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Abstract
We determine the representation type for block algebras of the quiver Hecke algebras R™+(8)
of type C;l) for all k, generalising results of Ariki—Park for A = Ay.

1. Introduction

KLR algebras, also called (affine) quiver Hecke algebras, were introduced by Khovanov—
Lauda [20] and Rouquier [25] to give a categorification of the negative half of quantum
groups. KLR algebras have natural finite-dimensional quotients R*(3) for a fixed dominant
integral weight A € P* and varying 8 € Q" a non-negative integral linear combination
of simple roots, called the cyclotomic KLR algebras, or cyclotomic quiver Hecke algebras.
The module categories of cyclotomic KLR algebras R*(B3) for various 3, together with the
induction and restriction functors between them, give a categorification for the irreducible
highest weight module V(A) over a quantum group. Brundan and Kleshchev [9] showed that
the block algebras of the cyclotomic Hecke algebras are isomorphic to the cyclotomic KLR
algebras of type AW and so cyclotomic KLR algebras are a vast generalization of certain
cyclotomic Hecke algebras, which are well understood.

In affine type Aél), further advances have been made in understanding the structure of
cyclotomic KLR algebras. In addition to the Brundan—Kleshchev isomorphism theorem, we
also have a categorification theorem due to Ariki [1], and Brundan and Kleshchev which im-
plies that in characteristic zero the simple objects in these categories correspond to the dual
canonical basis of the integral highest weight module V4 (A) over the affine type A Kac—
Moody Lie algebra, using a Fock space construction. Beyond type A, there is still much to
discover about cyclotomic KLR algebras and their block algebras. Classically, the repre-
sentation type of block algebras of the Iwahori—Hecke algebra of the symmetric group was
described by Erdmann and Nakano. Beyond type A, a general representation type classifica-
tion in the style of Erdmann—Nakano for the block algebras of cyclotomic KLR algebras is a
subject of active research. For the special case A = Ay, this has been investigated in a series
of recent papers by Ariki—Iijima—Park for type AE,I) and Ariki—Park for types A(zzz)’ DZ)I and
C;l) [3, 5, 6, 7], resulting in a Lie theoretic classification of representation type for R*(3)
in the spirit of Erdmann—Nakano. In affine types A (both twisted and untwisted) and D({i)l,
the representation types turned out to be governed by the weight, also called defect, intro-
duced by Fayers [15], as a natural generalisation of the classification by Erdmann—Nakano.

2020 Mathematics Subject Classification. 05E10, 20C08, 81R10.



510 C. Cuung anND B. Hubak

In affine type C Ariki—Park showed that R**(8) is no longer of finite representation type; in
fact the algebra R(6) is wild except in type C (D where it is tame [7]. Also, for arbitrary
fundamental weight A = Ay (i.e. level 1) in untwisted affine ADE type, the set of maximal
weights max(A) of V(A) form a single Weyl group orbit [17, Lem. 12.6]. The same is not
true for affine type C; as in this case max(Ay) consists of several Weyl group orbits, whose
maximal representatives were given by Ariki and Park in [7] when k£ = 0. Nevertheless, we
can show in this paper that the defect governs the representation type in affine type C for
arbitrary A = Ay. As a first step, we enumerate a set of maximal weight representatives

. ) i
Eri = Qa1 +2ap40 + -+ (0= Dyt + 1@ + Qi + -+ ae-1) + 796
) ) i
Epmi = gt + 200 + -+ (I = Do + i@ + @i + 00 ) + 50

for k + i € I. Thus, we need only investigate RM(mé — évsi) form > i/2, a fact we will also
use to show that the defect is non-negative in level one.

We explain the cases where we need different arguments than [7]. First, we consider i = 0
and m = 1, that is the representation type of R*(3). For the case £ = 2 and k = 1, we give an
explicit description of the indecomposable projective modules and prove that the algebra has
tame representation type. For larger £ and k, we are able to apply a recent interesting result
of Ariki ([2], see also Lemma 2.16) which reduces the problem to finding two appropriate
idempotents. We show that if £ # 2 and 0 < k < ¢, R™(5) is of wild representation type.
Then, we will show that R (5 — &r+2) 1s of finite representation type, and hence that block
algebras of defect one are Brauer tree algebras whose Brauer tree is a straight line with no
exceptional vertex. We will also see that depending on k, there can be two inequivalent
Morita equivalence classes of blocks of defect one, with distinct number of simple modules
k+1or ¢ —k + 1 respectively. Next, we deal with the representation type of R (26 — & +4)
and using Lemma 2.16 again, we arrive at the result that this algebra has wild representation
type as well. Finally, we handle the remaining cases by using the same arguments as in [7]
with some slight modifications. Our results are summarised in Theorem 6.5.

2. Background

2.1. Lie theory notation. We mostly follow [17] and use standard notation for the root
datum.

Letf€{2,3,...}and I ={0,1,2,...,¢}.

The affine Cartan matrix of type C 21) is given by

2 -1 0 --- 0 O O
-2 2 -1 0O 0 O
o -1 2 -+ 0 0 0
A=(aipije=|: 1ot
o o o -~ 2 -1 0
o o o - -1 2 =2
o o o --- 0 -1 2

We have simple roots 11 = {«; | i € I} and fundamental weights {A; | i € I} in the weight
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lattice P, and simple coroots ITY = {a;’ | i € I} in the dual weight lattice P¥. Each «; gives
rise to a Z-linear transformation 7; acting on P by A = A — (oz;’,A)ozi, for A € P. Let
d € PY be the element such that a;(d) = 6p;. We denote by W the Weyl group, the group
generated by {r; | i € I}.
There is a W-invariant symmetric bilinear form (—, —) on P satisfying the following:

(1) (Al-,aj) = djé‘ij and

(2) (oz,-,a/j) = d,'a,'j where d = (2, 1..., 1,2) if £ < 0.
We denote the set of dominant integral weights by

P*={AeP|{(a/,A)>0foralliel},
where ( , ) is the natural pairing. We call Q := EBiE[ Za; the root lattice and Qt =
@ie ;1 Zs0a; the positive cone of the root lattice. For CV, we have the null root given by
6:ao+2a1 +~~'+2a’g_1 + ap.

The defect of f € Q* (relative to A) is given by

1
defa(B) = (A.B) = 5(B.5)-

When it is clear from the context, we will omit A from the subscript and write def(8) instead
of defA(B).
We set & :=0,and fork+ielork—ielweset

. . I
(1) &ri = kst + 2042 + - + (0 = Dot + Ui + Qpgier + -+ @) + 76

. ) i
Epmi = gt + 200 + -+ (I = Doy + i@ + @pjo +-0 - ) + 50

respectively.
Note that if i # 0 then

-1 ifj=k,
() baila))=1 1 ifj=k=i
0 otherwise,

and they form a basis for ;) Qa;.

Lemma 2.1. For m > i/2 and so mé — & .; € QF, we have that def(mé — & ;) = 2m — %i
(relative to Ay).

Proof. We have the following calculation:
1
defp, (mé — &k xi) = (Mg, mé — & xi) — §(m5 = &k ris MO — & i)

1 1
= (Ay, mo) — E(fk,iiafk,ii) =2m— Ei

as required. m|

Let g = g(A) be the affine Kac-Moody algebra associated with the Cartan datum (A, P,
IL,ITY) and let U,(g) be its quantum group. The quantum group U,(g) is a C(g)-algebra
generated by f;, e; (i € I) and ¢" (h € PY) with certain relations (more details can be found
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in [16, Chap. 3]). Let A = Z|[q, g~'1 and denote by U} (g) the subalgebra of U,(g) generated
by fl.(") := f!'/[n);! fori € I and n € Z, where ¢; = g% and

4 -q" -
[n]; = = —, [nl!'=| |[k].
qi = q;" ﬂ

For some A € P, let V(A) be the irreducible highest weight U,(g)-module with highest
weight A and V4 (A) the U} (g)-submodule of V(A) generated by the highest weight vector.
The Fock space representation for Uq(CE,])) was first constructed in [19] by folding the
Fock space representation for Uq(A(zlf)_ ;) via the Dynkin diagram automorphism (see eq. (3)).
Later, the combinatorics of the Fock space and its crystal base were described in terms
of tableaux and Young diagrams ([21, 23]). The next section focuses on explaining this

combinatorial realisation for V(Ay).

2.2. Partitions and tableaux.

DermNiTioN 2.2, For n > 0, a partition of n is a weakly decreasing sequence of non-
negative integers A = (A1, A, ...) such that the sum |A| = A; + A, +--- isequal to n. If A is
a partition of n we write A + n. We write @ for the unique partition of 0. We will denote the
set of partitions of n by P,.

For any A € P,, we define its Young diagram [A] to be the set
{(r’ C) € ZZ] X Zzl | c < /lr}.

Note that we will depict a Young diagram of a partition using the English convention (i.e.
successive rows of the diagram are lower down the page).
We define fr : Z — I by k + |k if £ = oo and, if £ # oo, f; : Z/2¢€Z — I by
3) Jr(O+262) =0, fi(€+20Z) =21,
folk +2L7) = fr(2€ —k+2(Z) =k forl <k<{-1.
Let p be the natural projection Z — Z/2¢Z . We set m; = fy o p : Z — 1. If there is no
confusion, we will denote m,(k) by k for k € Z.

Given a charge k € Z, we define A, € P* by A, := Az If 1 is a partition of n, then to any
node A = (r, c) € [1] we can associate its residue defined by

res(A) =k+c—r.
If res(A) = i, we call A an i-node.

ExampiE 2.3. If 4 = (8,6,6,5,2), k = 2 and £ = 4, then A has the following residue
pattern.

213[4][3]2]1]0]1]
1/213]4[3]2
0/1]2[3[4][3
1/o[1]2]3

211

We say that a node A € [A] is removable (resp. addable) if [1] \ A (resp. [A] U A) is a
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valid Young diagram for a partition of n — 1 (resp. n + 1). We write 4 ,” A (resp. 4 ,/ A)
as shorthand for the partition whose Young diagram is [4] \ A (resp. [4] U A). For an i-node
A € [1], we set

Ny(A) = #{0-coloured boxes in A},

d;(1) = #{addable i-nodes of [1]} — #{removable i-nodes of [1]},

ds(A) = d; - (#{addable i-nodes of [1] below A} — #{removable i-nodes of [1] below A}),

d*(1) = d; - (#{addable i-nodes of [1] above A} — #{removable i-nodes of [1] above A})
where d; is given in Subsection 2.1. We define the Fock space F (k) with charge k to be the

Q(g)-vector space with basis consisting of partitions of n. For a Young diagram [1], F ()
has a U,(g(A))-module structure defined by

g'4 =g, eid =) q" VA /A,
A

qa/’v/l — qdi(/l)/l, f;/l — Z q_dA(/l)/l |/ A,
A

where A runs over all removable i-nodes and all addable i-nodes respectively [23, Theo-
rem 2.3]).

We identify the basis of F (k) with the set of all Young diagrams. Its crystal structure can
be described by considering the usual i-signature. For a Young diagram [A1], we consider all

addable or removable i-nodes ay,as, . .., a,, of [1] from top to bottom and to each a; of [1],
we assign its signature s; as + (resp. —) if it is addable (resp. removable). We cancel out all
possible (—, +) pairs in the i-signature (s1, . .., s,,) to obtain the reduced i-signature, which is

a sequence of +’s followed by —’s. We call the removable node corresponding to the leftmost
— in the i-signature a good node and the addable node corresponding to the rightmost + in
the i-signature a cogood node. We define f;A to be the Young diagram obtained from [1] by
adding a box at the cogood node. Similarly, we define ;1 to be a Young diagram obtained
from [A] by removing the box at the good node. The operators & and f; defined above
coincide with Kashiwara’s operators (cf. [23, Theorem 3.3]). Here our choice of convention
is compatible with that of [10, §3.6] which deals with the type A Fock space, and differs
from [21, 23] in the choice of convention used when reducing the i-signature.

Then (see [23, Section 2]), the U,(g)-submodule of F (k) with A, = A generated by the
empty partition @y is isomorphic to the irreducible integrable highest weight module V(Ag),
and the crystal graph for the U,(g)-crystal V(Ay) is the directed coloured graph with vertices
the set of partitions that can be obtained from repeated application of the operators f;, i € I

to @ and i-coloured edges A 5 1 whenever u = fiA (or equivalently, &;u = 1). We will call
a partition Kleshchev if it is a vertex in the crystal graph of V(Ay) C F(x) (cf. [14, §6F]). By
Theorem C of [14], partitions of n that are Kleshchev form a complete set of labels for the
set of simple R*-modules.

DeriniTion 2.4, Let A € P,. A A-tableau is a bijection T : [A] — {1,...,n}. We depict
T by filling each node (r,c) € [A] with T(r,c). We call a tableau T standard if the entries
increase along rows and down the columns. We denote the set of standard tableaux by
Std(1). We will denote by T* the unique A-tableau where nodes are filled by 1,2,...,n
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along the successive rows and call T* the initial tableau.
For each A-tableau T, we have the associated residue sequence
i = (i1, i0y. .., 0n) = (res(T7(1)), 1es(T™'(2)), ..., res(T~' (n))).
We will write i* fori"".

ExampLe 2.5. If 1 = (4,3,3,2), k = 1 and £ = 3, then
213]4]

™ =

N |oo|n|—
()

7
<|1
1[>[<]1]2]>]

and we have that i' = (123201210121).

Let T be a A-tableau and choose some 0 < m < n. We denote by T, the set of nodes of
[4] whose entries are less than or equal to m. If T € Std(1), then T, is a standard tableau
for some partition, which we call Shp(T,,).

For any A € P, and T € Std(1) we define the degree deg T of T as follows. If n = 0 then T
is the unique @-tableau and we set deg T := 0. Otherwise, let A = T~!(n) € [1] and suppose
A is an i-node. We set inductively

deg T :=degT,—; + da(A).
ExampLE 2.6. If 4 =(3,3,1,1), k = 1 and ¢ = 2, then A has the following residue pattern

2|1
12

FEEE

and if T is the tableau

NME N

then
degT=0+0+0+(1+1D)+1+0+0-2=1.

DerintTioN 2.7. We define the content of the partition A to be

cont(d) = Z resa) € Q7.

Aell]
The defect of a partition A is
def (1) := def(cont(A)).

Recall from [17, § 12.6] that a weight u of V(A) is maximal if p+6 is not a weight of V(A).
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Let max(A) be the set of all maximal weights of V(A). The following is a generalisation of
Ariki and Park’s result for A = Agto A = Ay:

Proposition 2.8. For the weight system of the §(A)-module V(Ay) in type CE,I), we have
(1) max(Ag) NP* = {Ag + & ai — %6 | ki€, iisan even nonnegative integer}, and
(2) uis aweight of V(Ay) if and only if u = wn —mé for some w € W, n € max(A;) NP*

and m € Zsy.

Proof. The details here are similar to [7, Proof of Prop. 5.1]. Let u € max(Ay)NP*. Since
{€xxi | k =i € I} satisfies eq. (2) and {&+; | i # 0 and k + i € I} forms a basis of ),y Qa;,
by the same computations y = Ay + &g+ +16 for some i # O such thatk+i € [ or u = Ap +16.
In the latter case, u maximal implies that u = Ay = Ay +&po. In the former case, Ay —u € Q*
and (1) together imply that i is even.

Then, to show that ¢ = —é, we need to consider the cases u = Ay + & + 16 and u =
Ay + & + 10 separately. For the case u = Ay + & —; + 19, using the partition

AM=iy=(L—k+i)/2,0—k+i)2,....0—k+i/2)

in the Fock space F(x) with A, = Ay and considering its residue pattern we have the corre-
sponding weight

i , , .
Ay - (EW tilae+ o +a)+ (= Dager + (0= D -+ + a’k—i+1)
i
=Ap+&k-i — 55,

and so by Theorem 2.13 in the next section that dim RAk(%(S —&r—i) # 0and so Ap + & i — %6
is a weight of V(Ay). Furthermore, Ay + & — %(5 is maximal since (=& —; + %6) -0¢ Q.
For the case yt = Ay + &x+i + 10, we use the partition
A+i) = (i,1,...,10)
———
k+i/2

in the Fock space F (k) with A, = Ay instead, which has corresponding weight
i _ : ;
Ay — (an +ila+ -+ a) + (= Dagsr + (0= 2)agen -+ + ak+i—1)
i
= Ag+ Ekri — 55,

and so Ay + & i — 56 is a weight of V(Ay); it is maximal since (=& 4; + 55) -0¢ Q.

The second part is also argued similarly: max(Ay) is W-invariant by [17, Prop. 10.1] and
furthermore max(Ay) = W(max(A;) N P*) by [17, Cor. 10.1]. Thus, given any weight u of
V(Ay), by [17, (12.6.1)] there exists a unique { € max(Ay) and a unique m € Zy( such that
u=4<4—mo. m|

2.3. Quiver Hecke algebras. Let F be an algebraically closed field and (A, P, I1,IT") the
Cartan datum from Subsection 2.1. We set polynomials Q; ;(u,v) € Flu,v], for i, j € I, of the
form
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0 (u.v) = | Zrt@laiaao) 2anjo=0 lijpgt V! 1T 1% )
A 0 ifi=j,
where 7; j., 4, € F are such that #; j, .0 # 0 and Q; j(u,v) = Q;;(v,u). The symmetric group

S, =(sk | k=1,...,n—1) acts on I" by place permutations.

DerNtTiON 2.9. The cyclotomic quiver Hecke algebra R? associated with polynomials
(Qi,j(u,v)); jer and Ay € P is the Z-graded F-algebra generated by three sets of generators

e Iv=...,v)el", {x, [1<r<n), {Y;|1<j<n-1}
subject to the following list of relations:
e(v)e(v/) = 51,,1,'6(1/);

Ze(v) =1;

veln
xre(v) = e(v)x,;
yre(v) = e(svy;
XpXg = XgXp,
YrXs = X, ifs#rr+1;
s = sy if [r—s| > 1;
xpre(v) = rXrs1 = Oy, )e(v);
Xrr1re(v) = Xy + 05,5, )e(v);
re() = Oy, ., (s Xps)e(V);

QVerr+l (xnxrﬂ)_er.vH_l (Xr42,Xr+1) e(V)

Wra i1 = Yy )e(v) = {0 Xr—Xri2

ifv, = v,
otherwise;

@), .A
1

for all admissible 7, s, v, V', and x >e(v) =0forvel.

The algebra R is Z-graded by setting

deg(e(v)) =0, deg(xre(v)) = (a'vrv OKV,), deg(lﬁse(v)) = _(a'v:’ a’v:+1)

for all admissible r, s and v.
For some 8 € Q* with ht(8) = n, we set

FP={vel'la, + - +a, =Bl

Then e(B) := Y, e(v) is a central idempotent. We define R*(B) := R™e(3), which is also an
F-algebra. It is clear that R*(8) may be defined by the same set of generators and relations if
we replace I" with I# in both. The cyclotomic quiver Hecke algebra R® can be decomposed
into a direct sum of F-algebras:
Ry = P R'o),
BeQ*
ht(B)=n

(see [8, § 2.1]) and we refer to R*(B) as a block algebra of R?. In general, it is not known that
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RA(B) is indecomposable, but as we show later this is the case in level one when f has defect
zero and one (Proposition 2.15 and Corollary 4.3 below). The block algebras for A = Ay

v

were referred to as finite quiver Hecke algebras in [7]. If we drop the relation xia”‘ ’A>e(v) =0
for v € I?, we obtain the quiver Hecke algebra R(f).
We define the defect of a nonzero block algebra R*(8) to be the defect of 8 € Q*.

Lemma 2.10. The defect of a nonzero block algebra R (B) is non-negative.

Proof. By the categorification theorem, R*(3) # 0 precisely when A — S8 is a weight of
V(A). By Proposition 2.8, when A = Ay this means that A — 8 = wA + wé+; — md for
ktiel,m=>i/2andw € Wandsof = A — wA — wés; + mé. By direct computation
for g € Q", A —w'A + w!B and B have the same defect and so the defect of R*(B) is
def(B) = def(md — &.;) = 2m — £ > £ > 0 by Lemma 2.1. o

This is true in higher levels as well, and details will appear in an upcoming paper [11].

In the rest of this section, we recall some important results which will be used in our
proofs. Recall that by direct computation, R*(3) and R*(A — wA + wp) for w € W have the
same defect. In fact, a much stronger statement holds:

Proposition 2.11 (cf. [5, Cor. 4.8]). For w € W, R ) and R»A — wA + wp) are
derived equivalent; furthermore, they have the same number of simple modules and the
same representation type.

We denote the direct sum of the split Grothendieck groups of the categories R*(f)- proj
of finitely generated projective graded R*()-modules by

Ko(RY) = €] Ko(R"(8)- proj).

BeQ*

Note that Ko(R™) has a free A-module structure induced from the Z-grading on R*(B), i.e.
(gM)r = My, for a graded module M = @ ez M- Let e(v, i) be the idempotent corre-
sponding to the concatenation of v and (i), and set e(B, i) = Y, e(v, i) for 8 € Q*. Then we
define the induction functor F; : R*(8)-mod — R™(B + a;)-mod and the restriction functor
E; : RMNB + a;)-mod — R™(B)-mod by

Fi(M) =R B+ ape(B, i) ®npy M, EiN) = e(B, DN,
for an RA(B)-module M and an R*(8 + a;)-module N.

Theorem 2.12 ([18, Thm. 5.2]). Let [; = (al.v, A = B), fori € 1. Then one of the following
isomorphisms of endofunctors on R™(8)-mod holds.

(1) Ifl; = O, then
;-1
g *FiE; ® @ ¢25id = E,F;.
k=0

() Ifl; <0, then
4.2 FiE: — EFi o D ¢, %d.
k=0
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Forv e I", let

K vyi= > g @, K= ) gt

TeStd(1) TeStd(2)
res(T)=v

Theorem 2.13 ([8, Thm.2.5]). Forv,v' € IP, we have

dim, eR (Ble(v) = > KoLK (L),
wt(A/l);nA—ﬁ
dim, R*(B) = Z K,(1)?,
Arn
wt()=A-B
dim, R = > K, ()%,
Arn

where dimy M := } dimg(M;) g~ for a free graded F-module M = P vez M-
The statement below is an immediate consequence of the dimension formula:

Corollary 2.14 (cf. [7, Cor. 2.7]). (1) Letv € I". Then, e(v) # 0 in R™(n) if and only
if v may be obtained from a standard tableau T as v = res(T).
(2) For a natural number n, we have dim R,?" =nl.

Proposition 2.15. Block algebras of defect 0 are simple.

Proof. By Lemma 2.1 and Propositions 2.8 and 2.11, a block algebra B of defect 0 is
derived equivalent to ng which is simple. By [5, Proposition 4.2], these algebras are self-
injective and so by Rickard’s theorem [24, Theorem 2.1], the derived equivalence between
them is in fact a stable equivalence. Since ng is a simple algebra, all of its modules are
projective and its stable module category consists only of zero objects, hence the same is
true for B.

Suppose that the unique indecomposable projective B-module is not simple. Then, the
identity automorphism of the simple B-module does not factor through any projective B-
module, so that it is a nonzero homomorphism in the stable module category of B, which is
a contradiction. Hence, the unique simple B-module is projective-injective and therefore B
is a simple algebra as well. m|

The next lemma will play a crucial role in our proofs.

Lemma 2.16 ([2, Lem.1.3]). Suppose that e = e; + e with ef =e # 0, e% =e # 0,
erer = ere; =0 and

dim, e;R™(B)e; — 6 — ciiq” € 4°Z=olq]

fori, j =1,2. Then the quiver of eR™(B)e has two vertices 1 and 2, c;; loops on the vertex i
fori=1,2, and there are at least ci, arrows and cy; reverse arrows between 1 and 2.

Lemma 2.17 ([2, Lem. 3.1]). Let o : I ~ I be a Dynkin automorphism, namely a bijective
map that satisfies dqyir(j) = aijfori, j € I. For B = Y, bia; € Q" and A = 3 ;c; ciA; € PT,
we define
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O'ﬁ = Z b,ag(,-), oA = Z CiAo-(i)-
iel i€l
Then, RN(B) defined with Q; j(u,v) is isomorphic to RN B) defined with Qlf/.(u, v) such that
Q:T(i)g'(j)(u7 v) = Qij(u’ v).
Corollary 2.18. We have an isomorphism of algebras
RM(B)g, = RN (B, = RN (oB)g,-

Proof. The first isomorphism follows by setting o(i) = ¢ — i in Lemma 2.17; the second
isomorphism holds by the arguments given in the discussion in [3, Lem. 2.2]. O

Hence in order to determine the representation type of R*+(8), it is enough to only con-
sider 0 < k < £/2 by application of the above isomorphism.

3. Representations of R¢(6)

In [7] in order to investigate the representation type of R*(6), they built on the work of
[22] and constructed the irreducible R*(8)-modules. However for R™+(8), we only need to
consider the projective modules and their radical series for k = 1 and all other cases can be
easily proved using Lemma 2.16. Note that R*+(5) has defect 2.

Lemma 3.1. For { = 2, the algebra R (6) has tame representation type.

Proof. If k = 0 this is proved in [7, Thm. 3.7]. Suppose that k # 0. Then we may assume
that £ = 1 by Corollary 2.18 and we will prove the assertion by explicit construction of the
indecomposable projective modules. We have that § = a + 2@ + a» and e(v) # 0 € R (6)
for the following four sequences:

e1 = e(1210)
ey = e(1201)
e5 = e(1021)
e3 = e(1012).
Using Theorem 2.13, we can easily calculate the g-dimensions of e(v)R™ (§)RM:
e()\e(v") ’ 1210 1201 1021 1012
1210 | 1+4* q* q
1201 ¢ 1+¢+q" 1+¢+q" &
1021 ¢ l+@+q 1+@P+q
1012 . Ve 7 1+q*

Let A = RM(8). Looking at the table above, we see that A is non-negatively graded,
and hence its radical consists of linear combinations of elements of positive degree and
A/Rad(A) is semisimple. The basis of A/Rad(A) contains the degree zero elements:

A/Rad(A) = spanfey, ey, exyr€), €saer, €5, e3}.

Let
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P, := RM(6)e;
P, := RM(6)ey
P, = RM(8)é)
Ps := RM(0)es

and define the simple modules S; := P;/Rad(P;). (Note that S| and S5 are both one dimen-
sional, while S> and S} have dimension two.)
As foralli =1,2,3,4 we have that

dim, e;Ae; = 1 + higher order terms,

the algebras End4(P;) are local, and we must have that P; are indecomposable projective
A-modules with simple heads.

Now, we will show that P, = P] as left A-modules. Let f : P, — P] be given by
xey = xeya wWhere a = exyhae),. Because f(ey) # 0 and it has degree 0, we conclude that
f(e2) € Rad(P)). Thus, it generates S) and f is surjective. Finally, as dim P, = dim P;, we
see that f is indeed an isomorphism of A-modules.

Let e = e; + ey + e3. By looking at the g-dimensions of e(v)Ae(v'), we see that P; & P;
for 1 <i # j <3, and hence eAe is the basic algebra of A and all simple eAe-modules are
one dimensional. We have the following radical series for eAe (as the corresponding module
categories of eAe and A are Morita equivalent, abusing notation, we write P; and S; instead
of eP; and eS)):

S S, S3
Pr= 5 Py~ S$0S5,dS; Py~ S,
S S, S;.

Thus eAe = FQ/T where the ideal T is given by the relations aja; = 0 = S8, a1y =
0 =yB1,yas = 0 = Bry, a2 = y*> = B1a; and the quiver Q has the following form:
o

()

] =92 —— 3

b1 B2
Hence R*!(6) is of tame representation type by [4, Thm. 1(5)]. m|

Lemma 3.2. For { >3 and 0 < k < {, the algebra R™(5) has wild representation type.

Proof. If k = 0, the result follows by [7, Thm. 3.7].
Let A = eR™(8)e where e = e; + e,. For € = 3, we set:

e = e(123201)
ey = e(101232).
Otherwise, we choose

ei=elkk+1,....¢,....k+1, k-1 kk-2k-2,...,0,...,k—=1)
ey=elk,k+1,....0,...,k+3,k+2,k—1,k=2,...,0,...,k+1).
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Using Theorem 2.13, we compute the graded dimensions for any 1 < k < £/2:
dim,, eRM()e; = 1 + ci,ng +q*;
dim, ¢;R™(6)e; = dim, e,R™(B)e; = ¢*,

where

1 if=3,i=1
Cit = .
2 otherwise.

As cip > 0, we have that eR™M(0)e; and eR™(6)e; are pairwise non-isomorphic, indecom-
posable projective A-modules and in particular that R*+(8) is of wild representation type for
¢ > 3 by Lemma 2.16 and [12, 1.10.8(iv)]. m]

4. Representations of R (5 — Er,x2)

In this section we see that blocks of defect one have finite representation type, and more-
over that they are equivalent to a Brauer tree algebra. We also demonstrate that depending on
k, there are two distinct possibilities for the number of simple modules in block algebras of
defect one. Note that every block algebra of defect one is derived equivalent to R (6 — & +;)
by Lemma 2.1 and Propositions 2.8 and 2.11, where

6—{“](,2:&’0-{-2(11+"'+26¥k+6¥k+1, and

19) —fk,_z = + 205 + -+ 2021 +ay
fork+2el.
Proposition 4.1. RN (5 — & 1») is of finite representation type.

Proof. First consider the case for 6 — &». The partitions belonging to the block algebra
RM(S6 — &p) are () = K1 1%y forO <i < k+ 1.

The partition A(0) = (2¥*!) is not Kleshchev since it has only one removable 1-node,
which is not a good node as it is immediately followed by an addable 1-node (when reading
from top to bottom), and hence does not show up in the reduced 1-signature, and so (2¥+!)
cannot correspond to a vertex in the crystal graph. The remaining partitions are all Kleshchev
since each of them has a good (removable) node, and we may traverse against the directed
edges on the crystal graph by continuing to remove good nodes until the empty partition @y
is reached. In more detail, starting from each partition we can move up the crystal graph
as follows: the first column of A(i) has residue (k,k — 1,...,1,0,1,...i) and the second
column has residue (k+ 1,k,...,i+ 1) and so A(7) has a good i-node. The partition obtained
by removing that good node has itself a good (i — 1)-node, and the partition obtained by
removing that good node has a good (i — 2)-node, and so on until the partition (28-*1) is
reached. Here, we have a unique removable node with residue i + 1, and since i > 0 that
node is good and can be removed to move up the crystal graph. Continuing as before,
the remainder of the second column, and subsequently the rest of the first column, can be
removed by a sequence of good nodes until the empty partition @y is reached. This is by no
means the only possible path back to @, but to show that A(i) is Kleshchev for 1 <i <k+1
it suffices to exhibit one such path.
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Let ¢; be the idempotent corresponding to the residue sequence for the initial tableau for
each Kleshchev partition A(7) for 0 < i < k; in particular e; = e(v(i)) where

v 0)=(k,k—1,...,1,0,1,...,kk+1)
and for 1 < i < k, the residue sequence v(i) is
vi)=(k,k+1,k—=1,k,....,k—i+ 1, k—i+2,k—i,k—i—1,...,1,0,1,....,k—i+1).

From Theorem 2.13 above, we have the following graded dimensions:

1+¢* ifj=1i,
dim, e;R™M (5 — &a)ej = 3¢ if j=i+l,
0 otherwise.

Hence, RadR™(6 — &) is spanned by homogeneous elements of positive degree, and P; =
RM (5 — &c2)e; are indecomposable and pairwise non-isomorphic projective modules and
hence we can conclude that the radical series of P; is given by

So S Sk

Po= 8, Pi= 5108y (1<i<k), Pi= S

S() Si Sk
where S; = Top(P;), and so R (5 — &) is Morita equivalent to a Brauer tree algebra whose
Brauer tree is a straight line (cf. [2, Prop. 5.1]). Moreover, the idempotents ey, e3, ..., ¢

give a complete list of the pairwise non-isomorphic primitive idempotents of R*(5 — &).

For the case 0 — & _», we can apply the same argument where the partitions belonging to
RM(6 — & p)are u()) = (E—k+i+1,6—k—i+1)for0 <i < {—k+ 1, all Kleshchev
except when i = £ — k + 1 (by a similar reasoning to the previous case) and so in this case
the idempotents correspond to the residue sequence

v(i)=Gk+1,... . 0—=1,60—1,....0—ik—1,k,....0—i—1)

for 0 < i < ¢ — k instead. m]

Corollary 4.2. When k + €/2 and 2 < k < £ — 2, there are two inequivalent Morita
equivalence classes of blocks of defect one with distinct number of simple modules k + 1 or
{ —k + 1 respectively.

Proof. From the proof of Proposition 4.1, we see that R*(6 — & _») has k + 1 simple
modules and R (6 — & ,») has £ —k+ 1 simple modules. By Lemma 2.1 and Propositions 2.8
and 2.11 all blocks of defect one have the same number of simple modules as either one of
these two maximal weight cases. |

In [8], the authors construct for cyclotomic KLR algebras of type C (El) the Specht modules
S where A is a (multi)partition. The following corollary describes the graded decomposition
matrices for blocks of defect one in level one, the following corollary describes the graded
decomposition matrices for blocks of defect one in level one with dominant weight A = Ay.

Corollary 4.3. Let m € {k+ 1,{ — k + 1} be the number of simple modules for a block
algebra of defect one. Then the graded decomposition multiplicity is
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1 ifi=j,
[S10: D], =3q ifi=j+1forl<i<m+]1,
0 otherwise,

where A(i) is as in the proof of Proposition 4.1 above when m = k + 1, and A(i) = u(i) when
m=~C—k+1.

Proof. From the proof of Proposition 4.1, the ungraded decomposition multiplicities are
[S) : D)) = 1 wheni = jori = j+1lorl <i < m+ 1. By Corollary 6E.18 of
[14] when the defect d is 1, the bottom-most nonzero entry of each column of the graded
decomposition matrix is [S*? : DYV =g =gforl <i<m+ 1. O

We note here that RM (5 — &r.+2) 1s an indecomposable algebra.

Theorem 4.4. Let B be a block algebra of defect 1. Then B is of finite representation
type and moreover B is a Brauer tree algebra whose Brauer tree is a straight line with no
exceptional vertex.

Proof. By Lemma 2.1 and Propositions 2.8, 2.11 and 4.1, B is of finite type and is derived
equivalent to RAM(§ — &r+2), which is a Brauer line algebra. Moreover, derived equivalence
preserves Hochschild homology so in particular, the zeroth Hochschild homology i.e. the
center is preserved and hence B is indecomposable as well. Furthermore, B is (graded)
cellular by [14, Thm. A] and symmetric by [14, §4E]. Hence, applying Ohmatsu’s theorem
and by the argument in [2, §8.2], we conclude that B is a Brauer tree algebra whose tree is a
straight line with no exceptional vertex. m|

Remark. Thus we see that the algebra R*(B) is indecomposable if it has defect 0 or 1.
We expect this to be true for any R*(8) in any defect as well.

5. Representations of R (26 — &; +4)

Note that every block algebra of defect 2 is derived equivalent to RM(6) or RM (26 — Epxa).
Observe that

k
,3 =20 — fk,4 = 2(1’0 + 42(1/,- + 3a/k+1 + 2ak+2 + Qp43, and
1

-1
Y = 20 — é:k,—4 = a3 + 2047 + 341 + 42 a;+ 2a.
k

Lemma 5.1. For k + 4 € I, the algebra R™ (26 — & +4) has wild representation type.

Proof. If k = 0, this is proved in [7, Thm. 4.2]. Suppose k£ # 0 and &k < £/2. Then,
k+4 € I implies that £ > 4 and k —4 € [ implies that £ > 2k > 8 and so we may assume that
¢ > 4. Just as in the proof of Lemma 3.2, we set e = e¢] + e,. First, we consider the algebra
A = eRM(B)e where we choose

er=(k,k—1,...,0,.... k+3,k+1,k+2,k,...,0,....,k+1)
er=(k,k+1,k+2,k+3,k—1,k-2,...,0,...,k+2,
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kk+1,k—1,k—2,...,0,...,k).
For shorthand notation, leti := (i,i — 1,i — 2,i — 3). Let B = eR™(y)e and set

ev=(kk+1,...,66-1,0-2,6,0-1)
er=(kk+1,... k+d=2,0-1,66-1,6-2,0-3,
C—4,0-2,0-3,0-1,6,6-1,0-2).

Then using Theorem 2.13, we can compute the graded dimensions for x = 3,y and any
k>0

dim, e;RM(k)e; = 1 +2¢* + ¢*;  dim, e;R™(K)e; = dim, e;R™(B)e; = ¢*.

Thus R™ (k) is wild by the same reasoning as in Lemma 3.2. |

6. Representations of R*+(5)

In this final section, we prove two important lemmas that will enable us to generalise our
results for all R*(B). After stating the main theorem, we also rewrite it in terms of defect
and compare it with the original statement of Erdmann—Nakano.

Lemma 6.1 ([13, Prop. 2.3], [6, Rem. 5.10]). Let A and B be finite dimensional F-
algebras and suppose that there exists a constant C > 0 and functors

F: A-mod - B-mod, G : B-mod — A-mod

such that, for any A-module M,
(1) M is a direct summand of GF(M) as an A-module,
(2) dim F(M) < Cdim M.

Then, if A is wild, so is B.

The next lemma is the analogous statement of [8, Lem. 5.3] for A;.

Lemma 6.2. (1) If R™M(B - a;)) is wild and (hj, Ay =+ a;) > 1, then RM(B) is wild.
(2) Suppose that R™(nd — Erxi) s wild. Then
(@) RM((n+ 1)6 — & ) is wild,
(b) ifk + (i +2) €I, then RM((n + 1)6 — & w+2)) is wild.

Proof. (1) Considering the functors
Fj: RMB -« j)-mod — R™(B)-mod, E IE RM(B)-mod — RM™(B - a j)-mod,
the statement follows from Lemma 6.1 and Theorem 2.12.

(2) First, we will consider R*((n + 1)6 — &i.i). Notice that

(-1
Ae+Eein = (n+ 1D = Mg+ &6+ Qi1 +2 ) aj+ap—(n+ 1)
J=k+i+2
k+i
=Ap+&i—a@—2 Z Aj = Apgir1 — NO.
=1
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ForO <k+i<{-1andn € Zsy, we compute

Ag +Epiva — M+ 1)0 + Qrsiv1 = Fiwilkriot - - 117071 - - Tiri(Ag + Ex i — 1O),

Ak + fk,i — (I’l + 1)6 + Qp = rp—1¥rp—p ... 1ok ... l’k.H'(Ak + fk,i - n(S)

Hence R™((n+ 1) — Epiv2 — Qpsi+1) and RM™((n+1)6— &r.i— ) are wild by Proposition 2.11
and the assumption that RM(né — &r.+i) 1s. Moreover, we also have that

Mirints Mg + Exjwr — (M + 1)0 + Qpyiv1) =2, (he, A+ i — (n+ 1)0 + ay) = 2,

and now we apply (1) to arrive at the desired conclusion.
Similarly, for k + i = £ we need to consider

Ay + fk,l‘ —(nm+Dd+ayg=rirp---re(Ag+ Ek,i — no).
and we also have to check
<h0,Ak + fk,i - (I’l + 1)5 + (1’0) =2.

Using Proposition 2.11 and (1) again, (2) follows for R (nd — Eri)-
Next, we look at RM((n + 1)6 — & __;). Here we note that

k—(i+2)
AN+ éi—sny—(n+ 10 = A+ & i+ ap+2 Z @)+ Q—ge1y — (M + 1)
j=1
-1
= Ap+&p-i — Qp—(i+1) — 2 Z aj—ap— no.
Jj=k—(i+2)

The proof is essentially the same as for k + (i + 2), but in this case the Weyl group generators
r; will act in reverse order. For 1 < k —i < £ and n € Z5o, we compute

Ap + & i) — (n+ 10 + ap—(i—1) = F—ilh—(i=1y - - - Fe—1T¢Te—1 -+ Ti—i( A + Ep i — 1),
Ae+&_i—(n+ DS+ag=riry...rearere—y ... il Ag + E—i — no).

Moreover, we also have that

(Mi—iv1ys Ak + Ex—is2) — (n + 1) + ap—i-1)) = 2,
<h0,Ak + fk,—i — (n + 1)(5 + a’0> =2.

Finally, for k — i = 0 we need to consider
Ap+ &k —(n+1)0+ap=rerrea - riro(Ag + &gk — no).
and we also have to check
Chey A +ép—i —(n+ 1)+ ap) = 2.

Thus for R (nd — &k—i), (2) follows by the same reasoning as for k + (i + 2). m|

Theorem 6.3. The algebra R (26) is wild.

Proof. If £ > 3, the statement follows from Lemma 3.2 by applying Lemma 6.2 with
i =0. Now assume ¢ = 2. Let ¢ = e; + ¢, and consider A = eR*'(26)e where
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e; = ¢(10121012) and ex = ¢(12012101).
Then we have the following graded dimensions:

dim,, elRM(20)e; =1 +2¢> +2¢* +2¢° + ¢*

dim, e RM(26)er = 1+ 24 +3¢* +2¢° + ¢°

dim, ;R (26)e; = dim,, e2R™ (26)e; = ¢* + 24" + ¢°.

Then R*1(26) is wild by the same reasoning as in Lemma 3.2. |

Theorem 6.4. The algebra R (25 — & 1) is wild.

Proof. If k = 0, this is proved in [7, Lem. 5.4]. Suppose k # O and k < £/2. Thenk+2 < ¢
implies that £ > 3 and k — 2 € [ implies that £ > 2k > 4 and so we may assume that £ > 3.
Notice that for 1 < k < £ — 1 we have that

k

25—&(’2 = 6+ao+22a/j+a/k+1
J=1
(-1

26—51{,—2 =0+ i +2ZQ’J-+Q[.
=k

By Lemma 3.2, we already know that RM(6) is wild and we also see that
ey A = 8, {1, A — S — )y .o 1, A — 8 — e — -+ - — @),
<h€’Ak_6_ak_"'_a'f—]>,<hk—]aAk_6_ak— _a€>

are all positive, so we have that RM(§ + ay_y + ag + -+ + @) is also wild by Lemma 6.2.
Finally, direct computation shows that

-1
Ak—(6+a/k_1 +2Zaj+a/g)=Ak—6—a/k_1 =2 — 24 — - — 241 — Qp
=k
=rearea. (A =0 — @1 —ap — -+ — ).
Hence R (26 — &—n) 1s wild.
Similarly, for 26 — & it is easy to see that
(i A = ), (i1, Ak = 6 — ), ... (hi, Ag =6 —ap — -+ - — a),
(hos Ak =6 —ay — -+ =), (a1, Ak =6 — g — -+ - — )
are all positive, thus the algebra R (6 +ag +a; +- - - + ;) is wild. Using direct computation
again, we have that

Ak—b6-—ao—ar—2a0 = =20k —aps) = ror3 ... (A =6 — g —ay — -+ — aps1)

and that

k
(h],Ak—é—ao—al +22a/j+a/k+1):2
Jj=2

and thus R (26 — &r2) 1s wild by Lemma 6.2 and we have proved the statement. ]
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Theorem 6.5. Let 0 < k+i < Cor0<k—i<{forsomeeveniecl. Forf3 e W(Ag+&x i)
and m > i/2, the block algebra R™(Ay — B + md) of type Ci,l) is
(1) a simple algebra if i = m = 0;
(2) of finite representation type if m = 1 and i = 2;
(3) of tame representation type if i =0, m = 1 and € = 2;
(4) of wild representation type otherwise.

Proof. If k = 0 or ¢, the result follows by [7]. If 1 < k < ¢ -1, (1) comes from
Proposition 2.15, (2) comes from Theorem 4.4, (3) is proved in Lemma 3.1 and (4) follows
by Lemma 3.2 and applying Lemma 6.2 to Lemma 5.1 and Theorems 6.3 and 6.4. O

Remark. We note here that we can phrase things in terms of defect. Let d be the defect
of RM(Ay — B +md) form > i/2, B € W(Ay + &+;) witheveni € I suchthat0 < k+i < {or
0 < k — i < ¢. Then the block algebra RM (A — 8 + md) of type CE,I) is

(1) a simple algebra if d = 0;

(2) of finite representation type if d = 1;

(3) of tame representation type if £ =2 and d = 2;
(4) of wild representation type otherwise.

Remark. We also summarise the results of Ariki—Ijima—Park, Ariki—Park [3, 5, 7, 6] and
ours on the representation type of block algebras in level one in terms of defect. Let d denote
the defect of the respective block algebra.

e If A = Ay in type Ag,), d = 0 implies simple, d = 1 implies finite, wild otherwise
(tame representation type does not occur here).

e If A = Ay in type DZ)I, d = 0 implies simple, d = 1 implies finite, d = 2 implies
tame, wild otherwise.

o If A = Ay in type A, d = 0 implies simple, d = 1 implies finite, d = 2 and
¢ = 1 implies tame, wild otherwise. (This follows from the fact that in type Ai,l),
RM(B) = RM(B) forany 0 < k < (.)

o If A = Ay in type C\", d = 0 implies simple, d = 1 implies finite, d = 2 and ¢ = 2
implies tame, wild otherwise.
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