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Let R be a ring with identity and let M and N be right R-modules. A module
M is called almost N-injective if M satisfies either the following (AIl) or (AI2) for
any monomorphism A : L — N and any homomorphism ¢ : L — M:
(AI1) There exists a homomorphism ¢ : N — M with ¢ = p);
(AI2) There exist a non-zero split epimorphism 7 : N — K and a homomorphism 0 :
M — K with 8¢ = n), where K is some right R-module (see the diagrams

below).
0—»p —2 N 00— —2 N
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A module M is called almost injective if M is almost N-injective for every right
R-module N. A ring R is called a right almost QF ring if R is a right artinian ring
and every indecomposable projective right R-module is almost injective (see [2], [3],
and [5]).

In this paper we show anew characterizations of almost QF' rings which are ob-
tained in [6].

Throughout this paper we always assume that R is a right artinian ring with iden-
tity, J its Jacobson radical, and “a module” means a unitary right R-module. Let M
be a module. Then L < M (resp. L < M) signifies that L is a submodule of M (resp.
L <M and L # M). By Top(M) and E(M) we denote the top and an injective hull
of M, respectively. We denote the set of primitive idempotents of R by pi(R). We call
a module M local if M has a unique maximal submodule. If a module M has a sim-
ple socle we call M colocal. A module M is called completely indecomposable if its
endomorphism ring End(M) is a local ring. A submodule N of M is called a waist in
M if either N < X or N > X is satisfied for every submodule X of M. A module
M is called uniserial if M has a unique composition series. Note that in case R is a
right artinian ring, a module M is uniserial if and only if every submodule of M is a
waist in M.
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Let M = [];c; M; be a direct product of modules M;(i € I). Then note that
M is almost injective if and only if M; is almost injective for every i € I (see [6,
Lemma 1.1]).

The following lemma is fundamental for almost injective modules.

Lemma 1 ([2, Theorem 1#] and [5, Lemma 1.2]). Let R be a right artinian
ring, and M a completely indecomposable right R-module. Then the following are
equivalent:

(1) M is almost injective;
) () M is colocal,

(ii) Any proper essential extension N of M is projective.
In this case M is a waist in E(M) and E(M)/M is uniserial.

We define two subsets A(R) and B(R) of pi(R) as follows:
A(R) := {e € pi(R) | eR is injective}.
B(R) := {f € pi(R) | fR = eJ* for some e € A(R) and some integer i such
that eJ? is projective for every j with 0 < j < i}.

Moreover we define an integer m(e) for every e € A(R) as follows:
m(e) := max{m > 0 | eJ* is non-zero and projective for every i with 0 < i <
m}.

Then clearly A(R) C B(R) C pi(R).

Right almost QF rings have the following property.

Proposition 2 ([2, Corollary 1# and Proposition 3]). Let R be a right artinian
ring. Then the following are equivalent:
(1) R is a right almost QF ring;
(2) For each f € pi(R) there exist an element e of A(R) and an integer m with
0 <m < m(e) such that fR = eJ™.
This implies that R is a right almost QF ring if and only if pi(R) = B(R).

Proof. This is immediate from Lemma 1. O

We call R a right QF-2 ring if every indecomposable projective right R-module
has a simple socle, that is, eR is colocal for every e € pi(R). We call R a right QF-3
ring if E(Rpg) is projective.

The following lemma is essentially shown in the proof of [3, Corollary to The-
orem 1] (see also [1, Proposition 3-(B)] and [6, Lemma 2.2]). We give its proof for
convenience.

Lemma 3. Let R be a right artinian right QF-2 ring, and let L and M be R-
modules with L < M. If L is a non-zero projective and M is local, then M is also
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projective.

Proof. Since M is local and L < M, there exists an indecomposable projective
module P such that M = P/K and L = Q/K, where K < Q < P. Then since
Q/K (= L) is projective by assumption, a canonical epimorphism @ — Q/K splits.
But since P is colocal, so is ). Hence K = 0, so that M = P. Therefore M is
projective. O

Lemma 4. Let R be a right artinian ring. The following are equivalent:
(1) R is aright QF-2 and right QF'-3 ring;
(2) E(eR) is local for every e € pi(R).

Proof. (1) = (2). This is clear.

(2) = (1). For every e € pi(R) since E(eR) is indecomposable by assumption,
E(eR) is colocal and hence eR is also colocal. Thus R is a right QF-2 ring. On the
other hand since E(eR) is local, E(eR) is projective by Lemma 3. Hence E(Rg) is
projective, that is, R is a right QF'-3 ring. O

Note that the assertion (1) in Lemma 4 holds if and only if for every e € pi(R)
there exists an f € A(R) with E(eR) = fR.

Theorem 5. Let R be a right artinian ring. The following are equivalent:
(1) R is a right almost QF ring;
(2)  Every essential extension of eR is local for every e € pi(R);
(3) eR is a waist in E(eR) and E(eR)/eR is uniserial for every e € pi(R).

Proof. (1) = (3). This follows from the last statement of Lemma 1.

(3) = (2). Let M be an essential extension of eR such that eR < M < E(eR).
Since M/eR is local, we have M = xR + eR for some z = =f € M, where f €
pi(R). But eR is a waist in E(eR), which implies eR < zR. Hence M = zR is
local.

(2) = (1). For every e € pi(R), E(eR) is local by assumption. Hence R is a
right QF-2 ring by Lemma 4. Therefore every essential extension of eR is projective
by Lemma 3. Thus R is a right almost QF ring by Lemma 1. 0

Lemma 6 (Harada [4, Proposition 1]). Let R be a right almost QF ring and
e € A(R). Suppose that Top(eJ™)g # 0 for an integer m with 0 < m < m(e),
where g € pi(R). If gR is not injective, then eJ™ = gR and hence |Top(eJ™)| = 1.
This implies that gR is injective if Top(eJ™))g # 0, where g € pi(R).

Let e be an element of A(R). We define an integer k(e) for e as follows:
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k(e) := max{k > OleJ’ is local for every j with 0 < j < k}.

This implies that eR = eJ°, eJ, eJ?, ---, and eJ*(¢)~1 are all local but eJ*(¢)
is not local.

Now we consider the following conditions (C1) and (C2) on a ring R:
(C1) E(eR) is local for each e € pi(R).
(C2) Let e be an element of A(R) and put k := k(e). If an epimorphism P — eJ*

is a projective cover of eJ*, then P is injective.
Note that the condition (C1) is just the assertion (2) in Lemma 4.
The following theorem is the main theorem in [6] (see also [1]).

Theorem 7. Let R be a right artinian ring. The following are equivalent:
(1) R is a right almost QF ring,;
(2) R satisfies the conditions (C1) and (C2).

Proof. (1) = (2). Suppose the assertion (1). First it is clear that R satisfies
the condition (C1) by Lemma 1.

Let e be an element of A(R), and put k := k(e). Suppose Top(eJ*)g # 0
for some g € pi(R). Since eJ*~1 is local by the definition of k(e), there exists an
f € pi(R) with eJ¥~! = fR/K, where K < fR. Then by Proposition 2 there ex-
ist an h € A(R) and an integer m with 0 < m < m(h) such that fR = hJ™. So
fJ = hJ™*t1, Now since there exists an epimorphism fR — eJ*~!, we have also an
epimorphism hJ™+1(= fJ) — eJ*. Hence Top(hJ™t1)g # 0 since Top(eJ*)g # 0.
From the definition of k(e) eJ* is not local, and hence hJ™*! is not local. Hence
|Top(hJ™*1)| > 1. This implies exactly m + 1 = m(h) from the definition of m(h).
So applying Lemma 6, we have that gR is injective. Consequently R satisfies the con-
dition (C2).

(2) = (1). Suppose the assertion (2). Then by Proposition 2, it suffices to show
that pi(R) = B(R). Now we divide the proof into two steps.

Ster 1. Let f be an element of B(R) and let g be an element of pi(R). If
Top(fJ)g # 0, then g belongs to B(R).

Proof of Step 1. Suppose Top(fJ)g # 0 for f and g above. Since f € B(R),
there exist an e € A(R) and an integer m with 0 < m < m(e)(< k(e)) such that
fR=eJ™. So fJ = eJ™t1. Hence we have Top(eJ™t1)g # 0 since Top(fJ)g #
0.

(i) Assume |Top(eJ™t1)| > 1. Then eJ™*! is not local. This implies m + 1 =
k(e). Hence gR is injective by the condition (C2). Thus g € A(R) C B(R).

(ii) Assume |Top(eJ™*!)| = 1. Then eJ™*! is local (i.e., m+1 < k(e)). Hence
we have an epimorphism gR — eJ™*!. Here suppose g ¢ A(R). Then we have an
h € A(R) with gR < E(gR) = hR by Lemma 4. Hence we have a right ideal I of
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R such that gR = hI < hJ. We consider an epimorphism ¢ : hI(= gR) — eJ™ 1.
Since eR is injective, for a composition map £y : hl — eR there exist a homomor-
phism 6 : hR — eR with 6|,; = ep, where ¢ is an inclusion map from eJ™*! into
eR (see the diagram below).

0—hI

epi. ¢ l /
eJmt1 /0
/

|/

eR

hR

Then eJ™*! is a waist in eR since m + 1 < k(e). So §(hR) < eJ™! or
6(hR) > eJ™*!. Suppose 8(hR) < eJ™t1. Then 0 # eJ™*! = p(hl) = ep(hl) =
6(hI) < 6(hJ) < eJ™* 2. This is a contradiction. Hence §(hR) > eJ™*!. Since
eR/eJ™! is uniserial, we have (hR) = eJ’ for some j with 0 < j < m. On the
other hand eJ? is projective from j < m(e), so that 8(hR) is also projective. Hence
we have Ker # = 0 by the indecomposability of hR. Hence ¢ : hI — eJ™*! is an
isomorphism, that is, gR = hl = eJ™*1. Thus m + 1 < m(e), and consequently g
belongs to B(R).

Ster 2. Let e be an element of A(R). If Top(eJ™)g # O for an element g €
pi(R) and an integer n > 0, then g belongs to B(R).

Proof of Step 2. We shall use induction on n.

In the case n =0, eR =2 gR. So g € A(R) C B(R).

Suppose that the claim above holds for n > 0. Let Top(eJ"t')g # 0 and
Top(eJ”) = Top(fiR) @ Top(f2R) @ ---@ Top(f:R), where f; € pi(R), i =
1,2,...,s. By the inductive assumption, f; € B(R) for every ¢ with 1 < ¢t < s. Now
from the the isomorphism Top(eJ™) = Top(f1R) € Top(f2R) @ - - - @ Top(fsR) we
have an epimorphism (fiR@ foRP - - fsR) — eJ™. So there exists an epimor-
phism (fJP foJ DD f.J) — eJ"t1. Since Top(eJ"*t!)g # 0, we have an
fu € B(R) such that Top(f,J)g # 0 for some u with 1 < u < s. Therefore we
have g € B(R) by Step 1. Thus Step2 is proved.

Now we can easily show that pi(R) = B(R). Let g be an arbitrary element in
pi(R). Since R satisfies the condition (C1), there exists an e € A(R) such that gR <
E(gR) = eR by Lemma 4. Then we have an integer k (> 0) such that Top(eJ*)g #
0. Hence by Step 2 we have g € B(R), that is, pi(R) C B(R). The theorem is proved.

O

Finally we consider another condition (C3) on a ring R as follows:
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(C3) Let e be an element of A(R) and put m := m(e). If an epimorphism P — eJ™
is a projective cover of eJ™, then P is injective.
Remark that, according to Lemma 6, if R is a right almost QF' ring then R sat-
isfies the condition (C3).
In Theorem 7 if we replace the condition (C2) in the assertion (2) with the con-
dition (C3), then we obtain the following proposition as another characterization of al-
most QF rings, which is one of the main results in [6] (see also [1]).

Proposition 8. Let R be a right artinian ring. The following are equivalent:
(1) R is a right almost QF ring;
(2) R satisfies the conditions (C1) and (C3).

Proof. (1) = (2). Suppose the assertion (1). Then the assertion (2) follows
from Theorem 7 and the preceding remark.

(2) = (1). Since we can prove this in the same way as Theorem 7 except the
claim of Step 1, it suffices to prove the following claim corresponding to Step 1 in the
proof of Theorem 7.

CrLamM.  Suppose the assertion (2). Let f be an element of B(R) and let g be an
element of pi(R). If Top(fJ)g # 0, then g belongs to B(R).

Proof of the Claim. Suppose Top(fJ)g # 0 for f and g above. Since f is an
element of B(R), we have an e € A(R) and an integer m with 0 < m < m(e)
such that fR = eJ™. So fJ = eJ™tl. Hence we have Top(eJ™*1)g # 0 since
Top(fJ)g # 0.

Then in the case m + 1 = m(e), gR is injective by the condition (C3). Hence
g € A(R) C B(R).

In the case m + 1 < m(e), eJ™ ! is projective by the definition of m(e). Hence
gR = eJ™*1. This implies g belongs to B(R). The proposition is proved. O
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