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Introduction: Many studies have investigated the manipulation of a virtual upper
arm using electromyogram (EMG); however, these studies primarily used a
machine learning model or trigger control for this purpose. Furthermore,
most of them could only display the constant motion of the virtual arm
because the motion to be displayed was selected by pattern recognition or
trigger control. In addition, these studies did not examine changes in the
electromyographic signals after experiencing the virtual arm. By contrast, we
propose a real-time, continuous, learning-free avatar that manipulates the virtual
arm with electromyogram signals or physio-avatar EMG biofeedback (EB). The
goal of the physio-avatar EB system is to induce physiological changes through
experiential interactions.

Methods: We explored the possibility of changing motor control strategies by
applying the system to healthy individuals as a case study. An interventionmethod
that provided an experience of a body different from one’s own was conducted
on seven participants using a time-invariant calculation algorithm to determine
the joint angles of the avatar. Control strategies for an indicator of the equilibrium
point in the baseline and adaptation phases were determined to evaluate the
physio-avatar EB intervention effect. The similarity of these BL and adaptation
control strategies compared to those used during the washout period was
assessed using the coefficient of determination. The accuracy and reliability of
the virtual reality (VR) system were evaluated by comparison with existing studies
and the required specs.

Results and Discussion: Changes in motor control strategies due to the physio-
avatar EB system were observed in four experiments, where the participants
gradually returned to their pre-intervention control strategies. This result can be
attributed to the aftereffects caused by error learning. This implies that the
developed system influenced their motor control strategies. The number of
EMG acquisition bits was 16 bits, and the sampling rate was 1,000 Hz. The
refresh rate of the head-mounted display was 90 Hz, and its resolution was
1440 × 1600 for a single eye. Additionally, the simulation frame rate was 30 FPS.
These values were adequate compared to existing studies and required specs.
The essential contribution of this study is the development of an avatar that is
controlled by a different method than has been used in previous studies and the
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demonstration of changes in a subject’s muscle activity after they experience an
avatar. In the future, the clinical efficacy of the proposed system will be evaluated
with actual patients.
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rehabilitation, virtual reality, error learning, internal model, electromyogram, biofeedback

1 Introduction

The advancement of virtual reality (VR) has made it easier for
general consumers to operate avatars representing themselves in VR
spaces, leading to an increase in avatar-based research. With the
diversification of technologies using avatars, the physical and
cognitive modifications induced by avatar experiences need to be
investigated (Hagita, 2022). Previous studies have suggested the
possibility of cognitive modifications resulting from avatar
experiences. Keizer et al. (2016) aimed to resolve the discrepancy
between the actual body and the self-body image, which causes
eating disorders, by inducing a sense of body ownership toward
avatars with different body types. Ratan and Sah (2015)
experimentally investigated the stereotype threat effect after
gaming based on the avatar gender and found an improvement
in math scores among women using male avatars. These studies
indicate that the impact of avatar experiences can be retained in real
spaces, potentially affecting brain processing. Avatar use can induce
changes in the brain concerning bodily movement control and can
thus be applied to stroke rehabilitation. This is supported by reports
stating that avatar experiences induce a sense of body ownership and
agency (Preston and Ehrsson, 2016; Waltemate et al., 2018; Tieri
et al., 2015), suggesting the possibility of mistaking an avatar for
one’s own body. An individual may undergo “error learning” or
“reinforcement learning” by experiencing their avatar.

In the error learning process, one’s internal model, believed to be
in the cerebellum, is modified to reduce discrepancies between the
executed (or outcome) motion trajectory and the expected motion
trajectory. During the learning process, stiffness is high initially;
virtual trajectory control is prioritized, but model-like control is
subsequently implemented, thus reducing performance error and
enabling feedforward motion control (Osu et al., 2002). The
aftereffects of error learning are those previously induced for
rehabilitation through error augmentation therapy using robots
or VR (Lo et al., 2010; Liu et al., 2018; Wei et al., 2005;
Abdollahi et al., 2013; Porta et al., 2021). Avatar experiences can
be used for rehabilitation if the aftereffects of error learning occur.
Furthermore, amplifying weak electromyogram (EMG) signals can
enable the use of reinforcement learning in systems applied to
patients with paralysis. Reinforcement learning focuses on the
appropriateness of the executed motion outcome rather than
errors during motion; successful task completion is rewarded,
such as with a sense of achievement. Important factors in
reinforcement learning include the difference between actual and
predicted rewards, task difficulty, and exploration opportunities.
Learning advances when the obtained reward exceeds the predicted
reward, so task difficulty should be set appropriately, and movement
methods should be explored to maximize rewards (Schultz et al.,
1993; Schultz et al., 1997; Tanaka et al., 2016; Dobkin et al., 2010).
Thus, amplifying weak EMG signals to enable an individual to

experience movement through an avatar as a substitute for paralyzed
limbs can lead to reinforcement learning. Many studies have used
EMG signals in virtual reality (Tigrini et al., 2024; Tigrini et al.,
2023); KiNvis™ is a reinforcement learning-based therapeutic
method that utilizes EMG signals as triggers for avatar motion.
The avatar moves when the EMG signals obtained from the muscles
performing the set movement exceed a set threshold (Kaneko, 2016).

We propose an EMG biofeedback (EB) system that projects an
arm-shaped avatar in the VR space within a head-mounted display
(HMD), allowing for the continuous, real-time EMG-based control
of the avatar. This system is modeled based on the findings of our
previous studies, where we obtained a human neuromuscular
skeletal model by expressing stimulation intensities to opposing
muscles as two variables: the electrical agonist–antagonist (EAA)
muscles sum and ratio (Nagai et al., 2019; Matsui et al., 2014; Matsui
et al., 2015; Matsui et al., 2022; Suzuki et al., 2024). Error learning
can be implemented using this system by setting the avatar’s
characteristics to differ from the user’s own, whereas
reinforcement learning can be executed by amplifying the EMG
signals for patients with weak signals. Several studies demonstrated
the acquisition of EMG signals and controlling of virtual hand
models supporting hand motion rehabilitation. Gieser et al. (2017),
Yang et al. (2017), and MINDROVE (2024) used an armband device
that acquires the EMG signals of eight muscles, estimates hand
movements using a machine learning approach, and displays
constant movements, like the KiNvis™, according to estimated
results. The number of bits corresponding to the accuracy of the
EMG data measurement was unknown, and the EMG acquisition
rates ranged from 200 to 500 Hz. Because Gieser said that the EMG
activity rate could be as high as 450 Hz (Gieser et al., 2017), this
sampling rate was insufficient based on the sampling theorem.
Suryanarayanan et al. acquired EMG signals for a single biceps
muscle and estimated joint angles using a learning method
(Suryanarayanan and Reddy, 1997) and displayed the angles of
the virtual arm by EMG changes. EMG signals were acquired with
12 bits, and the sampling rate was 2000 Hz. This sampling rate is
somewhat high. These reported devices do not have a fixed display
system, and their refresh rate depends on the used display unit. In
contrast to these studies, our physio-avatar EB is unique, in that it
uses a real-time, continuous, learning-free model to manipulate the
virtual arm using EMG with a sampling rate of 1,000 Hz.

This study aims to validate the system’s effectiveness as a
precursor to future applications for patients with post-stroke
paralysis. We conducted an experiment on seven healthy
individuals to examine the impact of avatar experiences on
motor control strategies before and after the intervention as a
case study. Although reinforcement learning cannot be confirmed
without testing with patients with paralysis, we first used this system
to verify whether healthy individuals can adapt to the movement
characteristics of the model-defined avatar and learn the
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characteristics associated with the defined model in the internal
model. The system aims to enable both error learning and
reinforcement learning using avatars. In addition, we evaluate the
developed physio-avatar EB by comparing it with existing medical
devices. We used the number of EMG acquisition bits and sampling
rate for accuracy and reliability and used the HMD refresh rate and
resolution for realistic quality.

1.1 Physio-avatar EB

Avatar therapy is the use of avatars for rehabilitation. A physio-
avatar, as we have named it, is an avatar designed to induce
physiological changes in humans through experience. In this
study, we use EB with a physio-avatar, so the studied avatar is
called a physio-avatar EB.

1.2 System

We developed the physio-avatar EB system (Figure 1), which
enables users to experience a first-person avatar for one-degree-of-
freedom (1-DOF) elbow joint movements (Okamoto et al., 2024).
This system is primarily divided into a computational unit and a
display unit. The computational unit is constructed using LabVIEW
(NI) (NATIONAL INSTRUMENTS CORP., 2024a) on a
computational PC and a data acquisition board PXIe6363 (NI)
for 16-bit analog–digital conversion (NATIONAL
INSTRUMENTS CORP., 2024b). Specifically, analog signals from
an EMG acquisition device (WEB-5000, Nihon Kohden)
(Masumoto et al., 2004) and an angle acquisition sensor
goniometer (SG150, Biometrics Ltd.) (Biometrics Ltd, 2024) are
converted into digital signals. These signals are then processed and
computed in LabVIEW. The display unit consists of Unity (Unity
Technologies) (Unity Technologies, 2024) installed on a display PC,
Azure Kinect DK (Microsoft) (Microsoft, 2024), and a VIVE Pro
(HTC) (HTC Corporation, 2024) HMD. The goal is for a user to
achieve a sense of body ownership toward the avatar. The Azure
Kinect DK kit is used to align the avatar in the VR space in the HMD

according to the participant’s shoulder joint position and angle. The
angle, dependent on the avatar characteristics calculated by the PC
based on the EMG input, is sent to the display unit via transmission
control protocol/internet protocol communication. In this study, the
biceps brachii muscle was used as the flexor muscle and the triceps
brachii muscle as the extensor muscle, and the positions of the
surface electrodes were fixed based on the literature (Doheny et al.,
2008). The ground electrode was attached to the head of the elbow.

Based on our previous research (Nagai et al., 2019; Matsui et al.,
2014; Matsui et al., 2015; Matsui et al., 2022; Suzuki et al., 2024), the
agonist–antagonist muscle ratio (AA ratio), an indicator of the
equilibrium point in the human motion control, is input to the
neuromuscular system (NMS) + musculoskeletal system (MSS)
model (NMSS model) to calculate the virtual angle. The NMSS
model integrates the transfer function of the NMS GNM(s) with the
transfer function of the MSS GMS(s) to create a two-stage, time-
invariant infinite impulse response filter + gain + dead time. NMSS
model parameters change with joint stiffness (Matsui et al., 2014;
Matsui et al., 2022; Gong et al., 2020), necessitating the alteration of
filter coefficients based on the agonist–antagonist muscle sum (AA
sum), an indicator of joint stiffness. However, this study uses a time-
invariant filter. The transfer functions of the NMS and MSS are
shown in Equations 1, 2, respectively.

GNM s( ) � KNM
ω2
nNM

s2 + 2ζNMωnNMs + ωnNM
e−LNMs. (1)

GMS s( ) � KMS
ω2
nMS

s2 + 2ζMSωnMSs + ω2
nMS

. (2)

Here, GNM(s), KNM, ωnNM, ζNM, and LNM represent the transfer
function, gain, natural frequency, damping coefficient, and dead
time of the NMS, respectively.GMS(s),KMS,ωnMS, and ζMS represent
the transfer function, gain, natural frequency, and damping
coefficient of the MSS, respectively, and serve as filter
coefficients. The background for these transfer functions is our
previous study, which examined whether the nonlinearities of the
neuromusculoskeletal system could be approximated using a simple
linear model and electrical stimulations. Matsui et al. (2014) showed
that the neural and muscular system, which is an active system with
nonlinear muscles and nerves, could be approximated using a simple

FIGURE 1
System block diagram illustrating the system design concept.
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linear model that utilizes the EAA ratio and EAA sum as the
electrical stimulation parameters. These parameters correspond to
the electromyographic parameters AA ratio and AA sum used in the
present study. This neural and muscular system represents the NMS
in the present study. Similarly, Matsui et al. (2015) showed that a
passive system comprising nonlinear muscles and a skeleton, such as
the muscular and skeletal system, could be approximated using a
simple linear model that utilizes the EAA ratio, the EAA sum, and
external forces applied to muscles and a skeleton by the robot arm.
This muscular and skeletal system represents the MSS in the present
study. The physio-avatar EB is an application that uses a model to
linearly approximate the nonlinearity of the neuromusculoskeletal
system based on previous studies. The maximum allowable values
for the natural frequency and damping constant in each filter are
70.0 and 2.0, respectively.

In this system, due to the time needed to calculate the virtual
angle from the AA ratio input (approximately 3 [ms]), the EMG
sampling rate is set to 1,000 [Hz], and the virtual angle is computed
at 100 [Hz]. The EMG signals from the extensors and flexors are
processed using a 10 [Hz] high-pass filter and a 100 [Hz] low-pass
filter, followed by rectification and processing using a 22 [Hz] low-
pass filter. These values are then converted into %40 NVC (40 [N]
voluntary contraction), normalized for the EMG during 40 [N] force
generation. The concepts of the AA ratio and AA sum have been
studied for a long time. As measurement variables, they satisfactorily
explain the coordination of the agonist and antagonist muscles
(Hirai et al., 2015). In these studies, the EMG measure was
calibrated from the maximum force generated by a participant to
calculate the sum and ratio of the agonist and antagonist muscle
activities. In the present study, given the nonlinearity of muscles in
high-intensity contractions (Lawrence and De Luca, 1983) and
considering that the task to be performed requires only a small
amount of force, the EMG is calibrated with a force of 40 N, which is
less than the maximum exerted force so that the sum and ratio of the
agonist and antagonist muscle activities can be calculated.

%40 NVC normalizes the EMG of flexors and extensors during
activity to the EMG at 40 [N] exertion. For experimental
preparation, the EMG signals from flexors at 40 [N] exertion in
the flexion direction and the EMG signals from extensors at 40 [N]
exertion in the extension direction are obtained and used for
normalization. The average EMG signals during 40 ± 3 [N]
exertion at a fixed joint angle between 90 [deg] and 120 [deg] in
the extension direction for 5 s serve as the EMG at 40 [N] exertion.
The AA sum s(t) and AA ratio r(t) are calculated using %40 NVC
for extensors me(t) and flexors mf(t) (Equations 3, 4).

s t( ) � me t( ) +mf t( ). (3)
r t( ) � me t( )

s t( ) . (4)

The calculated AA ratio and its difference from the initial AA ratio,
r′(t), are input to the NMSS model at a sampling rate of 100 Hz,
resulting in the output value Δθ(t). Because Δθ(t) represents the
change in the AA ratio from its initial state, the virtual angle θ(t) is
calculated by adding the joint angle at system start-up. This angle is
then applied to the avatar in the display unit.

For the accuracy and reliability of physio-avatar EB, the number
of EMG acquisition bits was 16, and the sampling rate was 1,000 Hz.
This number of acquisition bits for an EMG was considered

sufficient because 16-bit resolution is used in commercial medical
devices, for example, the Tringo series (Delsys Incorporated) (Gieser
et al., 2017; TRIGNO CENTRO, 2024). We estimated that the
sampling rate was sufficient according to a sampling theorem. To
achieve life-like quality, our HMD’s refresh rate was 90 Hz, which
was the same as that of the commercial VR medical device
KAGURA (mediVR Inc.) (medivr, 2024). The resolution was
1440 × 1600 for a single eye, which was higher than that of
KAGURA. Therefore, the quality was determined to be sufficient.
However, the frequency of the avatar joints angle updates was
dependent on the Azure Kinect DK sampling rate of 30 FPS. As
mentioned above, the virtual angle was calculated within
approximately 3 ms, and this calculation time was determined to
be sufficient.

2 Methods

2.1 Experimental method

The experiments in this study, which involved human
participants, were conducted with approval from the Ethics
Committee for Research Involving Human Subjects at the
Graduate School of Engineering Science, Osaka University
(Approval number: R3-3). Intervention using the physio-avatar
EB system was performed on the participants, during which the
following measurements were recorded: the AA ratio, AA sum, and
elbow joint angle during identical cyclic movements before the
intervention, after adaptation during the physio-avatar EB
intervention (ADP), and immediately after the intervention
[washout (WO)] (Figure 2). The abovementioned adaptation
process occurs during physio-avatar EB intervention before ADP.
The HMD was only worn during the intervention, and only data
recording was conducted.

The cyclic movements before the intervention and WO were
reciprocal movements performed with the eyes open. Target A was
set at a point where the joint angle was 90[deg], and Target B was set
at a point where the joint angle was 150[deg]. Markers were placed
in the real space accordingly (Figure 3). First, a sound was played to
signal the start of the movement, and a sound signaling the end of
the movement was played 0.9 [s] after the sound signal for the start
of movement. Another sound signal for the start of movement was
played 2.0 [s] after the sound signal for the end of movement. The
participants repeated a 5.8 [s] cycle of extension, holding, flexion,
and holding for 20 cycles as one set. This was performed in five sets
during cyclic movements before the intervention and five sets during
WO, with an approximately 1-min interval between sets. The
“environment-adapted” motor control strategy was recorded to
examine the impact on the participant’s internal model of the
physio-avatar EB experience system. Therefore, five sets of cyclic
movements were performed before the intervention, with the data
from the fifth set serving as the pre-intervention motor control
strategy [baseline (BL)]. Additionally, 20 cycles of cyclic movement
were performed in five sets during WO to identify whether the
physio-avatar EB intervention affected the participant’s motor
control strategies.

During the adaptation process in the physio-avatar EB
intervention, given the lack of a function to place markers within
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the VR space, the participants were instructed to remember the hand
positions where the avatar’s joint angle reached 90[deg] and
150[deg]. Initially, the participants visually memorized these
positions while being verbally guided by the experimenter, who
could then check the avatar’s joint angle in real time. The adaptation
assessment criteria during the physio-avatar EB intervention were as
follows. The experimenter gave each participant instructions about
the target angle at undetermined times. The participant was asked to
control the avatar’s joint angle within ± 5 [deg] of the target angle.
The goal was to have a success rate of 80% over the final 10 attempts.
After adaptation assessment, the aforementioned cyclic movements
were performed using the physio-avatar EB system to confirm the
motor control strategy adapted to the avatar. This experiment
involved seven participants (Participants A–G). The participants
were right-handed and aged 22.5 ± 0.9 years.

All experiments were conducted with the physio-avatar EB’s
NMSS model parameters, as shown in Table 1. Preliminary
experiments showed that physio-avatar EB intervention with high
natural frequencies of the NMSS model, namely, ωnNM = 40.0,
ωnMS = 40.0, results in qualitatively different AA ratio trajectories
before and after intervention (Ando et al., 2023; Ando et al., 2024;
Ando et al., 2022). Therefore, in this experiment, the natural
frequencies were set to the system’s limit values. Additionally, the

damping coefficients were set to the system’s limit values to prevent
excessive overshooting, which hinders control. The gain was set to a
value that allowed for sufficiently perceptible extension and flexion
movements of the avatar. The behavior of the physio-avatar EB
characteristics is demonstrated in Figure 4, which shows the AA
ratio, the virtual angle calculated using the NMSS model based on
the AA ratio, and the corresponding actual joint angle. The changes
in the virtual angle ahead of the real angle, qualitatively described as
hyper-responsive movement, transitioned from approximately
80[deg] to approximately 100[deg]. This change was smaller
than that of the joint angle.

Previous studies have qualitatively demonstrated changes in
motor control strategies before and after interventions when the
real body’s elbow joint could extend and flex during intervention
under conditions where the hand was free (Ando et al., 2023; Ando
et al., 2024; Ando et al., 2022). However, the effect on motor control

FIGURE 2
Experimental flow.

FIGURE 3
Image of the experiment without the physio-avatar EB system.

TABLE 1 NMSS model parameters used in the study.

KNM ωnNM ζNM LNM KMS ωnMS ζMS

15.0 [−] 70.0 [rad/s] 2.0 [−] 0.0 [s] 15.0 [−] 70.0 [rad/s] 2.0 [−]
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strategies of somatosensory input, such as counterforce, also
needs to be verified, necessitating the examination of the
physio-avatar intervention effect when the hand position is
fixed during the intervention. Therefore, the experiments in
this study were conducted under both conditions (fixed and
free hand position during intervention) (Figure 5).
Participants E and G only participated under the fixed-hand-
position intervention condition.

In the experiment, each participant was in a sitting position. The
hand rest shown in Figure 3, which had fixed and movable
platforms, was used to keep the upper arm immobile and the
forearm movable. This setup enabled 1-DOF motion within the
horizontal plane while compensating for gravity and maintaining a
constant elbow joint position. The trunk was fixed using the belt
shown in Figure 3 to eliminate the influence of posture differences
on motor control strategies between BL andWO. The right shoulder

FIGURE 4
AA ratio and virtual angle calculated by the NMSS model and real angles.

FIGURE 5
Image of the experiment using the physio-avatar EB system.
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joint was positioned at a horizontal flexion angle of 45[deg], and the
elbow rest on the hand rest was adjusted so that the right elbow joint
was positioned 10 [cm] vertically below the right shoulder joint, and
this angle was maintained. Pictures of the experiment are shown in
Figure 6. A seven-point questionnaire (ranging from 1 to 7, with
1 being the lowest) regarding the sense of ownership (SoO) and
sense of agency (SoA) was administered at the end of the experiment
to investigate the effects of these indicators on the physio-avatar EB
intervention.

2.2 Analysis method

The recorded AA ratio, AA sum, and joint angle (the virtual
angle is used instead during ADP) were analyzed separately for
the extension and flexion movements. A 1.8 [s] cycle starting
0.9 [s] before the initiation of extension, with 1800 samples per
cycle, was segmented for evaluation, excluding cycles with
artifacts. Although delays in movement initiation might also
be affected by the intervention, the intent was to focus on the
“trajectory” by considering movement initiation as the analysis
subject. Hence, movement initiation was defined as when the
angle during flexion or extension changed by 3.0° from a hold
period during extension or flexion. During ADP, virtual angles
were used instead of actual joint angles, so the movement
initiation point was defined based on virtual angles. This
ensured that the trajectory was evaluated based on the
movement initiation of the real body or the avatar. The start
of extension is marked as 0.00 [s], and motor control strategies
are evaluated from the perspective of the AA ratio trajectory, a
control variable of the physio-avatar EB system.

The coefficient of determination (CoD) (square of Pearson’s
product–moment correlation coefficient), an indicator of
similarity between two datasets in statistics, was used for
evaluation. The CoD was used to determine whether the motor
control strategies were similar to those before the intervention. The

waveform after averaging the BL AA ratio was defined as the BL
motor control strategy. The CoD with the BL motor control
strategy was calculated for all BL and WO cycles. Additionally,
the average CoD for each BL cycle with respect to the BL motor
control strategy was determined. The trajectories of the AA ratio
and joint angle should generally align with the fact that the AA
ratio approaches 1 (0) during extension (flexion); thus, the
trajectory of the AA ratio should be somewhat similar for the
samemovement. Therefore, an excessively low average CoD for the
BL motor control strategy for each BL cycle indicated possible
issues with EMG acquisition, such as insufficient signal levels or
noise. A threshold value of 0.25 was set for the average CoD, and
evaluations were performed on experimental results where the
average CoD of the BL motor control strategy for each BL cycle
during flexion and extension exceeded 0.25. Although this
threshold lacked a clear basis, it was set according to a
previously published guideline that a “correlation coefficient up
to 0.5 is considered sufficient” (Akoglu, 2018).

In the learning of the internal model, systems are used for the
short- and long-termmemory of motor control strategies (Osu et al.,
2002). Time constants are used to explain the results of these
memories, so the time constants in this study were determined
by performing exponential approximation on all 100 WO cycles.
The approximate exponential function is shown in Equation 5.

y � a 1 − e− x−1( )/b( ) + c (5)
a, b, and c are constants. y represents the CoD for each cycle, and x
denotes the number of flexion and extension movement cycles
during WO. a is the difference between the convergence value
and the initial value of the approximate exponential function, b
is the time constant, and c represents the initial value of the
approximate exponential function. The exponential
approximation curve was calculated using Origin 2021 version
9.80 (LightStone Corp.). In the calculation process, the function
model was set as an explicit function, and the function form was set
as an arithmetic expression. The initial values of a, b, and c were set

FIGURE 6
Actual images of a participant using the physio-avatar EB system (left: front view, right: top view).
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to 1, and no boundary conditions were set. The calculation yielded
the estimated values of each parameter for the fit that created the
curve closest to the data points and the standard error of the
parameters representing the accuracy of the approximation curve.
A small standard error indicated a high accuracy of the
approximation curve, whereas a large standard error suggested
that the exponential approximation did not fit the data well.
Furthermore, if the exponential approximation curve did not
converge and became a straight line, the control strategy had
already converged at the start of WO, or the exponential
approximation did not fit the data well (OriginLab, 2023). If the
standard error of each parameter of the exponential approximation
curve was larger than the estimated values or if the exponential
approximation curve did not converge, then the data were regarded
as experimental data that did not fit the exponential approximation.
The waveform after averaging the AA ratio during ADP was defined
as the ADP motor control strategy. The CoD of the ADP motor
control strategy was calculated for all ADP and WO cycles. As for
the CoD of the ADP, the time constant was determined by
performing exponential approximation targeting all WO cycles.
Exponential approximation could be conducted similarly to that
for the CoD of the BL motor control strategy during WO.
Additionally, considering the possibility of deviation from the
motor control strategy adapted to the avatar, the initial value of
a was changed to −1 for the calculation of the exponential
approximation curve.

Because the AA sum was not a control variable during the
physio-avatar EB intervention, the motor control strategy appeared
not to change due to the physio-avatar EB intervention. However,
studies on variability between movement cycles state that the
variability of task-related control variables decreases, whereas the
variability of non-task-related control variables does not decrease
(Dal’Bello and Izawa, 2021). Human movement involves control
variables, such as the equilibrium point and stiffness. During
adaptation to the physio-avatar EB system, that equilibrium point
is a task-related control variable, and stiffness is a non-task-related
control variable. The variability of indicators related to a control
variable (equilibrium point) may decrease, whereas the variability of
indicators related to a non-control variable (stiffness) may increase.
The waveform of the AA ratio was evaluated for the equilibrium
point; for stiffness, the total sum of all samples of the AA sum was
utilized as an evaluation index for BL and ADP. For the equilibrium
point, the standard deviation of each sample of the AA ratio across
all cycles was calculated during BL and ADP, and its average value
served as an indicator of variability. As for stiffness, EMG variations
increase at high intensities of muscle activity; the variation of the AA
sum, which is the sum of the EMG signals, also increases at high
intensities (Gasparic et al., 2023). Therefore, the coefficient of
variation was utilized as an indicator of variability; the standard
deviation of the total sum of the AA sum was normalized across all
cycles using the average value for BL and ADP.

The variability indicators for the equilibrium point in BL and
ADP were denoted as σBR and σAR, respectively, and the variability
indicators for stiffness in BL and ADP were σBS and σAS,
respectively. As for the increase in variability from BL, the
variation of the equilibrium point index was calculated by
dividing σAR by σBR, and the variation of the stiffness index was
calculated by dividing σAS by σBS. Let i be the cycle number and j be

the sample number. The methods for calculating the total sum of the
AA sum for all samples, the variability index for the equilibrium
point, and the variability index for stiffness are shown in Equations
6–8, respectively.

Si � ∑1800
j�1

si,j. (6)

σBR �
∑1800
j�1

��������������
1
20 ∑20

i�1
Ri,j − Rj( )2√

1800
. (7)

σBS �

�����������
1
20 ∑20

i�1
Si − �S( )2√
�S

. (8)

si,j is the AA sum for each cycle and sample, Si is the stiffness for
each cycle, Ri,j is the AA ratio for each cycle and sample, Rj is the
average value of the AA ratio for each sample across all cycles, and �S
is the average value of stiffness for all cycles. When adapted to the
physio-avatar EB system, the variability of the equilibrium point, a
control variable, should decrease compared with the variability of
stiffness, a non-control variable (Dal’Bello and Izawa, 2021).
Therefore, the degree of adaptation to the physio-avatar EB
system was evaluated by comparing ΔσAAR and ΔσSt.

Finally, whether the same movements were being performed
during the BL and WO periods should be confirmed during the
evaluation of the changes in motor control strategies due to avatar
intervention. As in the analysis of the AA ratio, the waveform after
averaging the joint angle was defined as the BL joint angle, and the
CoD of the joint angle for all WO cycles was calculated. The
trajectory of the joint angle had small errors between cycles.
Therefore, only cycles where the CoD of the BL joint angle
exceeded 0.95 were determined to include movements similar to
the BL ones.

3 Results

The following indices are used to discuss the experimental
results for both flexion and extension movements.

• Average CoD at BL (Avg CoD (BL)): the average CoD for each
BL cycle against the AA ratio trajectory during the BL motor
control strategy

• Standard deviation CoD at BL (SD of CoD (BL)): the standard
deviation of the CoD for each BL cycle against the AA ratio
trajectory during the BL motor control strategy

• Time constant (BL): the time constant of the exponential
function approximating the CoD against the AA ratio
trajectory during the BL motor control strategy during WO

• Initial Value (BL): the initial value of the exponential function
approximating the CoD against the AA ratio trajectory during
the BL motor control strategy during WO

• Constant Value (BL): the convergence value of the exponential
function approximating the CoD against the AA ratio
trajectory during the BL motor control strategy during WO

• σBR: variability index of the equilibrium point at BL
• σBS: variability index of stiffness at BL
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• Average CoD at ADP (Avg of CoD (ADP)): the average CoD
for each ADP cycle against the AA ratio trajectory during the
ADP motor control strategy

• Standard deviation of CoD at ADP (SD of CoD (ADP)): the
standard deviation of the CoD for each ADP cycle against the
AA ratio trajectory during the ADP motor control strategy

• Time Constant (ADP): the time constant of the exponential
function approximating the CoD against the AA ratio
trajectory during the ADP motor control strategy during WO

• Initial Value (ADP): the initial value of the exponential
function approximating the CoD against the AA ratio
trajectory during the ADP motor control strategy during WO

• Constant Value (ADP): the convergence value of the
exponential function approximating the CoD against the
AA ratio trajectory during the ADP motor control
strategy during WO

• σAR: variability index of the equilibrium point during ADP
• σAS: variability index of stiffness during ADP
• Variation of equilibrium point index during flexion (VEPFX):
the variability increase of the equilibrium point during flexion
in the ADP period relative to the BL period

• Variation of stiffness index during flexion (VSTFX): the
variability increase of stiffness during flexion in the ADP
period relative to the BL period

• Variation of equilibrium point index during extension
(VEPEX): The variability increase of the equilibrium point
during extension in the ADP period relative to the BL period

• Variation of stiffness index during extension (VSTEX): the
variability increase of stiffness during extension in the ADP
period relative to the BL period

• CoD of the angle during flexion (CoD Angle (FX)): the CoD
against the averaged joint angle trajectory at BL during the first
cycle of the first set in the WO period during flexion

• CoD of the angle during extension (CoDAngle (EX)): the CoD
against the averaged joint angle trajectory at BL during the first
cycle of the first set in the WO period during extension

• SoA: sense of agency
• SoO: sense of ownership

For CoD Angle (FX) and CoD Angle (EX), if the value of the
first cycle is small, then the value of the second cycle is shown in
parentheses. Additionally, experimental data that do not fit the
exponential approximation are denoted with a “-” for the time
constant. In that case, the Initial Value (BL) or Initial Value
(ADP) and Constant Value (BL) or Constant Value (ADP) are
shown as average values during WO. Additionally, for
Participants C, D, E, and G under the Free condition and
Participant F under both conditions, the average CoD values at
BL are below 0.25, leading to their exclusion from evaluation.
Thus, the experimental results considered for evaluation are those
of Participants A and B under both conditions and those of
Participants C, D, and E under the Fixed condition. The results
are shown in Tables 2–6.

Figure 7 shows sample experimental results under a converged
exponential approximation curve of the CoD of the BL motor
control strategy during WO. These are the results during flexion
for Participant B (Fixed). The graph shows the CoD of the AA ratio
of the BL motor control strategy during WO, the exponential

approximation curve calculated from that CoD, Avg of CoD
(BL), and Avg of CoD (BL) ± SD of CoD (BL). The exponential
approximation curve during WO starts sufficiently lower than Avg
of CoD (BL). Subsequently, it converges within the range of Avg of
CoD (BL) ± SD of CoD (BL), reaching a value equivalent to Avg of
CoD (BL). Initially, a motor control strategy different from that at
BL is maintained, but the BLmotor control strategy dominates again
as the cycles increase. Figure 8 shows sample experimental results for
a case where the data of the CoD of the BL motor control strategy
during WO do not fit the exponential approximation. These are the
results during flexion for Participant A (Free). The graph shows the
CoD of the AA ratio of the BL motor control strategy during WO,
the failed exponential approximation curve calculated from that
CoD, Avg of CoD (BL), and Avg of CoD (BL) ± SD of CoD (BL). The
failed exponential approximation curve during WO is outside the
range of Avg of CoD (BL) ± SD of CoD (BL) but is equivalent to Avg
of CoD (BL) − SD of CoD (BL). Additionally, cycles above Avg of
CoD (BL) can be observed from the early WO period, indicating a
return to the BL motor control strategy immediately after the end of
the physio-avatar EB intervention.

Figure 9 shows sample experimental results under a converged
exponential approximation curve of the CoD of the ADP motor
control strategy duringWO. These are the results during extension
for Participant B (Free). The graph shows the CoD of the AA ratio
of the ADP motor control strategy during WO, the exponential
approximation curve calculated from that CoD, and Avg of CoD
(ADP) ± SD of CoD (ADP). The exponential approximation curve
of the CoD in the early WO period is within the range of Avg of
CoD (ADP) ± SD of CoD (ADP), but it is outside the range in the
following phase. Initially, a motor control strategy similar to the
ADP strategy is maintained, but it diverges from the ADP motor
control strategy as the experiment progresses to the later phases.
Figure 10 shows sample experimental results where the
exponential approximation curve of the CoD of the ADP motor
control strategy during WO does not fit the exponential
approximation. These results are for Participant B (Fixed). The
graph shows the CoD of the AA ratio of the ADP motor control
strategy during WO, the failed exponential approximation curve
calculated from that CoD, and Avg of CoD (ADP) ± SD of CoD
(ADP). The CoD of the ADP motor control strategy during WO
starts with values sufficiently lower than the CoD during ADP
from the outset, indicating a deviation from the ADP motor
control strategy immediately after the end of the physio-avatar
EB intervention.

Table 2 shows VEPFX, VEPEX, VSTFX, VSTEX, CoD angle
(FX), and CoD angle (EX) in the first (or second) cycle of the first set
during WO, along with SoA and SoO. Table 3 shows the indicators
(Avg of CoD (BL), SD of CoD (BL), Time Constant (BL), Initial
Value (BL), and Constant Value (BL)), σBR, and σBS for the motor
control strategy during flexion at BL. Similarly, Table 4 shows the
indicators (Avg of CoD (BL), SD of CoD (BL), Time Constant (BL),
Initial Value (BL), and Constant Value (BL)), σBR, and σBS for the
motor control strategy during extension at BL. In Table 3, 4, except
the values for the flexionmovements of Participant E, all VSTFX and
VSTEX values exceed VEPEX and VEPFX, respectively, indicating
suppression of the variability of the equilibrium point, a control
variable during physio-avatar EB control. Additionally, the σBR
value of Participant E during flexion is the smallest among all
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participants, as seen in Table 3. Thus, the variability of the
equilibrium point of Participant E is small, and VFPFX
excessively increases during the process of dividing the σBR value.
In Dal’Bello and Izawa (2021), control variables had lower variability
than non-control variables, which is similar to this outcome,
showing adaptation to the physio-avatar EB system in all but one
experiment. Moreover, the CoD Angle (FX) and CoD Angle (EX)
during WO exceed 0.95 in the second cycle across all data and
remain above 0.95 in the subsequent cycles, indicating an early
return to the BL joint movement. The SoA is reported as 4 or higher
(which is relatively high) by Participants B (Fixed), C, and E.

Similarly, Participants B (Fixed), D, and E report SoO values of
4 or higher. However, the surveys conducted with Participants A and
B reveal different SoA and SoO outcomes, depending on the
hand condition.

The Time Constant (BL) and Time Constant (ADP) values of
Participants B (Fixed), C, and E are calculated through exponential
approximation for both flexion and extension movements. Although
the Initial Values (BL) are outside the range of Avg of CoD (BL) ±
SD of CoD (BL), the Constant Values (BL) converge within the
range of Avg of CoD (BL) ± SD of CoD (BL). Therefore, despite
initially deviating from the BL motor control strategy, the

TABLE 2 Results: VEPFX, VSTFX, VEPEX, VSTEX, CoD angle (FX), CoD angle (EX), SoA, and SoO.

VEPFX VSTFX VEPEX VSTEX CoD angle (FX) CoD angle (EX) SoA SoO

A (Fixed) 1.946 2.435 1.694 3.237 0.996 0.979 3 2

A (Free) 1.069 1.275 1.035 1.867 0.992 0.995 3 3

B (Fixed) 0.901 2.566 0.738 2.124 0.999 0.688 (0.995) 4 5

B (Free) 1.013 3.004 0.741 1.943 0.999 0.999 3 3

C 1.354 3.189 0.917 1.883 0.999 0.99 6 2

D 1.354 2.066 0.759 2.098 0.999 0.886 (0.988) 3 4

E 4.130 3.226 2.054 5.981 0.995 0.534 (0.996) 5 4

TABLE 3 Results during flexion movement: Avg of CoD (BL), SD of CoD (BL), Time Constant (BL), Initial Value (BL), Constant Value (BL), σBR, and σBS.

Avg of CoD (BL) SD of CoD (BL) Time
constant (BL)

Initial
value (BL)

Constant
value (BL)

σBR σBS

A (Fixed) 0.791 0.051 - 0.711 0.711 0.074 0.108

A (Free) 0.818 0.041 - 0.767 0.767 0.105 0.106

B (Fixed) 0.516 0.114 14.786 0.061 0.607 0.136 0.145

B (Free) 0.518 0.156 - 0.531 0.531 0.130 0.196

C 0.677 0.080 8.480 0.415 0.657 0.097 0.073

D 0.622 0.120 - 0.540 0.540 0.111 0.229

E 0.617 0.131 15.548 0.249 0.488 0.023 0.066

TABLE 4 Result during extension movement: Avg of CoD (BL), SD of CoD (BL), Time Constant (BL), Initial Value (BL), Constant Value (BL), σBR, and σBS.

Avg of CoD (BL) SD of CoD (BL) Time
constant (BL)

Initial
value (BL)

Constant
value (BL)

σBR σBS

A (Fixed) 0.775 0.097 - 0.725 0.725 0.085 0.076

A (Free) 0.824 0.075 - 0.796 0.796 0.107 0.089

B (Fixed) 0.348 0.150 8.803 0.051 0.392 0.133 0.213

B (Free) 0.377 0.188 49.122 0.542 0.232 0.146 0.193

C 0.600 0.098 20.171 0.430 0.592 0.121 0.093

D 0.516 0.114 - 0.553 0.553 0.143 0.171

E 0.523 0.157 5.842 0.128 0.477 0.037 0.043
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participants return to the BL motor control strategy toward the later
stages of WO. The Time Constant (BL) values of Participant A
under both conditions and Participant D are not calculated,
indicating the experimental data do not fit the exponential
approximation. For extension movements under both conditions
for Participant A and for both flexion and extension movements for
Participant D, the Constant Values (BL) fall within the range of Avg
of CoD (BL) ± SD of CoD (BL), indicating early convergence to the
BL motor control strategy. However, for flexion movements under
both conditions for Participant A, the Constant Value (BL) is outside
the range of Avg of CoD (BL) ± SD of CoD (BL). The data of
Participant B (Free) do not fit the exponential approximation
dataset, so their Time Constant (BL) value during flexion is not
calculated. Constant Value (BL) falls within the range of Avg of CoD
(BL) ± SD of CoD (BL), suggesting an early return to the BL motor
control strategy from the start of WO. However, during extension
movements, Time Constant (BL) is calculated through exponential
approximation, and Constant Value (BL) converges within the range
of Avg of CoD (BL) ± SD of CoD (BL); Initial Value (BL) is higher
than Constant Value (BL) and Avg of CoD (BL) + SD of CoD (BL).
Despite Participants B (Fixed), C, and E returning to the BL motor
control strategy from a different motor control strategy, the
extension movements of Participant B (Free) show convergence
in the direction deviating from the BL motor control strategy,
resulting in a unique outcome.

Table 5 shows the indicators (Avg of CoD (ADP), SD of CoD
(ADP), Time Constant (ADP), Initial Value (ADP), and Constant
Value (ADP)), σAR, and σAS for the ADP motor control strategy
during flexion. Table 6 shows the indicators (Avg of CoD (ADP), SD
of CoD (ADP), Time Constant (ADP), Initial Value (ADP), and
Constant Value (ADP)), σAR, and σAS for the ADP motor control
strategy during extension. The Time Constant (ADP) value of
Participant B (Free) is calculated through exponential
approximation for both flexion and extension movements. Initial
Value (ADP) is within the range of Avg of CoD (ADP) ± SD of CoD
(ADP), but Constant Value (ADP) is outside the range of Avg of
CoD (ADP) ± SD of CoD (ADP). Thus, although the ADP motor
control strategy is maintained in the early stages of WO, the
participant deviates from the ADP motor control strategy in the
later stages. Additionally, for the flexionmovements of Participant A
under both conditions and for the extension movements of
Participant A (Fixed), Constant Value (ADP) falls within the
range of Avg of CoD (ADP) ± SD of CoD (ADP), suggesting the
possibility that the ADP motor control strategy is maintained
throughout WO. Furthermore, during the extension movements
of Participant A (Free), Constant Value (ADP) exceeds Avg of CoD
(ADP) + SD of CoD (ADP), indicating that the ADP motor control
strategy may be maintained throughout WO. For Participants B
(Fixed), C, D, and E, during both flexion and extension movements,
Constant Value (ADP) is outside the range of Avg of CoD (ADP) ±

TABLE 5 Results during flexion movement: Avg of CoD (ADP), SD of CoD (ADP), Time Constant (ADP), Initial Value (ADP), Constant Value (ADP), σAR, and σAS.

Avg of
CoD (ADP)

SD of
CoD (ADP)

Time
constant (ADP)

Initial
value (ADP)

Constant
value (ADP)

σAR σAS

A (Fixed) 0.358 0.138 - 0.451 0.451 0.144 0.263

A (Free) 0.380 0.150 - 0.319 0.319 0.112 0.135

B (Fixed) 0.549 0.181 - 0.214 0.214 0.122 0.372

B (Free) 0.451 0.133 49.285 0.458 0.205 0.132 0.588

C 0.670 0.163 - 0.503 0.503 0.132 0.234

D 0.631 0.140 - 0.309 0.309 0.150 0.473

E 0.455 0.147 - 0.283 0.283 0.095 0.213

TABLE 6 Results during extension movement: Avg of CoD (ADP), SD of CoD (ADP), Time Constant (ADP), Initial Value (ADP), Constant Value (ADP), σAR
and σAS

Avg of
CoD (ADP)

SD of
CoD (ADP)

Time
constant (ADP)

Initial
value (ADP)

Constant
value (ADP)

σAR σAS

A (Fixed) 0.563 0.211 - 0.595 0.595 0.144 0.246

A (Free) 0.540 0.158 - 0.707 0.707 0.111 0.167

B (Fixed) 0.804 0.081 - 0.246 0.246 0.098 0.453

B (Free) 0.518 0.137 35.115 0.480 0.184 0.108 0.375

C 0.623 0.136 - 0.267 0.267 0.111 0.175

D 0.632 0.168 - 0.372 0.372 0.109 0.358

E 0.732 0.127 - 0.344 0.344 0.076 0.255
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SD of CoD (ADP), showing a deviation from the ADPmotor control
strategy from the beginning of WO. Participants B (Fixed), C, and E
return to the BL motor control strategy from a different motor
control strategy during WO. Additionally, convergence in a

direction deviating from the BL motor control strategy is
observed for Participant B (Free) during extension movements.
Furthermore, this participant deviates from the ADP motor
control strategy during both flexion and extension movements.

FIGURE 7
Sample exponential approximation curve (calculated) of the CoD of the BL motor control strategy during WO. The black dots represent the CoD of
the BL motor control strategy, and the red line represents the failed approximated exponential function of the CoD of the BL motor control strategy. The
blue line represents Avg of CoD (BL), and the green lines represent Avg of CoD (BL) + SD of CoD (BL) and Avg of CoD (BL) − SD of CoD (BL).

FIGURE 8
Sample exponential approximation curve (not calculated) of the CoD of the BLmotor control strategy duringWO. The black dots represent the CoD
of the BL motor control strategy, and the red line represents the failed approximated exponential function of the CoD of the BL motor control strategy.
The blue line represents Avg of CoD (BL), and the green lines represent Avg of CoD (BL) + SD of CoD (BL) and Avg of CoD (BL) − SD of CoD (BL).
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4 Discussion

Adaptation to the physio-avatar EB system was demonstrated in
six of seven experiments, indicating that the trajectory of the joint

angles during flexion and extension movements returned to the BL
movement strategy by the second cycle of the first set during WO.
Additionally, the results of the SoA and SoO surveys in response to
the physio-avatar EB system were presented. Adaptation to the

FIGURE 9
Sample exponential approximation curve (calculated) of the CoD of the ADPmotor control strategy duringWO. The black dots represent the CoD of
the ADP motor control strategy, and the red line represents the failed approximated exponential function of the CoD of the ADP motor control strategy.
The blue line represents Avg of CoD (ADP), and the green lines represent Avg of CoD (ADP) + SD of CoD (ADP) and Avg of CoD (ADP) − SD of CoD (ADP).

FIGURE 10
Sample exponential approximation curve (not calculated) of the CoD of the ADP motor control strategy during WO. The black dots represent the
CoD of the ADP motor control strategy, and the red line represents the failed approximated exponential function of the CoD of the ADP motor control
strategy. The blue line represents Avg of CoD (ADP), and the green lines represent Avg of CoD (ADP) + SD of CoD (ADP) and Avg of CoD (ADP) − SD of
CoD (ADP).
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avatar was confirmed by the reduced variability in control variables
compared with the non-control variables. Hence, humans may be
able to control variables independently, such as the equilibrium
point (control variable) and stiffness (non-control variable).
Moreover, the WO motor control strategy was analyzed against
the BL and ADP strategies using the CoD. The (1) presence or
absence of aftereffects due to the physio-avatar EB intervention and
(2) its impact on SoA and SoO aftereffects were demonstrated. First,
the existence of aftereffects from the WO strategy compared to the
BL strategy was examined. The purpose of this study was to verify
whether physio-avatar EB intervention could influence motor
control strategies, so BL and WO movements had to be
equivalent to evaluate the same motor control strategies.
Therefore, as an indicator of the occurrence of aftereffects, the
time constant of the exponential approximation of the CoD of
the AA ratio trajectory during WO must include at least two cycles.

For Participants B (Fixed), C, and E during both flexion and
extension movements and Participant B (Free) during extension
movements, the time constant of exponential approximation was
greater than 2. In these experiments, Constant Value (BL) was
within the range of Avg of CoD (BL) ± SD of CoD (BL). However,
for Participants B (Fixed), C, and E, Constant Value (BL) exceeded
Initial Value (BL); for Participant B (Free) during extension
movements, Constant Value (BL) was smaller than Initial Value
(BL). The Time Constant (BL) value (larger than 2) and the return to
the BL motor control strategy toward the later stages of WO suggest
that aftereffects occurred due to the intervention. During the
extension movements of Participant B (Free), Avg of CoD (BL)
was comparatively low. The AA ratio’s trajectory at BL was averaged
across cycles, resulting in a smoothed trajectory. The averaged BL
motion control strategy (i.e., the averaged AA ratio trajectory) was
expressed similarly to virtual trajectory control in which “the motion
command is similar to the shape of the hand trajectory” (Bizzi et al.,
1984). The low Avg of CoD (BL) suggests that the AA ratio’s
trajectory for each BL cycle deviated from the virtual trajectory
similar to the averaged trajectory of the AA ratio at BL. The
deviation of a control strategy from the virtual-trajectory-like AA
ratio at BL was recognized due to the real body’s stiffness being a
control variable. However, in the physio-avatar EB system, only the
AA ratio is a control variable, and a non-virtual-trajectory-control-
like control strategy cannot govern the physio-avatar EB system.
Therefore, the high CoD of the ADP control strategy early in WO
suggests the implementation of a motor control strategy close to
virtual trajectory control, resembling the averaged AA ratio
trajectory at BL. Toward the later stages of WO, divergence from
the motor control strategy of virtual-trajectory-like control is seen,
and a return to the BL motor control strategy is identified. The
extension movements of Participant B under the fixed condition
show a different pattern of return to the BL motor control strategy
from that under the free condition, although the Avg of CoD (BL)
values under both conditions are similarly low. Therefore, Initial
Value (BL) and Avg of CoD (ADP) indicate a deviation from the
virtual trajectory control strategy from the early WO period.

The presence or absence of aftereffects from the WO control
strategy compared to the ADP control strategy was examined. The
continuation or divergence of the ADP motor control strategy
during WO may indicate that the ADP control strategy was
maintained as an aftereffect during WO. The divergence of the

results from the ADP control strategy during the flexion and
extension movements of Participant B (Free), where a Time
Constant (ADP) was calculated, and the fact that Initial Value
(ADP) exceeded Constant Value (ADP) suggest an aftereffect of
returning from a virtual-trajectory-control-like control strategy to a
non-virtual-trajectory-control-like control strategy. However, for
flexion movements, despite the observed divergence from the
ADP control strategy, the maintenance of the BL motor control
strategy from the early WO period does not definitively indicate
aftereffects. Hence, this is considered an example where aftereffects
did not occur. Participant A maintained the ADP control strategy
during flexion and extension movements under both hand
conditions. However, they returned to the BL motor control
strategy from the early WO period. Therefore, rather than
maintaining the ADP motor control strategy during WO, they
controlled the avatar while implementing the BL motor control
strategy, leading to a high CoD of the ADP control strategy during
WO. Thus, aftereffects did not occur in these four examples. For
Participants C and D, the return to the BL motor control strategy
from the early WO period and the divergence from the ADP control
strategy indicate the absence of aftereffects.

In summary, aftereffects were observed in the results of
Participants B (Fixed), C, and E during flexion and extension
movements and Participant B (Free) during extension
movements, suggesting the effectiveness of the physio-avatar EB
intervention. Among the four experiments showing intervention
effects, three had SoA scores exceeding 4, and two had SoO scores
above 4, with their averages being 4.5 and 3.5, respectively. The
degree of SoA may influence the effectiveness of the physio-avatar
EB intervention. Prior researchers on SoA and SoO developed
methods of artificially creating conditions with SoO but without
SoA, or vice versa, and found that only SoA is associated with
improved motor skills. Therefore, enhancing SoA can be effective in
rehabilitation systems (Matsumiya, 2021).

The results of the current study are similar to those of previous
studies. With an increased sample size, future research should
explore the relationship between NMSS model parameters or
experimental conditions and SoA and verify whether the
intervention effects are related to SoA and not dependent on
SoO. In addition, the results were compared with those of
previous studies. No error learning was observed for the
rehabilitation device with the EMG and a virtual arm in existing
studies (Gieser et al., 2017; Yang et al., 2017; MINDROVE, 2024;
Suryanarayanan and Reddy, 1997). Furthermore, the research group
cited in the introduction, which had reported that error learning did
occur, did not use EMG to generate errors in the muscle space (Lo
et al., 2010; Liu et al., 2018; Wei et al., 2005; Abdollahi et al., 2013;
Porta et al., 2021). This is because, in these studies, errors such as the
finger-tip position error were introduced into the task space. The
greatest contribution of the present study is that it confirms that
error learning does, in fact, occur in the muscle space when avatars
that can be manipulated with EMG signals continuously and in real
time are used.

Future challenges include issues with the system and analytical
methods. In terms of system-related issues, forearm pronation and
supination are important for elbow flexion–extension movements
when the shoulder joint is not horizontal. However, in this system,
while the avatar is limited to 1-DOF movements within a horizontal
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plane, the actual body assumes an internal rotation position at the
shoulder joint, failing to realize complete horizontal-plane
movement. SoA requires a match between the prediction of
action outcomes and the feedback of actual results (Watanabe
and Nobuyuki, 2016), and the inability to achieve a complete
horizontal-plane movement in this work may have reduced SoA
values. Future developments should consider the relationship
between the shoulder joint posture and movement direction
during flexion movements to achieve complete horizontal-plane
movement. Regarding issues related to the analytical methods, the
discussion centers around the AA ratio trajectory and determining
the degree of change compared to before the physio-avatar EB
intervention based on the CoD. This article focuses on whether the
control strategy returns to the pre-intervention state immediately
after the intervention. Results that do not indicate a return to the
pre-intervention control strategy are not discussed and should,
therefore, be further explored. Additionally, as the CoD may be
insufficient for evaluating the trajectory shape, other indicators
should be introduced for evaluating trajectories. These issues will
be addressed in future work, which will also conduct further
verification with healthy individuals and evaluate the clinical
efficacy of using the developed system with actual patients.

5 Conclusion

In this study, we explored the possibility of changing motor
control strategies by applying the physio-avatar EB system to
healthy individuals as a case study. This is a preliminary step
toward confirming the applicability of the developed system to
patients. The intervention, providing an experience of a body
different from one’s own, was conducted on seven participants
using a time-invariant calculation algorithm to determine the
avatar joint angles. The participants’ motor control strategies for
identical cyclical movements before the intervention (five sets) and
immediately after the intervention (five sets) were compared.
Additionally, fixed and free-hand conditions were set during
ADP, so 12 experiments were conducted. The data from seven
experiments were evaluated after excluding data believed to have
been affected by EMG acquisition issues.

The evaluation focused on adaptation to the physio-avatar EB
system, the effect of physio-avatar EB intervention, and the impact
of SoA and SoO on the intervention effect. Evaluations were
conducted separately for extension and flexion movements. To
evaluate adaptation to the physio-avatar EB system, the BL and
ADP variability indices for the equilibrium point (a control variable
of the physio-avatar EB system) and stiffness (a non-control
variable) were determined. The degree of increase from BL to
ADP was assessed, and findings confirmed such adaptation in all
but one experiment. The adaptation indicators of the experiment
that failed to confirm adaptation may have been undervalued. In the
evaluation of the physio-avatar EB intervention effect, the BL and
ADP control strategies for the AA ratio, an indicator of the
equilibrium point in human motor control, were determined.
The similarity of these control strategies during WO was assessed
using the CoD. Exponential approximation of the CoD compared to
the control strategies at BL and ADP during WO was performed to
determine the time constant, initial value, and convergence value of

the exponential approximation. The results then served as indicators
for assessing the intervention effect. Changes in motor control
strategies due to physio-avatar EB intervention were observed in
four experiments, which showed a gradual return to the pre-
intervention control strategy. Thus, the physio-avatar EB system
affected motor control strategies. Furthermore, the four experiments
showing an intervention effect suggest that SoA may influence the
presence or absence of such an effect. The employed system specs
were considered sufficient when compared with existing studies and
required specifications.
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