Osaka University Knowledge Archive

Title	Characterizations of almost QF rings
Author(s)	Tozaki, Shojiro
Citation	Osaka Journal of Mathematics. 1999, 36(1), p. 195-201
Version Type	VoR
URL	https://doi.org/10.18910/9844
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

CHARACTERIZATIONS OF ALMOST QF RINGS

Dedicated to Professor Yukio Tsushima on his sixtieth birthday

Shoiro TOZAKI

(Received June 2, 1997)
Let R be a ring with identity and let M and N be right R-modules. A module M is called almost N-injective if M satisfies either the following (AII) or (AI2) for any monomorphism $\lambda: L \rightarrow N$ and any homomorphism $\psi: L \rightarrow M$:
(AI1) There exists a homomorphism $\varphi: N \rightarrow M$ with $\psi=\varphi \lambda$;
(AI2) There exist a non-zero split epimorphism $\eta: N \rightarrow K$ and a homomorphism θ : $M \rightarrow K$ with $\theta \psi=\eta \lambda$, where K is some right R-module (see the diagrams below).

A module M is called almost injective if M is almost N-injective for every right R-module N. A ring R is called a right almost $Q F$ ring if R is a right artinian ring and every indecomposable projective right R-module is almost injective (see [2], [3], and [5]).

In this paper we show anew characterizations of almost $Q F$ rings which are obtained in [6].

Throughout this paper we always assume that R is a right artinian ring with identity, J its Jacobson radical, and "a module" means a unitary right R-module. Let M be a module. Then $L \leq M$ (resp. $L<M$) signifies that L is a submodule of M (resp. $L \leq M$ and $L \neq M)$. By $\operatorname{Top}(M)$ and $E(M)$ we denote the top and an injective hull of M, respectively. We denote the set of primitive idempotents of R by $\mathrm{pi}(R)$. We call a module M local if M has a unique maximal submodule. If a module M has a simple socle we call M colocal. A module M is called completely indecomposable if its endomorphism ring $\operatorname{End}(M)$ is a local ring. A submodule N of M is called a waist in M if either $N \leq X$ or $N \geq X$ is satisfied for every submodule X of M. A module M is called uniserial if M has a unique composition series. Note that in case R is a right artinian ring, a module M is uniserial if and only if every submodule of M is a waist in M.

Let $M=\prod_{i \in I} M_{i}$ be a direct product of modules $M_{i}(i \in I)$. Then note that M is almost injective if and only if M_{i} is almost injective for every $i \in I$ (see [6, Lemma 1.1]).

The following lemma is fundamental for almost injective modules.
Lemma 1 ([2, Theorem 1 $\left.{ }^{\#}\right]$ and [5, Lemma 1.2]). Let R be a right artinian ring, and M a completely indecomposable right R-module. Then the following are equivalent:
(1) M is almost injective;
(2) (i) M is colocal;
(ii) Any proper essential extension N of M is projective.

In this case M is a waist in $E(M)$ and $E(M) / M$ is uniserial.
We define two subsets $\mathrm{A}(R)$ and $\mathrm{B}(R)$ of $\mathrm{pi}(R)$ as follows:
$\mathrm{A}(R):=\{e \in \operatorname{pi}(R) \mid e R$ is injective $\}$.
$\mathrm{B}(R):=\left\{f \in \operatorname{pi}(R) \mid f R \cong e J^{i}\right.$ for some $e \in \mathrm{~A}(R)$ and some integer i such that $e J^{j}$ is projective for every j with $\left.0 \leq j \leq i\right\}$.
Moreover we define an integer $\mathrm{m}(e)$ for every $e \in \mathrm{~A}(R)$ as follows:
$\mathrm{m}(e):=\max \left\{m>0 \mid e J^{i}\right.$ is non-zero and projective for every i with $0 \leq i<$ $m\}$.
Then clearly $\mathrm{A}(R) \subseteq \mathrm{B}(R) \subseteq \mathrm{pi}(R)$.
Right almost $Q F$ rings have the following property.
Proposition 2 ([2, Corollary 1\# and Proposition 3]). Let R be a right artinian ring. Then the following are equivalent:
(1) R is a right almost $Q F$ ring;
(2) For each $f \in \operatorname{pi}(R)$ there exist an element e of $\mathrm{A}(R)$ and an integer m with $0 \leq m<\mathrm{m}(e)$ such that $f R \cong e J^{m}$.
This implies that R is a right almost $Q F$ ring if and only if $\mathrm{pi}(R)=\mathrm{B}(R)$.
Proof. This is immediate from Lemma 1.

We call R a right $Q F-2$ ring if every indecomposable projective right R-module has a simple socle, that is, $e R$ is colocal for every $e \in \operatorname{pi}(R)$. We call R a right $Q F-3$ ring if $E\left(R_{R}\right)$ is projective.

The following lemma is essentially shown in the proof of [3, Corollary to Theorem 1] (see also [1, Proposition 3-(B)] and [6, Lemma 2.2]). We give its proof for convenience.

Lemma 3. Let R be a right artinian right $Q F-2$ ring, and let L and M be R modules with $L \leq M$. If L is a non-zero projective and M is local, then M is also
projective.
Proof. Since M is local and $L \leq M$, there exists an indecomposable projective module P such that $M \cong P / K$ and $L \cong Q / K$, where $K \leq Q \leq P$. Then since $Q / K(\cong L)$ is projective by assumption, a canonical epimorphism $Q \rightarrow Q / K$ splits. But since P is colocal, so is Q. Hence $K=0$, so that $M \cong P$. Therefore M is projective.

Lemma 4. Let R be a right artinian ring. The following are equivalent:
(1) R is a right $Q F-2$ and right $Q F-3$ ring;
(2) $E(e R)$ is local for every $e \in \operatorname{pi}(R)$.

Proof. $\quad(1) \Rightarrow(2)$. This is clear.
$(2) \Rightarrow(1)$. For every $e \in \operatorname{pi}(R)$ since $E(e R)$ is indecomposable by assumption, $E(e R)$ is colocal and hence $e R$ is also colocal. Thus R is a right $Q F-2$ ring. On the other hand since $E(e R)$ is local, $E(e R)$ is projective by Lemma 3. Hence $E\left(R_{R}\right)$ is projective, that is, R is a right $Q F-3$ ring.

Note that the assertion (1) in Lemma 4 holds if and only if for every $e \in \operatorname{pi}(R)$ there exists an $f \in \mathrm{~A}(R)$ with $E(e R) \cong f R$.

Theorem 5. Let R be a right artinian ring. The following are equivalent:
(1) R is a right almost $Q F$ ring;
(2) Every essential extension of eR is local for every $e \in \operatorname{pi}(R)$;
(3) $e R$ is a waist in $E(e R)$ and $E(e R) / e R$ is uniserial for every $e \in \operatorname{pi}(R)$.

Proof. $\quad(1) \Rightarrow(3) . \quad$ This follows from the last statement of Lemma 1.
$(3) \Rightarrow(2)$. Let M be an essential extension of $e R$ such that $e R<M \leq E(e R)$. Since $M / e R$ is local, we have $M=x R+e R$ for some $x=x f \in M$, where $f \in$ $\operatorname{pi}(R)$. But $e R$ is a waist in $E(e R)$, which implies $e R<x R$. Hence $M=x R$ is local.
(2) $\Rightarrow(1)$. For every $e \in \operatorname{pi}(R), E(e R)$ is local by assumption. Hence R is a right $Q F-2$ ring by Lemma 4 . Therefore every essential extension of $e R$ is projective by Lemma 3 . Thus R is a right almost $Q F$ ring by Lemma 1 .

Lemma 6 (Harada [4, Proposition 1]). Let R be a right almost $Q F$ ring and $e \in \mathrm{~A}(R)$. Suppose that $\operatorname{Top}\left(e J^{m}\right) g \neq 0$ for an integer m with $0 \leq m \leq \mathrm{m}(e)$, where $g \in \operatorname{pi}(R)$. If $g R$ is not injective, then $e J^{m} \cong g R$ and hence $\left|\operatorname{Top}\left(e J^{m}\right)\right|=1$.

This implies that $g R$ is injective if $\operatorname{Top}\left(e J^{m(e)}\right) g \neq 0$, where $g \in \operatorname{pi}(R)$.
Let e be an element of $\mathrm{A}(R)$. We define an integer $\mathrm{k}(e)$ for e as follows:
$\mathrm{k}(e):=\max \left\{k>0 \mid e J^{j}\right.$ is local for every j with $\left.0 \leq j<k\right\}$.
This implies that $e R=e J^{0}, e J, e J^{2}, \cdots$, and $e J^{k(e)-1}$ are all local but $e J^{k(e)}$ is not local.

Now we consider the following conditions (C1) and (C2) on a ring R :
(C1) $E(e R)$ is local for each $e \in \operatorname{pi}(R)$.
(C2) Let e be an element of $\mathrm{A}(R)$ and put $k:=\mathrm{k}(e)$. If an epimorphism $P \rightarrow e J^{k}$ is a projective cover of $e J^{k}$, then P is injective.
Note that the condition (C1) is just the assertion (2) in Lemma 4.
The following theorem is the main theorem in [6] (see also [1]).
Theorem 7. Let R be a right artinian ring. The following are equivalent:
(1) R is a right almost $Q F$ ring;
(2) $\quad R$ satisfies the conditions (C1) and (C2).

Proof. (1) $\Rightarrow(2)$. Suppose the assertion (1). First it is clear that R satisfies the condition (C1) by Lemma 1 .

Let e be an element of $\mathrm{A}(R)$, and put $k:=\mathrm{k}(e)$. Suppose $\operatorname{Top}\left(e J^{k}\right) g \neq 0$ for some $g \in \operatorname{pi}(R)$. Since $e J^{k-1}$ is local by the definition of $\mathrm{k}(e)$, there exists an $f \in \mathrm{pi}(R)$ with $e J^{k-1} \cong f R / K$, where $K \leq f R$. Then by Proposition 2 there exist an $h \in \mathrm{~A}(R)$ and an integer m with $0 \leq m<\mathrm{m}(h)$ such that $f R \cong h J^{m}$. So $f J \cong h J^{m+1}$. Now since there exists an epimorphism $f R \rightarrow e J^{k-1}$, we have also an epimorphism $h J^{m+1}(\cong f J) \rightarrow e J^{k}$. Hence $\operatorname{Top}\left(h J^{m+1}\right) g \neq 0$ since $\operatorname{Top}\left(e J^{k}\right) g \neq 0$. From the definition of $\mathrm{k}(e) e J^{k}$ is not local, and hence $h J^{m+1}$ is not local. Hence $\left|\operatorname{Top}\left(h J^{m+1}\right)\right|>1$. This implies exactly $m+1=\mathrm{m}(h)$ from the definition of $\mathrm{m}(h)$. So applying Lemma 6, we have that $g R$ is injective. Consequently R satisfies the condition (C2).
$(2) \Rightarrow(1)$. Suppose the assertion (2). Then by Proposition 2, it suffices to show that $\mathrm{pi}(R)=\mathrm{B}(R)$. Now we divide the proof into two steps.

Step 1. Let f be an element of $\mathrm{B}(R)$ and let g be an element of $\mathrm{pi}(R)$. If $\operatorname{Top}(f J) g \neq 0$, then g belongs to $\mathrm{B}(R)$.

Proof of Step 1. Suppose $\operatorname{Top}(f J) g \neq 0$ for f and g above. Since $f \in \mathbf{B}(R)$, there exist an $e \in \mathrm{~A}(R)$ and an integer m with $0 \leq m<\mathrm{m}(e)(\leq \mathrm{k}(e))$ such that $f R \cong e J^{m}$. So $f J \cong e J^{m+1}$. Hence we have $\operatorname{Top}\left(e J^{m+1}\right) g \neq 0$ since $\operatorname{Top}(f J) g \neq$ 0 .
(i) Assume $\left|\operatorname{Top}\left(e J^{m+1}\right)\right|>1$. Then $e J^{m+1}$ is not local. This implies $m+1=$ $\mathrm{k}(e)$. Hence $g R$ is injective by the condition (C2). Thus $g \in \mathrm{~A}(R) \subseteq \mathrm{B}(R)$.
(ii) Assume $\left|\operatorname{Top}\left(e J^{m+1}\right)\right|=1$. Then $e J^{m+1}$ is local (i.e., $m+1<\mathrm{k}(e)$). Hence we have an epimorphism $g R \rightarrow e J^{m+1}$. Here suppose $g \notin \mathrm{~A}(R)$. Then we have an $h \in \mathrm{~A}(R)$ with $g R<E(g R) \cong h R$ by Lemma 4. Hence we have a right ideal I of
R such that $g R \cong h I \leq h J$. We consider an epimorphism $\varphi: h I(\cong g R) \rightarrow e J^{m+1}$. Since $e R$ is injective, for a composition map $\varepsilon \varphi: h I \rightarrow e R$ there exist a homomorphism $\theta: h R \rightarrow e R$ with $\left.\theta\right|_{h I}=\varepsilon \varphi$, where ε is an inclusion map from $e J^{m+1}$ into $e R$ (see the diagram below).

Then $e J^{m+1}$ is a waist in $e R$ since $m+1<k(e)$. So $\theta(h R) \leq e J^{m+1}$ or $\theta(h R)>e J^{m+1}$. Suppose $\theta(h R) \leq e J^{m+1}$. Then $0 \neq e J^{m+1}=\varphi(h I)=\varepsilon \varphi(h I)=$ $\theta(h I) \leq \theta(h J) \leq e J^{m+2}$. This is a contradiction. Hence $\theta(h R)>e J^{m+1}$. Since $e R / e J^{m+1}$ is uniserial, we have $\theta(h R) \cong e J^{j}$ for some j with $0 \leq j \leq m$. On the other hand $e J^{j}$ is projective from $j<\mathrm{m}(e)$, so that $\theta(h R)$ is also projective. Hence we have $\operatorname{Ker} \theta=0$ by the indecomposability of $h R$. Hence $\varphi: h I \rightarrow e J^{m+1}$ is an isomorphism, that is, $g R \cong h I \cong e J^{m+1}$. Thus $m+1<m(e)$, and consequently g belongs to $\mathrm{B}(R)$.

Step 2. Let e be an element of $\mathrm{A}(R)$. If $\operatorname{Top}\left(e J^{n}\right) g \neq 0$ for an element $g \in$ $\mathrm{pi}(R)$ and an integer $n \geq 0$, then g belongs to $\mathrm{B}(R)$.

Proof of Step 2. We shall use induction on n.
In the case $n=0, e R \cong g R$. So $g \in \mathrm{~A}(R) \subseteq \mathrm{B}(R)$.
Suppose that the claim above holds for $n \geq 0$. Let $\operatorname{Top}\left(e J^{n+1}\right) g \neq 0$ and $\operatorname{Top}\left(e J^{n}\right) \cong \operatorname{Top}\left(f_{1} R\right) \oplus \operatorname{Top}\left(f_{2} R\right) \oplus \cdots \oplus \operatorname{Top}\left(f_{s} R\right)$, where $f_{i} \in \operatorname{pi}(R), i=$ $1,2, \ldots, s$. By the inductive assumption, $f_{t} \in \mathrm{~B}(R)$ for every t with $1 \leq t \leq s$. Now from the the isomorphism $\operatorname{Top}\left(e J^{n}\right) \cong \operatorname{Top}\left(f_{1} R\right) \oplus \operatorname{Top}\left(f_{2} R\right) \oplus \cdots \oplus \operatorname{Top}\left(f_{s} R\right)$ we have an epimorphism $\left(f_{1} R \bigoplus f_{2} R \bigoplus \cdots \bigoplus f_{s} R\right) \rightarrow e J^{n}$. So there exists an epimorphism $\left(f_{1} J \bigoplus f_{2} J \bigoplus \cdots \bigoplus f_{s} J\right) \rightarrow e J^{n+1}$. Since $\operatorname{Top}\left(e J^{n+1}\right) g \neq 0$, we have an $f_{u} \in \mathrm{~B}(R)$ such that $\operatorname{Top}\left(f_{u} J\right) g \neq 0$ for some u with $1 \leq u \leq s$. Therefore we have $g \in \mathrm{~B}(R)$ by Step 1. Thus Step2 is proved.

Now we can easily show that $\mathrm{pi}(R)=\mathrm{B}(R)$. Let g be an arbitrary element in $\mathrm{pi}(R)$. Since R satisfies the condition (C1), there exists an $e \in \mathrm{~A}(R)$ such that $g R \leq$ $E(g R) \cong e R$ by Lemma 4. Then we have an integer $k(\geq 0)$ such that $\operatorname{Top}\left(e J^{k}\right) g \neq$ 0 . Hence by Step 2 we have $g \in \mathrm{~B}(R)$, that is, $\mathrm{pi}(R) \subseteq \mathrm{B}(R)$. The theorem is proved.

Finally we consider another condition (C3) on a ring R as follows:
(C3) Let e be an element of $\mathrm{A}(R)$ and put $m:=\mathrm{m}(e)$. If an epimorphism $P \rightarrow e J^{m}$ is a projective cover of $e J^{m}$, then P is injective.
Remark that, according to Lemma 6 , if R is a right almost $Q F$ ring then R satisfies the condition (C3).

In Theorem 7 if we replace the condition (C2) in the assertion (2) with the condition (C3), then we obtain the following proposition as another characterization of almost QF rings, which is one of the main results in [6] (see also [1]).

Proposition 8. Let R be a right artinian ring. The following are equivalent:
(1) R is a right almost $Q F$ ring;
(2) $\quad R$ satisfies the conditions (C1) and (C3).

Proof. (1) \Rightarrow (2). Suppose the assertion (1). Then the assertion (2) follows from Theorem 7 and the preceding remark.
$(2) \Rightarrow(1)$. Since we can prove this in the same way as Theorem 7 except the claim of Step 1, it suffices to prove the following claim corresponding to Step 1 in the proof of Theorem 7.

Claim. Suppose the assertion (2). Let f be an element of $\mathrm{B}(R)$ and let g be an element of $\mathrm{pi}(R)$. If $\operatorname{Top}(f J) g \neq 0$, then g belongs to $\mathrm{B}(R)$.

Proof of the Claim. Suppose $\operatorname{Top}(f J) g \neq 0$ for f and g above. Since f is an element of $\mathrm{B}(R)$, we have an $e \in \mathrm{~A}(R)$ and an integer m with $0 \leq m<\mathrm{m}(e)$ such that $f R \cong e J^{m}$. So $f J \cong e J^{m+1}$. Hence we have $\operatorname{Top}\left(e J^{m+1}\right) g \neq 0$ since $\operatorname{Top}(f J) g \neq 0$.

Then in the case $m+1=\mathrm{m}(e), g R$ is injective by the condition (C3). Hence $g \in \mathrm{~A}(R) \subseteq \mathrm{B}(R)$.

In the case $m+1<\mathrm{m}(e), e J^{m+1}$ is projective by the definition of $\mathrm{m}(e)$. Hence $g R \cong e J^{m+1}$. This implies g belongs to $\mathrm{B}(R)$. The proposition is proved.

Acknowledgment. The author would like to thank Professor M. Harada and Professor T. Sumioka for their useful advice.

References

[1] Y. Baba and K. Iwase: On quasi-Harada rings, J. Algebra, 185 (1996), 544-570.
[2] M. Harada: Almost projective modules, J. Algebra, 159 (1993), 150-157.
[3] M. Harada: Almost $Q F$ rings and almost $Q F^{\#}$ rings, Osaka J. Math. 30 (1993), 887-892.
[4] M. Harada: Almost $Q F$ rings with $J^{3}=0$, Osaka J. Math. 30 (1993), 893-908.
[5] T. Sumioka and S. Tozaki: On almost QF rings, Osaka J. Math. 33 (1996), 649-661.
[6] S. Tozaki: On almost QF rings, Master thesis, Osaka City Univ. 1995.

Department of Mathematics Osaka City University
Sugimoto, Sumiyoshi-ku Osaka 558-0022, Japan

