that
4.7) disy(Ai(re) o Di(x), Yre(x)) < E()Cs5 En (¥

for all x& M, where T is a positive constant depending only on the embedding
w: N—>R’. Here we assume that &(3)vC(m, D)K'? is less than the injectivity
radius of N. Then (4.7) implies that for each t&[1, o], ®¥(4;(vr,))=A;(Yrs)°
@, is homotopic to 1»; and hence to +J», namely,

(4-8) QF([Ai(y)]) = [yl -

Secondly we notice that

(4.9) Ep (Ai(e) S(1+E' (D) En(Y) +E(2) »
and hence

(4.10) Eu ([Ai(y))) =(1+EG)Eu([y])+E() »

where &'(Z) is a positive constant which goes to zero as i tends to infinity. In-
deed, it follows from Theorem B (vi) that
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| DF(Bi(worpre))—Worra | ceary S E7(8) | Wofrea | crmar,y »

where €”(7) is as in Theorem B and a&(0, 1). Since .. is harmonic, it satis-
fies

A‘.wo1p~w = tr S(dwo‘llrm, dw°‘\ll‘m) )

where S stands for the second fundamental form of the embedding w: N— Re.
Therefore it turns out from the elliptic regularity estimates that

(4.11) |0y | crmiary < Co(Eu () *+1)

for some constant C¢>0 depending only on m, D, «&(0, 1) and the embedding
w: N— R’ and hence

| DH(Bs(worpr)) —worra | cary < 8”(5) Col Eu () +1),
Now (4.9) is clear, because of the properties of the projection IT and the fibra-
tion &P,.
Given a homotopy class §&[M.,, N], let ¢: M.—N be a smooth mapping
of M., into N in this class. Then by Theorem A (¢) ,we see that

Eu(@FP)=(1+E9())Eu(4) ,
where £9(7) is a positive constant as in Theorem A, and hence we have
(4.12) Eu (D) <(14-69(3)) E (6) -

Now we set [M;, N]y:={0€[M;, N]: E.(0)<K} and also [M.,N]g:={0€
[M.,N]: E._(6)<K}. Let ¢: M.—N be a mapping in a class §€[M.., N]x
satisfying Ep_(¢)=E._(6). Let (®F¢), be the solution of equation (4.1). Since
the energy density e(¢) is bounded by C, E._(¢) for some constant C,>0 de-
pending only on M., taking sufficiently large ¢, we may assume that 4,((®¥¢),)
can be defined for all (0, «]. We notice that in this case, 4,((®¥¢),) con-
verges to the given mapping ¢ as ¢ goes to zero. This implies that §=[¢]=
[4i(®¥P).)]. Thus by (4.12), we obtain

Eﬂi(d)?o) = E,,.‘([((I)’;k¢)..])
(4.13) = (14-&'() ™ MEu ([A((DF))]+ ()}
= (14-&'() (B (0)+€()) -
Hence we have by (4.12) and (4.13)
(4.14) | En,(6)—Eu(@F(0) | =8(7) (Eu (0)+1)

for all §&[M.., N]x and for large i, where {3(?)} is a sequence of positive con-

stants which converges to zero as ¢ goes to infinity and which is independnet
of K.
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Moreover for two classes @ and §’'<[M.,, N, take mappings ¢ and ¢’ of
M. into N satisfying E, (¢)=E,_(0) and Eu_(¢')=E._(0') respectively. Sup-
pose ®f¢ is homotopic to ®F¢’. Then we have a smooth family of harmonic
mappings yr(0=s=1) joining Jry=(DFP).. to yJr,=(D¥$’).. Which gives rise to a
homotopy of the smooth mappings 4;(«,) between 4,((®¥¢)..) and A,((®¥P).)
for large ¢. This shows that ¢ is homotopic to ¢’, namely §=6’. Thus in
view of this observation, (4.8) and (4.14), we can deduce that if K does not be-
long to the energy spectrum {o(M.., e, N)}, then for large 7, ®¥ actually in-
duces a bijection between [M.,, N and [M;, N]i satisfying (4.14). This shows
the assertion of Theorem 4.1 in the case M., is smooth.

We shall here make an observation on the convergence of harmonic mapp-
ings considered. Fix first a positive integer » and set

£ = {$E H(M,, N): Eu(d) = o(M,, N)}
ng) = {(I)EC?"'(MOQ, N) E,:.w(Qb) = a',,(M,o, Hoeos N)}

Here it is assumed that C§” corresponds to C{™ via the fibration ®;: M,—M...
Then for large 7 and for any ¢ = 5", we have a smooth mapping 4,(¢): M.—N
(cR"). It follows from (4.9) and Theorem B (ii) that

[|lwoAi(D)lwascar. ) = Cs

for some constant C;>0, where p&(1, o). Hence taking account of (4.9), we
see that for any neighborhood of C{ in the C“* topology, A,(C{’) lies in
the neighborhood for large 7.

4.4. Proof of Theorem 4.1: the case M., is not smooth

In this case, as mentioned in 0.3, we consider the frame bundle FM; of M;
equipped with the canonical Riemannian metric. We first remark that for a
harmonic mapping ¢ € H(M;, N), the pull-back z¥¢ of ¢ by the bundle projec-
tion 7;: FM,— M, is also harmonic, namely z¥¢ € H(FM;, N), and moreover for
two harmonic mappings ¢ and € H(M;, N), they are homotopic if so are the
pull-backs z¥¢ and z¥+), because all the fibers of FM; are totally geodesic. In
this sense, the space J(M;, N) and its connected components {C{"} can be iden-
tified respectively with the subspace of H(FM;, N) which consists of O(m)-
invariant harmonic mappings and the subset of the connected components of
H(FM;, N).

Now we assume that FM; with its canoncal probability measure 7; conver-
ges to a metric space F., with a Borel measure #; with respect to the measured
Hausdorff topology. Then F., is actually a smooth manifold with C* metric on
which the orthogonal group O(m) acts as isometries in such a way that M., is iso-
metric to the quotient space FM.,,/O(m). In what follows, we will identify the
space of Lipschitz mappings C*}(M.., N) of M.. into N with O(m)-invariant
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Lipschitz mappings in the space C*}(F.., N). Let f;: M;—N, f;: FM.—N and
®;: FM;—N be as in 0.3. Then as we have just shown, for a given constant
K>0 which does not belongs to the energy spectrum {o(FM.., e, N)}, &;
induces a bijection of [F.., N]; onto [FM;, N]g for large i. Let @ be a homo-
topy class in [F.,, N], which contains an O(m)-invariant Lipschitz mapping ¢.
Then for all & FM; and a< O(m), we have

disy(DF(2), DF(az)) = disy($(Di(2)), $(Pi(az)))
< disy($(Bi(2)), S(Fi(2)))+disn(6(Fi(2)), $(f(az)))
+disy($(fi(az)), $(Di(az)))
=dil ¢- disy (D:(2), fi(2))+disn(@(fi(2)), P(afi()))
+dil ¢+ dise_(fi(az), Di(az))
<2 dil -8(3),

where dil ¢ denotes the dilatation of ¢ and {8'(?)} is a sequence of positive
constants with lim,, ., §'(¢)=0 such that

disy (&4(2), fi(2))=8"(d)

for all z& FM;. Hence for large 7 so that 2 dil ¢-8'(z) is less than the injectivity
radius of N, ®¥¢ is homotopic to some O(m)-invariant mapping. This implies
in particular that the harmonic mappings belonging to the homotopy class &¥@
are all O(m)-invariant. On the other hand, let ¢ be an O(m)-invariant harmonic
mapping in [FM;, N]x. Then as in 4.3, for large 7, we can define a smooth
mapping A,(¢) of F. into N and we see that 4,(¢) is almost O(m)-invariant,
namely,

disy(4i(¢)(2), Ai(¢)(a2))=8"()

for all 2 F., and a€ O(m), where §”(i) is a sequence of positive constants with
lim,, ., 8”7(i))=0. Therefore the homotopy class § to which 4;(¢) belongs
contains some O(m)-invariant Lipschitz mappong, if ¢ is so large that 8”(i) is
less than the injectivity radius of N. Moreover as we noted at the end of 4.3,
A,(¢) is close to the space of mappings 4 in & such that Ez_(yr)=Ez_(6).

Now it is not hard to see from these observations that the assertions of
Theorem 4.1 and also Assertion 4.2 hold even in the case the singular set 3
of M., is not empty.

4.5. Remark
In Theorem 4.1, we fix the target manifold N. However, it is possible to relax
this condition as follows:

Let {N;} -, be a sequence of compact Riemannian manifolds of dimen-
sion 7 such that
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(i) —a’< the sectional curvature of N;<0 ;
(ii) the diameter of N;=b ;
(iii) the injectivity radius of N;=¢
for positive constants @, b and ¢. Suppose N; converges to a metric space N.. with
respect to the Gromov-Hausdorff distance. Let M; be as in Theorem 4.1.
Then for each v,

lim"-f”m O"V(M‘-, Nj) = o"u(Mw) Mooy N,,) .

Here we recall that N, is actually a smooth manifold of dimention n with
metric of class C** (for any a€(0, 1)) and there exist C** diffeomorphisms
h;: N.—N; such that the metrics 2¥N; converge to the metric of N, in the C*#
topology (0<<8<a). Hence we can define the energy spectrum {o(Me, fre, No)}
as before.

Appendix

We consider a certain family of local smooth maps defined on open sub-
sets of a complete Riemannian manifold into another manifold and provide some
estimates for its center-of-mass up to the third derivatives in Lemmas A.1~
A.3. which are used to prove Theorem A’ in Section 2. The results in these
lemmas are able to be derived from the standard results on the derivatives of
exponential mappings of Riemannian manifolds. We will prove them here for
the completeness.

Let M and N be complete Riemannian manifolds. Suppose we have a local-
ly finite open covering {U,},e4 of N and a family of smooth maps f,: U,—M.
Let us take a partition of unity {£,},c, subordinate to the covering {U,}e4-
In what follows, we will assume that the conditions stated below hold:

(C.1) the sectional curvature of M is bounded by a positive constant Aj in
its absolute value, and the curvature tensor R of M satisfies: | DR| <A,
and | DDR| < A, for some positive constants A, and A,;

(C.2) the injectivity radius of M is greater than or equal to a positive constant
&5

(C.3) if we denote by 8 the supremum of the distance between f,(x) and
fa(x) when xN and indices @, 8 range so that x&U,N U, then §=
7o, Where ry:=min{¢, 7z/4A} ;

(C4) the multiplicity of the covering {U,} e, is less than or equal to a posi-
tive integer v;

(C.5) there are positive constants T', and T, such that for each «, |d€,| <T,
and | Ddg,| <T,.
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Now by (C.2), (C.3) and (C.4), we have uniquely a smooth map F: N—M,
called a center-of-mass of {f,} with weight {£,}, such that for each x€N,

Slaca Ealx) exp}'(l,,) folx)=0,

where exp, stands for the exponential map of M at a point ¢ (cf. e.g., [5: §8]).
For the sake of convenience, we set

E(p, q) = exp;' q€T,M
for (p, )M XM with d(p, q)<r,, Then the definition of the map F reads
(A1) Sleca Eu(¥) E(F(x), fa(%))=0.

In what follows, we will identify the tangent space of the product manifold
MXM at a point (p, q) with the direct sum T,MPT M of the tangent spaces
T,M and T,M of M at the points p and g.

To begin with, we want to estimate the differential dF of F. Let us first
fix a point x, of N and then take a neighborhood V of x, in N and a neighborhood
B of F(x,) in M in such a way that F(VV)CB and there are orthonormal frame
fields {e,, -, e,} (m:=dim M) over B. Define smooth functions E;: BXB—>R
(i=1, -+, m) by

Ei(?) Q) = <E(Pi q)a e:(p)> .

To give estimates for the derivatives dE; and DdE;, we define one-forms «; and
covariant tensors Q; of degree 2 (i=1, ---, m) on BXB by

oA TDV) = {—T-+P(V), e p)>+<E(p, 9), Dres(D)>
QUT DV, USW) = (—T+P, V), Dye(p)>+{—U-+Po (W), Dye(p)>+
<E(p, 9), -;{DDe..(T, U)+DDe,(U, T)}> ,

where (p,q)€BXxB, T, UeT,M,V, W& T,M, and P,, denotes the parallel dis-
placement from T, M to T,M along a unique minimal geodesic joining ¢ with p.
Then for all p, g= B, tangent vectors T, U T,M and tangent vectors V, W&
T M, we have

(A.2) |dE(T®V)—o(TOV)|=C Aidis(p, 9 (IT1+1V1),

(A3) | DAE(T®V, USW)—Q TSV, UDW)| <
C{AS dis(p, )’ | De;(p)|(ITI U+ UV I+ITIW])+
(A, dis(p, g)+Af)(1+AG dis(p, g)°) X
dis(p, (| T U+ U VI+ITIW|+IVIIW])},

where C is a positive constant depending only on 7,A,. We omit the proofs
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for these estimates, since they can be verified by the standard comparison argu-
ments. Now we return to (A.1), from which it follows that
(AA') 2luca faEx‘(F)fw) =0 (Z=1, ) m)
on V, and hence by differentiating (A.4), we obtain
2luea dfu(X) Ex'(F’ fa)t+Ea dEx(dF(X) ®dfd(X)) =0

for any x€V and X&T,N. Then applying (A.2) to dE;, and using (A.4),
(C.3), (C.4) and (C.5), we see that
[<dF(X) = ucs Eu(¥)Pu(df (X)), e(F(%)))| =

{03+ CAZS(|dF | (x)+25 | dfa] (0} | X1,
for XeT,N (x€V). Here and after, P,(df,(X)) denotes the parallel displae-
ment of df,(X) along a unique minimal geodesic joining f,(x) to F(x), and C’s
stand for positive constants depending only on 7,A, unless otherwise stated.

Moreover for simplicity, we denote by 3/ the summation over the indices
such that £,(x)+=0. Now the following lemma is clear from (A.5).

(A.5)

Lemma A.1. Under the above notations, it holds :
|dF—3 sen EuPuodf,| <C v {T'\0+AS(|dF |+ 33, |dfsl)}
on N.

In order to estimate the second fundamental form DdF of the map F, we
differentiate twice the left side of (A.4) and get

3luca DAEE(F, fa) =0
(¢=1, ---,m). We will assume in this paragraph that
(A.6) | Des|(Fa) =0 (i=1,+,m).

Then for unit tangent vectors X and Y at x,, we obtain the following identity:

Sues DAELX, ¥) E(F, f)+

A X) (L —dF(Y)+P(df(¥), e:(F)>+dE(dF(Y) Bdf(Y))~
w(dF(Y)DdfV)}+

dELY) L—dF(X)+Po(df (X)), e(F)> +dE(dF(X) Bdf (X))~
wi(dF(X)Ddf (X))} +

£ A(~DdF(X, Y)+P(Ddf(X, V), e F)>+

dE(DdF(X,Y)®Ddf.(X,Y))—w( DdF(X, Y)®Ddf.(X,V))} +
£.DAE(dF(X)®df.(X), dF(Y)®df.(Y))] = 0.



MEeasuRED HAUSDORFF CONVERGENCE OF RIEMANNIAN MANIFOLDS 649

Then it follows from this identity together with (A.3) that

| DAF(X, Y)—Xaes {EaPu(Ddf (X, Y))—dE X)Pu(df (Y))—
(A7) dELY)P(df (X))} | SCv{T8+T A (|dF |+ dfu])+
A$8*(| DdF | +33| Ddf,| )} +1I(X, Y) .

Here we set
(X, Y) = 3Tu1 | Daes EDAE(AF(X)Ddfo(X), dF(Y)Ddfu(Y))] .
Observe that IT,(X, Y) can be written as
(X, Y) = 21 | SDaes Eo(DIE;— Q) (dF(X) Ddf (X)), dF(Y)Ddf.(Y))],
where we have used the fact that for all i=1, ..., m,
| Saerale =0 at Flx),
because of (A.3) and (A.5). Hence it turns out from (A.3) that
(A.8) |I(X, Y) | SCu(AS+AS)(1+ALSHS(|dF |+ | df,)) -
Thus by (A.7) and (A.8), we have the following
Lemma A.2. Under the above notations, it holds on N :

IDdF—EuEA EwPNODdfw""EuEA dEa@(Pmodfd)l é
Cv{T3+TyASY(|dF | +33; | df, | )+ A% (| DAF | 433, | Ddf,| )+
(A8+A%)(1+A38%)S8(|dF |+ | dful )}

where

dEO(Puodf) (X, Y) 1= dELX)Pol(dfu( V) +dE(V)P(df.(X)).

We are now in a position to give an estimate for the covariant derivative
DDJF of the second fundamental form DdF. So far as DDdF is concerned, we
need apparently to carry out direct but longer calculations for estimating it.
However, since it is sufficient for our purpose to get locally a rough estimate
for DDdF, we will omit the details. To state our result on DDdF, we will

assume in addition to (C.1~C.5) that

(C.6) there is a positive constant A\ such that on M, [dF|=<\, |DdF| =<,

|df,| £\, and | Ddf,| <\ for any a<A4;

Moreover let us fix a coordinate system (x,, -+, x,,) on B and use the orthonor-
mal frame fields {e,, ---, e,} obtained from the natural vector fields {8/0x, ---,

0/0x,} by the Gram-Schmidt’s procedure, and let us assume that
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(C.7) there is a positive constant I'y such that | De;| <T; (=1, +--,m) on B.
Then it turns out from direct computations that on BX B,

(A.9) | DDAE(p, 9) —<E(p, ), DDDe(p)>| =
C*(dis(p, 9)As, dis(p, 9)°Ag)(1+ T+ | DDe,|)(p)

where C*(s, t) stands for a positive function depending on m, A,, and 7, such
that C*(s, ) remains bounded as long as the variables s, ¢ are kept to be bound-
ed. Now taking the covariant derivative of the hessian of the left-hand side in
(A.3), carrying out computations directly and then applying (A.9) to DDJE;, we
are able to show the following

Lemma A.3. Under the conditions (C.1)~(C.7) and the same notations
as above, it holds on V :

| DDAF—X, . £,P(DDdf,)| <
C**(14+-X,e4 | DDdE,| +327.. | DDe;| oF+8| DDAF|) ,

Here C**=C**(m, A,, 8A,, 8’A,, N, v, 1, Ty, Ty, T) is a positive constant which
depends on the quantities in the parenthesis, and which has the property that it re-
mains bounded if so are the quantities.
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