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Abstract
Borel’s stability and vanishing theorem gives the stable cohomology of GL(n, Z) with coeffi-
cients in algebraic GL(n, Z)-representations. We compute the improved stable range that Borel
suggested. In order to further improve Borel’s stable range, we adapt the method of Kupers—
Miller—Patzt to any algebraic GL(n, Z)-representations.

1. Introduction

Borel proved the stability of the rational cohomology of GL(n, Z) and computed the stable
cohomology [1]. He also proved the vanishing of the stable cohomology of GL(n,Z) with
coefficients in non-trivial algebraic GL(n, Z)-representations [2]. He gave constants for the
stable ranges and suggested improved stable ranges, but he did not compute these stable
ranges explicitly except for a few families of representations.

Li and Sun [12] improved Borel’s stable ranges and obtained stable ranges that are in-
dependent of coefficients. For coefficients in polynomial GL(n, Z)-representations, Kupers,
Miller and Patzt [11] improved the stable ranges by using arguments on polynomial VIC-
modules.

In this paper, we compute the improved stable range that Borel suggested. We also adapt
Kupers, Miller and Patzt’s argument to coefficients in algebraic GL(n,Z)-representations
indexed by bipartitions, i.e., pairs of partitions. Our results are weaker than Li and Sun’s.
However, the methods are very different and we think that it is still worth publishing these
results.

1.1. Stable range for the cohomology of GL(n,Z). The improved stable range given by
Li and Sun [12] is as follows.

Theorem 1.1 (Borel [1, 2], Li—Sun [12]). (1) For each integer n > 1, the algebra map
H*(GL(n + 1,2),Q) — H*(GL(n, Z),Q)

induced by the inclusion GL(n, Z) — GL(n+1, Z) is an isomorphism for = < n—2. Moreover,
we have an isomorphism

H*(GL(n,2),Q) = /\Q(xl,xz,...), degx; = 4i+ 1

in degrees * < n — 2.
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(2) Let V be an algebraic GL(n, Q)-representation such that V-9 = 0. Then we have
HP(GL(n,2),V)=0 forp<n-2.

Kupers, Miller and Patzt’s stable range [11] for the rational cohomology is wider by 1
than that of Li and Sun.

Theorem 1.2 (Borel [1, 2], Kupers—Miller—Patzt [11]). We have
H*(GL(n,2),Q) = /\Q(xl,xz,...), degx; = 4i+ 1

in degrees « < n— 1.

We now state our main result. For a bipartition A4 = (4, 4'), let V; denote the (irreducible
or zero) algebraic GL(n, Z)-representation corresponding to A (see Section 2).

Theorem 1.3 (Corollary 3.4 and Theorem 4.20, weaker than Theorem 1.1). Let A # (0,0)
be a bipartition. Then we have

HP(GL(n,Z),Vy) =0

forn = no(4, p).

Here the constant ny(4, p) is defined as follows. For a partition A, let |1] and /(1) denote
the size and length of A, respectively. Let 4 = (4, A") be a bipartition and p a non-negative
integer. Let |[4| = || + |1'| and deg A = || — |A’], and set

no(4, p) = min{ngmp(4, p), n(4, p)},
where

p+1+J4 ifd=0o0rd" =0
p+1+2|1 otherwise

ngme(4, p) = {

and
ng(4, p) = max{2p + 2,2|deg | + 1,21(2), 21(1")}.

REmARK 1.4. Let us compare the value of ngmp(4, p) and ng(4, p). For a fixed A, we have
nxmp(4, p) < np(4, p) for all but finitely many p. If p is relatively small with respect to A
then we sometimes have ng(4, p) < ngmp(4, p). For example, we have ngyp((4,4),1) = 18
and ng((4,4), 1) = 4. Note that Theorem 1.1 gives a better bound 3 in this case.

Remark 1.5. This paper stemmed from the first version of [7] (with a different title),
which included the two approaches to improve Borel’s stable ranges described in this paper.
In [7], we combined the improved version of Borel’s theorem with the Hochschild—Serre
spectral sequence associated to the short exact sequence of groups

1 - 1IA, - Aut(F,) - GL(n,Z2) — 1,

where Aut(F,) is the automorphism group of a free group F, of rank n, and IA,, is the IA-
automorphism group of F,, in order to study the stable cohomology of Aut(F,) and IA,
possibly with twisted coefficients. After the first version of [7] appeared on the arXiv, Oscar
Randal-Williams informed us of the result of Li and Sun about the improvement of the Borel
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theorem [12]. Since our results for Borel’s stable range turned out to be weaker than Li and
Sun’s, we have decided to remove these results from [7] and to rely on Li and Sun’s result
there.

1.2. Organization of the paper. The rest of this paper is organized as follows. In Section
2, we recall some facts about the representation theory of GL(n, Q). In Section 3, we recall
Borel’s stability and vanishing theorem for GL(n, Z) and compute the improved stable range
that Borel suggested for irreducible algebraic representations. In Section 4, we improve the
stable range by using the arguments of Kupers, Miller and Patzt [11].

2. Algebraic GL(n, Z)-representations

Let n > 1 be an integer. A polynomial GL(n, Q)-representation is a finite-dimensional
Q[GL(n, Q)]-module V such that after choosing a basis for V, the (dim V)? coordinate func-
tions are polynomial in the n? variables. A GL(n, Q)-representation is called algebraic if
the coordinate functions are rational functions. See [6] for some facts from representation
theory.

As is well known, irreducible polynomial GL(n, Q)-representations are classified by par-
titions with at most n parts. A partition A = (11, A,, ..., 4;) is a weakly decreasing sequence
of non-negative integers. The length I(1) of A is defined by /(1) = max{{0} U {i | 4; > 0}} and
the size |A| of A is defined by |A] = A1 + -+ + Ayp.

We denote by H = H(n) = Q" the standard representation of GL(n, Q). In the follow-
ing, we usually omit (n). For a partition A, the Specht module S* for A is an irreducible
representation of Sy defined by using the Young symmetrizer associated to A. Define the
GL(n, Q)-representation

Vi=Vin) = H®W ®QIe,] St

If I(1) < n, then V), is an irreducible polynomial GL(n, Q)-representation. Otherwise, we
have V, = 0.

The GL(n, Q)-representation H* dual to H is not polynomial but algebraic since the action
of GL(n,Q) on H* is given by A — (A)~!. Let p,g > 0 be integers. We set H"Y =
H®P ® (H*)®1. We have an isomorphism (H%?)* = (H®! @ (H*)®P)* = H®" ® (H*)®*? = H4.

For a pair (i, j) € {1,..., p} x{1,..., q}, we define the contraction map
2.0.1) ey HPO s pr-ia]
by

(0@ ®V)B(fi ® - ® f)) = (b [O1 @ T BV B (i ®--- ;=@ f)
for vy,...,v, € H and fi,..., f, € H*, where the dual pairing (—,-) : H® H* — Qis

defined by (v, ) = f(v). Note that (—, —) is GL(n, Q)-equivariant.
The traceless part H?? of HP is defined by

H(p,q) = ﬂ kerci,j c HP,
@ DElL..ppx{l....q}

which is a GL(n, Q)-subrepresentation of H”4.
A bipartition is a pair A = (4,4") of two partitions A and A’. The length (1) of the
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bipartition A is defined by /(1) = I(1)+I(1"). The degree of A is defined by deg A = |1| || €
Z, and the size of A by [4] = || + |A’|. We define the dual of A by 1" = (1, A).
We associate to each bipartition A = (4, A") the GL(n, Z)-representation

(2.0.2) Va=Valn) = HP® ®q[e,x3,] (S/l ® S/l/),

where p = |A] and ¢ = [A'|. If [(A) < n, then V, is an irreducible algebraic GL(n, Q)-
representation with highest weight

(s ey Ay s 0, = s s =AY

Otherwise, we have V, = 0. It is well known that irreducible algebraic GL(n, Q)-
representations are classified by bipartitions A with /(1) < n (see [6, 9]).

The traceless part H”»? of HP4 admits the following direct-sum decomposition as a
Q[GL(n,Q) x (S, x S,)]-module

(2.0.3) HP = & V@ (5t ®5Y).
A=(A,A"):bipartition with
I(D<n, |A=p, |V]=q
(See [9, Theorem 1.1]. See also Lemma 4.12 for the statement as VIC-modules.)
Note that we have GL(n, Q)-isomorphisms det = A" H = V., where det denotes the
determinant representation, and 1" = (1, ..., 1) consists of n copies of 1. For any bipartition
A = (4, A") with /(1) < n, we have an isomorphism

V, =V, ®det,
for some partition y with at most n parts and an integer k such that
(/ll,...,/11(/1),0,...,0,—/12(/1,),...,—/1,1) = (/11 +k,...,/,ln +k)

By an algebraic GL(n,Z)-representation, we mean the restriction of an algebraic
GL(n, Q)-representation to GL(n,Z). Note that det? is trivial as a GL(n, Z)-representation.
It follows that any irreducible algebraic GL(n, Z)-representation is obtained from an irre-
ducible polynomial GL(n, Q)-representation by restriction to GL(n, Z).

3. Borel’s improved stable range

In [1, 2], Borel computed the cohomology H”(I', V) of an arithmetic group I" with coeffi-
cients in an algebraic I'-representation V in a stable range

p < NI, V) = min{MIT'(R), V), C(Q), V)},

where M(I'(R), V) and C(I'(Q), V) are constants depending only on I' and V. For I' =
SL(n,2), we have M(SL(n,R), V) > n—2. Borel did not compute the constant C(SL(n, Q), V)
explicitly except for a few families of representations. Recently, Krannich and Randal-
Williams [10] gave an estimate of C(SL(n, Q), V).

Borel remarked that one can replace the constant C(I'(Q), V) by an improved constant
C'T@Q),V) = CT(@Q),V)[2, Remark 3.8]. In this section, we give an estimate of Borel’s
improved constant for I' = SL(n, Z). The constant C’'(SL(n, Q), V) depends not only on n but
also on V, unlike the cases of Sp(2n, Z) and SO(n, n; Z) which were determined by Tshishiku
[21].
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3.1. Borel’s stable range for the cohomology of SL(n, Z). Here we recall Borel’s result.
Let

N'(SL(n,Z), V) = min{M(SL(n,R), V), C’(SL(n, Q), V)},
where the constant C”’ is defined below.
Theorem 3.1 (Borel [1, 2]). (1) For each integer n > 1, the algebra map
H*(SL(n+1,2),Q) —» H*(SL(n,Z),Q)

induced by the inclusion SL(n,Z) — SL(n+1,Z) is an isomorphism for + < N'(SL(n, Z), Q).
Moreover, we have an isomorphism

H*(SL(n,Z),Q) = /\Q(xl,xz,...), degx; = 4i+ 1

in degrees * < N'(SL(n,2), Q).
(2) Let V be an algebraic SL(n, Q)-representation such that VS""Q = 0. Then we have

H?(SL(n,Z2),V) =0 for p < N'(SL(n,Z), V).

3.2. Preliminaries from representation theory. Before defining Borel’s constant, we
recall necessary facts from representation theory. See [6] for details.
Let n > 2 be an integer. Let ) C s/,(C) denote the Cartan subalgebra

b={aiHi+ - +a,H,|a)+---+a, =0},

where H; is the matrix whose (i, 7)-th entry is 1 and other entries are 0. We write the dual
vector space h* as

b =C{Ly,...,L,}/C(Ly + --- + L),

where L; is the linear map from the space of diagonal matrices to C satisfying L;(H;) = 0; ;.
The set of roots of s,(C)is {L; — L; | i # j}, that of positive roots is {L; — L; | i < j} and that
of simple rootsis{a; = L; — Liy1 | 1 <i<n-1}.

An element u = u Ly + -+ + u,L, with ), u; = 0 will be denoted by [u,...,u,]. For
an element ¢ € b*, we write ¢ > 0if ¢ = ), c;a; with ¢; > O for all i. Note that ¢ =
[@1,...,¢,] € h* satisfies ¢ > Oif and only if ¢; +--- + ¢; >Oforanyi=1,...,n— 1.

The Weyl group W of sl,(C) is the symmetric group S, = (si,...,s,—1). The generator
s; permutes L; and L;;; and fixes the other L;. The length I(o) of an element o € W is
the minimum length of the words in the s; representing o. Set W9 = {o € W | l(0) = g},
which consists of elements that send exactly g positive roots to negative roots. We have
W= L[;(fg) W4, where l(wg) = %n(n — 1) is the length of the longest element wy of W = &,,.

3.3. The constant C’'(SL(n, Q), V). Here we define Borel’s improved constants C’.
For a bipartition A with /(1) < n, let

(331) /’li = (l’lla s 9#") = ()'l’ e ’/ll(/l)a O, oo 909 _/l;(/l/)’ ey _/l/l)
be the highest weight of V. Let p € h* be half the sum of the positive roots. Then we have
n—-1n-3 n-5 n—1
p = [ s il 9oy _—]

2 2 2 2
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Since we have p; + - -+ + u, = deg 4, it follows that

N [n -1 P e 3 N n—1 .

=[— -« — - Cee L, m—— — @+ U],
P+ HA > M, ) M2y ) H
where @ = % deg A. Define
C’(SL(n,Q), V,) = max{q € {0,...,(wo)} | o(p + ) > 0 for all o € W} > 0.

Then we can easily check that
(332) C/(SL(’/L’ Q)a Vi) = C/(SL(n’ Q)’ VI‘)’

where A" is the dual partition of A.
For an algebraic SL(n, Q)-representation V, we set

C'(SL(n,Q),V) = m/lin C’(SL(n,Q), V),

where A runs through all bipartitions such that V, is isomorphic to a direct summand of V.

3.4. Estimate of C'(SL(n, Q), V,). For each bipartition A, we define the integer ng(4) > 0
by

ng(A) := max{2|deg 4| + 1, 21(2), 21(1")}.

Theorem 3.2. Let n > 2. Let A = (A, A") be a bipartition. Then for every n > I(1), we
have

3.4.1) C’'(SL(n,Q), V) < [n/2] - 1.
Equality holds if n > ng(4).
Proof. We first prove (3.4.1). If n is odd and (p + :“i)% = —a + puw 2 0, then for

o = sp-1 - Su1 € W, the coefficient of L, in o—(p + p2) is (0 + 1) uz1 > 0. If nis odd
and (o + ,Lli)n;_l < 0, then for o, = s e Sat € W, the coeflicient of Ly in o (o + u,)
is (o + ﬂi)%l < 0. If n is even, then we have either (p + pup): = 1/2 —a +ps > 0 or
(o + ﬂi)%_'_] =—12-a+ Mz < 0. If the former holds, then foro_ = 5,1 - - - s1 € W, the
coeflicient of L, in o_(p+p2) 18 (p+p)2 = 0. If the latter holds, then for oy = s1--- 52 € W,
the coeflicient of Ly in o(o + pa) is (o + ,ui)%ﬂ < 0. Therefore, in each case, we have
(o + ua) # 0, which implies (3.4.1).

By (3.3.2), we have only to consider the case where a > 0, that is, when |4| > |1’|. Sup-
pose that we have n > ng(4). Thus, we have 0 < a < 1/2. We first prove C’(SL(n,Q), V) =
[n/2]—1for2 < n < 4. Forn = 2,3, this is obvious since we have [n/2]—1 = 0. Forn = 4,
since we have (1), [(1") < 2, it follows that

pru =032+ -a,1/2+ 1 —a,-1/2-2, —a,-3/2- 2] —al.

Since 0 < a < 1/2, the first two coeflicients are positive and the others are negative. For
o = 51,53 € W', it is easily checked that o(p + 1) > 0. For o = 55, we also have
o(p + py) > 0 since we have 4; > A and thus

BR+-a)+(=12-2A-a)=1-2a+ 2, -2, >21-2a>0.
Therefore, we have C'(SL(n, Q), Vo) = [n/2] — 1 forn = 4.
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In what follows, we will prove that for n > 5, o(p + pp) > 0 for any o € W of length
[n/2] — 1. Letk € {1,...,n — 1}. By the definition of /(c), we have

' DH-D+@ ') =D+ + (k) -k < |n/2] - 1.

Therefore, the sum of the first k coeflicients of (o + ) is

n-— _ n—1 _
( - 10)—1y—a+ung +(—5——«T%@—4)—a+uan
Koo k k
=;(2-w—ﬂ—2wﬁmw+2mﬂwm
(n— k)k
> —qmrn+2wﬂom
i=1
Let T'(k) denote the right hand side of this inequality. It suffices to show that T (k) > O for
eachke{l,...,n—1}. Fork =n -1, we have
n—1

T(=1)21/2+ ) gy~ (1= D
i=1
=1/2+ (A = ] = po1(n) = (n = Da
=1/2+ (na — pg1(y)) — (n — Da
=1/2+a—pg14y =2 1/2>0.

For1 <k <n-2,we have

T(k) =

— k)k ‘
O 2=~k t Y gy
i=1

k k
m—-kk-n+2-k
> 5 + Zﬂ(r*](i) = Z,U(r'(i)-
i=1 i=1

Therefore, it suffices to show that Zl VMo =2 0.Let 7 ={je{l,....n/2]} | o(n +
1-j) <k If # =0, then Zl | Mo1; = 0 follows directly from the definition of 7.
Otherwise, let / = min ¢. Since the length of o is [n/2] — 1, by the hypothesis that
[(A) < n/2and (") < n/2, we have

Zl‘rr“(i) > (p + o+ ppg2ge-0) + Wari-g 0 F dori—(n/2))-
i=1

\n/2]+1-J
2 L)

J—1 2y
2] +1-7% " 2]+ 1-J

Leta = pu; + -+ + tnj2)+1-7. Then we have a |4 since we have

Al = a+ Wa2-7 + -+ Upp) S a+

Letb = pye1-7 + -+ - + tys1-|nj2)- In a similar way, we have b > %M’I Therefore, we

have

n/2) +1 - 2l 1-1
Zﬂo’ yza+b> 2] (I/lI |A']) = —I_n/2J na > 0.
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This completes the proof. m|

Note that Theorem 3.2 does not give any information for the value of C’'(SL(n, Q), V,) if
n < ng(4). Some computations suggest the following conjecture, which would completely
determine C’(SL(n, Q), V).

Conjecture 3.3. Let A be a bipartition and let n > I(1) be an integer. Fori=1,...,n, set

a(i) = % — i —a+ u;, where y; is given in (3.3.1). Then we have

C’'(SL(n,Q), V) =min{i € {1,...,n} | a(i) <0 ora(n+1—i) > 0} - 2.

3.5. Stable range for the cohomology of GL(n,Z). Now we regard V, as an irreducible
algebraic GL(n, Z)-representation. We obtain a stable range for the cohomology of GL(n, Z)
with coefficients in V.

For a bipartition A and a non-negative integer p, set

ng(4, p) = max{ng(4),2p + 2} > 2.

Borel’s result (Theorem 3.1) and the estimate of Borel’s constant C’(SL(n, Q), V) (Theorem
3.2) imply the following.

Corollary 3.4 (weaker than Theorem 1.1). Let A be a bipartition, and let p > 0 and
n > np(4, p) be integers. Then we have the following.

(D) If 2 =1(0,0), i.e., Vo = Q, then we have
H*(SL(n,7),Q) = H*(GL(n,Z), Q) = AQ<x1,x2,...>, degx; = 4i+ 1

in cohomological degrees * < p.
(2) If A # (0,0), then we have

H”(SL(n,Z),V,) = H"(GL(n,Z),V,) = 0.

Proof. Since we have n > ng(4, p) > ng(d) > 2, by Theorem 3.2, we have C’(SL(n, Q),
V) = |n/2] - 1. Therefore, we have

C'(SL(n,Q),V,y) = [n/2] =1 <n -2 < M(SL(n,R), V).
Since we have n > ng(4, p) > 2p + 2, we have
p <1n/2]-1=C'(SL(n,Q), V) = N'(SL(n, Z), V).

Therefore, the case of SL(n, Z) follows from Theorem 3.1.
The case of GL(n, Z) follows from the case for SL(n, Z) and the Hochschild—Serre spectral
sequence for the short exact sequence

1 - SL(n,Z) —» GL(n,Z) — Z/2Z — 1. O

4. Kupers, Miller and Patzt’s method

Kupers, Miller and Patzt [11] improved Borel’s original stable range for coefficients in
polynomial GL(n, Z)-representations indexed by partitions. Here we adapt their arguments
to the case of coefficients in algebraic GL(n, Q)-representations indexed by bipartitions.
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4.1. Polynomial VIC-modules. There are mutually related theories that can be used in
the study of stability of sequences of GL(n,Z)-representations such as coefficient systems
[5, 22, 18], representation stability [3], central stability [15] and VIC-modules [16]. The
notion of polynomiality was introduced by van der Kallen [22] for coefficient systems, and
was generalized by Randal-Williams and Wahl [18]. See also [13, 11]. Their definition is
stronger than Djament and Vespa’s strong polynomial functors [4].

Here we recall the notions of VIC-modules and polynomial VIC-modules.

Let VIC = VIC(Z) denote the category of finitely generated free abelian groups and
injective morphisms with chosen complements. The Hom-set for a pair of objects M and N
is given by

Homvyic(M,N) ={(f.C)| f: M — N, CCc N, N=im(f)®C}.

A VIC-module is a functor from VIC to the category Vectg of Q-vector spaces and linear
maps. A morphism (also called a VIC-module map) f : V — V’ of VIC-modules V and
V’ is a natural transformation. The VIC-modules and morphisms form an abelian category
VIC-mod, as is the case for the category of C-modules for any essentially small category
C. The category VIC-mod also has a symmetric monoidal category structure whose tensor
product is defined objectwise, i.e., (V® V) (M) = V(M) ® V(M) for M € Ob(VIC), and
whose monoidal unit is given by the constant functor with value Q.

For each VIC-module V and an integer n > 0, the vector space V(Z") is naturally equipped
with a GL(n, Z)-module structure.

Let V be a VIC-module. Define VIC-modules ker V and coker V by

ker V(M) :=ker(V(M) — V(M & 7)),
coker V(M) := coker(V(M) — V(M & Z))

for any object M of VIC, where V(M) — V(M @ Z) is induced by the canonical morphism
M — M & Z of VIC.
Define the polynomiality of VIC-modules inductively as follows.

DEerinition 4.1. Letm > —1. We call V polynomial of degree —1 in ranks > mif V(M) = 0
for any object M € Ob(VIC) with rank > m. For r > 0, we call V polynomial of degree < r
in ranks > m if ker V = 0 in ranks > m — r — 1 and if coker V is polynomial of degree < r— 1
in ranks > max{m — 1, —1}. We call V polynomial of degree (exactly) r in ranks > m if V is
polynomial of degree < r in ranks > m and if V is not polynomial of degree < r — 1 in ranks
> m. If m = —1, then we usually omit “in ranks > —1"" and just write polynomial of degree
<r

For a VIC-module V, the truncation Vs of V at k is the VIC-submodule of V such that
Vor(n) = V(n) for n > k and Vs (n) = 0 otherwise.

ExampLE 4.2. (1) The constant functor with value Q is polynomial of degree O in
ranks > —1.
(2) For k > 0, let Qi denote the VIC-module such that Qx(Z*) = Q and Q(Z") = 0 for
n # k. Then we have ker Q; = Q, coker Q; = Q4. Therefore, Qy is polynomial of
degree O in ranks > k + 1.
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(3) For the truncation Qs; of Q at k, we have ker Qs = 0 and coker Qs; = Qp_;.
Therefore, Qs is polynomial of degree 0 in ranks > k.

REmARK 4.3. Our definition of polynomial VIC-modules is slightly stronger than that in
[11] for a technical reason. We need this strengthened definition to have Lemma 4.6. In
[11], they required the condition that if V is polynomial of degree < r in ranks > m, then
kerV = 0 in ranks > m instead of in ranks > m — r — 1. Patzt [13] used a still weaker
condition in which coker V is polynomial of degree < r — 1 in ranks > m. If m = —1, then
all of the three definitions of polynomiality coincide.

Let V be a polynomial VIC-module of degree < r in ranks > m. The polynomial-
ity of finite-dimensional VIC-modules implies the polynomiality of dimensions, that is, if
dim(V(Z")) is finite for each n > m, then there is a polynomial f(x) such that we have
dim(V(Z")) = f(n) for any n > m. Therefore, we obtain the following lemma.

Lemma 4.4. Let V be a polynomial VIC-module of degree < r in ranks > m. If there
exists a polynomial P(x) of degree r such that for each n > m, dim(V(Z")) = P(n), then V is
polynomial of degree r in ranks > m.

By the definition of polynomiality, we can always increase ranks m if we fix degrees r.
Moreover, we have the following lemma.

Lemma4.5. Let s > randn > m+ s—r. If Vis a polynomial VIC-module of degree < r
in ranks > m, then V is polynomial of degree < s in ranks > n.

Proof. If V is polynomial of degree < r in ranks > m, then ker V = 0 in ranks > m —r — 1.
Since we have n—s—1 > m—r—1,ker V = O inranks > n—s—1. Also coker V is polynomial
of degree < r — 1 in ranks > m — 1. Since we have s > randn > m + (s —r) > m, coker V is
polynomial of degree < s — 1 in ranks > n — 1. Therefore, V is polynomial of degree < s in
ranks > n. O

It follows from Lemma 4.5 that a polynomial VIC-module V of degree < —1 in ranks > m
is polynomial of degree < s in ranks > m + s + 1 for any s > —1.

One can see that polynomiality of degree r in ranks > m is not closed under subquotient
VIC-modules by Example 4.2. However, we have the following properties of polynomial
VIC-modules, in which we adapt Patzt’s lemma to our definition of polynomiality.

Lemma 4.6 (Cf. Patzt [13, Lemma 7.3]). (a) Let m,r > —1 be integers. Let V' — V and
V — V" be morphisms of VIC-modules such that the truncations form the following short
exact sequence

- 0.

4.1.1) 0- V.

17
>m-r - Vmer -V

>m—r

If two of V, V' and V" are polynomial of degree < r in ranks > m, then so is the third.
(b) Let V and W be polynomial VIC-modules of degrees < r and < s, respectively. Then
the tensor product V® W has polynomial degree < r + s.

Proof. (b) is essentially a special case of [13, Lemma 7.3. (b)].
Let us prove (a) by adapting the proof of [13, Lemma 7.3 (a)]. The case of r = —1 is
obvious. We use induction on r. Suppose that the case of degree < r— 1 holds. From (4.1.1),
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by the Snake Lemma, we have an exact sequence
4.1.2) 0— kerV' — kerV — ker V' — coker V' — coker V — coker V' — 0

inranks >m—r—1.
We first show that it suffices to verify that the exact sequence (4.1.2) splits into two short
exact sequences in ranks > m —r — 1

(4.1.3) 0— kerV' - kerV — ker V"’ — 0,
4.1.4) 0 — coker V' — coker V — coker V' — 0.

Since two of ker V’, ker V and ker V"’ are zero in ranks > m — r — 1, the other is also zero in
ranks > m — r — 1 by (4.1.3). Since two of coker V’, coker V and coker V" are polynomial
of degree < r — 1 in ranks > m — 1, and since we have an exact sequence (4.1.4) in ranks
> m —r — 1, we can use the induction hypothesis, which completes the proof of (a).

We will show that (4.1.2) splits into (4.1.3) and (4.1.4). If V" is polynomial of degree < r
in ranks > m, then we have ker V"’ = 0 in ranks > m — r — 1, which implies the splitting
of the exact sequence (4.1.2). Suppose V and V' are polynomial of degree < r in ranks
> m. Then coker V’ is polynomial of degree < r» — 1 in ranks > m — 1. Therefore, we have
kercoker V' = 0 in ranks > m — r — 1. By the following commutative diagram in ranks

>m—-r—1
ker V" ——— coker V’
ker? V/ — kercoker V' = 0,
the exact sequence (4.1.2) splits. m|

We also need the following lemma.

Lemma 4.7. Let V and V' be VIC-modules such that V @ V' is polynomial of degree < r
in ranks > m. Then both 'V and V' are polynomial of degree < r in ranks > m.

Proof.
Since we have a short exact sequence of VIC-modules

0-V-osVeV -V -0,

the statement follows from the proof of Lemma 4.6 (a). O

4.2. Polynomial VIC-module V‘*9 of traceless tensors. For a free abelian group M, let
Mg = M®zQ. Associating Mg to each object M of VIC forms a VIC-module V. We have
another VIC-module V%! such that V%!(M) = Mé for an object M of VIC. For a morphism
(f,C) : M — N of VIC, if we choose a basis {x;} for Mg and {z;} for Cq, then {f(x;)} U {z;}
forms a basis for Ng. Then the linear map V*!((f, C)) : M7, — N sends x to y, where {x'}
is the dual basis for M, and y' is dual to f(x;) for each i. The VIC-modules V'¥ and V!
are polynomial of degree 1 by [17, Definition 3.3]. For p,q > 0, let

yPa = (V1,0)®p ® (V(),l)@q7 M — ng — Mgp ® (Mé)(@q
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denote the tensor product of copies of VIC-modules V!? and V*!. By Lemma 4.6, the VIC-
module V4 is polynomial of degree < p + g, which is actually of degree p + ¢ by Lemma
4.4 since we have dim(V?4(n)) = n?*4 for n > 0.

The construction of the GL(n, Q)-module H”? in Section 2 can be extended into a VIC-
module since there is a VIC-module map

c:vhl o VO’O,

such that for each M € Ob(VIC), the map cy; : VHI(M) — VOO(M) is the evaluation map
Mg ® M(*Q - Q,v® f = f(v). Let V2 denote the VIC-module consisting of H"?(n),
which we call the traceless part of VP4,

For 0 </ < min{p, ¢}, let

ApgD) = {1 j0)s - Gt jian)) € ([P X [gD)'! | 50 sinere),
For I = (i1, j1)s - - -+ (i1e1. jir1) € Apg(D), let
cp: VP — ypilasid

denote the VIC-module map that is obtained as the composition of contraction maps defined
by

L@ - ®v)e(fi® 8 f)

I+1
'_){ﬂ@i,»fj)](vl@'”gi\l'”lz:l"'®Up)®(fl®"'?j\1"']7j:"'®fq)-

r=1
Let k = min{p, ¢}. Define an increasing filtration F* = {F Do<i<k
Vet — FO cFlc...c Flc F*l ... c Fk = ypra

of the VIC-module V7 by

(421) Fl:ke]‘[ @ cr o Vp’q_> @ Vp—l—l,q—l—l .

IeA,, () IeA,, (D)

Lemma 4.8. For 1 <[ < k, consider the following sequence of VIC-modules

(4.22) 0— F-I_Lpl T, @B vetad o,
IeA,, ,(I-1)
where i is the inclusion and n is the restriction of the map EB[EA (-1 €1 o F' and
P4

@IEAp,q(l—l) VP=La=h Ifn > p + q, then the sequence (4.2.2) evaluated on 7" is exact.

Proof.

By the definition of F! (4.2.2)is exact at F~! and F'.

By the definition of F/ < VP4, it follows from Lemma 4.9 below that 7 : F' —
D, Apai=1) V{P=ta=b ig surjective when evaluated on Z" forn > p + q. o

Note that the map from F’ in (4.2.2) is not always surjective in small ranks. For example,
(4.2.2) is not exact when [ = p = ¢ since we have F7(0) = 0 and V*?(0) = Q.
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Lemma 4.9. Ifn > p + g, then the image of the VIC-module map

@ CI : Vp’q - @ Vp_l,q_l

TeA,,(1-1) TeA,,(I-1)
evaluated on 7" contains P, A1) vip-tah(zm),

Proof. Let{e; | i = 1,...,n} be a basis of Q" = (Z")q and {e} the dual basis of (Q")".
Sincen > p+q > (p—1) + (g — ), the traceless part yir=ta=bzrny c vr-tal(zm) is generated
by the element

. ~Lg-1
ep-lg-1:=€1®r® ®e, @€, @€, | ® @€, ;. €V TIZ)

as a GL(n, Z)-module (see [8, Lemma 2.2]). Since n > p + g, foreach I € A, (I - 1), we
have an element e,,_; ,_;.; € VP4(Z") such that c;(e,—; 4-1.1) = ep-1,4-1 and cp(ep—; 4—1.1) = O for
I # I. Indeed, e,,_; ;1 is the permutation of the tensor e),_; ,_;®(e p_1+1®e;_ )®- - -®(e p®e;)
obtained as follows. Foreachk =1, ...,/ the tensors e,,_;., e;_ 1+x are placed at the positions
specified by (i, jx) € I, respectively, and the tensor factors of e,_;,; are placed at the other
positions in an order-preserving way. For example, if p = 3, = 5,/ = 2,n = 10 and
I={(1,2),(3,5)}, then we have e, ;411 = e2 ® €1 @ e3 R €], ® €; ® ey B e D 5. |

By using (4.2.2), we can easily check that forn > p + ¢

min{p,q}
4.2.3) dim(VP2 (n)) = Z (—1)"(1;)(?)1'! nPra2

i=0

which is a monic polynomial in n of degree p + g.
Proposition 4.10. The VIC-module VP9 is polynomial of degree p+q in ranks > 2(p+q).

Proof. By symmetry, we may assume p > g. We prove that V7 is polynomial of degree
< p + g inranks > 2(p + ¢) by induction on g. If g = 0, then for any i > 0, the VIC-module
V@0 = y® s polynomial of degree < i in ranks > —1, hence in ranks > 2i. Suppose that
V) is polynomial of degree < i + j in ranks > 2(i + j) forany j < ¢— 1 and i > j. Then we
have a filtration F* = {F'}o</<, of V{»? defined in (4.2.1). Here we use descending induction
on [. For [ = g, we have F' = F4 = VP4, which is polynomial of degree < p + g. Suppose
that F' is polynomial of degree < p + ¢ in ranks > 2(p + ¢). Then from (4.2.2), we have an
exact sequence

0— F-' 5 Fl - (V<P—l,q—l>)®(lzj)({1])” -0

inranks > p+¢g—1 = 2(p +¢g) — (p + q) — 1. By the induction hypothesis, V»~14=D is
polynomial of degree < p + g — 2/ in ranks > 2(p + g — 2I). By Lemma 4.5, V(=447 ig also
polynomial of degree < p + ¢ in ranks > 2(p + ¢). Hence, by Lemma 4.6, (V¢7~la=0)y2(D(D!
is polynomial of degree < p+g¢ in ranks > 2(p+¢). Since F' is polynomial of degree < p+¢g
in ranks > 2(p + ¢), by Lemma 4.6, so is F/~!. Therefore, by induction, we see that V¢»4’ is
a polynomial VIC-module of degree < p + ¢ in ranks > 2(p + ¢g). By Lemma 4.4 and (4.2.3),
the polynomial degree of V9 is p + q. O
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Remark 4.11. (1) The range “> 2(p + ¢)” in the statement of Proposition 4.10 is not
optimal. For example, if p = 0 or ¢ = 0, then we have V{9 = VP4 which is polynomial of
degree p + g in ranks > —1.

(2) Proposition 4.10 holds also with the definitions of polynomiality given in Patzt [13]
and Kupers—Miller—Patzt [11], since our definition of polynomiality is stronger than theirs.
The range “> 2(p + ¢)” could be improved if we use their definitions. If we use Patzt’s
definition, we see that the range is > p + g — 1 by the same argument as the proof of
Proposition 4.10.

4.3. The polynomial VIC-module V,. Here we construct a polynomial VIC-module V,
for each bipartition A.
For a bipartition A = (4, 1"), let p = |4] and g = |A’|. Define the VIC-module V, as

Va(M) = VPO (M) gz, xz,) (S © SY)

for M € Ob(VIC), where Q[S, x ] acts on VP2 (M) on the right by permutation of tensor
factors. Note that the GL(n, Z)-module V,(Z") is isomorphic to the GL(n, Z)-module V,(n)
defined in (2.0.2).

The direct sum decomposition (2.0.3) of GL(n, Z)-modules can be extended to the fol-
lowing.

Lemma 4.12. We have a direct sum decomposition of VP9 as a VIC x (S, xSy)-module

(4.3.1) ver = B viestesh)
A=)
[A=p, 1V]|=q

Proof. In the category of VIC X (S, x &,)-modules, we have

VPO = v @y e o1 (Q[S,]® Q[S,])

~ V(pa‘1> ®Q[€px€q] (@ S/l ® S/l] ® [@ S/]’ ® S,I/]

[l=p 1Vl=q

IR

(VP @z 2, (ST @ ST)) @ (5 @ SY)
[A=p, 1V |=q

V,® (' e Ss). O
[A=p, |V |=q

1R

The following lemma should be well known, but we sketch a proof here since we could
not find a suitable reference.

Lemma 4.13. For each bipartition A, there is a polynomial f(x) of degree |A| such that
dim(V(n)) = fu(n) for n > |A|.

Proof. Let n > |4|. The dimension of V,o(n) ® V1 (n) is polynomial of degree |1]. We
can obtain the lemma by using induction, since we have a decomposition

Vigm @ Vo) = Vapme @ Vi,
<A, <]

where the constants ¢, ,/, not depending on n, are determined by the Littlewood—Richardson
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coefficients (see [9]). m|

Proposition 4.14. Let 1 = (4, ") be a bipartition. If either A = 0 or ' = 0, then the
VIC-module V, is polynomial of degree |A| (in ranks > —1). Otherwise, the VIC-module V,
is polynomial of degree |A| in ranks > 2|A|.

Proof. Let p = |4] and g = |A'].

Suppose p = 0 or g = 0. Then V{79 = VP4 is polynomial of degree < p + ¢. Since V, is
a direct summand of V79 by Lemma 4.12, it follows from Lemma 4.7 that V, is polynomial
of degree < p + ¢ = 4.

Suppose p,q # 0. By Proposition 4.10, V{79 is polynomial of degree < p + g in ranks
> 2(p + q). By Lemma 4.12, V, is a direct summand of V@ Hence, by Lemma 4.7, it
follows that V, is a polynomial VIC-modules of degree < p + ¢ in ranks > 2(p + g). m|

4.4. Irreducibility of V, in the stable category of VIC-modules. In this subsection, we
make a digression and observe that the VIC-module V), is an irreducible object in the stable
category of VIC-modules, which is independently known to Powell [14].

The functor V, is not an irreducible object in the category VIC-mod of VIC-modules
since any irreducible object V in VIC-mod is concentrated at one rank, i.e., there is an
integer r > O such that we have V(n) = O for all n # r. Thus the VIC-module V, has
infinitely many irreducible subquotients.

We here consider the stable category of VIC-modules defined by Djament and Vespa [4],
which is defined as follows. (See also [19, 20] and Remark 4.16 below.) A VIC-module F
is called stably zero if for any element x € F(n), n > 0, there is N > n such that we have
F(i,n)(x) = 0, where i,y : Z" — ZN is the canonical inclusion. Let Sz denote the full
subcategory of VIC-mod whose objects are stably zero VIC-modules. Then Sz is a Serre
subcategory of VIC-mod. The stable category of VIC-modules, St, is the quotient abelian
category St = VIC-mod/Sz. Let 7 : VIC-mod — St denote the canonical functor.

Proposition 4.15 (independently known to Powell [14]). For each bipartition A, the ob-
Jject 1(Vy) is irreducible in St.

Proof. Recall that the GL(n, Z)-module V,(Z") given by the VIC-module structure co-
incides with the irreducible GL(n,Z)-module V,(n) defined in (2.0.2). If V is any VIC-
submodule of V; such that V' # 0, then there is an integer N > (1) such that we have

{o O<n<N)
V(Z") =
Va(Z" (N <n).

Since the quotient VIC-module V,/V is stably zero, we have an isomorphism V = V) in the
stable category St. Hence n(V,) is irreducible in St. O

RemMark 4.16. Proposition 4.15 could also be proved by adapting Sam and Snowden’s
results on VIC(C)-modules [19, 20]. In [19], they proved that simple objects of the category
Rep(GL) of algebraic GL.,(C)-modules are classified by bipartitions, and in [20] they proved
that Rep(GL) is equivalent to the stable category of algebraic VIC(C)-modules. These results
seem to imply that the VIC(C)-variant of the VIC-module V, is a simple object in the stable
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category of VIC(C)-modules.

Remark 4.17. In the stable category St, one can check that 7#(V”4) admits a composi-
tion series with composition factors of the form n(V,) for bipartitions A by using the exact
sequence (4.2.2) and Lemma 4.12.

4.5. Improvement of Borel’s vanishing theorem. In this subsection, we improve
Borel’s vanishing range for coefficients in the VIC-modules V;; by adapting the proof of
the following result of Kupers, Miller and Patzt [11].

Theorem 4.18 (Kupers—Miller—Patzt [11, Theorem 7.6]). Let A # 0 be a partition. Then
we have

H,(GL(n,Z),V,0) =0
for p < n—|A|. For trivial coefficients, we have an isomorphism
H,(GL(n,Z),Q) = Hy,(GL(n + 1,2),Q)

for p <n.

In order to prove Theorem 4.18, Kupers, Miller and Patzt used the homology H,(GL(n, Z),
GL(n — 1,2Z); V(Z"), V(Z"Y)) of the pair (GL(n — 1,Z), GL(n, Z)) with coefficients in VIC-
modules V defined as follows. (See [5] for details of the construction.) Let R; be a projective
resolution of Z over Z[GL(i,Z)] for i = n — 1,n. There is a chain map R,-; — R, induced
by idz, which is unique up to chain homotopy. Then we have a chain map

® : R, ®cLin-12) V(Z") = R, ®cLnz) V(Z")

induced by the chain map R,_; — R, and the structure map V(Z"~') — V(Z"). The homol-
ogy H,(GL(n,Z),GL(n - 1,2); V(Z"), V(Z"1)) is defined as the homology of the mapping
cone C.(®) of the chain map ®. We have the following.

Theorem 4.19 (Kupers—Miller—Patzt [11, Theorem 7.3]). Let V be a polynomial VIC-
module of degree r in ranks > m in the sense of [11]. Then we have

H,(GL(n,Z),GL(n - 1,Z); V(Z"), V(Z" ")) =0

for p < n — max{r,m}. Consequently, the inclusion GL(n — 1,Z) — GL(n, Z2) induces an
isomorphism

H,(GL(n - 1,2), V(Z') = H,(GL(n,Z), V(Z"))
for p <n—1—-max{r,m}.

Here we adapt Theorem 4.19 and generalize Theorem 4.18 to the VIC-module V,. For a
bipartition 4 = (4, ) and a non-negative integer p, set

p+1+J4 (fA1=00rd" =0)

ngmp(4, p) =
KMPLS P {p + 1+ 2[4] (otherwise).

Theorem 4.20 (weaker than Theorem 1.1). Let A # (0,0) be a bipartition. Then we have

HP(GL(n,Z),Vy) =0
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Sfor n > nxmp(4, p).

Proof. Recall from Remark 4.3 that our definition of polynomiality is stronger than that
in [11]. By Proposition 4.14 and Theorem 4.19, we have

H, |(GL(n - 1,Z), Vy(Z'™")) = H,_(GL(n, Z), Va(Z"))

forp <n—|4lif A=0o0r A" =0, and for p < n—2|4| otherwise. Considering the dual vector
space, we obtain H,_1(GL(n, Z2), Va(Z"))" = H"Y(GL(n,2), V(Z")). By Corollary 3.4, we
have H?(GL(n,Z),V,) = 0forn > p+1+|4/if A =0o0r A" =0, and forn > p + 1 + 2|4
otherwise. |
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