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Abstract
We determine the first homology group with coefficients in H;(N; Z) for various mapping class
groups of a non—orientable surface N with punctures and/or boundary.

1. Introduction

Let Ny ; be a smooth, non-orientable, compact surface of genus g with s boundary com-
ponents and n punctures. If s and/or n is zero, then we omit it from the notation. If we do
not want to emphasise the numbers g, s, n, we simply write N for a surface Ny ;. Recall that
N, is a connected sum of g projective planes and N, is obtained from N, by removing s
open discs and specifying a set X = {zy, ..., z,} of n distinguished points in the interior of N.

Let Diff(N) be the group of all diffeomorphisms 2: N — N such that 4 is the identity on
each boundary component and (%) = X. By M(N) we denote the quotient group of Diff(V)
by the subgroup consisting of maps isotopic to the identity, where we assume that isotopies
are the identity on each boundary component. M(N) is called the mapping class group of
N.

The mapping class group M(Sy ;) of an orientable surface is defined analogously, but we
consider only orientation preserving maps.

For any 0 < k < n, let PM*(N) be the subgroup of M(N) consisting of elements which
fix X pointwise and preserve a local orientation around the punctures {z, ..., zx}. For k = 0,
we obtain so—called pure mapping class group PM(N), and for k = n we get the group
PM*(N) consisting of maps that preserve local orientation around all the punctures.

1.1. Background. Homological computations play a prominent role in the theory of
mapping class groups. In the orientable case, Mumford [14] observed that H(M(S,)) is
a quotient of Zjo. Then Birman [1, 2] showed that if g > 3, then H;(M(S,)) is a quotient
of Z,, and Powell [17] showed that in fact H{(M(S,)) is trivial if g > 3. As for higher
homology groups, Harer [4,5] computed H;(M(S,)) for i = 2,3 and Madsen and Weiss [10]
determined the rational cohomology ring of the stable mapping class group.

In the non—orientable case, Korkmaz [7, 8] computed H;(M(N,)) for a closed surface
N, (possibly with marked points). This computation was later [22] extended to the case of
a surface with boundary. As for higher homology groups, Wahl [27] identified the stable
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486 P. PaAwLAK AND M. STUKOW

rational cohomology of M(N) and Randal-Williams [18] (among other results) extended
this identification to Z, coefficients.

As for twisted coefficients, Morita in a series of papers [11-13] obtained several funda-
mental results, in particual he proved that

Hl (M(Sq)7 Hl (Sg; Z)) = ZZg—Z, for g > 2’
H'(M(S,); H'(S;;2)) =0, forg>1,
H'(M(S); H'(S):Z) = Z, forg>2,
H' (M(S,1); N H(S;Z2) =Z@Z, forg > 3.
We showed in [23] that if N, is a non—orientable surface of genus g > 3 with s < 1
boundary components, then
Zo®Z,®Zy, ifge(3,4,5,6},

1.1 H{(M(N,); H (N, 2)) =
(1.1) 1(M(Ny,5); Hi(Ny 53 Z)) {ZQ@ZZ ifg>7.

There are also similar computations for the hyperelliptic mapping class groups M"(S,).
Tanaka [26] showed that H (Mh(Sg); Hi(S4;Z)) = Z, for g > 2, and in the non—orientable
case we showed in [24] that

H{(M"(N); H(NjZ) =2, ®Z, ®Zy, forg > 3.

There is also a lot of interesting results concerning the stable twisted (co)homology groups
of mapping class groups — see [6,9, 19,20] and references there.

1.2. Main results. The purpose of this paper is to extendthe the formula (1.1) to the case
of surfaces with punctures and/or boundary. We prove the following theorems.

Theorem 1.1. If Ny is a non—orientable surface of genus g > 3 with s boundary com-
ponents and n punctures, then

Zg*" ifg=3and s =k =0,

Z%*"*k ifg=3,s=0andk >0,
Zg””k ifg=3and s >0,

Hi(PMA(N ) Hy(N) 2) = {23 ifg=4and s =0,

Z%*"”‘k ifg=4ands >0,

Zg*”‘k ifg=5o0rg=2=6,

3k ifg >

Theorem 1.2. If Ny is a non—orientable surface of genus g > 3 with s boundary com-
ponents and n > 2 punctures, then

Zg ifge{3,4}and s =0,
ZgS” ifg=3ands >0,
H{(M(Ny ) Hi(Ny 2)) =Z3*  ifg=4and s> 0,

7,  ifg=50rg=6,

yAs ifg>1.
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Note that we obtained the formula (1.1) from the full presentation for the mapping class
group M(N,,), where g + s > 3 and s € {0, 1}, obtained by Paris and Szepietowski [15].
However, we do not have full presentations for the groups PMk(N;’,S) and M(Ny ), which
makes our computation less straightforward.

The starting point for this computation is a simplification of known generating sets for
the groups PMk(N;’S) and M(Ny ) — see Theorems 4.4, 4.5 and 4.6 in Section 4. Then,
in Sections 6, 7 and 8 we perform a detailed analysis of possible relations between these
generators in order to obtain a minimal set of generators for the first homology group —
see Propositions 6.1, 6.2, 7.1, 7.2 and 8.1. The proofs that these sets of generators are
indeed linearly independent occupy Sections 9 and 10. One essential ingredient in these two
sections is our recent computation [16] of the homology group

H\(PM*(N3); H(N3;Z)) = Z3.

Section 3 is devoted to the technical details of the action of the mapping class group M(N)
on the first homology group H;(N;Z). This analysis is continued in Section 5, where we
set up a technical background for the computations of the twisted first homology group of
various mapping class groups — see Propositions 5.1, 5.2 and 5.3.

2. Preliminaries

2.1. Non-orientable surfaces. Represent the surface Ny ; as a sphere with g crosscaps
M1, ..., Mg, n marked points zy, ..., z,, and s boundary components (Fig.1). Let

ala oo 70'/g—l’ﬂl, o 7ﬁ[#J7,EO’ LR aB[#J? 617 L ’65, 81a o ’8s+n

be two—sided circles indicated in Fig.1, Fig.2, and Fig.3. Small arrows in these figures
indicate directions of Dehn twists

al’"'9ag—17b17"'7b|-#J7307"'7Z|.#J7d17'"7dS7e1""’eS+n

associated with these circles. We also define: €y = a; and ¢y = a;.

For any two consecutive crosscaps u;, (i+1 we define a crosscap transposition u; to be the
map which interchanges these two crosscaps (see Fig.4). Similarly, for any two consecutive
punctures z;, z;+1 we define elementary braid s; (Fig.4).

Finally, let v;, for i = 1,...,n be the puncture slide of z; along the path v; indicated in
Fig.3.

21 gen
51 hés @@H e

—
=]

Fig.1. Surface Ny as a sphere with crosscaps.



488 P. PaAwLAK AND M. STUKOW

Fig.2. Circles B1,0, . .. ,ﬁ[g;ZJ andﬁo,ﬁl, .. ,B[HJ-

2

Fig.3. Circles €1, &,. .., &5 and paths vy, ..., v,.

Fig.4. Crosscap transposition u; and elementary braid s;.

2.2. Homology of groups. Let us briefly review how to compute the first homology of a
group with twisted coefficients — for more details see Section 5 of [24] and references there.

For a given group G and G-module M (that is ZG-module) we define C»(G) and C1(G) as
the free G-modules generated respectively by symbols [4;]h,] and [A], where h; € G. We
define also Cy(G) as the free G-module generated by the empty bracket [-]. Then the first
homology group H;(G; M) is the first homology group of the complex

B@cid 81@cid
— Ci(G)®c M e

Co(G)®c M Co(G)®c M,

where
O ([h1|h2]) = hilho] = [hho] + [Re],  OW([A]) = R[] - [].

For simplicity, we write ®; = ® and 0 ® id =  henceforth.
If the group G has a presentation G = (X | R), then we have an excat sequence

2.1 | —NR) —FX) —G—>1,

where F(X) is the free group generated by elements of X (generators) and N(R) is the normal
closure in F(X) of the set of relations R. Sequence (2.1) gives the following excat seqence
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(see for example [3] and references there)

NR)/INR), N(R)] ® M —> H\(F(X); M) —> H\(G; M) —> 0,
where N(R)/[N(R), N(R)] is the abelianization of N(R). Hence, we can identify
H(G; M) = H,(F(X); M)/Im().
Let us now describe how to use the above identification in practice. Let
Xy=([x]@m|xeX,meM)C Ci(FX)® M,

then H,(G; M) is a quotient of (X) N ker 51.

The kernel of this quotient corresponds to relations in G (that is elements of R). To be
more precise, if 7 € R has the form x;---x; = y; - - -y, and m € M, then i(r) € H|(F(X); M)
is equal to

k n
(2.2) rem: le e Ximp[xi ] ®@m — Zyl e yimlyil @ m.
i=1

i=1
Then
H(G; M) = (X) nkerd, /(R),
where

R={F@m|reR,me M).

3. Action of M(N] ) on Hy(N] ;; Z)

Let y1,...,%4,01,...,05, be circles indicated in Fig.1. Note that yy,...,y, are one-
sided, 01,..., 05+, are two—sided and the Z-module H,(Ny ;Z) is generated by homology
classes [yil,....[ygl,[01],...,[05en-1]. These generators are free provided s +n > 0. In
abuse of notation we will not distinguish between the curves yi,...,%4,01,...,0, and
their cycle classes.

The mapping class group M(Ny ;) acts on H; (N ;; Z), hence we have a representation

Y M(Ny ) — Aut(H (N 3 Z)).
It is straightforward to check that
[0 1
-1 2

2 -1
0

(3.1) Ylap) =11 @ ] O ly-j1 @ Lsin-1,

l//(aj_'l) = Ij—l ® :| eaIg—j—l & Iyin1,

_ 1
Yluy) = l//(ujl) =11 ® ] © 1y j 10 Ln1,

0
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-1 1 -1 1
-1 1 -1 1
(32) w(bl): Ig+ 11 -1 1 609—4 @ Iyin1,
-1 1 -1 1
I -1 1 —1]
_ I -1 1 -1
¢(b11)= Ig+ 1 -1 1 -1 690g—4 @ Liin-1,
I -1 1 -1]
—)/2—51—(52+...—5j ifé =vyyand j < s +n,
(3.3) Ye)E) =1y1+2y2+01+02+...+40; ifé=vyandj<s+n,
& ifé#y,E#y,and j <s+n,
2yi+y2+01+0+...+0; ifé=yrand j<s+n,
e NE =3y =61 -6 +...— ifé=y,and j < s+n,
& ifé£y,E#yand j<s+n,

'ﬁ(dj) = ‘ﬁ(dj_l) = Ig 69Iernfl’

0 1
(3.4) W(s) =v(s;) =1, @ Ly j1 @ L0

]@hjz,ﬁj<n—L

¢@W0@)=w@xo@>={42h+'”+2”_61+~-+&wq> if &= 6gnt,

if é‘: # 6s+n—1 ’

_6s+j if§:6S+j andj<n,
(35 YO =YW = vy + 0, ifE=y and j<n,
'3 ifé#y,and & # 6545 and j <n,
Yg— Cvi+ ..o+ 2y+ 61+ ...+ 1) IfE=7,,
& ité& vy,

where [} is the identity matrix of rank k.

ww@=wﬁwh{

4. Generators for the groups PM"(N ;”s) and M(N ;”s)

The main goal of this section is to obtain simple generating sets for the groups P M*(N 7.5)
and M(Ny ) — see Theorems 4.4, 4.5 and 4.6 below. However, we first prove some technical

lemmas.

For the rest of this section, let a,-,i,'E],’E],i,Z,- for j = 1,2,3,4,i =1,...,s + n be Dehn

twists about circles a;, 81, 81,, 0; shown in Fig.5.

Lemma 4.1. Let g > 3 and 1 < i < s+ n, then ay; and ay; are in the subgroup G <

M(Ny ) generated by

{ur,uz, a2, €1, e} .
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1 —1 i itl s

Zl Zn

FIgS Circles ozj,,-,’ﬁ\l ,,’8\1,[,8\,'.

Proof. It is straightforward to check that
@ = eiar(gi1), @i = uaur(@2,).
Hence,

ar; = e,-age,-_laglei_l €G, a ;= ugulaz,iuflugl eq. O

Lemma 4.2. Letg > 5 and 1 <i < s, then d; is in the subgroup G < M(Ny ;) generated
by

{ur, uo, u3, u4, a1, az, az, as, e; -1, €;, by} .
Proof. By Lemma 4.1, a;;,a>; € G. Moreover,
S R | S R | oo - 5 -1
@3 =uy uy (@2p),  @a;=uy uy (@3;), Pr=us ui(Br), Pri=asay;(Br).
This proves that
a3, b1,b1; €G.
Moreover, by Lemma 6.12 of [22], there is a lantern relation
diayazby; = as;a1,b;.

This proves that d; € G. o

Lemma 4.3. Let g > 3 and s > 0, then d is in the subgroup G < M(Ny ) generated by

{Mla ceesUg 1,01, ... 5,0g-1,€15 ... aes+n—l>dl, cee >ds—1} .

Proof. Let H < G be the subgroup of G generated by

{bt], ceesUg1,A1,5 00, 05-1,€15 .00, es+n—1}
andletdgy =dgyr = ... =dgp, = 1.
Note first that,
Egin = @03 ... Ag_ Uy ... Uzuz (1),
and

-1 -1
“4.1) eoin = (ay...ag-1Uy_1...u)a; (az...ag-1Ug—1 ... u2)" € H.
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We will prove by induction, that foreach k = 1,2,...,s +n,
—\-1

4.2) did;...d(d)  €H.

Since El\l = d;, the statement is true for k = 1.
It is straightforward to check that, for each k = 1,2, ..., s + n there is a lantern relation

(4.3) arepdidis) = exaygs1dis .
Assume that
dy = hdyd, ... .dy

for some 7 € H. Then, by the formulas (4.1), (4.3) and Lemma 4.1, we have

;l\kdkﬂa\/::] = e} ,a) ek e,

hd\d; . . -dkdk+la;{_+11 = e} a) exar i,
didy ... didysidy) | = h7'e;) a7 ey gy € H.
This completes the inductive proof of (4.2). In particular,
didy ...dy = didy .. .dss, = hdge,

for some h € H. Moreover, it is straightforward to check that

dysn = (W13 ... ug-1)’ € G,
hence

dy=d7)|...d;"d7 hd,,, € G. n

Theorem 4.4. Let g > 3. Then the mapping class group PMJ’(N;’,S) = PM'(Ny,) is
generated by

{al""aag—19u1,el9"'9es+n—l}

and additionally

{di,....ds1} ifg=3,
{br.dy,....ds1} ifg=4
{b1} ifg>5.
Proof. Let G be the subgroup of PM* (N 5.) generated by elements specified in the state-

ment of the theorem. By Theorem 4.1 of [21], PM+(N;”S) is generated by the crosscap slide
y = ayu; and 2g + n + 2s — 4 twists:

{ala""ag—lsbls"'7b[#J9509-"9E[#J9617"'7e‘Y+n—l7d17"'7dS}

(note that E[g | = b[‘ql,2 | if g is even). It is enough to show that all these generators are in G.
2 5
By Theorem 3.1 of [15],
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_ 5 -6
biv1 = (bi-142iA2i11a2i4202i13D;)’ (bi—102iA2i11a2i42G2i13) ™,

-2
fori = 1,...,{97J—1andb0=ao.

Hence b; € G, fori = 2,...,["’7_2]
By Lemma 3.8 of [15],

_ -1 -1 -1 _
Uil = Qi@ U; a;,a; , fori=1,...,9-2,

hence uy, u3, ..., u,— 1 € G. Now it is straightforward to check, that

— ) g-—2
A2i12 g 2ly Uy 1"~ Usi3Uoiy2(By) = By, fori=0,..., {T .

This shows, that Ei is conjugate to b; by an element of G. Hence Zi eG,fori=0,..., [%J
This together with Lemma 4.3 complete the proof if g < 5.

Finally, if g > 5, then Lemma 4.2 implies that d; € G, fori = 1,...,s. O
Theorem 4.5. Let g > 3 and 0 < k < n. Then the mapping class group PM"(N;’,S) is
generated by PMJ’(N;S) and (n — k) puncture slides

{Ok+15 - - -5 U}

Proof. The statement follows from the short exact sequence

p

I —— PMYNT) —— PMIN™) zZn-k 1

and the fact that {p(v+1), ..., p(v,)} generate Zg‘k . ]

Theorem 4.6. Let g > 3 and n > 2. Then the mapping class group M(Ny ;) is generated
by PMJ'(NZ’S) and
{Una Sl’ ceey Sn—l}-

Proof. By Theorem 4.5, the pure mapping class group PM(Ny ) = PMO(N;‘,S) is gener-
ated by PM*(N;"S) and {vy, ..., v,}. Moreover, we have the short exact sequence

I —— PM(N") —— M@N") —— 5, 1

where S, is the symmetric group on n letters. Now the statement follows from the fact that
p(sy), ..., p(s,—1) generate S, and the relation

Vi_] = s]_._llujsj_l, fori=2,...,n. m]

For further reference, let us prove that
Proposition 4.7. Letg>3,n>2and 1 < j<n-—1. Then

_ 3
Cstj-1Cs+j+185) = Cs4 S ;Cs4 ).

Proof. It is straightforward to check that &y, ;,1 bounds in N a disk with three holes:
£s+j-1,0},0 1. This implies that there is a lantern relation of the form
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2
es+j+les+j—ldjdj+l = €5+ (Sj€s+jsj )
3 -1
Cstj+1Cstj—1 = €518 ;€1 jS; s

3
Cstjr1€s+j-185] = €s4jS;Cs4 )

5. Computing (}) N ker 51

LetG = M(N{’;,S), M = H, (Ng Z) and assume that s + n > 0. Let

£ = Vi fori=1,...,q,
l Oi-g fori=g+1,...,9+s+n-1.
If h € G, then
A(h®&) = (h—DI1®E = W)™ - 1)é,

where we identified Cyo(G) ® M with M by the map [-] ® m — m.
Let us denote

[a;1®&;, [ujl®&, [b1]1®&;, [e;1®&;, [di]®&;, [s;]1®&, [v]®¢&
respectively by
Aji, Uji, by, €i» dj,i, Siis Vjiis
wherei=1,...,g+s+n—1.
Using formulas (3.1)—(3.5), we obtain
7j+7j+1 1fl=],
(5.1 oap) =q-yj—vin ifi=j+1,
0 otherwise,
=Yt Vj+1 ifi = j,
61(Mj’i): Yi— Vj+l lfl:]+1,
0 otherwise,
Yityat+ys+ys ifi=1,3,
1) =q=vi—v2—-vy3—vys ifi=24,

0 otherwise,

Yi+y2+ (@1 +...+6;) ifi=1,
(5.2) di(ej) ==y —y2a— (1 +...+6) ifi=2,
0 otherwise,
a1(d;) =0,
—Os+j + O0sejr1 fi=g+s+ ],
if j<n—1, then al(sj,i) = 5s+j _5s+j+l ifi=g+s+j+1,

0 otherwise,
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—(271 +...+ 27{]) - (51 +...t 5s+n—1) - 5s+n—l
01(Sp-14) = ifi=g+s+n-1,

0 otherwise,

6S+j ifl =4,
if j<n, then 81(v;;) = =26, ifi=g+s+ ],
0 otherwise,
- —Q2yi+...+2y,)— (61 + ...+ Osqn ifi=g,
al(vn,i) :{ ( Y1 7’g) ( 1 s+ 1) g'
otherwise.

The above formulas show that all of the following elements are contained in ker 9,
(K1) ajiforj=1,...,9g—-landi=1,...,j-1,j+2,...,9g+s+n—1,
(KZ) ajjtaji fOI’jI 1,...,g— 1,

(K3) uy;fori=3,...,9+s+n-1,

(K4) wuyg + uip,

(K5) ejiforj=1,...,s+n—-landi=3,4,...,g+s+n-1,
(K6) e;1 +ejpforj=1,...,s+n—1,

(K7) d;jifor j=1,...,s—1landi=1,...,9g+s+n-1,

(K8) by;jfori=5,....9+s+n-1,

(K9) by;+ by fori=24,

(K10) b13—bu,1,

(K11) b1y —ai; —as3.

Proposition 5.1. Letg > 3, s+n > 0and G = PM+(N’;,S). Then (X) N ker51 is the
abelian group generated freely by Generators (K1)-(K6) and additionally

(K7) ifg=3,
(K7), (K8)—(K11) ifg=4,
(K8)—(K11) ifg>5.

Proof. By Theorem 4.4, (X) is generated freely by a;;, u1 ;, e;; and

dj,i lfg = 3,
bl,i,dj,i ifg =4,
by ifg>5.

Suppose that & € (X) N ker 9. We will show that & can be uniquely expressed as a linear
combination of generators specified in the statement of the proposition.
We decompose £ as follows:

e h = hy = hy + hp, where hy is a combination of Generators (K1)—(K2) and %, does
not contain a;; with i # j;

e i = h3 + hy, where h3 is a combination of Generators (K3)—(K4) and /4 does not
contain u; with i # 1;

e hy = hs + hg, where hs is a combination of Generators (K5)—-(K6) and /g does not
contain ej; for i > 1.
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If g = 3 or g = 4, we decompose hg = hy + hg, where h7 is a combination of Generators (K7)
and hg does not contain d;;. If g > 5, we define 17 = 0 and hg = he.

If g > 4, we decompose hg = hy + hjg, where hg is a combination of Generators (K8)—
(K11) and Ay does not contain by ;. If g = 3 we define hg = 0 and & = hs.

Observe also that for each k = 0,...,8, A, and /., are uniquely determined by #y.
Element /1,0 has the form

g-1 s+n—1
ho = Y @ja;;+au+ Y e
J=1 J=1
for some integers a, @, ..., @y-1,P1,. .., Bsn-1. Hence

0= 1(hi0) = @1(y1 +¥2) + @2(y2 +¥3) + + o+ @yt (Ygo1 +Vy)
+a(=y1 +y2) +Bi(y1 +y2 +61) + Ba(y1 + y2 + 61 +62)
+ ... +ﬁs+n—1(71 + vy + 51 + 52 + ...+ 5s+n—l)-

This implies that S4,—1 = ... = =1 =0,and then oy = ... = @, = @; = @ = 0 and
thus a9 = 0. O

By an analogous argument and Propositions 4.5, 4.6, we get

Proposition 5.2. Letg>3, s+n>0,0<k<nandG = PMk(N;’J). Then (X) N ker ,
is the abelian group generated by generators specified in the statement of Proposition 5.1
and additionally

(K12) vjifork< j<nmand1 <i<g+s+n-1,

where
v ifk<j<nandig¢lg,g+s+j},
Vigtessjo11— st ifk<j<nandi=g,

V=0 grstj—2€54j-1,1 +2€54 1 ifk<j<nandi=g+s+]j,
Upgtesin—t+ayi—uy1+2ax0+.. . +2ay-1 41 if j=nand g is odd,
Ungtesin-11tai2az3+...+2a4 1 41 if j=n and g is even.

Proposition 5.3. Let g > 3, n > 2 and G = M(N!.). Then (X) N kerd, is the abelian
group generated by generators specified in the statement of Proposition 5.1, Generators
(K12) with j = n specified in the statement of Proposition 5.2, and additionally

(K13) sj;if j<sn—landig¢f{g+s+ jg+s+j+1},
(K14) $jgisrj+ Sjgrsejer if j<n—1,
(K15) Sjgisrj = €srjo1,1 +2e5j1 —€spjrrn if j<n—1,

Sn—1,g+s+n—1 +2es+n—l,l —€gp-2,1ta1 1~ UL +2a2,2+- . -+2ag—1,g—l lfg is Odd,

Sn-1g+stn-1+2€sin-11—€sin-21+a11+2a33+. . . +2a4-1 41 if g is even.

(K16) {
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6. Bounding Hl(PMJ'(N;”S); H{(N ;’s; 7)) from above

In this section we will use the formula (2.2) to rewrite some relations between generators
specified in Theorem 4.4 as relations between homology classes. Our goal is to reduce these
generating sets for homology groups to the ones specified in Propositions 6.1 and 6.2 below.

Let

-, n
l: Ng,l — Ng,s

be an embedding of a non—orientable subsurface of genus g with one boundary component
such that N, ; is disjoint from 61, . . ., 0,4, (the complement of N, ; in N ;’, 1s adisk containing
O15.-.,0s+n). This embedding induces homomorphisms

MWN,) = M)

s le

AU (Ny1: 7)) —— Aut(H (N ;7))

g,

This leads to the following homomorphism

H{(M(N,1): Hi(Ny1; Z) —— H{(PM(N2); H (N2 Z).

Moreover, some of the generators specified in the statement of Proposition 5.1 are im-
ages under this homomorphism of generators used in Proposition 4.2 of [23] to compute
Hi(M(Ny1); Hi(Ny,1;Z)). This allows to transfer (via i,) some of the relations between
these generators obtained in Section 5 of [23]. In particular,
e Generators (K1): aj;for j=1,...,9—-1,i=1,...j-1,j+2,...,g generate a
cyclic group of order at most 2. They are trivial if g > 7.

e Generators (K2) generate a cyclic group of order at most 2. They are trivial if g > 4.
e Generators (K3): u;; fori =1,...,g — 2 generate a cyclic group of order at most 2.
e Generator (K4) is trivial.

e Generators (K8): by; fori = 5,..., g are superfluous (they can be expressed in terms

of generators (K1)).
e Generators (K9), (K10) are trivial.
e Generator (K11) has order at most 2.

The formula (2.2) and the relation
ajaja; =ajaaj, forj=1,...,9-2,
imply that fori > g
0=C(a;l+ajlaj]+ajajla;]l —laj]l—ajlajl —ajaajlajg]) @&
=ajitajn,taj;—aj—aj;— Qg1 = Aji— djrl .
Hence
(6.1) aj=ay; forj=1,...,9-1,i>g.
If s + n > 2, then the relation

ajej=eja; forj=1,...,s+n-1



498 P. PawLak AND M. STUKOW
gives
0=(ai] +aile;] —[ejl —ejlar]) ®¢&;
= [a1]® (I - y(e; Né — [e;] ® (I — yla;)é;

(611’1 +611,2) taigsr t...FaA1gej— (e,;l + ejyz) ifi = 1,2,
= + .
0 ifi > 2.

This relation implies that Generators (K6) are superfluous
(6.2) ej1t+ejp=(ay+aip)+taig +...+ag
The braid relation
aejay = ejare; forj=1,...,s+n—1

gives

0 = ([a2] + azle;] + azejlaz] — [ej] — ejlaz] — ejaz[e;]) ® &;
[a2] ® (I + y(e;'ay") — wie; )y + [e] ® Wiay") — 1 —y(ay' e ))yi

ai—ej; ifi¢{l,2,3},

a1 —e€j3targrr +...+tax44; ifi =3,

(%) + (ar2 + an3) + (ej,l + ej’z) tejgi1t... ey ifi =2,
(*) ifi=1.

In the above formula (%) denotes some expression homologous to 0 by previously obtained
relations. As we progress further, we will often perform simplifications based on previously
obtained relations, from now on we will use symbol ‘=’ in such cases.

The first two cases of this relation and the formula (6.1) imply that Generators (K5)

ap if i > 4,
(6.3) e =
Js [P
azy1 +ajger + ...t algy; ifi = 3.

are superfluous.
The third case together with formulas (6.2) and (6.3) imply that

2a14¢j=0 forj=1,2,....,s+n-1,
or equivalently
2(ej; +ejr) =0.
The relation
ajdy =dra; forj=1,...,9-1Lk=1,...,5-1
gives
0 = (laj] + a;ldi] = [di] = dila;]) ® & = [a;]© (I — y(d N = [di] © (I - y(a;")é;

. dk,j+dk,j+1 ifi=j,j+1,
o ifig{jj+1}
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This implies that Generators (K7)
(6.4) dij=C0)"ay, forj=2,...,9.k=1,....,s—1

are superfluous.
Similarly, the relation

urdy = dyuy
implies that
0=[d]®Wu;" )y~ Dy, =dp1 —dp =0, fork=1,...,5s—1,
which together with the formula (6.4) implies that
2dy; =0 fork=1,...,s—1.
Relation
ejdy = die;
implies that
0=[d]®Wle;" )~ Dy1 =dign +...+digej fork=1,....s,j=1...s+n-1.

This implies that Generators (K7): d;; are trivial fori > g.
Suppose now that g = 3 and consider the relation

(6.5) (1€500)? = dyan = (@1a2)°,

where c’i;,n is defined as in Section 4. The right—hand side of this relation is a chain relation,
and the left-hand side is a square of a crosscap slide (see [25], Theorem 7.17, Relation (8)).
Ifi >3, and

M=1+y@ a) +va'a" ) + .+ ula' '),

N =1 +y(e;} uih),

s+n

then Relation (6.5) gives
0 = [u1] ® N&; + [een] ® Y INE = [a1] ® ME; — [a] ® y(a; " ) ME;.
If we now assume that i > g, then we get
(6.6) 0=2[u]®¢& +2[esn] ® & — 6lar1] ® & — 6laz] @ Ei = 2uy; + 2[esn] ® &
As we observed in the formula (4.1),
€s+no2Urd) = azUy,
hence if i > 3, then
(6.7) 0 = (lessnl + [az] + [u2] + [a1] = [a2] = [u2]) ® & = [€54n] ® &i + an s
By combining formulas (6.6) and (6.7) we get
2u;; =0, fori> 3.
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Note that at this point we proved

Proposition 6.1. Let s +n > 1. Then H I(PM+(N§”S); H\(N} ;Z)) is generated by

,S;
lar +a1p,a13,a14, -« Q1 24540 U135 UL s - - UL 24510, A1 LS -5 dso1 1}
and each of these generators has order at most 2.

For the rest of this section assume that g > 4.
The relation

ejaz =aze; forj=1,...,s+n~-1,
gives
0=le]®U —y(a;" Ny —lasl® U —yle; N1 = asy +azz + azgar + ... + azge.

Together with the formula (6.1) this implies that Generators (K1): a;; are trivial for i > g.
Observe that relations

Ujlhj U = Ujr Ui, fOI'j= 1,2,
easily imply that
Uz = Up; = U, fori > g.
Hence, the relation
ejuy =uzej, forj=1,...,s+n-1,
gives

0=le]®U —yuz Ny — [us] ® I - y(e; )y

=us| +uzp+ U3 g+1 + ...+ U3 g+j = U3 1 +uzp + Ul,g+1 + ...+ Ul,g+j-

This implies that Generators (K3): u; ; are trivial for i > g.
Relation

ejblzblej, forjzl,...,s+n—1,
gives
0=[ejl®U - b Ny —y3) — [b1]® U - yle; N —y3)
= bl,l + b1,2 + bl,g+1 + ...+ bl,g+j-

This implies that Generators (K8): by ; are trivial for i > g.
At this point we proved

Proposition 6.2. Let g > 3 and s+n > 1. Then Hi(PM* (N}, ); Hi(N ;

7)) is generated

by
lais, w13, 011 —ar) —asz,dig,....dso11} ifg=4,
{611,3,u1,3,b1,1 —dap) — a3,3} ifg=>5,6,
{i13,01) —ai) —az 3} ifg=17,

and each of these generators has order at most 2.
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7. Bounding HI(PM"(N;’S); H1(N;’s; 7)) from above

As in the previous section, we will use the formula (2.2) to reduce the generating set for
the group H, (PMJ“(N;',S); H, (N ;;Z)) to the one specified in the statements of Propositions
7.1 and 7.2 below.

By Proposition 5.2, H; (PMk(N{’;,S); H, (N ;7)) is generated by generators of the group
Hl(PM+(Ng’S); H(Ny :Z)) and additionally Generators (K12) corresponding to puncture
slides vg41, . - . , Uy (see Proposition 4.5). All the computations from the previous section hold
true, hence H,(PMF (Ny ) Hi(Ny s Z)) is generated by Generators (K12): v;; and elements
specified in the statements of Propositions 6.1 and 6.2.

Note that for any x € PM*(N; ) and k < j < n,

L8

y= UJ_-I)CUj € PMJ“(N;”S),
hence both x and y are products of generators of PMJ’(N’;,S) (that is these products do not
contain puncture slides). Therefore, the relation
xXv; =y
gives
0=[xl®y +[l@u )y - [v]®y - [y ® ;)i

g+s+n—1 g+s+n—1

=AW ) =Dy + AL = > muy+AL = > miy,+ AL,

r=1 r=1

for some coeflicients m, and expressions A; o Ajfl. which contain neither v, nor v;,. More-
over, by Proposition 5.2,

g+s+n—1

~  _ _qx
Z mvj, = —A7j;

r=1

is an element of the kernel ker d;, hence this element is a linear combination of generators
specified in the statements of Propositions 6.1 and 6.2.
Now we use the above general analysis to two special cases: x =a;,i =1,...,g— 1 and
x=e,i=1,...,s+n-—1.
In the first case we get
0=[o]® Wla;") = Dyyi + A% =0j; +0jie1 + AT,

This implies that generators v;», ..., v;, are superfluous.
In the second case we get

-1 iy = = = Aai
0= [Uj]®($(€i )—I))/,' +Aj',i =01+ V02 + Vg1 + ... FVjgyi +A7,i'

This implies that generators vj g1, . ..,V g+s+n—1 are superfluous.
Relations ajv; = vja; and ujv; = v;ju; give

0 =[v1® W(a;") = Dy — [a1]® W(;") = Dyi = vjy +v)2,
0=[o]®W") - Dy - [ml®Ww,") = Dy = vj) —vja.

respectively. This implies that 2v;; = 2v;; = 0 and we proved
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Proposition 7.1. Let g > 3, s+n > 1 and 0 < k < n. Then the group Hl(PMk(N;"S);

H, (Ng’s; 7)) is generated by
{611,3,141,3,191,1 —day) — 613,3,611,1, cee ,d‘v—1,17vk+1,17 .. -,Un,l} ifg =4,
lais,u13,b11 — a1 —az3, Vkse11s - -5 Unt } ifg=>5,6,
{13,010 —aiy —asz, veei 1, -« Ut} ifg=17,

and each of these generators has order at most 2.

For the rest of this section assume that g = 3.
If j < n, then relations av; = v;a; and ujv; = vju; give

0=[vl®Wa;") - Nys - la]® ;") -y
0=[v]® Wu;") - Dys — ] ® ((w;") - I)ys

respectively. Hence, a;; = u;; =0ifi >3 + s + k.
Finally, if s + k£ > 0, then relations a,v, = v,a, and ujv, = v,u; give

0= [o]®W(a;") = Dys - [a1] ® W(,") = Dys
=2a1taip)+t2ai3+aia+ ...+ A1orgn = Q14+ .o+ A1 3060k

0 =[] ® W) = Dys — ] ® W(w,") = Dys
=2y +uip)+F2uiz+urat oo UL 2egan = UL+ oo UL sk

—A13+5+)>

—UL3+5+)>

respectively. Hence, a; 34541 and u; 3.4« are superfluous provided s + k& > 0. This proves

Proposition 7.2. Let s +n > 1 and 0 < k < n. Then Hi(PM*(N} ); H(N}

.87

7)) is
generated by

lai) +aiz,a13,u13,0ke1,15 -+, Un 1 } ifs+k=0,
{al,l T aA12,013,0145 -5 A1 245+ks U135 UL ds - -+ s UL D4 5+k>
Aty s 1,1, Vks1,15 - Unt) ifs+k>0,

and each of these generators has order at most 2.

8. Bounding Hl(M(N;”s); H1(N;” o3 2)) from above

As in the previous two sections, we will use the formula (2.2) to reduce the generating set
for the group H, (M(N ,); Hi(Ny i3 Z)) to the one specified in the statement of Proposition

,S?

8.1 below.
By Proposition 5.3, Hi(M(N,); Hi(Ny ;;Z)) is generated by generators of the group
H, (PM+(N;’,S); H, (N;”S;Z)), Generators (K12) corresponding to puncture slide v, and ad-

ditionally Generators (K13)—-(K16) corresponding to elementary braids: si,...,s,-1. All
computations from the previous two sections hold true, hence Hi(M(Ny ,); Hi(Ny ;7)) is
generated by generator (K12): v, 1, generators (K13)—(K16), and elements specified in the
statements of Propositions 6.1 and 6.2. Moreover if g = 3 and i > 3 + s, then a;; and u, ; are
superfluous.

If i # s + j, then the relation

€iSj = sjei
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gives
0=1[s;]® Wie;) = Dy — el ® (lﬁ(s;l) =Dy =sj1+ 82+ Sjge1 ...+ 800 =Aji
In particular, Generator (K14)
Sigrstj T Sjgrstjrl = Ajsrjrt —Ajsrjo1 =0
is trivial and Generators (K13) of the form
Aji—Aj;.1 =0 ifi>1,
St = {Aj,l (s +sjp) ifi=1

are superfluous.
The relation

sja; =a;s; fori<g
gives
(8.1) 0=1[s]1®Wa;") = Dy: = [ail ® W(s;") = Dyi = i + Sjie1-
Relation SiSir18; = Sj+1578j+1 gives
0 =([s;]+sjlsjet] + 85501081 = [sjt] = sjp1ls;] = sjm8[si1D) @71
=8ji v Sjr T Sji — Sjri — Sji T Sjrli = Sji — S+l

This together with the formula (8.1) implies that Generators (K13) generate a cyclic group.
Moreover, the relation

Sle = ulsj
implies that
0=[s;1® W) — Dyr = [wm] @ ((s;") = Dy1 = sj1 = 52,
which together with the formula (8.1) implies that the cyclic group generated by generators
(K13) has order at most two.
By Proposition 4.7,
Cotj—1€5+j+15) = es+js’;es+j,
and this relation gives
(8.2) 0 :([es+j—1] + es+j—1[es+j+1] + es+j—les+j+1[sj]) ® Y1
— ([egsj] + ess j(1 + 5+ )sj] — €1 js3lec ) @71
=esrjo11 + [ 1 ® (=1 = Y(sT (e, Jyi + [ess ] @ Ylel) Dy
+ [s;1 @ (wlepd o wter! ;) = (I + (7)) + uls e ) v
If j < n—1 this gives
0= (Sj,g+s+j —€g4j-1,1 T 2es+j,1 - es+j+1,1)

+ (€5tj1 + €54j2) + (€sijgr1 + oo+ Estjgrstjol T Esijgrstjrl)
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- (€s+j+1,1 + es+j+1,2) - (es+j+1,g+l +... 1 es+j+1,g+x+j—l) + (%).

This implies that Generator (K15) is superfluous. If j = n — 1, then the formula (8.2) yields
a more complicated expression, however it is also of the form

0= Sn—1,g+s+n—1 + (*)a

where (*) denotes some expression which does not contain s;;. This implies that Generator
(K16) is also superfluous, and we proved that

Proposition 8.1. Ler g > 3 and n > 2. Then H\((M(Ny ,); Hi1(Ny, ; 2)) is generated by

,8?

ayy +ayp,ais, 13,0, 81,1 ifg=3ands =0,

a1 +a12,a13,014, -« Q1245 U135, UL 45 - o o5 UL 2455
d1,17'"7dS—l,17Un,lasl,l ifg=3ands>0,

ays, uy3, b1,1 —da — 613,3,611,1, ce ads—l,l’ Un,15 51,1 ifg =4,

a3, u13,b1,1 —ay —asz,vn, 81,1 ifg=5org=6,

u13,b11 —aiy —azz, v,1, 51, ifg=>1,

and each of these generators has order at most 2.

9. Bounding Hi(PM*(N {’;,s); H{(N ;"s; 7)) from below

In this section we use various quotients of 2 M*(N 5.5) In order to prove that all homology
classes specified in Propositions 7.1 and 7.2 are nontrivial. This will complete the proof of
Theorem 1.1.

If we glue a disk to each boundary components of Ny ; and forget about punctures, then
we get a closed non—orientable surface N, of genus g. If

it Ny, — N,
is the corresponding inclusion map, then i induces homomorphisms
PMINZ)  —— M)
g ¥
Aut(H (N 3 Z)) -, Aut(H{(Ny; Z))
This leads to the following homomorphism
Hy(PM (N2 ) Hi(N ;7)) —— H{(M(N,); Hi(Ny; ).
Moreover, by Theorem 1.1 of [23] (see the very last formula in the proof of that theorem),
we have
i*(al,l + al,z) #0 lfg = 3,
i(u3) #0 ifg >3,
i.(a13) #0 ifge{3,4,5,6},
L(biy—ain—as3) #0 ifg=>4
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and all these classes are linearly independent.
In order to prove that homology classes corresponding to puncture slides are nontrivial,
fix k < j < n and consider the following homomorphisms
a: PM*(Ny,) — Zy,
B: Hi(Ny Z) = Zs.
The first homomorphism is defined as follows: a(f) = 1 if and only if f changes the local
orientation around the puncture z;. The second one is the composition

Hi(Ng;

Z) —— H\(Ny 3 Zy) —— ()

of the reduction to Z, coeflicients and the projection:
{71,727---,79 =71
01,02, ...,054n-1 /> 0.
It is straightforward to check that for any m € H\(Ny ;
B(f(m)) = B(m).

Hence, if we regard (y) as a trivial a(PMJ'(N;‘,S)) module, then («,8) induce homomor-
phism

Z)and f € PM*(N,)

(@, B)
H(PM (N3 ) (N2 Z)) —— H\(Za:Z5) = Zo.

Moreover, if x is one of the generators specified in the statements of Propositions 7.1 and
7.2, then

(@,B)(x) #0 & x=v;.

This implies that v;; is nontrivial and independent from other generators.
If s > 2 and g < 4, then for any fixed 1 < j < s — 1 there is a homomorphism

H(PMKNE ) Hi(NL 3 Z)) —— H{(MNys2); Hi(Nys23 2))

induced by the inclusion i: N;‘,S — Nyi2, where Nyy» is a closed non—orientable surface of
genus g + 2 obtained from Ny, by forgetting the punctures, connecting boundary compo-
nents of numbers 1 < j < s — 1 and s by a cylinder, and gluing a disk to all the remaining
boundary components.

Moreover, ¢; becomes a two—sided nonseparating circle in N, hence we can choose
generators for M(Ny4») so that

L(d;1) = a13 € HI(M(Nys2); Hi(Nyi2; 2)).

By Theorem 1.1 of [23], this homology class is nontrivial provided g+2 < 6. This completes
the proof of Theorem 1.1ifg >3 ors+k < 1.

Hence, assume that g = 3 and s + k > 2. Fix 1 < j < s+ k — 1 and and glue a disk with
a puncture to each boundary component of N3 .. Then forget about all the punctures except
those with numbers j and s + k. As a result we obtain an inclusion

., n 2
i N3’S — N3,
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which leads to a homomorphism

H((PMEND ) H (N2 5Z)) —— Hy(M(N2); Hy (N3 2).
By Theorem 1.2 of [16],
i(arz+) = a4 # 0,
(1 34)) = ur4 # 0.

This implies that generators a4, ...,d| 24s1ks Ul 4,-- - U1 245+, are nontrivial and linearly
independent. This concludes the proof of Theorem 1.1.

10. Bounding H, (M(N;"s); H{(N ;”s; 7)) from below

In this section we will show that all generators specified in the statement of Proposition
8.1 are nontrivial and linearly independent. This will complete the proof of Theorem 1.2.
As in the previous section, we argue that homology classes

ap tapp ifg =3,
Al 4y A1 2+s ifg=3and s > 1,
ULds .. UL D+s ifg=3and s > 1,
(10.1) a3 ifg<7,
uy3,
biy—aig—az; ifg=>4,
dj ifg<d4andl <j<s-—1

are nontrivial and independent. Hence, it is enough to show that if
0=A+vu, + sy,
where A is a linear combination of generators (10.1), then v = u = 0. Let

B: Hi(Ny

L) > 1
be defined as in the previous section and define
. M(N;’S) i Zz

as follows: a(f) = 1 if and only if f changes the local orientation around an odd number of
punctures. Then there is an induced homomorphism

Hy(MN™ ) Hy(N? 3 Z) ~—=2 Hy(Z5:Z0) = Z
and
0= (a,B)(A + vou1 +psiy) = v
Now define

a: M(Ny ) = Zy

to be the sign of the permutation
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(Z19 cee ’Zn) = (f(Zl)’ f(z2)’ oo ’f(Zn))’

that is o/(f) = 1 if and only if the above permutation is odd. As before, there is an induced
homomorphism

(@, B)

Hi(M(Ny,); Hi(Ny s 2)) —— Hi(Zo3Z20) = Z,

»S?

and

0= (@.B)A + von,1 +psi1) = p.

This concludes the proof of Theorem 1.2.
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