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Abstract

The vastness of unexplored protein fold universe remains a significant question. Through systematic de
novo design of proteins with novel ab-folds, we demonstrated that nature has only explored a tiny portion
of the possible folds. Numerous possible protein folds are still untouched by nature. This review outlines
this study and discusses the prospects for design of functional proteins with novel folds.
� 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY license (http://creativecom-

mons.org/licenses/by/4.0/).
Since the first determination of the three-
dimensional structure of myoglobin by Kendrew
and colleagues,1 a vast number of protein struc-
tures have been registered in the Protein Data Bank
(PDB). These protein structures in the PDB are
classified based on sequence and structure, as
seen in databases such as CATH,2 SCOP,3 and
ECOD4 (the ECOD database focuses more on
homology4). A principal criterion for the structure-
based classification is the fold, also known as topol-
ogy, which refers to the spatial arrangement of a-
helices and b-strands and how they are connected
by loops. While many protein structures are experi-
mentally determined each year, the discovery of
novel folds has become rare in recent years,5

although the analyses of the massive structure pre-
dictions of naturally occurring proteins by
AlphaFold6,7 have identified additional novel
folds.8–10 Has nature nearly exhausted almost all
possible protein folds?
In terms of amino acid sequence space, it is clear

that a significant portion of the potential protein
universe remains unexplored. Baker illustrates this
point with a simple calculation11: “For even a rela-
tively small protein of 100 residues, there are
(s). Published by Elsevier Ltd.This is an open ac
20100 = �10130 possible amino acid sequences
(any 1 of the 20 amino acids at each of the 100 posi-
tions). For comparison, there are �10 million spe-
cies on Earth today, with �100,000 genes each;
�1012 proteins in total. The total number of proteins
sampled over evolutionary time is likely 103–105

times larger than this (�1020); a tiny fraction of
the 10130 sequences possible for a 100-residue pro-
tein.” Considering the vastness of the protein amino
acid sequence space, it is plausible that there are
more possible folds than those sampled by nature.
By exploring beyond what nature has already
explored, we may discover a plethora of possible
folds.
As with the amino acid sequence space, there are

theoretically a large number of folds of ab-
proteins.12 When considering the ab-folds by taking
into account only the arrangement (i.e., order and
orientation) of b-strands within a b-sheet, i.e., b-
sheet topology, the total number of theoretical folds
can be calculated using the formula n! x 2n�2, where
n is the number of b-strands. For b-sheets consist-
ing of three to eight b-strands, there exist a total of
2,754,348 distinct folds. Since this is a theoretical
count, it is important to estimate how many of these
cessarticle under theCCBY license (http://creativecommons.org/licenses/
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folds are actually possible ones, i.e., folds that can
actually fold into their stable structures, among the
folds that have not yet been sampled by nature.
Simply put, how many novel folds exist? We
approached this problem by theoretically predicting
novel folds and experimentally testing whether it is
possible to design proteins that actually fold into
those novel folds. While the possibility of the exis-
tence of novel folds has been theoretically sug-
gested,13–15 there have yet been no efforts to
explore novel folds through a combination of theory
and experiments (i.e., de novo design).
Our approach has been made possible by recent

remarkable advancements in de novo protein
design, enabling the creation of a diverse array of
proteins from scratch.16 We have developed princi-
ples for the design of protein structures stabilized by
consistent local and non-local interactions.17 These
principles constitute a set of rules that enabled us to
control folds in de novo design of ab-proteins by
selecting the lengths of secondary structures, the
lengths or geometries of loops,18,19 and the reg-
istries between b-strands,20 all optimized for the
desired design target fold (Figure 1) (For the design
of all-b proteins, rules introduced by Marcos et al.
are noted21). Utilizing these rules, we sketched out
backbone blueprints for de novo designs, built the
backbone structures using Rosetta folding simula-
tions22 based on the blueprints and generated
sequences compatible with these backbones using
RosettaDesign.23 For experimental characteriza-
tion, we selected the designs having funneled
energy landscapes, one of the requirements for pro-
teins to be capable of folding,24 in the Rosetta ab ini-
tio structure prediction simulations.25 The
experimental results demonstrated that we have
successfully created proteins with a variety of natu-
rally observed ab-folds with atomic accuracy.18–20

Since our devised rules were also observed in nat-
urally occurring protein structures, it is plausible that
Figure 1. A set of rules for designing protein structu
chirality of b-hairpins is controlled by the length or the patte
strands. (Middle) ba-rule: the direction from a b-strand to an
residue, is controlled by the length or the pattern of backbon
direction from an a-helix to a b-strand aligns with that of the C
rules, the preferred lengths and patterns of backbone geome
backbone torsions in the a-helix and b-sheet regions on the
with positive u values. These rules are used to make backb

2

natural proteins are stabilized by consistent local
and non-local interactions. We also found the pro-
teins designed in this way exhibit high thermal sta-
bility, exceeding 100 �C.26
Next, to estimate the number of novel folds, we

theoretically predicted novel ab-folds with a three-
to eight-stranded b-sheets on a basis of b-sheet
topology and systematically carried out
computational design and experimental testing on
the predicted novel ab-folds.12 We attempted to
identify potentially foldable ab-folds by introducing
a set of backbone rules for b-sheet topology (Fig-
ure 2), which resulted in a total of 12,590 potentially
foldable ab-folds out of the theoretically counted
2,754,348 folds. By selecting the folds that have
not been observed in nature, we predicted a total
of 12,356 novel ab-folds with a four- to eight-
stranded b-sheet (for four-stranded ab-folds: 8;
five-stranded ab-folds: 111; six-stranded ab-folds:
663; seven-stranded ab-folds: 2,571; eight-
stranded ab-folds: 9,003; for three-stranded ab-
folds, all folds have been observed in nature). To
systematically evaluate the feasibility of the pre-
dicted novel ab-folds, we performed de novo design
of proteins with all eight predicted novel ab-folds
with a four-stranded b-sheet, including a knot-
forming one. Experimental investigation revealed
that for all eight predicted novel ab-folds, the
designed proteins folded into the structures as
designed (Figure 3). This result demonstrates the
ability of the introduced rules to differentiate fold-
able folds. Given that the designed proteins with
all eight predicted novel folds for four-stranded ab-
folds were indeed foldable, it is plausible that pro-
teins with all 12,348 novel ab-folds with a five- to
eight-stranded b-sheet can also fold into their
respective fold structures. This number of novel
ab-folds, 12,348, far exceeds the number of ab-
folds observed so far in nature (400 folds). This
result suggests that there exist a vast number of
res with desired target folds.18,19 (Left) bb-rule: The
rn of backbone geometry of the loop connecting the b-
a-helix, relative to the Ca to Cb vector at the last strand
e geometry of the connecting loop. (Right) ab-rule: The
a to Cb vector at the first strand residue. In all illustrated
tries are detailed. “A” and “B” respectively represent the
Ramachandran plot; G and E correspond to the regions
one blueprints in de novo design of ab-fold proteins.



Figure 2. A set of rules for identifying possible folds.12 (i) Connection jump-distance rule. Left: In para-b-X-b
motifs, where two parallelly aligned b-strands are connected, b-sheets with jump distances (i.e., intervening strands)
of three or less are favored. Right: In anti-b-X-b motifs, where two anti-parallelly aligned b-strands are connected, b-
sheets with jump distances of one or less are favored. X represents any backbone conformation. (ii) Connection
overlap rule. Geometrical overlap between the connections of two b-X-b motifs is unfavorable. (iii) Connection ending
rule. When the second strands in two para-b-X-b motifs are adjacent to each other and aligned parallelly, b-sheets
where the two connections end on different sides of the b-sheet are less favored than those where the connections
end on the same b-sheet side. The b-sheet arrangements (i.e., folds) satisfying all these three rules are regarded as
possible ones.
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novel folds that have not yet been explored by nat-
ure. A very recent analysis of the structures in
AlphaFold Protein Structure Database,7 which pro-
vides over 200 million predicted protein structures,
added 96 novel folds into the CATH database10: this
number is still far smaller than the predicted number
of novel folds.
The limitation in the repertories of protein folds

found in nature is not due to nature having
exhausted all possible protein folds. Rather, the
limitation is thought to be a consequence of the
evolutionary process. The evolutionary timeline
may be insufficient to explore all possible folds, or
the limited number of folds at the starting point of
life’s evolution may have constrained the
exploration of novel folds, assuming that the
transition from one fold to another novel fold is
difficult due to the unlikelihood of intermediates
between folds being functional. Alternatively,
evolution might have favored adapting and
diversifying accidentally discovered folds to
specific functions rather than inventing new
ones.27–30 Additionally, the limitation could be due
to convergent evolution, that is, particular folds
(i.e., superfolds) are favored as a result of conver-
gence to a favorable stereochemical and physical
solution.31 In other words, the size of the amino acid
3

sequence space varies for each fold, folds with a
larger sequence space may have appeared more
frequently in nature. Furthermore, evolutional pres-
sure to preserve ancestral functional motifs such as
the P-loop may have resulted in the limitation of
folds.32,33 In any case, a diverse array of possible
novel protein folds are likely to exist. While the study
focused on novel ab-folds, it is probable that many
possible folds also exist for both all-a34 and all-b
proteins.
Now is the time to begin inventing functional

proteins utilizing novel folds as scaffolds. This
effort can provide insight into whether the current
protein world we are observing is the only possible
solution in terms of structure–function relationship.
One of the challenges is whether we can design
proteins with novel folds that express functions
equivalent to those of naturally occurring proteins.
For example, recently, Krishna et al.35 succeeded
in designing heme-binding proteins, with a-helical
topologies not identified in nature. This achieve-
ment raises the question: can we create
hemoglobin-like proteins that carry oxygen and pos-
sess the allosteric regulation ability, based on novel
folds? Such efforts shed light on why the globin-fold
was evolutionary chosen to be a fold for generating
proteins that transport oxygen with a heme. We



Figure 3. De novo designed proteins with novel ab-folds.12 At the top, the first two rows display schematic
figures for the predicted eight novel ab-folds with a four-stranded sheet. Circles and triangles represent a-helix and b-
strand, respectively. NF8-01 has a fold forming a knot. In the middle, the backbone blueprints used for the de novo
design of the novel ab-fold structures are shown; these were constructed according to the rules shown in Figure 1.
Strand lengths are indicated by filled and open boxes, representing the Ca to Cb vector coming out of and going into
the page, respectively. Letter strings next to the loops indicate their backbone torsion patterns. At the bottom, the two
rows present the computational design models and NMR structures.
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might be able to create “hemoglobin” in a different
and much simpler fold. Another challenge is to
design proteins with novel folds that express func-
tions not observed in nature. Naturally occurring
protein folds we currently observe may have
evolved to customize their structures to perform
functions with natural ligands, such as heme,
RNA, or DNA: proteins have evolved to suit the
needs of life. We humans have created a wide vari-
ety of complex artificial compounds that do not exist
in nature. For designing proteins that can function
with these artificial compounds, novel folds might
be suitable.
Attempts at de novo design of proteins began

around 199036–38 and since then, the technology
for protein design has significantly advanced.39 As
a result, it has become possible to design not only
protein structures with various shapes but also their
functions.40 Recently developed AI-based methods
for de novo design have further accelerated this
progress.35,41–44 In the next decades, by exploring
not only the sequence space but also the structural
space, beyond what nature has found, various func-
tional proteins will be created.
4
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32. Alva, V., Söding, J., Lupas, A.N., (2015). A vocabulary of

ancient peptides at the origin of folded proteins. Elife 4,

e09410.
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