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Abstract
Borel’s stability and vanishing theorem gives the stable cohomology of GL(n,Z) with coeffi-

cients in algebraic GL(n,Z)-representations. We compute the improved stable range that Borel
suggested. In order to further improve Borel’s stable range, we adapt the method of Kupers–
Miller–Patzt to any algebraic GL(n,Z)-representations.

1. Introduction

1. Introduction
Borel proved the stability of the rational cohomology of GL(n,Z) and computed the stable

cohomology [1]. He also proved the vanishing of the stable cohomology of GL(n,Z) with
coefficients in non-trivial algebraic GL(n,Z)-representations [2]. He gave constants for the
stable ranges and suggested improved stable ranges, but he did not compute these stable
ranges explicitly except for a few families of representations.

Li and Sun [12] improved Borel’s stable ranges and obtained stable ranges that are in-
dependent of coefficients. For coefficients in polynomial GL(n,Z)-representations, Kupers,
Miller and Patzt [11] improved the stable ranges by using arguments on polynomial VIC-
modules.

In this paper, we compute the improved stable range that Borel suggested. We also adapt
Kupers, Miller and Patzt’s argument to coefficients in algebraic GL(n,Z)-representations
indexed by bipartitions, i.e., pairs of partitions. Our results are weaker than Li and Sun’s.
However, the methods are very different and we think that it is still worth publishing these
results.

1.1. Stable range for the cohomology of GL(n,Z).
1.1. Stable range for the cohomology of GL(n,Z). The improved stable range given by

Li and Sun [12] is as follows.

Theorem 1.1 (Borel [1, 2], Li–Sun [12]). (1) For each integer n ≥ 1, the algebra map

H∗(GL(n + 1,Z),Q)→ H∗(GL(n,Z),Q)

induced by the inclusion GL(n,Z) ↪→ GL(n+1,Z) is an isomorphism for ∗ ≤ n−2. Moreover,
we have an isomorphism

H∗(GL(n,Z),Q) �
∧
Q

(x1, x2, . . .), deg xi = 4i + 1

in degrees ∗ ≤ n − 2.
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(2) Let V be an algebraic GL(n,Q)-representation such that VGL(n,Q) = 0. Then we have

Hp(GL(n,Z),V) = 0 for p ≤ n − 2.

Kupers, Miller and Patzt’s stable range [11] for the rational cohomology is wider by 1
than that of Li and Sun.

Theorem 1.2 (Borel [1, 2], Kupers–Miller–Patzt [11]). We have

H∗(GL(n,Z),Q) �
∧
Q

(x1, x2, . . .), deg xi = 4i + 1

in degrees ∗ ≤ n − 1.

We now state our main result. For a bipartition λ = (λ, λ′), let Vλ denote the (irreducible
or zero) algebraic GL(n,Z)-representation corresponding to λ (see Section 2).

Theorem 1.3 (Corollary 3.4 and Theorem 4.20, weaker than Theorem 1.1). Let λ � (0, 0)
be a bipartition. Then we have

Hp(GL(n,Z),Vλ) = 0

for n ≥ n0(λ, p).

Here the constant n0(λ, p) is defined as follows. For a partition λ, let |λ| and l(λ) denote
the size and length of λ, respectively. Let λ = (λ, λ′) be a bipartition and p a non-negative
integer. Let |λ| = |λ| + |λ′| and deg λ = |λ| − |λ′|, and set

n0(λ, p) = min{nKMP(λ, p), nB(λ, p)},
where

nKMP(λ, p) =

⎧⎪⎪⎨⎪⎪⎩p + 1 + |λ| if λ = 0 or λ′ = 0

p + 1 + 2|λ| otherwise

and

nB(λ, p) = max{2p + 2, 2| deg λ| + 1, 2l(λ), 2l(λ′)}.
Remark 1.4. Let us compare the value of nKMP(λ, p) and nB(λ, p). For a fixed λ, we have

nKMP(λ, p) < nB(λ, p) for all but finitely many p. If p is relatively small with respect to λ
then we sometimes have nB(λ, p) < nKMP(λ, p). For example, we have nKMP((4, 4), 1) = 18
and nB((4, 4), 1) = 4. Note that Theorem 1.1 gives a better bound 3 in this case.

Remark 1.5. This paper stemmed from the first version of [7] (with a different title),
which included the two approaches to improve Borel’s stable ranges described in this paper.
In [7], we combined the improved version of Borel’s theorem with the Hochschild–Serre
spectral sequence associated to the short exact sequence of groups

1→ IAn → Aut(Fn)→ GL(n,Z)→ 1,

where Aut(Fn) is the automorphism group of a free group Fn of rank n, and IAn is the IA-
automorphism group of Fn, in order to study the stable cohomology of Aut(Fn) and IAn

possibly with twisted coefficients. After the first version of [7] appeared on the arXiv, Oscar
Randal-Williams informed us of the result of Li and Sun about the improvement of the Borel
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theorem [12]. Since our results for Borel’s stable range turned out to be weaker than Li and
Sun’s, we have decided to remove these results from [7] and to rely on Li and Sun’s result
there.

1.2. Organization of the paper.
1.2. Organization of the paper. The rest of this paper is organized as follows. In Section

2, we recall some facts about the representation theory of GL(n,Q). In Section 3, we recall
Borel’s stability and vanishing theorem for GL(n,Z) and compute the improved stable range
that Borel suggested for irreducible algebraic representations. In Section 4, we improve the
stable range by using the arguments of Kupers, Miller and Patzt [11].

2. Algebraic GL(n,Z)-representations

2. Algebraic GL(n,Z)-representations
Let n ≥ 1 be an integer. A polynomial GL(n,Q)-representation is a finite-dimensional

Q[GL(n,Q)]-module V such that after choosing a basis for V , the (dim V)2 coordinate func-
tions are polynomial in the n2 variables. A GL(n,Q)-representation is called algebraic if
the coordinate functions are rational functions. See [6] for some facts from representation
theory.

As is well known, irreducible polynomial GL(n,Q)-representations are classified by par-
titions with at most n parts. A partition λ = (λ1, λ2, . . . , λl) is a weakly decreasing sequence
of non-negative integers. The length l(λ) of λ is defined by l(λ) = max{{0} ∪ {i | λi > 0}} and
the size |λ| of λ is defined by |λ| = λ1 + · · · + λl(λ).

We denote by H = H(n) = Qn the standard representation of GL(n,Q). In the follow-
ing, we usually omit (n). For a partition λ, the Specht module Sλ for λ is an irreducible
representation of S|λ| defined by using the Young symmetrizer associated to λ. Define the
GL(n,Q)-representation

Vλ = Vλ(n) = H⊗|λ| ⊗Q[S|λ|] Sλ.

If l(λ) ≤ n, then Vλ is an irreducible polynomial GL(n,Q)-representation. Otherwise, we
have Vλ = 0.

The GL(n,Q)-representation H∗ dual to H is not polynomial but algebraic since the action
of GL(n,Q) on H∗ is given by A 	→ (tA)−1. Let p, q ≥ 0 be integers. We set Hp,q =

H⊗p ⊗ (H∗)⊗q. We have an isomorphism (Hq,p)∗ = (H⊗q ⊗ (H∗)⊗p)∗ � H⊗p ⊗ (H∗)⊗q = Hp,q.
For a pair (i, j) ∈ {1, . . . , p} × {1, . . . , q}, we define the contraction map

ci, j : Hp,q → Hp−1,q−1(2.0.1)

by

ci, j((v1 ⊗ · · · ⊗ vp) ⊗ ( f1 ⊗ · · · ⊗ fq)) = 〈vi, f j〉(v1 ⊗ · · · v̂i · · · ⊗ vp) ⊗ ( f1 ⊗ · · · f̂ j · · · ⊗ fq)

for v1, . . . , vp ∈ H and f1, . . . , fq ∈ H∗, where the dual pairing 〈−,−〉 : H ⊗ H∗ → Q is
defined by 〈v, f 〉 = f (v). Note that 〈−,−〉 is GL(n,Q)-equivariant.

The traceless part H〈p,q〉 of Hp,q is defined by

H〈p,q〉 =
⋂

(i, j)∈{1,...,p}×{1,...,q}
ker ci, j ⊂ Hp,q,

which is a GL(n,Q)-subrepresentation of Hp,q.
A bipartition is a pair λ = (λ, λ′) of two partitions λ and λ′. The length l(λ) of the
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bipartition λ is defined by l(λ) = l(λ)+ l(λ′). The degree of λ is defined by deg λ = |λ|− |λ′| ∈
Z, and the size of λ by |λ| = |λ| + |λ′|. We define the dual of λ by λ∗ = (λ′, λ).

We associate to each bipartition λ = (λ, λ′) the GL(n,Z)-representation

Vλ = Vλ(n) = H〈p,q〉 ⊗Q[Sp×Sq] (Sλ ⊗ Sλ
′
),(2.0.2)

where p = |λ| and q = |λ′|. If l(λ) ≤ n, then Vλ is an irreducible algebraic GL(n,Q)-
representation with highest weight

(λ1, . . . , λl(λ), 0, . . . , 0,−λ′l(λ′), . . . ,−λ′1).

Otherwise, we have Vλ = 0. It is well known that irreducible algebraic GL(n,Q)-
representations are classified by bipartitions λ with l(λ) ≤ n (see [6, 9]).

The traceless part H〈p,q〉 of Hp,q admits the following direct-sum decomposition as a
Q[GL(n,Q) × (Sp ×Sq)]-module

H〈p,q〉 =
⊕

λ=(λ,λ′):bipartition with
l(λ)≤n, |λ|=p, |λ′|=q

Vλ ⊗ (Sλ ⊗ Sλ
′
).(2.0.3)

(See [9, Theorem 1.1]. See also Lemma 4.12 for the statement as VIC-modules.)
Note that we have GL(n,Q)-isomorphisms det �

∧n H � V1n , where det denotes the
determinant representation, and 1n = (1, . . . , 1) consists of n copies of 1. For any bipartition
λ = (λ, λ′) with l(λ) ≤ n, we have an isomorphism

Vλ � Vμ ⊗ detk,

for some partition μ with at most n parts and an integer k such that

(λ1, . . . , λl(λ), 0, . . . , 0,−λ′l(λ′), . . . ,−λ′1) = (μ1 + k, . . . , μn + k).

By an algebraic GL(n,Z)-representation, we mean the restriction of an algebraic
GL(n,Q)-representation to GL(n,Z). Note that det2 is trivial as a GL(n,Z)-representation.
It follows that any irreducible algebraic GL(n,Z)-representation is obtained from an irre-
ducible polynomial GL(n,Q)-representation by restriction to GL(n,Z).

3. Borel’s improved stable range

3. Borel’s improved stable range
In [1, 2], Borel computed the cohomology Hp(Γ,V) of an arithmetic group Γ with coeffi-

cients in an algebraic Γ-representation V in a stable range

p ≤ N(Γ,V) = min{M(Γ(R),V),C(Γ(Q),V)},
where M(Γ(R),V) and C(Γ(Q),V) are constants depending only on Γ and V . For Γ =
SL(n,Z), we have M(SL(n,R),V) ≥ n−2. Borel did not compute the constant C(SL(n,Q),V)
explicitly except for a few families of representations. Recently, Krannich and Randal-
Williams [10] gave an estimate of C(SL(n,Q),V).

Borel remarked that one can replace the constant C(Γ(Q),V) by an improved constant
C′(Γ(Q),V) ≥ C(Γ(Q),V) [2, Remark 3.8]. In this section, we give an estimate of Borel’s
improved constant for Γ = SL(n,Z). The constant C′(SL(n,Q),V) depends not only on n but
also on V , unlike the cases of Sp(2n,Z) and SO(n, n;Z) which were determined by Tshishiku
[21].
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3.1. Borel’s stable range for the cohomology of SL(n,Z).
3.1. Borel’s stable range for the cohomology of SL(n,Z). Here we recall Borel’s result.

Let

N′(SL(n,Z),V) = min{M(SL(n,R),V),C′(SL(n,Q),V)},
where the constant C′ is defined below.

Theorem 3.1 (Borel [1, 2]). (1) For each integer n ≥ 1, the algebra map

H∗(SL(n + 1,Z),Q)→ H∗(SL(n,Z),Q)

induced by the inclusion SL(n,Z) ↪→ SL(n+1,Z) is an isomorphism for ∗ ≤ N′(SL(n,Z),Q).
Moreover, we have an isomorphism

H∗(SL(n,Z),Q) �
∧
Q

(x1, x2, . . .), deg xi = 4i + 1

in degrees ∗ ≤ N′(SL(n,Z),Q).
(2) Let V be an algebraic SL(n,Q)-representation such that VSL(n,Q) = 0. Then we have

Hp(SL(n,Z),V) = 0 for p ≤ N′(SL(n,Z),V).

3.2. Preliminaries from representation theory.
3.2. Preliminaries from representation theory. Before defining Borel’s constant, we

recall necessary facts from representation theory. See [6] for details.
Let n ≥ 2 be an integer. Let h ⊂ sln(C) denote the Cartan subalgebra

h = {a1H1 + · · · + anHn | a1 + · · · + an = 0},
where Hi is the matrix whose (i, i)-th entry is 1 and other entries are 0. We write the dual
vector space h∗ as

h∗ = C{L1, . . . , Ln}/C(L1 + · · · + Ln),

where Li is the linear map from the space of diagonal matrices to C satisfying Li(Hj) = δi, j.
The set of roots of sln(C) is {Li − Lj | i � j}, that of positive roots is {Li − Lj | i < j} and that
of simple roots is {αi = Li − Li+1 | 1 ≤ i ≤ n − 1}.

An element u = u1L1 + · · · + unLn with
∑

ui = 0 will be denoted by [u1, . . . , un]. For
an element φ ∈ h∗, we write φ > 0 if φ =

∑
i ciαi with ci > 0 for all i. Note that φ =

[φ1, . . . , φn] ∈ h∗ satisfies φ > 0 if and only if φ1 + · · · + φi > 0 for any i = 1, . . . , n − 1.
The Weyl group W of sln(C) is the symmetric group Sn = 〈s1, . . . , sn−1〉. The generator

si permutes Li and Li+1 and fixes the other Lk. The length l(σ) of an element σ ∈ W is
the minimum length of the words in the si representing σ. Set Wq = {σ ∈ W | l(σ) = q},
which consists of elements that send exactly q positive roots to negative roots. We have
W =

∐l(w0)
q=0 Wq, where l(w0) = 1

2 n(n − 1) is the length of the longest element w0 of W = Sn.

3.3. The constant C′(SL(n,Q),V).
3.3. The constant C′(SL(n,Q),V). Here we define Borel’s improved constants C′.
For a bipartition λ with l(λ) ≤ n, let

μλ = (μ1, . . . , μn) = (λ1, . . . , λl(λ), 0, . . . , 0,−λ′l(λ′), . . . ,−λ′1)(3.3.1)

be the highest weight of Vλ. Let ρ ∈ h∗ be half the sum of the positive roots. Then we have

ρ = [
n − 1

2
,

n − 3
2
,

n − 5
2
, . . . ,−n − 1

2
].
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Since we have μ1 + · · · + μn = deg λ, it follows that

ρ + μλ = [
n − 1

2
− α + μ1,

n − 3
2
− α + μ2, · · · ,−n − 1

2
− α + μn],

where α = 1
n deg λ. Define

C′(SL(n,Q),Vλ) = max{q ∈ {0, . . . , l(w0)} | σ(ρ + μλ) > 0 for all σ ∈ Wq} ≥ 0.

Then we can easily check that

(3.3.2) C′(SL(n,Q),Vλ) = C′(SL(n,Q),Vλ∗),

where λ∗ is the dual partition of λ.
For an algebraic SL(n,Q)-representation V , we set

C′(SL(n,Q),V) = min
λ

C′(SL(n,Q),Vλ),

where λ runs through all bipartitions such that Vλ is isomorphic to a direct summand of V .

3.4. Estimate of C′(SL(n,Q),Vλ).
3.4. Estimate of C′(SL(n,Q),Vλ). For each bipartition λ, we define the integer nB(λ) ≥ 0

by

nB(λ) := max{2| deg λ| + 1, 2l(λ), 2l(λ′)}.
Theorem 3.2. Let n ≥ 2. Let λ = (λ, λ′) be a bipartition. Then for every n ≥ l(λ), we

have

C′(SL(n,Q),Vλ) ≤ �n/2� − 1.(3.4.1)

Equality holds if n ≥ nB(λ).

Proof. We first prove (3.4.1). If n is odd and (ρ + μλ) n+1
2
= −α + μ n+1

2
≥ 0, then for

σ− = sn−1 · · · s n+1
2
∈ W, the coefficient of Ln in σ−(ρ + μλ) is (ρ + μλ) n+1

2
≥ 0. If n is odd

and (ρ + μλ) n+1
2
< 0, then for σ+ = s1 · · · s n−1

2
∈ W, the coefficient of L1 in σ+(ρ + μλ)

is (ρ + μλ) n+1
2
< 0. If n is even, then we have either (ρ + μλ) n

2
= 1/2 − α + μ n

2
≥ 0 or

(ρ + μλ) n
2+1 = −1/2 − α + μ n

2+1 ≤ 0. If the former holds, then for σ− = sn−1 · · · s n
2
∈ W, the

coefficient of Ln in σ−(ρ+μλ) is (ρ+μλ) n
2
≥ 0. If the latter holds, then forσ+ = s1 · · · s n

2
∈ W,

the coefficient of L1 in σ+(ρ + μλ) is (ρ + μλ) n
2+1 ≤ 0. Therefore, in each case, we have

σ±(ρ + μλ) ≯ 0, which implies (3.4.1).
By (3.3.2), we have only to consider the case where α ≥ 0, that is, when |λ| ≥ |λ′|. Sup-

pose that we have n ≥ nB(λ). Thus, we have 0 ≤ α < 1/2. We first prove C′(SL(n,Q),Vλ) =
�n/2� − 1 for 2 ≤ n ≤ 4. For n = 2, 3, this is obvious since we have �n/2� − 1 = 0. For n = 4,
since we have l(λ), l(λ′) ≤ 2, it follows that

ρ + μλ = [3/2 + λ1 − α, 1/2 + λ2 − α,−1/2 − λ′2 − α,−3/2 − λ′1 − α].

Since 0 ≤ α < 1/2, the first two coefficients are positive and the others are negative. For
σ = s1, s3 ∈ W1, it is easily checked that σ(ρ + μλ) > 0. For σ = s2, we also have
σ(ρ + μλ) > 0 since we have λ1 ≥ λ′2 and thus

(3/2 + λ1 − α) + (−1/2 − λ′2 − α) = 1 − 2α + λ1 − λ′2 ≥ 1 − 2α > 0.

Therefore, we have C′(SL(n,Q),Vλ) = �n/2� − 1 for n = 4.
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In what follows, we will prove that for n ≥ 5, σ(ρ + μλ) > 0 for any σ ∈ W of length
�n/2� − 1. Let k ∈ {1, . . . , n − 1}. By the definition of l(σ), we have

(σ−1(1) − 1) + (σ−1(2) − 2) + · · · + (σ−1(k) − k) ≤ �n/2� − 1.

Therefore, the sum of the first k coefficients of σ(ρ + μλ) is(
n − 1

2
− (σ−1(1) − 1) − α + μσ−1(1)

)
+ · · · +

(
n − 1

2
− (σ−1(k) − 1) − α + μσ−1(k)

)

=

k∑
i=1

(
n − 1

2
− (i − 1)

)
−

k∑
i=1

(σ−1(i) − i) +
k∑

i=1

(μσ−1(i) − α)

≥ (n − k)k
2

− (�n/2� − 1) +
k∑

i=1

(μσ−1(i) − α).

Let T (k) denote the right hand side of this inequality. It suffices to show that T (k) > 0 for
each k ∈ {1, . . . , n − 1}. For k = n − 1, we have

T (n − 1) ≥ 1/2 +
n−1∑
i=1

μσ−1(i) − (n − 1)α

= 1/2 + (|λ| − |λ′| − μσ−1(n)) − (n − 1)α

= 1/2 + (nα − μσ−1(n)) − (n − 1)α

= 1/2 + α − μσ−1(n) ≥ 1/2 > 0.

For 1 ≤ k ≤ n − 2, we have

T (k) =
(n − k)k

2
− (�n/2� − 1) − kα +

k∑
i=1

μσ−1(i)

>
(n − k)k − n + 2 − k

2
+

k∑
i=1

μσ−1(i) ≥
k∑

i=1

μσ−1(i).

Therefore, it suffices to show that
∑k

i=1 μσ−1(i) ≥ 0. Let J = { j ∈ {1, . . . , �n/2�} | σ(n +
1 − j) ≤ k}. If J = ∅, then

∑k
i=1 μσ−1(i) ≥ 0 follows directly from the definition of J .

Otherwise, let J = min J . Since the length of σ is �n/2� − 1, by the hypothesis that
l(λ) ≤ n/2 and l(λ′) ≤ n/2, we have

k∑
i=1

μσ−1(i) ≥ (μ1 + · · · + μ�n/2�+1−J) + (μn+1−J + · · · + μn+1−�n/2�).

Let a = μ1 + · · · + μ�n/2�+1−J . Then we have a ≥ �n/2�+1−J
�n/2� |λ| since we have

|λ| = a + (μ�n/2�+2−J + · · · + μ�n/2�) ≤ a +
J − 1

�n/2� + 1 − J
a =

�n/2�
�n/2� + 1 − J

a.

Let b = μn+1−J + · · ·+ μn+1−�n/2�. In a similar way, we have b ≥ −�n/2�+1−J
�n/2� |λ′|. Therefore, we

have
k∑

i=1

μσ−1(i) ≥ a + b ≥ �n/2� + 1 − J
�n/2� (|λ| − |λ′|) = �n/2� + 1 − J

�n/2� nα ≥ 0.
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This completes the proof. �

Note that Theorem 3.2 does not give any information for the value of C′(SL(n,Q),Vλ) if
n < nB(λ). Some computations suggest the following conjecture, which would completely
determine C′(SL(n,Q),Vλ).

Conjecture 3.3. Let λ be a bipartition and let n ≥ l(λ) be an integer. For i = 1, . . . , n, set
a(i) = n+1

2 − i − α + μi, where μi is given in (3.3.1). Then we have

C′(SL(n,Q),Vλ) = min{i ∈ {1, . . . , n} | a(i) ≤ 0 or a(n + 1 − i) ≥ 0} − 2.

3.5. Stable range for the cohomology of GL(n,Z).
3.5. Stable range for the cohomology of GL(n,Z). Now we regard Vλ as an irreducible

algebraic GL(n,Z)-representation. We obtain a stable range for the cohomology of GL(n,Z)
with coefficients in Vλ.

For a bipartition λ and a non-negative integer p, set

nB(λ, p) = max{nB(λ), 2p + 2} ≥ 2.

Borel’s result (Theorem 3.1) and the estimate of Borel’s constant C′(SL(n,Q),Vλ) (Theorem
3.2) imply the following.

Corollary 3.4 (weaker than Theorem 1.1). Let λ be a bipartition, and let p ≥ 0 and
n ≥ nB(λ, p) be integers. Then we have the following.

(1) If λ = (0, 0), i.e., Vλ = Q, then we have

H∗(SL(n,Z),Q) � H∗(GL(n,Z),Q) �
∧
Q

(x1, x2, . . .), deg xi = 4i + 1

in cohomological degrees ∗ ≤ p.
(2) If λ � (0, 0), then we have

Hp(SL(n,Z),Vλ) = Hp(GL(n,Z),Vλ) = 0.

Proof. Since we have n ≥ nB(λ, p) ≥ nB(λ) ≥ 2, by Theorem 3.2, we have C′(SL(n,Q),
Vλ) = �n/2� − 1. Therefore, we have

C′(SL(n,Q),Vλ) = �n/2� − 1 ≤ n − 2 ≤ M(SL(n,R),Vλ).

Since we have n ≥ nB(λ, p) ≥ 2p + 2, we have

p ≤ �n/2� − 1 = C′(SL(n,Q),Vλ) = N′(SL(n,Z),Vλ).

Therefore, the case of SL(n,Z) follows from Theorem 3.1.
The case of GL(n,Z) follows from the case for SL(n,Z) and the Hochschild–Serre spectral

sequence for the short exact sequence

1→ SL(n,Z)→ GL(n,Z)→ Z/2Z→ 1. �

4. Kupers, Miller and Patzt’s method

4. Kupers, Miller and Patzt’s method
Kupers, Miller and Patzt [11] improved Borel’s original stable range for coefficients in

polynomial GL(n,Z)-representations indexed by partitions. Here we adapt their arguments
to the case of coefficients in algebraic GL(n,Q)-representations indexed by bipartitions.
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4.1. Polynomial VIC-modules.
4.1. Polynomial VIC-modules. There are mutually related theories that can be used in

the study of stability of sequences of GL(n,Z)-representations such as coefficient systems
[5, 22, 18], representation stability [3], central stability [15] and VIC-modules [16]. The
notion of polynomiality was introduced by van der Kallen [22] for coefficient systems, and
was generalized by Randal-Williams and Wahl [18]. See also [13, 11]. Their definition is
stronger than Djament and Vespa’s strong polynomial functors [4].

Here we recall the notions of VIC-modules and polynomial VIC-modules.
Let VIC = VIC(Z) denote the category of finitely generated free abelian groups and

injective morphisms with chosen complements. The Hom-set for a pair of objects M and N
is given by

HomVIC(M,N) = {( f ,C) | f : M ↪→ N, C ⊂ N, N = im( f ) ⊕C}.
A VIC-module is a functor from VIC to the category VectQ of Q-vector spaces and linear
maps. A morphism (also called a VIC-module map) f : V → V ′ of VIC-modules V and
V ′ is a natural transformation. The VIC-modules and morphisms form an abelian category
VIC-mod, as is the case for the category of -modules for any essentially small category
. The category VIC-mod also has a symmetric monoidal category structure whose tensor
product is defined objectwise, i.e., (V ⊗ V ′)(M) = V(M) ⊗ V ′(M) for M ∈ Ob(VIC), and
whose monoidal unit is given by the constant functor with value Q.

For each VIC-module V and an integer n ≥ 0, the vector space V(Zn) is naturally equipped
with a GL(n,Z)-module structure.

Let V be a VIC-module. Define VIC-modules ker V and coker V by

ker V(M) := ker(V(M)→ V(M ⊕ Z)),

coker V(M) := coker(V(M)→ V(M ⊕ Z))

for any object M of VIC, where V(M) → V(M ⊕ Z) is induced by the canonical morphism
M ↪→ M ⊕ Z of VIC.

Define the polynomiality of VIC-modules inductively as follows.

Definition 4.1. Let m ≥ −1. We call V polynomial of degree −1 in ranks > m if V(M) = 0
for any object M ∈ Ob(VIC) with rank > m. For r ≥ 0, we call V polynomial of degree ≤ r
in ranks > m if ker V = 0 in ranks > m− r− 1 and if coker V is polynomial of degree ≤ r− 1
in ranks > max{m − 1,−1}. We call V polynomial of degree (exactly) r in ranks > m if V is
polynomial of degree ≤ r in ranks > m and if V is not polynomial of degree ≤ r − 1 in ranks
> m. If m = −1, then we usually omit “in ranks > −1” and just write polynomial of degree
≤ r.

For a VIC-module V , the truncation V≥k of V at k is the VIC-submodule of V such that
V≥k(n) = V(n) for n ≥ k and V≥k(n) = 0 otherwise.

Example 4.2. (1) The constant functor with value Q is polynomial of degree 0 in
ranks > −1.

(2) For k ≥ 0, let Qk denote the VIC-module such that Qk(Zk) = Q and Qk(Zn) = 0 for
n � k. Then we have kerQk = Qk, cokerQk = Qk−1. Therefore, Qk is polynomial of
degree 0 in ranks > k + 1.
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(3) For the truncation Q≥k of Q at k, we have kerQ≥k = 0 and cokerQ≥k = Qk−1.
Therefore, Q≥k is polynomial of degree 0 in ranks > k.

Remark 4.3. Our definition of polynomial VIC-modules is slightly stronger than that in
[11] for a technical reason. We need this strengthened definition to have Lemma 4.6. In
[11], they required the condition that if V is polynomial of degree ≤ r in ranks > m, then
ker V = 0 in ranks > m instead of in ranks > m − r − 1. Patzt [13] used a still weaker
condition in which coker V is polynomial of degree ≤ r − 1 in ranks > m. If m = −1, then
all of the three definitions of polynomiality coincide.

Let V be a polynomial VIC-module of degree ≤ r in ranks > m. The polynomial-
ity of finite-dimensional VIC-modules implies the polynomiality of dimensions, that is, if
dim(V(Zn)) is finite for each n > m, then there is a polynomial f (x) such that we have
dim(V(Zn)) = f (n) for any n > m. Therefore, we obtain the following lemma.

Lemma 4.4. Let V be a polynomial VIC-module of degree ≤ r in ranks > m. If there
exists a polynomial P(x) of degree r such that for each n > m, dim(V(Zn)) = P(n), then V is
polynomial of degree r in ranks > m.

By the definition of polynomiality, we can always increase ranks m if we fix degrees r.
Moreover, we have the following lemma.

Lemma 4.5. Let s ≥ r and n ≥ m+ s− r. If V is a polynomial VIC-module of degree ≤ r
in ranks > m, then V is polynomial of degree ≤ s in ranks > n.

Proof. If V is polynomial of degree ≤ r in ranks > m, then ker V = 0 in ranks > m− r− 1.
Since we have n− s−1 ≥ m−r−1, ker V = 0 in ranks > n− s−1. Also coker V is polynomial
of degree ≤ r − 1 in ranks > m − 1. Since we have s ≥ r and n ≥ m + (s − r) ≥ m, coker V is
polynomial of degree ≤ s − 1 in ranks > n − 1. Therefore, V is polynomial of degree ≤ s in
ranks > n. �

It follows from Lemma 4.5 that a polynomial VIC-module V of degree ≤ −1 in ranks > m
is polynomial of degree ≤ s in ranks > m + s + 1 for any s ≥ −1.

One can see that polynomiality of degree r in ranks > m is not closed under subquotient
VIC-modules by Example 4.2. However, we have the following properties of polynomial
VIC-modules, in which we adapt Patzt’s lemma to our definition of polynomiality.

Lemma 4.6 (Cf. Patzt [13, Lemma 7.3]). (a) Let m, r ≥ −1 be integers. Let V ′ → V and
V → V ′′ be morphisms of VIC-modules such that the truncations form the following short
exact sequence

0→ V ′≥m−r → V≥m−r → V ′′≥m−r → 0.(4.1.1)

If two of V,V ′ and V ′′ are polynomial of degree ≤ r in ranks > m, then so is the third.
(b) Let V and W be polynomial VIC-modules of degrees ≤ r and ≤ s, respectively. Then

the tensor product V ⊗W has polynomial degree ≤ r + s.

Proof. (b) is essentially a special case of [13, Lemma 7.3. (b)].
Let us prove (a) by adapting the proof of [13, Lemma 7.3 (a)]. The case of r = −1 is

obvious. We use induction on r. Suppose that the case of degree ≤ r−1 holds. From (4.1.1),
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by the Snake Lemma, we have an exact sequence

0→ ker V ′ → ker V → ker V ′′ → coker V ′ → coker V → coker V ′′ → 0(4.1.2)

in ranks > m − r − 1.
We first show that it suffices to verify that the exact sequence (4.1.2) splits into two short

exact sequences in ranks > m − r − 1

0→ ker V ′ → ker V → ker V ′′ → 0,(4.1.3)

0→ coker V ′ → coker V → coker V ′′ → 0.(4.1.4)

Since two of ker V ′, ker V and ker V ′′ are zero in ranks > m − r − 1, the other is also zero in
ranks > m − r − 1 by (4.1.3). Since two of coker V ′, coker V and coker V ′′ are polynomial
of degree ≤ r − 1 in ranks > m − 1, and since we have an exact sequence (4.1.4) in ranks
> m − r − 1, we can use the induction hypothesis, which completes the proof of (a).

We will show that (4.1.2) splits into (4.1.3) and (4.1.4). If V ′′ is polynomial of degree ≤ r
in ranks > m, then we have ker V ′′ = 0 in ranks > m − r − 1, which implies the splitting
of the exact sequence (4.1.2). Suppose V and V ′ are polynomial of degree ≤ r in ranks
> m. Then coker V ′ is polynomial of degree ≤ r − 1 in ranks > m − 1. Therefore, we have
ker coker V ′ = 0 in ranks > m − r − 1. By the following commutative diagram in ranks
> m − r − 1

ker V ′′ �� coker V ′

ker2 V ′′ ��

=

��

ker coker V ′ = 0,

��

the exact sequence (4.1.2) splits. �

We also need the following lemma.

Lemma 4.7. Let V and V ′ be VIC-modules such that V ⊕ V ′ is polynomial of degree ≤ r
in ranks > m. Then both V and V ′ are polynomial of degree ≤ r in ranks > m.

Proof.
Since we have a short exact sequence of VIC-modules

0→ V → V ⊕ V ′ → V ′ → 0,

the statement follows from the proof of Lemma 4.6 (a). �

4.2. Polynomial VIC-module V 〈p,q〉 of traceless tensors.
4.2. Polynomial VIC-module V 〈p,q〉 of traceless tensors. For a free abelian group M, let

MQ = M⊗ZQ. Associating MQ to each object M of VIC forms a VIC-module V1,0. We have
another VIC-module V0,1 such that V0,1(M) = M∗

Q
for an object M of VIC. For a morphism

( f ,C) : M → N of VIC, if we choose a basis {xi} for MQ and {z j} for CQ, then { f (xi)} ∪ {z j}
forms a basis for NQ. Then the linear map V0,1(( f ,C)) : M∗

Q
→ N∗

Q
sends xi to yi, where {xi}

is the dual basis for M∗
Q

and yi is dual to f (xi) for each i. The VIC-modules V1,0 and V0,1

are polynomial of degree 1 by [17, Definition 3.3]. For p, q ≥ 0, let

V p,q = (V1,0)⊗p ⊗ (V0,1)⊗q, M 	→ Mp,q
Q
= M⊗p

Q
⊗ (M∗Q)⊗q
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denote the tensor product of copies of VIC-modules V1,0 and V0,1. By Lemma 4.6, the VIC-
module V p,q is polynomial of degree ≤ p + q, which is actually of degree p + q by Lemma
4.4 since we have dim(V p,q(n)) = np+q for n ≥ 0.

The construction of the GL(n,Q)-module H〈p,q〉 in Section 2 can be extended into a VIC-
module since there is a VIC-module map

c : V1,1 → V0,0,

such that for each M ∈ Ob(VIC), the map cM : V1,1(M) → V0,0(M) is the evaluation map
MQ ⊗ M∗

Q
→ Q, v ⊗ f 	→ f (v). Let V 〈p,q〉 denote the VIC-module consisting of H〈p,q〉(n),

which we call the traceless part of V p,q.
For 0 ≤ l ≤ min{p, q}, let

Λp,q(l) = {((i1, j1), . . . , (il+1, jl+1)) ∈ ([p] × [q])l+1 | 1≤i1<i2<···<il+1≤p,
j1, j2,..., jl+1: distinct}.

For I = ((i1, j1), . . . , (il+1, jl+1)) ∈ Λp,q(l), let

cI : V p,q → V p−l−1,q−l−1

denote the VIC-module map that is obtained as the composition of contraction maps defined
by

(v1 ⊗ · · · ⊗ vp) ⊗ ( f1 ⊗ · · · ⊗ fq)

	→
⎛⎜⎜⎜⎜⎜⎜⎝

l+1∏
r=1

〈vir , f jr〉
⎞⎟⎟⎟⎟⎟⎟⎠ (v1 ⊗ · · · v̂i1 · · · v̂il+1 · · · ⊗ vp) ⊗ ( f1 ⊗ · · · f̂ j1 · · · f̂ jl+1 · · · ⊗ fq).

Let k = min{p, q}. Define an increasing filtration F∗ = {Fl}0≤l≤k

V 〈p,q〉 = F0 ⊂ F1 ⊂ · · · ⊂ Fl ⊂ Fl+1 ⊂ · · · ⊂ Fk = V p,q

of the VIC-module V p,q by

Fl = ker

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⊕
I∈Λp,q(l)

cI : V p,q →
⊕

I∈Λp,q(l)

V p−l−1,q−l−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .(4.2.1)

Lemma 4.8. For 1 ≤ l ≤ k, consider the following sequence of VIC-modules

0→ Fl−1 i−→Fl π−→
⊕

I∈Λp,q(l−1)

V 〈p−l,q−l〉 → 0,(4.2.2)

where i is the inclusion and π is the restriction of the map
⊕

I∈Λp,q(l−1) cI to Fl and⊕
I∈Λp,q(l−1) V 〈p−l,q−l〉. If n ≥ p + q, then the sequence (4.2.2) evaluated on Zn is exact.

Proof.
By the definition of Fl, (4.2.2) is exact at Fl−1 and Fl.
By the definition of Fl ⊂ V p,q, it follows from Lemma 4.9 below that π : Fl →⊕
I∈Λp,q(l−1) V 〈p−l,q−l〉 is surjective when evaluated on Zn for n ≥ p + q. �

Note that the map from Fl in (4.2.2) is not always surjective in small ranks. For example,
(4.2.2) is not exact when l = p = q since we have F p(0) = 0 and V 〈0,0〉(0) = Q.
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Lemma 4.9. If n ≥ p + q, then the image of the VIC-module map⊕
I∈Λp,q(l−1)

cI : V p,q →
⊕

I∈Λp,q(l−1)

V p−l,q−l

evaluated on Zn contains
⊕

I∈Λp,q(l−1) V 〈p−l,q−l〉(Zn).

Proof. Let {ei | i = 1, . . . , n} be a basis of Qn = (Zn)Q and {e∗i } the dual basis of (Qn)∗.
Since n ≥ p+ q ≥ (p− l)+ (q− l), the traceless part V 〈p−l,q−l〉(Zn) ⊂ V p−l,q−l(Zn) is generated
by the element

ep−l,q−l := e1 ⊗ e2 ⊗ · · · ⊗ ep−l ⊗ e∗n ⊗ e∗n−1 ⊗ · · · ⊗ e∗n−(q−l)+1 ∈ V p−l,q−l(Zn)

as a GL(n,Z)-module (see [8, Lemma 2.2]). Since n ≥ p + q, for each I ∈ Λp,q(l − 1), we
have an element ep−l,q−l;I ∈ V p,q(Zn) such that cI(ep−l,q−l;I) = ep−l,q−l and cI′(ep−l,q−l;I) = 0 for
I′ � I. Indeed, ep−l,q−l;I is the permutation of the tensor ep−l,q−l⊗(ep−l+1⊗e∗p−l+1)⊗. . .⊗(ep⊗e∗p)
obtained as follows. For each k = 1, . . . , l, the tensors ep−l+k, e∗p−l+k are placed at the positions
specified by (ik, jk) ∈ I, respectively, and the tensor factors of ep−l,q−l are placed at the other
positions in an order-preserving way. For example, if p = 3, q = 5, l = 2, n = 10 and
I = {(1, 2), (3, 5)}, then we have ep−l,q−l;I = e2 ⊗ e1 ⊗ e3 ⊗ e∗10 ⊗ e∗2 ⊗ e∗9 ⊗ e∗8 ⊗ e∗3. �

By using (4.2.2), we can easily check that for n ≥ p + q

dim(V 〈p,q〉(n)) =
min{p,q}∑

i=0

(−1)i
(
p
i

)(
q
i

)
i! np+q−2i,(4.2.3)

which is a monic polynomial in n of degree p + q.

Proposition 4.10. The VIC-module V 〈p,q〉 is polynomial of degree p+q in ranks > 2(p+q).

Proof. By symmetry, we may assume p ≥ q. We prove that V 〈p,q〉 is polynomial of degree
≤ p + q in ranks > 2(p + q) by induction on q. If q = 0, then for any i ≥ 0, the VIC-module
V 〈i,0〉 = V⊗i is polynomial of degree ≤ i in ranks > −1, hence in ranks > 2i. Suppose that
V 〈i, j〉 is polynomial of degree ≤ i+ j in ranks > 2(i+ j) for any j ≤ q− 1 and i ≥ j. Then we
have a filtration F∗ = {Fl}0≤l≤q of V 〈p,q〉 defined in (4.2.1). Here we use descending induction
on l. For l = q, we have Fl = Fq = V p,q, which is polynomial of degree ≤ p + q. Suppose
that Fl is polynomial of degree ≤ p + q in ranks > 2(p + q). Then from (4.2.2), we have an
exact sequence

0→ Fl−1 → Fl → (V 〈p−l,q−l〉)⊕(
p
l)(q

l)l! → 0

in ranks > p + q − 1 = 2(p + q) − (p + q) − 1. By the induction hypothesis, V 〈p−l,q−l〉 is
polynomial of degree ≤ p + q − 2l in ranks > 2(p + q − 2l). By Lemma 4.5, V 〈p−l,q−l〉 is also
polynomial of degree ≤ p + q in ranks > 2(p + q). Hence, by Lemma 4.6, (V 〈p−l,q−l〉)⊕(

p
l)(q

l)l!

is polynomial of degree ≤ p+q in ranks > 2(p+q). Since Fl is polynomial of degree ≤ p+q
in ranks > 2(p + q), by Lemma 4.6, so is Fl−1. Therefore, by induction, we see that V 〈p,q〉 is
a polynomial VIC-module of degree ≤ p+q in ranks > 2(p+q). By Lemma 4.4 and (4.2.3),
the polynomial degree of V 〈p,q〉 is p + q. �
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Remark 4.11. (1) The range “> 2(p + q)” in the statement of Proposition 4.10 is not
optimal. For example, if p = 0 or q = 0, then we have V 〈p,q〉 = V p,q, which is polynomial of
degree p + q in ranks > −1.

(2) Proposition 4.10 holds also with the definitions of polynomiality given in Patzt [13]
and Kupers–Miller–Patzt [11], since our definition of polynomiality is stronger than theirs.
The range “> 2(p + q)” could be improved if we use their definitions. If we use Patzt’s
definition, we see that the range is > p + q − 1 by the same argument as the proof of
Proposition 4.10.

4.3. The polynomial VIC-module Vλ.
4.3. The polynomial VIC-module Vλ. Here we construct a polynomial VIC-module Vλ

for each bipartition λ.
For a bipartition λ = (λ, λ′), let p = |λ| and q = |λ′|. Define the VIC-module Vλ as

Vλ(M) = V 〈p,q〉(M) ⊗Q[Sp×Sq] (Sλ ⊗ Sλ
′
)

for M ∈ Ob(VIC), where Q[Sp×Sq] acts on V 〈p,q〉(M) on the right by permutation of tensor
factors. Note that the GL(n,Z)-module Vλ(Zn) is isomorphic to the GL(n,Z)-module Vλ(n)
defined in (2.0.2).

The direct sum decomposition (2.0.3) of GL(n,Z)-modules can be extended to the fol-
lowing.

Lemma 4.12. We have a direct sum decomposition of V 〈p,q〉 as a VIC× (Sp×Sq)-module

V 〈p,q〉 =
⊕
λ=(λ,λ′)
|λ|=p, |λ′|=q

Vλ ⊗ (Sλ ⊗ Sλ
′
).(4.3.1)

Proof. In the category of VIC × (Sp ×Sq)-modules, we have

V 〈p,q〉 � V 〈p,q〉 ⊗Q[Sp×Sq] (Q[Sp] ⊗ Q[Sq])

� V 〈p,q〉 ⊗Q[Sp×Sq]

⎛⎜⎜⎜⎜⎜⎜⎝⊕
|λ|=p

Sλ ⊗ Sλ
⎞⎟⎟⎟⎟⎟⎟⎠ ⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎝⊕
|λ′|=q

Sλ
′ ⊗ Sλ

′

⎞⎟⎟⎟⎟⎟⎟⎟⎠
�

⊕
|λ|=p, |λ′|=q

(
V 〈p,q〉 ⊗Q[Sp×Sq] (Sλ ⊗ Sλ

′
)
)
⊗ (Sλ ⊗ Sλ

′
)

�
⊕

|λ|=p, |λ′|=q

Vλ ⊗ (Sλ ⊗ Sλ
′
). �

The following lemma should be well known, but we sketch a proof here since we could
not find a suitable reference.

Lemma 4.13. For each bipartition λ, there is a polynomial fλ(x) of degree |λ| such that
dim(Vλ(n)) = fλ(n) for n ≥ |λ|.

Proof. Let n ≥ |λ|. The dimension of Vλ,0(n) ⊗ V0,λ′(n) is polynomial of degree |λ|. We
can obtain the lemma by using induction, since we have a decomposition

Vλ,0(n) ⊗ V0,λ′(n) � Vλ,λ′(n) ⊕
⊕

|μ|<|λ|, |μ′|<|λ′|
Vμ,μ′(n)⊕cμ,μ′ ,

where the constants cμ,μ′ , not depending on n, are determined by the Littlewood–Richardson
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coefficients (see [9]). �

Proposition 4.14. Let λ = (λ, λ′) be a bipartition. If either λ = 0 or λ′ = 0, then the
VIC-module Vλ is polynomial of degree |λ| (in ranks > −1). Otherwise, the VIC-module Vλ
is polynomial of degree |λ| in ranks > 2|λ|.

Proof. Let p = |λ| and q = |λ′|.
Suppose p = 0 or q = 0. Then V 〈p,q〉 = V p,q is polynomial of degree ≤ p + q. Since Vλ is

a direct summand of V p,q by Lemma 4.12, it follows from Lemma 4.7 that Vλ is polynomial
of degree ≤ p + q = |λ|.

Suppose p, q � 0. By Proposition 4.10, V 〈p,q〉 is polynomial of degree ≤ p + q in ranks
> 2(p + q). By Lemma 4.12, Vλ is a direct summand of V 〈p,q〉. Hence, by Lemma 4.7, it
follows that Vλ is a polynomial VIC-modules of degree ≤ p + q in ranks > 2(p + q). �

4.4. Irreducibility of Vλ in the stable category of VIC-modules.
4.4. Irreducibility of Vλ in the stable category of VIC-modules. In this subsection, we

make a digression and observe that the VIC-module Vλ is an irreducible object in the stable
category of VIC-modules, which is independently known to Powell [14].

The functor Vλ is not an irreducible object in the category VIC-mod of VIC-modules
since any irreducible object V in VIC-mod is concentrated at one rank, i.e., there is an
integer r ≥ 0 such that we have V(n) = 0 for all n � r. Thus the VIC-module Vλ has
infinitely many irreducible subquotients.

We here consider the stable category of VIC-modules defined by Djament and Vespa [4],
which is defined as follows. (See also [19, 20] and Remark 4.16 below.) A VIC-module F
is called stably zero if for any element x ∈ F(n), n ≥ 0, there is N ≥ n such that we have
F(in,N)(x) = 0, where in,N : Zn ↪→ ZN is the canonical inclusion. Let Sz denote the full
subcategory of VIC-mod whose objects are stably zero VIC-modules. Then Sz is a Serre
subcategory of VIC-mod. The stable category of VIC-modules, St, is the quotient abelian
category St = VIC-mod/Sz. Let π : VIC-mod→ St denote the canonical functor.

Proposition 4.15 (independently known to Powell [14]). For each bipartition λ, the ob-
ject π(Vλ) is irreducible in St.

Proof. Recall that the GL(n,Z)-module Vλ(Zn) given by the VIC-module structure co-
incides with the irreducible GL(n,Z)-module Vλ(n) defined in (2.0.2). If V is any VIC-
submodule of Vλ such that V � 0, then there is an integer N ≥ l(λ) such that we have

V(Zn) =

⎧⎪⎪⎨⎪⎪⎩0 (0 ≤ n < N)

Vλ(Zn) (N ≤ n).

Since the quotient VIC-module Vλ/V is stably zero, we have an isomorphism V � Vλ in the
stable category St. Hence π(Vλ) is irreducible in St. �

Remark 4.16. Proposition 4.15 could also be proved by adapting Sam and Snowden’s
results on VIC(C)-modules [19, 20]. In [19], they proved that simple objects of the category
Rep(GL) of algebraic GL∞(C)-modules are classified by bipartitions, and in [20] they proved
that Rep(GL) is equivalent to the stable category of algebraic VIC(C)-modules. These results
seem to imply that the VIC(C)-variant of the VIC-module Vλ is a simple object in the stable



482 K. Habiro andM. Katada

category of VIC(C)-modules.

Remark 4.17. In the stable category St, one can check that π(V p,q) admits a composi-
tion series with composition factors of the form π(Vλ) for bipartitions λ by using the exact
sequence (4.2.2) and Lemma 4.12.

4.5. Improvement of Borel’s vanishing theorem.
4.5. Improvement of Borel’s vanishing theorem. In this subsection, we improve

Borel’s vanishing range for coefficients in the VIC-modules Vλ by adapting the proof of
the following result of Kupers, Miller and Patzt [11].

Theorem 4.18 (Kupers–Miller–Patzt [11, Theorem 7.6]). Let λ � 0 be a partition. Then
we have

Hp(GL(n,Z),Vλ,0) = 0

for p < n − |λ|. For trivial coefficients, we have an isomorphism

Hp(GL(n,Z),Q) � Hp(GL(n + 1,Z),Q)

for p < n.

In order to prove Theorem 4.18, Kupers, Miller and Patzt used the homology Hp(GL(n,Z),
GL(n − 1,Z); V(Zn),V(Zn−1)) of the pair (GL(n − 1,Z),GL(n,Z)) with coefficients in VIC-
modules V defined as follows. (See [5] for details of the construction.) Let Ri be a projective
resolution of Z over Z[GL(i,Z)] for i = n − 1, n. There is a chain map Rn−1 → Rn induced
by idZ, which is unique up to chain homotopy. Then we have a chain map

Φ : Rn−1 ⊗GL(n−1,Z) V(Zn−1)→ Rn ⊗GL(n,Z) V(Zn)

induced by the chain map Rn−1 → Rn and the structure map V(Zn−1) → V(Zn). The homol-
ogy Hp(GL(n,Z),GL(n − 1,Z); V(Zn),V(Zn−1)) is defined as the homology of the mapping
cone C∗(Φ) of the chain map Φ. We have the following.

Theorem 4.19 (Kupers–Miller–Patzt [11, Theorem 7.3]). Let V be a polynomial VIC-
module of degree r in ranks > m in the sense of [11]. Then we have

Hp(GL(n,Z),GL(n − 1,Z); V(Zn),V(Zn−1)) = 0

for p < n − max{r,m}. Consequently, the inclusion GL(n − 1,Z) → GL(n,Z) induces an
isomorphism

Hp(GL(n − 1,Z),V(Zn−1))
�−→ Hp(GL(n,Z),V(Zn))

for p < n − 1 −max{r,m}.
Here we adapt Theorem 4.19 and generalize Theorem 4.18 to the VIC-module Vλ. For a

bipartition λ = (λ, λ′) and a non-negative integer p, set

nKMP(λ, p) =

⎧⎪⎪⎨⎪⎪⎩p + 1 + |λ| (if λ = 0 or λ′ = 0)

p + 1 + 2|λ| (otherwise).

Theorem 4.20 (weaker than Theorem 1.1). Let λ � (0, 0) be a bipartition. Then we have

Hp(GL(n,Z),Vλ) = 0
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for n ≥ nKMP(λ, p).

Proof. Recall from Remark 4.3 that our definition of polynomiality is stronger than that
in [11]. By Proposition 4.14 and Theorem 4.19, we have

Hp−1(GL(n − 1,Z),Vλ(Zn−1)) � Hp−1(GL(n,Z),Vλ(Zn))

for p < n− |λ| if λ = 0 or λ′ = 0, and for p < n− 2|λ| otherwise. Considering the dual vector
space, we obtain Hp−1(GL(n,Z),Vλ(Zn))∗ � Hp−1(GL(n,Z),Vλ∗(Zn)). By Corollary 3.4, we
have Hp(GL(n,Z),Vλ) = 0 for n ≥ p + 1 + |λ| if λ = 0 or λ′ = 0, and for n ≥ p + 1 + 2|λ|
otherwise. �
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