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Abstract
We investigate some geometric properties of orbits of the isotropy group action on quater-

nionic irreducible symmetric spaces of compact type. We show that such orbits, except for a
one-point set, satisfy one of some four properties and classify which orbits satisfy which prop-
erties in each such symmetric space. In a symmetric space, a connected component of the fixed
point set of a geodesic symmetry, except for a one-point set, is called a polar. A polar is a totally
geodesic submanifold and an orbit of the isotropy group action. By the classification, we show
that an orbit which is a quaternionic submanifold or the image of a totally complex immersion
is a polar, and a polar becomes a quaternionic submanifold or the image of a totally complex
immersion.

1. Introduction

1. Introduction
We study some geometric properties of orbits of the isotropy group action on quaternionic

irreducible symmetric spaces of compact type with respect to the quaternionic structure. In
[8], Enoyoshi and Tsukada show that a polar is the image of a totally complex immersion in
the associative Grassmann manifold which is a quaternionic symmetric space. In a symmet-
ric space, a polar is a connected component, except for a one-point set, of the fixed point set
of a geodesic symmetry and it is known that a polar is a totally geodesic submanifold and an
orbit of the isotropy group action [7]. In [12], the author studies orbits of the isotropy group
action in the associative Grassmann manifold. In the present paper, we study orbits of the
isotropy group action in each quaternionic irreducible symmetric space of compact type.

First, recall the definition of a quaternionic Kähler manifold. Let M be a 4n-dimensional
(n ≥ 2) Riemann manifold and g be the Riemann metric and Q̃ be a 3-dimensional subbundle
of End T M satisfying the following conditions:

(1) For any x ∈ M, there is a local frame field {I, J,K} defined in a neighborhood U of x
such that for any p ∈ U

I2
p = J2

p = K2
p = −IdTp M,

IpJp = −JpIp = Kp, JpKp = −KpJp = Ip, KpIp = −IpKp = Jp.

(2) For any x ∈ M, I ∈ Q̃x and X, Y ∈ TxM,

g
(
I(X),Y

)
+ g

(
X, I(Y)

)
= 0.
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(3) Q̃ is parallel with respect to the Riemann connection of g.
Then, we call (M, g, Q̃) a quaternionic Kähler manifold and Q̃ a quaternionic structure of M.⋃

x∈M{J ∈ Q̃x ; J2 = −IdTx M} is denoted by Q. Then, Q is an S2-bundle over M and called
the twistor space of M. It is known that Q is a complex manifold and has a holomorphic
contact structure [11]. In Q̃, we define an inner product 〈 , 〉Q̃ as follows:

〈A, B〉Q̃ = −
1

4n
tr(AB) (A, B ∈ Q̃x).

Then, Q = {A ∈ Q̃ ; 〈A, A〉Q̃ = 1}. Also, the Riemann connection of g is metric with respect
to 〈 , 〉Q̃.

Next, we recall some submanifolds of a quaternionic Kähler manifold. Let N be a man-
ifold and f : N → M be an immersion. We denote by f ∗Q the pullback bundle of
Q by f . If there is I ∈ Γ( f ∗Q) such that I

(
d f (TxN)

) ⊂ d f (TxN) for any x ∈ N, we
call f an almost complex immersion and I the almost complex structure of f . We set
QI = {J ∈ f ∗Q ; 〈J, I〉Q̃ = 0} = {J ∈ f ∗Q ; IJ = −JI}. Then, QI is an S1-bundle over
N. If J

(
d f (TpN)

) ⊥ d f (TpN) for any p ∈ N and J ∈ QI
p, then we call f a totally com-

plex immersion. It is known that if f is totally complex, then the almost complex structure
of f is integrable [16]. Totally complex submanifolds are studied well by several authors
([2],[10],[13],[15]).

In an almost Hermitian manifold, CR submanifolds are defined as an analogy of almost
complex submanifolds [3]. Let L be an almost Hermitian manifold. We denote the almost
complex structure of L by I. Let U be a submanifold of L. If there is a distribution H on U
such that I(H) ⊂ H and the orthogonal complemental distribution H⊥ of H in TU satisfies
I(H⊥x ) ⊂ (TxU)⊥ for any x ∈ U, we call U a CR submanifold of L [3]. U is an almost
complex submanifold if H = TU and U is a totally real submanifold if H⊥ = TU.

We naturally consider an analogy of an almost complex immersion of a quaternionic
Kähler manifold. Let M be a quaternionic Kähler manifold, N be a manifold and f : N → M
be an immersion. If there is a section I ∈ Γ( f ∗Q) and a distribution V,W of N such that

V +W = T N, d f (V) ⊥ d f (W), I(d f (V)) ⊂ d f (V), I(d f (W)) ⊂ (
T ( f (N))

)⊥
,

where
(
T ( f (N))

)⊥ is the normal bundle of f (N) in T M, then we call f a CR immersion
and I a CR structure of f . We denote the dimension of V by cI . If V = T N, then f is an
almost complex immersion. Moreover, if for any p ∈ N and J ∈ (QI)p there are subspaces
VJ ,WJ ⊂ TpN such that

VJ +WJ = TpN, d f (VJ) ⊥ d f (WJ), J(d f (VJ)) ⊂ d f (VJ), J(d f (WJ)) ⊂ (
T ( f (N))

)⊥
and dim VJ is independent of the choice of p ∈ N and J ∈ (QI)p, then we call f a totally
CR immersion. We denote dim VJ by c′I . A totally complex immersion is a totally CR
immersion.

We recall QR submanifolds [4]. Let N ⊂ M be a submanifold and (T N)⊥ be the normal
bundle of N. If there are subbundles μ, ν ⊂ (T N)⊥ such that

μ + ν = (T N)⊥, μ ⊥ ν, J(μ) ⊂ T N, J(ν) ⊂ ν
for any J ∈ Qx (x ∈ N), then we call N a QR submanifold. A typical example of a QR
submanifold is a hypersurface. QR submanifolds are studied in [4], [5]. We say that a
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QR submanifold is a quaternionic submanifold if μ = {0}, that is T N is invariant under the
quaternionic structure. It is known that a quaternionic submanifold of a quaternionic Kähler
manifold is totally geodesic [1]. Moreover, we say that a submanifold N is totally real if
J(X) ∈ (TpN)⊥ for any p ∈ N, X ∈ TpN, J ∈ Qp.

We obtain Theorem 1.1 as the main result of the present paper.

Theorem 1.1. Let M be a quaternionic irreducible symmetric space of compact type, Q
be the twistor space of M and G be the identity component of the isometry group of M. Fix
o ∈ M and let K = {g ∈ G ; g(o) = o}. For each p ∈ M, we set Kp = {k ∈ K ; k(p) = p}
and denote the identity component of Kp by (Kp)0. Then, each K-orbit K(p), except for a
one-point set, satisfies one of the following properties.

(i) Let f : K/(Kp)0 → K(p) ; k(Kp)0 �→ k(p). Then, f is a K-equivariant totally CR
immersion by each K-invariant section I of the induced bundle f ∗Q of Q by f . Moreover, all
K-invariant sections correspond to each point of the 2-dimensional sphere one-to-one and
cI , c′I are independent of the choice of I. Also, K(p) is a QR submanifold.

(ii) f is a K-equivariant totally CR immersion by each K-invariant section of f ∗Q and
K-invariant sections are unique up to the sign.

(iii) For any x ∈ K(p) and J ∈ Qx, there are subspaces V,W ⊂ TxK(p) such that

V +W = TxK(p), V ⊥ W, J(V) ⊂ V, J(W) ⊂ (TxK(p))⊥.

Moreover, K acts on the restricted bundle of Q to K(p) transitively.
(iv) For any x ∈ K(p) and J ∈ Qx, there are no subspaces of TxK(p) satisfying the

property of (iii). K acts on the restricted bundle of Q to K(p) transitively.

In the present paper, we classify which orbits satisfy which properties of Theorem 1.1 in
each quaternionic irreducible symmetric space of compact type (Table 2, 3, 4, 5, 6). By this
classification, we obtain Theorem 1.2.

Theorem 1.2. If a K-orbit K(p) is a quaternionic submanifold or f : K/(Kp)0 → K(p)
is a totally complex immersion, then K(p) is a polar. Conversely, a polar is a quaternionic
submanifold or the image of a totally complex immersion.

This paper is organized as follows. In Section 2, we observe some results of quaternionic
symmetric spaces classified by Wolf [17]. It is known that the rank of a quaternionic irre-
ducible symmetric space is 1,2,3, or 4. Also, we observe some facts of orbits of the isotropy
group action on a compact symmetric space. Moreover, we study orbits of the quaternionic
projective space HPn (n ≥ 2). In Section 3, we study orbits of a quaternionic symmetric
space M in the case of rank M = 4, that is M = SO(n)/SO(4)×SO(n−4) (n ≥ 8), F4/((Sp(1)×
Sp(3))/Z2), E6/((Sp(1)× SU(6))/Z2), E7/((Sp(1)× Spin(12))/Z2), E8/((Sp(1)× E7)/Z2). In
subsection 3.7, we classify which orbits satisfy which properties of Theorem 1.1. In Sec-
tion 4, we consider the case of rank M = 2, that is M = SU(n)/S(U(2) × U(n − 2)) (n ≥
4) and G2/SO(4). We only consider M = SU(n)/S(U(2) × U(n − 2)). In the case of
M = G2/SO(4), we refer to [12]. In Section 5, we consider the case of rank = 3, that
is M = SO(7)/SO(4) × SO(3).

The author thanks the referee for reading carefully the original version of the manuscript
and for the suggestions for improvement.
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2. Preliminaries

2. Preliminaries2.1. Quaternionic symmetric spaces.
2.1. Quaternionic symmetric spaces. Let (M, g, Q̃) be a quaternionic Kähler manifold.

We call M a quaternionic symmetric space if M is a symmetric space and Q̃p is contained in
the linear holonomy group p of (M, g) for each p ∈ M. In the present paper, we consider
quaternionic irreducible symmetric spaces of compact type. By Wolf [17], all quaternionic
irreducible symmetric spaces of compact and noncompact type are constructed from com-
plex simple Lie algebras. We shall review this construction in this section.

Let g̃ be a complex simple Lie algebra which is not of type A1, A2, B2. Let τ be a complex
conjugation of g̃ and g be the compact real form of g̃ corresponding to τ. Let h be a maximal
abelian subalgebra of g and h̃ be the complexification of h. Then, h̃ is a Cartan subalgebra
of g̃. Denote the root system of g̃ with respect to h̃ by Σ. Let ( , ) be an invariant non-
degenerate symmetric bilinear form of g̃. Set h0 = ih. For each γ ∈ Σ, we set Hγ ∈ h0 such
that (Hγ,H) = γ(H) for any H ∈ h0. Let Aγ = 2

(Hγ,Hγ)
Hγ. For any α, β ∈ Σ, we set the Cartan

integer aα,β = (Aα,Hβ) =
2(Hα,Hβ)
(Hα,Hα)

∈ Z. Take some linear order on h0 and let β be the highest
root of Σ and Σ+ be the set of all positive roots. For n ∈ Z, we set Σn = {γ ∈ Σ ; aβ,γ = n}.
Then, Σ2 = {β},Σ−2 = {−β} and Σ = Σ−2∪Σ−1∪Σ0∪Σ1∪Σ2. Let θ = exp(adπiAβ). Then, θ is
an involutive automorphism of g. Set k = {X ∈ g ; θ(X) = X} and m = {X ∈ g ; θ(X) = −X}.
Then, g = k +m.

Let G be the simply connected compact Lie group whose Lie algebra is g. Moreover, we
denote by the same symbol the induced involutive automorphism of G by θ. Let K = {g ∈
G ; θ(g) = g}. Since G is simply connected, K is connected. Let M = G/K and π : G → M
be the natural projection. Denote o = π(e). Then, ToM = m. Let 〈 , 〉 be the G-invariant
Riemann metric on M induced by c( , )|m×m, where c is a negative constant. Then, (M, 〈 , 〉)
is a simply connected irreducible symmetric space of compact type.

For γ ∈ Σ, let Xγ be a root vector of γ, that is Xγ satisfies [H, Xγ] = γ(H)Xγ for H ∈ h̃.
Let Zγ = Xγ + τ(Xγ) and Wγ = i(Xγ − τ(Xγ)) for γ ∈ Σ+. Then, Zγ,Wγ ∈ g and

g = h +
∑
γ∈Σ+

(RZγ + RWγ).

Moreover, by the definition of θ

k = h + (RZβ + RWβ) +
∑
γ∈Σ+∩Σ0

(RZγ + RWγ), m =
∑
γ∈Σ1

(RZγ + RWγ).

Let s = R(iAβ) + RZβ + RWβ. Then, s is a 3-dimensional ideal of k and Ad(k)(s) ⊂ s for
any k ∈ K because K is connected. By the restriction of the linear isotropy representation of
k on m to s, we may consider s ⊂ Endm = EndToM. Then, G ×K s defines a quaternionic
structure Q̃ on M, where G ×K s = (G × s)/ ∼ and (g1, X1) ∼ (g2, X2) ∈ G × s if and
only if (g1, X1) and (g2, X2) satisfy g−1

1 g2 ∈ K and X1 = Ad(g−1
1 g2)X2. Let S(s) = {X ∈

s ; ((adX)|m)2 = −Id} = {a(iAβ)+ bZβ + cWβ ; a, b, c ∈ R, a2 + b2 + c2 = 1}. Then, G ×K S(s)
is the twistor space of M since the action of K on s is isometric and Ad(K)(S(s)) ⊂ S(s).
Thus, we construct a quaternionic irreducible symmetric space of compact type. Conversely,
any quaternionic irreducible symmetric space of compact type is given by this method. All
quaternionic irreducible symmetric spaces of compact type are classified as Table 1.

2.2. Orbits of the isotropy group action.
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Table 1. quaternionic irreducible symmetric spaces of compact type

G K dim M rank M G K dim M rank M
Sp(n + 1) Sp(1) × Sp(n) 4n (n ≥ 2) 1 G2 SO(4) 8 2
SU(n + 2) S(U(2) × U(n)) 4n (n ≥ 2) 2 F4 (Sp(1) × Sp(3))/Z2 28 4

SO(7) SO(4) × SO(3) 12 3 E6 (Sp(1) × SU(6))/Z2 40 4
SO(n + 4) SO(4) × SO(n) 4n (n ≥ 4) 4 E7 (Sp(1) × Spin(12))/Z2 64 4

E8 (Sp(1) × E7)/Z2 112 4

2.2. Orbits of the isotropy group action. Let a be a maximal abelian subspace ofm and
R be the restricted root system with respect to a. For ω ∈ R, we set g̃ω = {X ∈ g̃ ; [A, X] =
ω(A)X (A ∈ a)}. Remark that α(H) ∈ iR for any α ∈ R and H ∈ a. Take a linear order on ia
and the set of all positive roots is denoted by R+. For each ω ∈ R+, we set

kω = k ∩ (g̃ω + g̃−ω) = {S ∈ k ; (adA)2S = −ω(A)2S (A ∈ a)},
mω = m ∩ (g̃ω + g̃−ω) = {T ∈ m ; (adA)2T = −ω(A)2T (A ∈ a)}.

It is obvious that adA(mω) ⊂ kω and adA(kω) ⊂ mω for any A ∈ a. Let k0 be the set of all
centralizers of a in k. Then,

k = k0 +
∑
ω∈R+
kω, m = a +

∑
ω∈R+
mω.

Lemma 2.1 ([14]). For each ω ∈ R+, there is an orthonormal basis S1, · · · , Sn(ω) of kω
and T1, · · ·Tn(ω) of mω such that

[H, Si] = iα(H)Ti, [H, Ti] = −iα(H)Si,

Ad(expH)Si = cos(iα(H))Si + sin(iα(H))Ti,

Ad(expH)Ti = − sin(iα(H))Si + cos(iα(H))Ti

for any H ∈ a and 1 ≤ i ≤ n(ω), where n(ω) is the multiplicity of ω.

For each H ∈ a, we denote π(exp(−H)KexpH) by H . Let KH = {k ∈ K ; π(kexpH) =
π(expH)} and kH = {X ∈ k ; Ad(expH)X ∈ k}. Then, the Lie algebra of KH is kH . Denote
the identity component of KH by (KH)0. Define a K-action on H such that K × H �
(k, π(p)) �→ π(exp(−H)k(expH)p) ∈ H . Then, H = K/KH . For each H ∈ a, we set
R+H = {α ∈ R+ ; iα(H) ∈ πZ}. Then, the following direct sum decompositions are true.

kH = k0 +
∑
ω∈R+H
kω, ToH =

∑
ω∈R+, ω�R+H

mω, (ToH)⊥ = a +
∑
ω∈R+H
mω,

where (ToH)⊥ is the orthogonal complement of ToH in m = ToM.
Let F = {ω1. · · · , ωn} be the set of all simple roots of R+ and η be the highest root. Let

 = F ∪ {η}. Set

Q = {H ∈ a ; 0 < iλ(H) < π (λ ∈  )}.
Then, each K-orbit intersects π(expQ) at only one point. For any subset Δ ⊂  such that
Δ � {η}, we set

QΔ =
{

H ∈ Q ;
0 < iλ(H) (λ ∈ Δ ∩ F), iη(H) < π (η ∈ Δ),
0 = iμ(H) (μ ∈ F − Δ), iη(H) = π (η � Δ).

}
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Then, Q = �Δ⊂ ,Δ�{η}QΔ and R+H is independent of the choice of H ∈ QΔ and depends on the
choice of Δ.

Let πs : k → s be the orthogonal projection. Then, πs(kH) is a subalgebra of s for any
H ∈ a. Since s � sp(1), dim πs(kH) = 0, 1, 3. If dim πs(kH) = 0, then πs(kH) is trivial. If
dim πs(kH) = 1, then πs(kH) is isomorphic to u(1). If dim πs(kH) = 3, then πs(kH) = s. We
say H ∈ a is type I if dim πs(kH) = 0, H is type II if dim πs(kH) = 1, and H is type III if
dim πs(kH) = 3. Remark that (KH)0 acts on s and S(s) since K acts on them. Because (KH)0

is connected and s is an ideal of k, it is ture that (KH)0 acts on S(s) trivially if H is type I,
acts on as rotations if H is type II, and acts on transitively if H is type III.

We consider the following immersion:

fH : K/(KH)0 → H ; k(KH)0 �→ π(exp(−H)kexpH).

Let f ∗HQ be the pull-back bundle of Q by fH . Set o′ = e(KH)0. Then, (KH)0 acts on
( f ∗HQ)o′ . If H is type I, then (KH)0 acts on ( f ∗HQ)o′ trivially, so for any A ∈ S(s) a sec-
tion J : K/(KH)0 → f ∗HQ ; k(KH)0 �→ dk ◦ A ◦ dk−1 (A ∈ S(s)) is a K-invariant section of
f ∗HQ. Thus, we can construct K-invariant sections of f ∗HQ corresponding to each point of
S(s) � S2. If H is type II, then (KH)0 acts on S(s) as rotations, so there is unique B ∈ S(s)
such that ±B is fixed by (KH)0. By the similar way, we can construct the K-invariant sec-
tion I of f ∗HQ by ±B. In particular, K-invariant sections of f ∗HQ are unique up to sign. Let
QI := {J ∈ f ∗HQ ; IJ = −JI}. Then, QI is given by SB(s) := {C ∈ S(s) : C ⊥ B}. Since
(KH)0 acts on SB(s) transitively, K acts on QI transitively. Let QH be the restricted bundle
of Q to H . If H is type III, then KH acts on S(s) transtively, so K acts on QH transitively.
Summarizing these arguments, we obtain Proposition 2.2.

Proposition 2.2. Let H ∈ a and fH : K/(KH)o → H ; k(KH)0 �→ π(exp(−H)kexpH).
(i) If H is type I, then there is a K-invariant section of f ∗HQ and all K-invariant sections

correspond to each point of S(s) � S2 one-to-one.
(ii) If H is type II, then there is a K-invariant section of f ∗HQ and K-invariant sections are

unique up to sign. Let I be a K-invariant section of f ∗HQ and QI := {J ∈ f ∗HQ ; IJ = −JI}.
Then, K acts on QI transitively.

(iii) Let QH be the restricted bundle of Q to H. If H is type III, then K acts on QH

transitively.

We say that H and π(KexpH) are type I (resp. II,III) if H is type I (resp. II,III). In the
present paper, for each quaternionic irreducible symmetric space of compact type, we study
that each orbit of the isotropy group action becomes which of type I, type II, and type III
and has what properties these K-invariant sections have.

At the end of this section, we consider the quaternionic irreducible symmetric space M of
compact type whose rank is 1, that is the quaternionic projective space HPn (n ≥ 2). In HPn,
it is known that orbits of the isotropy group action become one of the following: the trivial
point, principal orbits, or HPn−1 which is a polar [7]. We see easily that the polar is type III
and a quaternionic totally geodesic submanifold. In general, if H is a principal orbit, then
(ToH)⊥ = a and πs(kH) = {0}, so H is type I. Since rankHPn = 1, each principal orbit H

is a hypersurface of HPn. Thus, principal orbits are QR submanifolds. For each X ∈ s, set
subspaces VX ,WX of ToH as follows: WX = adX(a) and VX is the orthogonal complement
of WX in ToH . Then, VX ,WX satisfy
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VX ⊥ WX , VX +WX = ToH , adX(VX) ⊂ VX , adX(WX) ⊂ (ToH)⊥.

Thus, fH is a K-equivariant totally CR immersion by each K-invariant section of f ∗HQ. Sum-
marizing these arguments, we obtain Theorem 2.3.

Theorem 2.3. In HPn (n ≥ 2), an orbit of the isotropy group action is one of the follow-
ing.:

(i) the trivial point,
(ii) HPn−1 which is a quaternionic totally geodesic submanifold,
(iii) a principal orbit which is a QR-submanifold.

If H is a principal orbit, the immersion fH is a K-equivariant totally CR immersion by any
K-invariant section I of f ∗HQ and all K-invariant sections correspond to each point of S2

one-to-one. Moreover, cI , c′I are independent of the choice of I.

3. The case of rank M = 4

3. The case of rank M = 4
In this section, we consider the case of rank M = 4, that is G = SO(n) (n ≥ 8), F4, E6, E7,

E8 and g̃ = so(n,C), fC4 , e
C

6 , e
C

7 , e
C

8 . In subsection 3.1, 3.2, and 3.3, we consider an explicit
descripion of the restricted root system and some preparations for this description. In sub-
section 3.4, we consider adX|m : m → m (X ∈ s) for studying the quaternionic structure.
In subsection 3.5, we study H ∈ a satisfying ω(H) ∈ iπZ for some restricted roots ω and
in subsection 3.6, we study orbits of the action of the isotropy group of the isometry group.
In subsection 3.7, we summarize properties of each orbit with respect to the quaternionic
structure.

3.1. H-orbit.
3.1. H-orbit. Let ( , ) be the Killing form of g̃ and {Xα ; α ∈ Σ} be a Chevalley basis, that

is Xα satisfies

(i) [Xα, X−α] = Aα,
(ii) [H, Xα] = α(H)Xα (H ∈ h̃),
(iii) For any α, γ ∈ Σ, [Xα, Xγ] = 0 if α + γ � Σ and [Xα, Xγ] = Nα,γXα+γ if α + γ ∈ Σ,

where Nα,γ = ±(p + 1) and p is the greatest positive number such that γ − pα ∈ Σ.

Take a linear order in h0 and denote the set of all positive roots by Σ+ and let β be the highest
root. For each n ∈ Z, we set Σn as section 1. Set the complex conjugation τ such that

τ(Aα) = −Aα, τ(Xα) = −X−α (α ∈ Σ+).

Let Zα = Xα + τ(Xα) = Xα − X−α and Wα = i(Xα − τ(Xα)) = i(Xα + X−α) for each α ∈ Σ.
Then, g = {X ∈ g̃ ; τ(X) = X} is a compact real from and

g = h +
∑
α∈Σ+

(RZα + RWα).

By simple computations, we obtain Lemma 3.1 and Lemma 3.2.

Lemma 3.1. Nα,β = −Nβ,α = −N−α,−β for α, β ∈ Σ. Moreover, is α, β, γ ∈ Σ satisfy
α + β + γ = 0 and |β| = |γ|, |α| = √k|β| (k ∈ N), then it follows that Nα,β = 1

k Nβ,γ = Nγ,α.
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Lemma 3.2. For any α, β ∈ Σ (β � −α),

[Zα, Zβ] = Nα,βZα+β − N−α,βZ−α+β, [Zα,Wβ] = Nα,βWα+β − N−α,βW−α+β,

[Wα,Wβ] = −Nα,βZα+β − N−α,βZ−α+β, [Wα, Zβ] = Nα,βWα+β + N−α,βW−α+β.

Set θ = exp(ad(πiAβ)) and k,m as section 2. Since the rank of M is 4, there are α1, · · · , α4

∈ Σ1 such that they are longest roots and αi ± α j � Σ (1 ≤ i � j ≤ 4) and the subspace
a =

∑4
i=1 RZαi is a maximal abelian subspace of m. In h0, the reflection with respect to

Hγ (γ ∈ Σ) is denoted by τγ, that is τγ(X) = X− 2(Hγ,X)
(Hγ,Hγ)

Hγ (X ∈ h0). Let H be the subgroup of
the Weyl group generated by τα1 , · · · , τα4 . Since (Hαi ,Hα j) = 0 (1 ≤ i � j ≤ 4), τα1 , · · · , τα4

commute to each other and H � (Z2)4. We consider the action of H on Σ. Obviously, the
H-orbit through αi is {αi} for each 1 ≤ i ≤ 4. For an H-orbit Σ′ such that Σ′ ∩ Σ1 � φ and
Σ′ � {αi} (1 ≤ i ≤ 4), set mΣ′ and kΣ′ as follows:

mΣ′ =
∑

γ∈(Σ1∪Σ−1)∩Σ′
(RZγ + RWγ), kΣ′ =

∑
γ∈(Σ0∪Σ2)∩Σ′

(RZγ + RWγ).

Then, ad(a)(mΣ′) ⊂ kΣ′ and ad(a)(kΣ′) ⊂ mΣ′ . In the following, we study H-orbits intersecting
Σ1.

Denote by Σβ the H-orbit through β, that is

Σβ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

β,

β − α1, β − α2, β − α3, β − α4,

β − (α1 + α2), β − (α1 + α3), β − (α1 + α4),
β − (α2 + α3), β − (α2 + α4), β − (α3 + α4),

β − (α1 + α2 + α3), β − (α1 + α2 + α4), β − (α1 + α3 + α4), β − (α2 + α3 + α4),
β − (α1 + α2 + α3 + α4)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

By the definition of β, α1, · · · , α4, it is obvious that β−(α1+· · ·+α4) = −β since aβ,β−(α1+···+α4)

= −2. Thus, any γ ∈ Σβ satisfies −γ ∈ Σβ and Σβ ∪ {±α1,±α2,±α3,±α4} is a subsystem of Σ
which is isomorphic to D4. Set

Σ+β =

{
β − α1, β − α2, β − α3, β − α4,

β, β − (α1 + α2), β − (α1 + α3), β − (α1 + α4)

}
.

Then, Σ+β ∪ (−Σ+β ) = Σβ, where for any subset A ⊂ Σ we set −A = {−γ ; γ ∈ A}. We see
Σ+β ∩ Σ1 = {β − αi ; 1 ≤ i ≤ 4},Σ+β ∩ Σ2 = {β},Σ+β ∩ Σ0 = {β − (α1 + αi) ; 2 ≤ i ≤ 4}. Thus,

mΣβ =

4∑
i=1

(RZβ−αi + RWβ−αi), kΣβ = (RZβ + RWβ) +
4∑

i=2

(
RZβ−(α1+αi) + RWβ−(α1+αi)

)
.

Let γ ∈ Σ1 be a longest root and γ � Σβ. Denote by Σγ the H-orbit through γ. Then, we
see that aαi,γ = aα j,γ = 1 for some 1 ≤ i < j ≤ 4 and aαk ,γ = aαl,γ = 0 for 1 ≤ k < l ≤ 4
such that k, l � i, j. Also, aαk ,β−γ = aαl,β−γ = 1 and aαi,β−γ = aα j,β−γ = 0. Hence, Σγ =
{γ, γ−αi, γ−α j, γ− (αi +α j)}. Then, Σ−(γ−(αi+α j)) = −Σγ. Because Σγ ∩Σ1 = {γ},Σγ ∩Σ−1 =

{γ − (αi + α j)},Σγ ∩ Σ0 = {γ − αi, γ − α j},
mΣγ =

(
RZγ + RWγ

)
+

(
RZγ−(αi+α j) + RWγ−(αi+α j)

)
,

kΣγ =
(
RZγ−αi + RWγ−αi

)
+

(
RZγ−α j + RWγ−α j

)
.

We say that an H-orbit through such γ ∈ Σ1 is type L(i, j) or simply type L. Let δ ∈ Σ1 be a
shortest root and denote by Σδ the H-orbit through δ. It is easily seen that aαi,δ = aα j,δ = 1
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for some 1 ≤ i < j ≤ 4 and aαk ,δ = aαl,δ = 0 for 1 ≤ k < l ≤ 4 such that k, l � i, j. Moreover,
aαk ,β−δ = aαl,β−δ = 1 and aαi,β−δ = aα j,β−δ = 0. Thus, Σδ = {δ, δ−αi, δ−α j, δ− (αi +α j)}. We
see that δ − (αi + α j) = −δ since aδ,δ−(αi+α j) = −2 and Σδ is a subsystem of Σ and isomorphic
to A1 ∪ A1. Because Σδ ∩ Σ1 = {δ} and Σδ ∩ Σ0 = {±(δ − αi)},

mΣδ = RZδ + RWδ, kΣδ = RZδ−αi + RWδ−αi .

We say that an H-orbit through such δ ∈ Σ1 is type S(i, j) or simply type S.
Let ΣL(1), · · · ,ΣL(n) be H-orbits of type L such that ΣL(1),−ΣL(1), · · · ,ΣL(n),−ΣL(n) are

all H-orbits of type L. Moreover, let ΣS(1), · · · ,ΣS(m) be all H-orbits of type S. Then, the
following direct sum decomposition follows:

m = a + RWα1 + · · · + RWα4 +mΣβ +

n∑
a=1

mΣL(a) +

m∑
b=1

mΣS(b).

3.2. Structure coefficient Nα,β.
3.2. Structure coefficient Nα,β. In the Chevalley basis {Xα ; α ∈ Σ}, the sign of the

structure coefficient Nα,β depends on an orientation of each Xα. In the following, we fix
orientations of some Xα and decide the sign of some structure coefficients. First, we fix an
orientation of Xβ, Xα1 , Xα2 , Xα3 and set wi = expπ2 Zαi (i = 1, 2, 3). For each γ = β − (ε1α1 +

ε2α2 + ε3α3) ∈ Σ+β (εi = 0, 1, i = 1, 2, 3), we set an orientation of Xγ such that

Xβ−(ε1α1+ε2α2+ε3α3) = Ad(wε11 w
ε2
2 w
ε3
3 )Xβ.

By the commutativity of w1, w2, w3, these orientations are well-defined. For any γ ∈ Σ and
t ∈ R,

γ − αi ∈ Σ and γ + αi � Σ =⇒ Ad(exptZαi)Xγ = cos tXγ − N−αi,γ sin tXγ−αi ,

γ − αi � Σ and γ + αi ∈ Σ =⇒ Ad(exptZαi)Xγ = cos tXγ + Nαi,γ sin tXγ+αi .

Hence, N−αi,γ = −1 if γ − αi ∈ Σ and γ + αi � Σ, and Nαi,γ = −1 if γ − αi � Σ and γ + αi ∈ Σ.
Next, we fix an orientation of Xα4 such that Ad(w1 · · ·w4)Xβ = −X−β.

Lemma 3.3. N−α4,β = N−α4,β−(αi+α j) = −1 and N−α4,β−αi = N−α4,β−(α1+α2+α3) = 1 for any
1 ≤ i � j ≤ 3.

Proof. First,

−N−α4,βXβ−α4 = Ad(w4)Xβ = −Ad(w1w2w3)−1X−β = Ad(w1w2w3)−1τ(Xβ)

= τ(Ad(w1w2w3)−1Xβ) = τ(−Xβ−(α1+α2+α3)) = X−β+(α1+α2+α3) = Xβ−α4 ,

so we obtain N−α4,β = −1. Moreover, N−α4,β−(α1+α2+α3) = 1 since N−α4,β = N−β+α4,−α4 =

−N−α4,β−(α1+α2+α3) by Lemma 3.1. Next, we will show N−α4,β−α1 = 1. The other cases are
proved by the similar way.

−N−α4,β−α1 Xβ−(α1+α4) = Ad(w1w4)Xβ = −Ad(w2w3)−1X−β = Ad(w2w3)−1τ(Xβ)

= τ(Ad(w2w3)−1Xβ) = τ(Xβ−(α2+α3)) = −X−β+(α2+α3) = −Xβ−(α1+α4),

so N−α4,β−α1 = 1. Also, N−α4,β−(α2+α3) = −1 because N−α4,β−α1 = N−α4,−β+(α2+α3+α4) =

Nβ−(α2+α3),−α4 = −N−α4,β−(α2+α3). �

By Lemma 3.1 and Lemma 3.3, we obtain Corollary 3.4 immediately.
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Corollary 3.4. For any 1 ≤ i � j ≤ 3, N−αi,β−α4 = Nαi,β−(αi+α4) = N−αi,β−(α j+α4) =

Nα4,β−(αi+α4) = 1, and Nα4,β−α4 = −1.

Let ΣL be an H-orbit of type L(i, j) (1 ≤ i < j ≤ 4) and ΣL ∩ Σ1 = {γ}. Fix an orientation
of Xγ and set an orientation of Xγ−αi , Xγ−α j , Xγ−(αi+α j) such that

Xγ−αi = Ad(wi)Xγ, Xγ−α j = Ad(w j)Xγ, Xγ−(αi+α j) = Ad(wiw j)Xγ.

Then, we can prove that for any ε ∈ ΣL and k ∈ {i, j} it is true that Nαk ,ε = −1 if ε + αk ∈ Σ
and N−αk ,ε = −1 if ε − αk ∈ Σ by the similar way to the above arguments.

Let ΣS be an H-orbit of type S(i, j) (1 ≤ i < j ≤ 4) and Σ1∩ΣS = {δ}. Then, δ− (αi+α j) =
−δ. Fix an orientation of Xδ and set an orientation of Xδ−αi such that Xδ−αi = Ad(wi)Xδ.
Then, we easily see N−αi,δ = −1 and N−α j,δ−αi = Nδ,−α j .

3.3. Restricted root system.
3.3. Restricted root system. It is known that the restricted root system of quaternionic

irreducible symmetric space of compact type whose rank is 4 is type D4, B4 or F4 [9]. In
this subsection, using the Chevalley basis {Xα ; α ∈ Σ} and the structure coefficient Nα,β,
we describe the restricted root system explicitly. Let R be the restricted root system of (g, k)
with respect to a. Let A =

∑4
i=1 λiZαi ∈ a (λi ∈ R). If the linear form ω of a satisies

ω(A) =
∑4

i=1 aiλi (ai ∈ R), then we often denote ω by
∑4

i=1 aiλi. Conversely,
∑4

i=1 aiλi often
means the linear form ω of a such that ω(A) =

∑4
i=1 aiλi. For any linear form ω of a, we

denote the extension of ω as complex linearly to aC by the same symbol. Moreover, for any
subset W ⊂ a∗, {±iω ∈ (aC)∗ ; ω ∈ W} is denoted by ±iW, where for any vector space V the
dual space of V is denoted by V∗.

First, we study ad(A)|mΣβ : mΣβ → kΣβ and ad(A)|kΣβ : kΣβ → mΣβ . We set a basis of mΣβ as
follows:

Tλ1+λ2+λ3+λ4 := Zβ−α1 + Zβ−α2 + Zβ−α3 + Zβ−α4 ,

Tλ1+λ2−λ3−λ4 := Zβ−α1 + Zβ−α2 − Zβ−α3 − Zβ−α4 ,

Tλ1−λ2+λ3−λ4 := Zβ−α1 − Zβ−α2 + Zβ−α3 − Zβ−α4 ,

Tλ1−λ2−λ3+λ4 := −Zβ−α1 + Zβ−α2 + Zβ−α3 − Zβ−α4 .

Tλ1+λ2+λ3−λ4 := Wβ−α1 +Wβ−α2 +Wβ−α3 −Wβ−α4 ,

Tλ1+λ2−λ3+λ4 := Wβ−α1 +Wβ−α2 −Wβ−α3 +Wβ−α4 ,

Tλ1−λ2+λ3+λ4 := Wβ−α1 −Wβ−α2 +Wβ−α3 +Wβ−α4 ,

Tλ1−λ2−λ3−λ4 := −Wβ−α1 +Wβ−α2 +Wβ−α3 +Wβ−α4 .

and T2λi := Wαi (1 ≤ i ≤ 4). Next, we define a basis of kΣβ as follows:

Sλ1+λ2+λ3+λ4 := −Zβ + Zβ−(α1+α2) + Zβ−(α1+α3) − Zβ−(α1+α4),

Sλ1+λ2−λ3−λ4 := −Zβ + Zβ−(α1+α2) − Zβ−(α1+α3) + Zβ−(α1+α4),

Sλ1−λ2+λ3−λ4 := −Zβ − Zβ−(α1+α2) + Zβ−(α1+α3) + Zβ−(α1+α4),

Sλ1−λ2−λ3+λ4 := Zβ + Zβ+(α1+α2) + Zβ−(α1+α3) + Zβ−(α1+α4).

Sλ1+λ2+λ3−λ4 := −Wβ +Wβ−(α1+α2) +Wβ−(α1+α3) +Wβ−(α1+α4),

Sλ1+λ2−λ3+λ4 := −Wβ +Wβ−(α1+α2) −Wβ−(α1+α3) −Wβ−(α1+α4),

Sλ1−λ2+λ3+λ4 := −Wβ −Wβ−(α1+α2) +Wβ−(α1+α3) −Wβ−(α1+α4),

Sλ1−λ2−λ3−λ4 := Wβ +Wβ+(α1+α2) +Wβ−(α1+α3) −Wβ−(α1+α4).

and S2λi = iAαi (1 ≤ i ≤ 4). Set
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Rβ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ1 + λ2 + λ3 + λ4, λ1 + λ2 − λ3 − λ4, λ1 − λ2 + λ3 − λ4, λ1 − λ2 − λ3 + λ4,
λ1 + λ2 + λ3 − λ4, λ1 + λ2 − λ3 + λ4, λ1 − λ2 + λ3 + λ4, λ1 − λ2 − λ3 − λ4,
2λ1, 2λ2, 2λ3, 2λ4

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
Lemma 3.5. ad(A)(Tω) = ω(A)Sω and ad(A)(Sω) = −ω(A)Tω for any ω ∈ Rβ.

Proof. By results of the structure coefficient in subsection 2.2,

adA(Zβ−α1 ) = λ1Nα1,β−α1Zβ − λ2N−α2,β−α1Zβ−(α1+α2)

− λ3N−α3,β−α1Zβ−(α1+α3) − λ4N−α4,β−α1Zβ−(α1+α4)

= (−λ1)Zβ + λ2Zβ−(α1+α2) + λ3Zβ−(α1+α3) + (−λ4)Zβ−(α1+α4).

Similarly, we obtain

adA(Zβ−α2 ) = (−λ2)Zβ + λ1Zβ−(α1+α2) + λ4Zβ−(α1+α3) + (−λ3)Zβ−(α1+α4),

adA(Zβ−α3 ) = (−λ3)Zβ + λ4Zβ−(α1+α2) + λ1Zβ−(α1+α3) + (−λ2)Zβ−(α1+α4),

adA(Zβ−α4 ) = (−λ4)Zβ + λ3Zβ−(α1+α2) + λ2Zβ−(α1+α3) + (−λ1)Zβ−(α1+α4),

adA(Zβ) = λ1Zβ−α1 + λ2 Zβ−α2 + λ3 Zβ−α3 + λ4Zβ−α4 ,

adA(Zβ−(α1+α2)) = −(λ2Zβ−α1 + λ1Zβ−α2 + λ4Zβ−α3 + λ3Zβ−α4

)
,

adA(Zβ−(α1+α3)) = −(λ3Zβ−α1 + λ4Zβ−α2 + λ1Zβ−α3 + λ2Zβ−α4

)
,

adA(Zβ−(α1+α3)) = λ4Zβ−α1 + λ3Zβ−α2 + λ2Zβ−α3 + λ1Zβ−α4 ,

adA(Wβ−α1 ) = (−λ1)Wβ + λ2Wβ−(α1+α2) + λ3Wβ−(α1+α3) + (−λ4)Wβ−(α1+α4),

adA(Wβ−α2 ) = (−λ2)Wβ + λ1Wβ−(α1+α2) + (−λ4)Wβ−(α1+α3) + λ3Wβ−(α1+α4),

adA(Wβ−α3 ) = (−λ3)Wβ + (−λ4)Wβ−(α1+α2) + λ1Wβ−(α1+α3) + λ2Wβ−(α1+α4),

adA(Wβ−α4 ) = (−λ4)Wβ + (−λ3)Wβ−(α1+α2) + (−λ2)Wβ−(α1+α3) + (−λ1)Wβ−(α1+α4),

adA(Wβ) = λ1Wβ−α1 + λ2 Wβ−α2 + λ3 Wβ−α3 + λ4Wβ−α4 ,

adA(Wβ−(α1+α2)) = (−λ2)Wβ−α1 + (−λ1) Wβ−α2 + λ4 Wβ−α3 + λ3Wβ−α4 ,

adA(Wβ−(α1+α3)) = (−λ3)Wβ−α1 + λ4 Wβ−α2 + (−λ1) Wβ−α3 + λ2Wβ−α4 ,

adA(Wβ−(α1+α3)) = λ4Wβ−α1 + (−λ3) Wβ−α2 + (−λ2) Wβ−α3 + λ1Wβ−α4 .

Moreover, adA(Wαi) = 2λi(iAαi), adA(iAαi) = −2λiWαi (1 ≤ i ≤ 4). By these results, we
obtain the statement. �

Thus, ±iRβ ⊂ R because C(Tω ± iSω) ⊂ g̃∓iω = {X ∈ g̃ ; adA(X) = ∓iω(A)X} for each
ω ∈ Rβ. Moreover, we can easily check that ±iRβ is a subsystem of type D4.

Let ΣL be an H-orbit of type L(i, j) (1 ≤ i < j ≤ 4) and ΣL ∩ Σ1 = {γ}. Then, ΣL =

{γ, γ − αi, γ − α j, γ − (αi + α j)}. Set a basis of mΣL as follows:

T γ,1λi+λ j
:= Zγ − Zγ−(αi+α j), T γ,1λi−λ j

:= Zγ + Zγ−(αi+α j),

T γ,2λi+λ j
:= Wγ −Wγ−(αi+α j), T γ,2λi−λ j

:= Wγ +Wγ−(αi+α j).

Moreover, we set a basis of kΣL as follows:

Sγ,1λi+λ j
:= Zγ−αi + Zγ−α j , Sγ,1λi−λ j

:= Zγ−αi − Zγ−α j ,

Sγ,2λi+λ j
:= Wγ−αi +Wγ−α j , Sγ,2λi−λ j

:= Wγ−αi −Wγ−α j .

Set RΣL = {λi ± λ j}.
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Lemma 3.6. adA(T γ,kω ) = ω(A)Sγ,kω and adA(Sγ,kω ) = −ω(A)T γ,kω for any ω ∈ RΣL and
k = 1, 2.

Proof. By the simialr way to the proof of Lemma 3.5, we obtain the followings and the
statement is true.

adA(Zγ) = λiZγ−αi + λ jZγ−α j , adA(Zγ−(αi+α j)) = −λ jZγ−αi − λiZγ−α j ,

adA(Zγ−αi) = −λiZγ + λ jZγ−(αi+α j), adA(Zγ−α j) = −λ jZγ + λiZγ−(αi+α j),

adA(Wγ) = λiWγ−αi + λ jWγ−α j , adA(Wγ−(αi+α j)) = −λ jWγ−αi − λiWγ−α j ,

adA(Wγ−αi) = −λiWγ + λ jWγ−(αi+α j), adA(Wγ−α j) = −λ jWγ + λiWγ−(αi+α j). �

Let ΣS be an H-orbit of type S(i, j) (1 ≤ i < j ≤ 4) and ΣS∩Σ1 = {δ}. Then, ΣS = {δ, δ−αi}.
Set cδ := N−α j,δ. Then, cδ = ±1. Set a basis of mΣS as follows:

T δλi+cδλ j
:= Zδ, T δλi−cδλ j

:= Wδ.

Moreover, we set a basis of kΣS as follows:

Sδλi+cδλ j
:= Zδ−αi , Sδλi−cδλ j

:= Wδ−αi .

Set RΣS = {λi ± cδλ j} = {λi ± λ j}. By the similar way to Lemma 3.5, we obtain Lemma 3.7.

Lemma 3.7. adA(T δω) = ω(A)Sδω and adA(Sδω) = −ω(A)T δω for any ω ∈ RΣS .

For an H-orbit ΣL of type L, if ΣL ∩ Σ1 = {γ}, then we denote mΣL , kΣL ,RΣL by mγ, kγ,Rγ.
Similarly, for an H-orbit ΣS of type S, if ΣS ∩ Σ1 = {δ}, then we denote mΣS , kΣS ,RΣS by
mδ, kδ,Rδ. Let ΣL(1), · · · ,ΣL(n) be H-orbits of type L such that ΣL(1),−ΣL(1), · · · ,ΣL(n),
−ΣL(n) are all H-orbits of type L. Moreover, let ΣS(1), · · · ,ΣS(m) be all H-orbits of type S.
Let ΣL(p) ∩ Σ1 = {γp} (1 ≤ p ≤ n) and ΣS(q) ∩ Σ1 = {δq} (1 ≤ q ≤ m). For ω ∈ iR, we set
mω = {T ∈ m ; (adA)2T = −ω(A)2T (A ∈ a)}. We denote a +

∑
ω∈Rβ mω by mβ. Then, the

following direct sum decomposition is true.

m = mβ +

n∑
p=1

mγp +

m∑
q=1

mδq

Moreover, the restricted root system R with respect to a is given by

R = ±i
(
Rβ ∪

n⋃
p=1

Rγp ∪
m⋃

q=1

Rδq
)
.

3.4. The representation of s on m.
3.4. The representation of s onm. In this subsection, we study adX|m : m→ m for each

X ∈ s. Since iAβ, Zβ,Wβ is a basis of s, we consider ad(iAβ), ad(Zβ), ad(Wβ). Remark that
(ad(iAβ)|m)2 = (ad(Zβ)|m)2 = (ad(Wβ)|m)2 = −idm.

We easily see adX(mβ) ⊂ mβ for any X ∈ s sincemβ =
∑4

i=1(RZαi +RWαi)+
∑4

i=1(RZβ−αi +

RWβ−αi). Denote each element of Rβ as follows:

ω1
i = 2λi (1 ≤ i ≤ 4),
ω2

1 = λ1 + λ2 + λ3 + λ4, ω
2
2 = λ1 + λ2 − λ3 − λ4, ω

2
3 = λ1 − λ2 + λ3 − λ4, ω

2
4 = λ1 − λ2 − λ3 + λ4,

ω3
1 = λ1 + λ2 + λ3 − λ4, ω

3
2 = λ1 + λ2 − λ3 + λ4, ω

3
3 = λ1 − λ2 + λ3 + λ4, ω

3
4 = λ1 − λ2 − λ3 − λ4.

Set Rk
β = {ωk

i ; 1 ≤ i ≤ 4} and mk
β =

∑
ω∈Rk

β
RTω for each 1 ≤ k ≤ 3. Then, mβ =

a+m1
β +m

2
β +m

3
β. By direct computations and using N−β,β−αi = Nβ,−αi (1 ≤ i ≤ 4), we obtain

Lemma 3.8, Lemma 3.9, Lemma 3.10.
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Lemma 3.8. ad(iAβ)a ⊂ m1
β and ad(iAβ)m2

β ⊂ m3
β. Moreover, the representation matrices

of ad(iAβ)|a with respect to Zαi (1 ≤ i ≤ 4) and Tω1
i

(1 ≤ i ≤ 4) and of ad(iAβ)|m2
β

with respect
to Tω2

i
(1 ≤ i ≤ 4) and Tω3

i
(1 ≤ i ≤ 4) are

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where empty components are 0.

Lemma 3.9. ad(Zβ)a ⊂ m2
β and ad(Zβ)m1

β ⊂ m3
β. Moreover, the representation matrices

of ad(Zβ)|a with respect to Zαi (1 ≤ i ≤ 4) and Tω2
i

(1 ≤ i ≤ 4) and of ad(Zβ)|m1
γ

with respect
to Tω1

i
(1 ≤ i ≤ 4) and Tω3

i
(1 ≤ i ≤ 4) are

−1
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
−1 1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

1
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Lemma 3.10. ad(Wβ)a ⊂ m3
β and ad(Wβ)m1

β ⊂ m2
β. Moreover, the representation matrice

of ad(Wβ)|a with respect to Zαi (1 ≤ i ≤ 4) and Tω3
i

(1 ≤ i ≤ 4) and of ad(Wβ)|m1
β

with respect
to Tω1

i
(1 ≤ i ≤ 4) and Tω2

i
(1 ≤ i ≤ 4) are

−1
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and − 1

4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
−1 1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let ΣL be an H-orbit of type L(i, j) (1 ≤ i < j ≤ 4) and ΣL ∩ Σ1 = {γ}. Then, we see
that the H-orbit through β − γ is type L(k, l) (1 ≤ k � l ≤ 4, k, l � i, j) and adX(mγ +
mβ−γ) ⊂ mγ + mβ−γ for any X ∈ s. For each ω ∈ iR, we denote (mγ)ω = mγ ∩ mω. Then,
mγ = (mγ)λi+λ j + (mγ)λi−λ j and (mγ)λi±λ j = RT γ,1λi±λ j

+ RT γ,2λi±λ j
. By direct computations, we

obtain Lemma 3.11 immediately.

Lemma 3.11. ad(iAβ)(mγ)λi+λ j ⊂ (mγ)λi−λ j The representation matrix of ad(iAβ)|(mγ)λi+λ j

with respect to T γ,aλi+λ j
(a = 1, 2) and T γ,aλi−λ j

(a = 1, 2) is
(

0 −1
1 0

)
.

Lemma 3.12. N−β,γ = −Nβ,γ−(αi+α j)

Proof. Since Ad(w1 · · ·w4)Xγ = Xγ−(αi+α j) and Ad(w1 · · ·w4)X−β = −Xβ, we obtain

Ad(w1 · · ·w4)[X−β, Xγ] = N−β,γAd(w1 · · ·w4)X−β+γ = −N−β,γτ(Ad(w1 · · ·w4)Xβ−γ)

= −N−β,γτ(Xβ−γ−(αk+αl)) = N−β,γX−β+γ+(αk+αl)

Ad(w1 · · ·w4)[X−β, Xγ] = [Ad(w1 · · ·w4)X−β,Ad(w1 · · ·w4)Xγ] = −[Xβ, Xγ−(αi+αl)]

= −Nβ,γ−(αi+αl)Xβ+γ−(αi+α j) = −Nβ,γ−(αi+α j)X−β+γ+(αk+αl).
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Thus, N−β,γ = −Nβ,γ−(αi+α j). �

Remark N−β,γ = ±1. By direct computations and Lamme 3.12, we obtain Lemma 3.13,
Lemma 3.14.

Lemma 3.13. ad(Zβ)(mγ)λi+λ j ⊂ (mβ−γ)λk+λl and ad(Zβ)(mγ)λi−λ j ⊂ (mβ−γ)λk−λl . More-
over, the representation matrix of ad(Zβ)|(mγ)λi+λ j

with respect to T γ,aλi+λ j
(a = 1, 2) and T γ,aλk+λl

(a = 1, 2) and of ad(Zβ)|(mγ)λi−λ j
with respect to T γ,aλi−λ j

(a = 1, 2) and T γ,aλk−λl
(a = 1, 2) is

(
N−β,γ 0

0 −N−β,γ

)
.

Lemma 3.14. ad(Wβ)(mγ)λi+λ j ⊂ (mγ)λk−λl and ad(Wβ)(mγ)λi−λ j ⊂ (mγ)λk+λl . Moreover,
the representation matrix of ad(Wβ)|(mγ)λi+λ j

with respect to T γ,aλi+λ j
(a = 1, 2) and T γ,aλk−λl

(a =
1, 2) and of ad(iAβ)|(mγ)λi−λ j

with respect to T γ,aλi−λ j
(a = 1, 2) and T γ,aλk+λl

(a = 1, 2) is
(

0 N−β,γ
N−β,γ 0

)
.

Let ΣS be an H-orbit of type S(i, j) (1 ≤ i < j ≤ 4) and ΣS ∩ Σ1 = {δ}. Then, we
see that the H-orbit through β − δ is type S(k, l) (1 ≤ k � l ≤ 4, k, l,� i, j, k < l) and
adX(mδ + mβ−δ) ⊂ mδ + mβ−δ for any X ∈ s. Let cδ = N−α j,δ and cβ−δ = N−αl,β−δ. Then, cδ
and cβ−δ are ±1. For each ω ∈ iR, we set (mδ)ω = mδ∩mω. Then, (mδ)λi±cδλ j = RT δλi±cδλ j

and
mδ = (mδ)λi+λ j + (mδ)λi−λ j . Since T δλi+cδλ j

= Zδ and T δλi−cδλ j
= Wδ, we obtain Lemma 3.15 by

direct computations.

Lemma 3.15. It is true that ad(iAβ)(mδ)λi±λ j ⊂ (mδ)λi∓λ j , ad(Zβ)(mδ)λi±cδλ j ⊂ (mδ)λk±cβ−δλl

and ad(Wβ)(mδ)λi±cδλ j ⊂ (mδ)λk∓cβ−δλl .

Summarizing the above arguments we obtain Proposition 3.16.

Proposition 3.16. Let 1 ≤ i < j ≤ 4 and 1 ≤ k < l ≤ 4 such that k, l � i, j. Then,

ad(iAβ)(mλi+λ j) ⊂ mλi−λ j ,

ad(Zβ)(mλi+λ j +mλi−λ j) ⊂ mλk+λl +mλk−λl

ad(Wβ)(mλi+λ j +mλi−λ j) ⊂ mλk+λl +mλk−λl .

3.5. Root system D4 ⊂ B4 ⊂ F4.
3.5. Root system D4 ⊂ B4 ⊂ F4. For H ∈ a and any subset Δ ⊂ a∗, set ΔH = {ω ∈

Δ ; ω(H) ∈ πZ}. We easily check that the following are true.
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−ω1
1 + ω

2
1 + ω

3
4 = 0

−ω1
1 + ω

2
2 + ω

3
3 = 0

−ω1
1 + ω

2
3 + ω

3
2 = 0

−ω1
1 + ω

2
4 + ω

3
1 = 0

,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−ω1
2 + ω

2
1 − ω3

3 = 0
−ω1

2 + ω
2
2 − ω3

4 = 0
ω1

2 + ω
2
3 − ω3

1 = 0
ω1

2 + ω
2
4 − ω3

2 = 0

,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−ω1
3 + ω

2
1 − ω3

2 = 0
ω1

3 + ω
2
2 − ω3

1 = 0
−ω1

3 + ω
2
3 − ω3

4 = 0
ω1

3 + ω
2
4 − ω3

3 = 0

,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−ω1
4 + ω

2
1 − ω3

1 = 0
ω1

4 + ω
2
2 − ω3

2 = 0
ω1

4 + ω
2
3 − ω3

3 = 0
−ω1

4 + ω
2
4 − ω3

4 = 0

.

· · · · · · (∗)
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Lemma 3.17. Let H ∈ a. If #(R1
β)H = 1, then #(R2

β)H = #(R3
β)H = 0 or #(R2

β)H = #(R3
β)H =

1.

Proof. If #(R2
β)H ≥ 2, then we obtain #(R1

β)H ≥ 2 by (∗), but this contradicts to the
assumption. (For example, we assume ω1

1 ∈ (R1
β)H and ω2

1, ω
2
2 ∈ (R2

β)H . By (∗), −ω1
1 − ω2

1 −
ω3

4 = 0,−ω1
2 + ω

2
2 − ω3

4 = 0 and we obtain ω1
2 ∈ (R1

β)H .) Thus, #(R2
β)H , #(R3

β)H = 0, 1, and
#(R2

β)H = 1 if and only if #(R3
β)H = 1, and #(R2

β)H = 0 if and only if #(R3
β)H = 0. Thus, the

statement follows. �

Lemma 3.18. Let H ∈ a. If #(R1
β)H = 2, then #(R2

β)H = #(R3
β)H = 0 or #(R2

β)H = #(R3
β)H =

2.

Proof. #(R2
β)H � 1 by (∗). (For example, we assume ω1

1, ω
1
2 ∈ (R1

β)H and ω2
1 ∈ (R2

β)H . By
(∗), −ω1

1 − ω2
1 − ω3

4 = 0,−ω1
2 + ω

2
2 − ω3

4 = 0 and ω2
2 ∈ (R2

β)H .) Moreover, #(R2
β)H ≤ 2 by (∗).

(For example, we assume ω1
1, ω

1
2 ∈ (R1

β)H and ω2
1, ω

2
2, ω

2
3 ∈ (R2

β)H . By (∗), −ω1
1−ω2

1−ω3
4 = 0,

−ω1
3+ω

2
3−ω3

4 = 0 and ω1
3 ∈ (R3

β)H . This contradicts to the assumption.) Thus, #(R2
β)H = 0, 2.

We see #(R2
β)H = 0 if and only if #(R3

β)H = 0. Also, #(R2
β)H = 2 if and only if #(R3

β)H = 2.
In particular, if #(R1

β)H = #(R2
β)H = #(R3

β)H = 2, then ((R1
β)H , (R2

β)H , (R3
β)H)) is one of the

following:
(
{ω1

1, ω
1
2}, {ω2

1, ω
2
2}, {ω3

3, ω
3
4}
)
,

(
{ω1

1, ω
1
2}, {ω2

3, ω
2
4}, {ω3

1, ω
3
2}
)
,

(
{ω1

3, ω
1
4}, {ω2

1, ω
2
2}, {ω3

1, ω
3
2}
)
,(

{ω1
1, ω

1
3}, {ω2

1, ω
2
3}, {ω3

2, ω
3
4}
)
,

(
{ω1

1, ω
1
3}, {ω2

2, ω
2
4}, {ω3

1, ω
3
3}
)
,

(
{ω1

2, ω
1
4}, {ω2

1, ω
2
3}, {ω3

1, ω
3
3}
)
,(

{ω1
1, ω

1
4}, {ω2

2, ω
2
3}, {ω3

2, ω
3
3}
)
,

(
{ω1

2, ω
1
3}, {ω2

1, ω
2
4}, {ω3

2, ω
3
3}
)
,

(
{ω1

2, ω
1
3}, {ω2

2, ω
2
3}, {ω3

1, ω
3
4}
)
,(

{ω1
1, ω

1
4}, {ω2

1, ω
2
4}, {ω3

1, ω
3
4}
)
,

(
{ω1

2, ω
1
4}, {ω2

2, ω
2
4}, {ω3

2, ω
3
4}
)
,

(
{ω1

3, ω
1
4}, {ω2

3, ω
2
4}, {ω3

3, ω
3
4}
)
. �

Lemma 3.19. Let H ∈ a. If #(R1
β)H = 3, then #(R2

β)H = #(R3
β)H = 0.

Proof. By (∗), the statement follows. (For example, we assume ω1
1, ω

1
2, ω

1
3 ∈ (R1

β)H and
ω2

1 ∈ (R2
β)H . Then, by (∗), −ω1

1 − ω2
1 − ω3

4 = 0, −ω1
2 + ω

2
2 − ω3

4 = 0, −ω1
3 + ω

2
3 − ω3

4 = 0 and
ω2

2, ω
2
3 ∈ (R2

β)H . Moreover, we see (R3
β)H = R3

β. Hence, (R2
β)H = R2

β and (R1
β)H = R1

β. This
contradicts to the assumption.) �

By similar arguments to the proof of Lemma 3.19, we obtain Lemma 3.20.

Lemma 3.20. Let H ∈ a. If #(R1
β)H = 4, then #(R2

β)H = #(R3
β)H = 0 or #(R2

β)H = #(R3
β)H =

4.

Summarizing the above arguments, we obtain Proposition 3.21 by the homogeneity of
D4.

Proposition 3.21. For each H ∈ a, (#(R1
β)H , #(R2

β)H , #(R3
β)H

)
is one of the following:

(0, 0, 0), (1, 1, 1), (2, 2, 2), (4, 4, 4), (1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 0, 0), (0, 2, 0), (0, 0, 2),

(3, 0, 0), (0, 3, 0), (0, 0, 3), (4, 0, 0), (0, 4, 0), (0, 0, 4).

If H ∈ a satisfies
(
#(R1

β)H , #(R2
β)H , #(R3

β)H
)
= (0, 0, 0), then we say H is type I. If H ∈ a

satisfies
(
#(R1

β)H , #(R2
β)H , #(R3

β)H
)
= (n, 0, 0), (0, n, 0), (0, 0, n) (n = 1, 2, 3, 4), then we say H

is type II. If H ∈ a satisfies
(
#(R1

β)H , #(R2
β)H , #(R3

β)H
)
= (n, n, n) (n = 1, 2, 4), then we say H
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is type III. Let πs : k → s be the orthogonal projection. Set kaβ = [a,ma
β] (a = 1, 2, 3). Then,

πs(k1β) = R(iAβ), πs(k2β) = RZβ, πs(k3β) = RWβ. Moreover, since kH = k0 +
∑
ω∈R+H kω for each

H ∈ a and πs(X) = {0} for any X ∈ k which is orthogonal to [a,mβ], we see that H ∈ a is type
a (a = I,II,III) if and only if the K-orbit through π(expH) is type a.

3.6. Orbits of the isotropy group action.
3.6. Orbits of the isotropy group action. We consider properties of each K-orbit with

respect to the quaternionic structure. Let m′β = m
1
β + m

2
β + m

3
β. Then, mβ = a + m′β. Set

R0 = iR ∩ {λi ± λ j ; 1 ≤ i < j ≤ 4} and m0 =
∑
ω∈R0
mω. Moreover, for each 1 ≤ i < j ≤ 4,

set Ri j = {λi ± λ j, λk ± λl}, where 1 ≤ k < l ≤ 4, k, l � i, j. Then, R0 ⊂ R12 ∪ R13 ∪ R14. We
set mi j =

∑
ω∈Ri j
mω. Then, m0 ⊂ m12 +m13 +m14.

Let H ∈ a be type I. Recall the immersion fH : K/(KH)0 → H . Then, πs(kH) = {0} and
each X ∈ S(s) defines the K-invariant section J of f ∗HQ. We study each K-invariant section
J of f ∗HQ.

Lemma 3.22. For each 1 ≤ i < j ≤ 4, #(Ri j)H ≤ 1.

Proof. We see a+b, a−b ∈ ±Rβ for any a, b ∈ Ri j (a � b). Since (Rβ)H = φ, the statement
follows. �

Lemma 3.23. For any X ∈ s, there are subspaces Vo,Wo of ToH ∩m0 such that

V0 ⊥ W0, V0 +W0 = ToH ∩m0, adX(V0) ⊂ V0, adX(W0) ⊂ (ToH)⊥

Proof. By Proposition 3.16, adX(m1i) ⊂ m1i (i = 2, 3, 4). By Lemma 3.22, for each
1 ≤ i ≤ 3, there is some ωi ∈ (R1i)H such that

ToH ∩m1i =
∑

ω∈R1i,ω�ωi

mξ, (ToH)⊥ ∩m1i = mω

or ToH ∩m1i = m1i, (ToH)⊥ ∩m1i = {0}. In any case, adX((ToH)⊥ ∩m0) ⊂ ToH ∩m0.
Set Wo = adX((ToH)⊥∩m0) and let V0 be the orthogonal complement of W0 in ToH∩m0.
Then, V0,W0 satisfy the statement. �

Since H is type I, we see ToH ∩ mβ = m′β, (ToH)⊥ ∩ mβ = a and adX(a) ⊂ m′β =
ToH ∩ mβ for any X ∈ s by Lemma 3.8, Lemma 3.9, Lemma 3.10. Set Wβ = adX(a) and
let Vβ be the orthogonal complement of Wβ in ToH ∩mβ. Then, Vβ,Wβ satisfy

Vβ ⊥ Wβ, Vβ +Wβ = mβ, ad(X)(Vβ) ⊂ Vβ, ad(X)(Wβ) ⊂ (ToH)⊥

Summarizing these arguments and subsection 1.3, we obtain Proposition 3.24.

Proposition 3.24. Let H ∈ a be type I and fH : K/(KH)0 → H be the immersion. Then,
H is type I and fH is a K-equivariant totally CR immersion by any K-invariant section of
f ∗HQ. Moreover, for any K-invariant section I, cI = c′I and cI is independent of the choice of
I. Also, H is a QR submanifold.

Let H ∈ s be type II. We can assume (#(R1
β)H , #(R2

β)H , #(R3
β)H) = (a, 0, 0) (a = 1, 2, 3, 4).

Then, πs(kH) = R(iAβ) and ad(iAβ) defines the K-invariant section of f ∗HQ. Set s′ = RZβ +
RWβ. (KH)0 acts on s′ as U(1)-action.
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Lemma 3.25. Let X ∈ R(iAβ) ∪ s′. There are subspaces V0,W0 of ToH ∩m0 such that

V0 ⊥ W0, V0 +W0 = ToH ∩m0, adX(V0) ⊂ V0, adX(W0) ⊂ (ToH)⊥.

Proof. For each 1 ≤ i < j ≤ 4, since H is type II, (ToH)⊥ ∩mi j is one of the following:

{0},mλi−λ j ,mλi+λ j ,mλi−λ j +mλi+λ j ,mλk−λl ,mλk+λl ,mλk−λl +mλk+λl ,mi j,

where 1 ≤ k < l ≤ 4, k, l � i, j. Set W0 = adX
(∑4

j=2((ToH)⊥ ∩m1 j)
) ∩ ToH and let V0 be

the orthogonal complement of W0 in
∑4

j=2(ToH ∩m1 j). Then, V0,W0 satisfy the statement.
�

We remark

ToH ∩mβ = m2
β +m

3
β +

∑
ω∈R1

β−(R1
β)H

mω, (ToH)⊥ ∩mβ = a +
∑
ω∈(R1

β)H

mω.

Let VA = m
2
β +m

3
β and WA =

∑
ω∈R1

β−(R1
β)H
mω. Since ad(iAβ)(a) ⊂ m1

β, VA and WA satisfy

VA ⊥ WA, VA +WA = ToH ∩mβ, ad(iAβ)(VA) ⊂ VA, ad(iAβ)(WA) ⊂ (ToH)⊥.

Let X ∈ s′. Then, adX(a +m1
β) ⊂ m2

β +m
3
β. Set WX = adX((ToH)⊥ ∩mβ) and let VX be the

orthogonal complement of WX in ToH ∩mβ. Then, VX ,WX satisfy

VX ⊥ WX , VX +WX = ToH ∩m0, adX(VX) ⊂ VX , adX(WX) ⊂ (ToH)⊥.

Summarizing these arguments we obatin Proposition 3.26.

Proposition 3.26. Let H ∈ a be type II and fH : K/(KH)0 → H be the immersion. Then,
H is type II and fH is a K-equivariant totally CR immersion by the K-invariant section I
of f ∗HQ.

Let H ∈ a be type III. Then, since πs(kH) = s and (KH)0 acts on s as SO(3)-action. Thus,
we only consider ad(iAβ). Let (#(R1

β)H , #(R2
β)H , #(R3

β)H) = (4, 4, 4). Then, mβ ⊂ (ToH)⊥.
Moreover, for each 1 ≤ i < j ≤ 4, (Ri j)H = φ or (Ri j)H = Ri j since a ± b ∈ ±Rβ for any
a, b ∈ Ri j (a � b). Hence, ToH ∩ mi j = {0} or ToH ∩ mi j = mi j. Since ad(iAβ)mi j ⊂ mi j,
we obtain Proposition 3.27 immediately.

Proposition 3.27. Let H ∈ a be type III and (#(R1
β)H , #(R2

β)H , #(R3
β)H) = (4, 4, 4). Then,

H is a one-point set or a quaternionic submanifold.

Next, let H ∈ a satisfy (#(R1
β)H , #(R2

β)H , #(R3
β)H) = (2, 2, 2). Then, by the proof of Lemma

3.18,
(
(R1
β)H , (R2

β)H , (R3
β)H

)
is one of the following:

(
{ω1

1, ω
1
2}, {ω2

1, ω
2
2}, {ω3

3, ω
3
4}
)
,

(
{ω1

1, ω
1
2}, {ω2

3, ω
2
4}, {ω3

1, ω
3
2}
)
,

(
{ω1

3, ω
1
4}, {ω2

1, ω
2
2}, {ω3

1, ω
3
2}
)
,(

{ω1
1, ω

1
3}, {ω2

1, ω
2
3}, {ω3

2, ω
3
4}
)
,

(
{ω1

1, ω
1
3}, {ω2

2, ω
2
4}, {ω3

1, ω
3
3}
)
,

(
{ω1

2, ω
1
4}, {ω2

1, ω
2
3}, {ω3

1, ω
3
3}
)
,(

{ω1
1, ω

1
4}, {ω2

2, ω
2
3}, {ω3

2, ω
3
3}
)
,

(
{ω1

2, ω
1
3}, {ω2

1, ω
2
4}, {ω3

2, ω
3
3}
)
,

(
{ω1

2, ω
1
3}, {ω2

2, ω
2
3}, {ω3

1, ω
3
4}
)
,(

{ω1
1, ω

1
4}, {ω2

1, ω
2
4}, {ω3

1, ω
3
4}
)
,

(
{ω1

2, ω
1
4}, {ω2

2, ω
2
4}, {ω3

2, ω
3
4}
)
,

(
{ω1

3, ω
1
4}, {ω2

3, ω
2
4}, {ω3

3, ω
3
4}
)
.

Let (Ra
β)H = {ηa

1, η
a
2} (a = 1, 2, 3) and Ra

β − (Ra
β)H = {ηa

3, η
a
4}. Then,
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ToH ∩mβ =
3∑

a=1

(mηa
1
+mηa

2
), (ToH)⊥ ∩mβ =

3∑
a=1

(mηa
3
+mηa

4
).

By Lemma 3.8, ad(iAβ)(mη1
1
+ mη1

2
) ⊂ a ⊂ (ToH)⊥. Moreover, we see that unique v2 ∈

{Tη2
1
± Tη2

2
} satisfies ad(iAβ)v2 ∈ mη3

1
+ mη3

2
⊂ ToH and the other w2 ∈ {Tη2

1
± Tη2

2
} satisfies

ad(iAβ)w2 ∈ mη3
3
+ mη3

4
⊂ (ToH)⊥. Similarly, unique v3 ∈ {Tη3

1
± Tη3

2
} satisfies ad(iAβ)v3 ∈

mη2
1
+mη2

2
⊂ ToH and the other w3 ∈ {Tη3

1
±Tη3

2
} satisfies ad(iAβ)w3 ∈ mη2

3
+mη2

4
⊂ (ToH)⊥.

In particular, ad(iAβ)(w2) ∈ Rw3. Thus, Vβ = Rv2 + Rv3 and Wβ = mη1
1
+ mη1

2
+ Rw2 + Rw3

satisfy

Vβ ⊥ Wβ, Vβ +Wβ = ToH ∩mβ, ad(iAβ)(Vβ) ⊂ Vβ, ad(iAβ)(Wβ) ⊂ (ToH)⊥.

Because
(
(R1
β)H , (R2

β)H , (R3
β)H

)
is one of the above, we obtain Lemma 3.28.

Lemma 3.28. Let H ∈ a satisfy (#(R1
β)H , #(R2

β)H , #(R3
β)H) = (2, 2, 2). Then, for each

1 ≤ i < j ≤ 4, #(R+i j)H � 2.

Thus, by some ω ∈ Ri j, we obtain

ToH ∩mi j = {0} and (ToH)⊥ ∩mi j = mi j,

or ToH ∩mi j = mi j and (ToH)⊥ ∩mi j = {0},
or ToH ∩mi j = mω and (ToH)⊥ ∩mi j =

∑
η∈R+i j,η�ω

mη,

or ToH ∩mi j =
∑
η∈R+i j,η�ω

mη and (ToH)⊥ ∩mi j = mω.

In any case of the above, there are subspaces Vi j,Wi j of ToH ∩mi j such that

Vi j ⊥ Wi j, Vi j +Wi j = ToH ∩mi j, ad(iAβ)(Vi j) ⊂ Vi j, ad(iAβ)(Wi j) ⊂ (ToH)⊥.

Summarizing these arguments we obtain Proposition 3.29.

Proposition 3.29. Let H ∈ a be type III and (#(R1
β)H , #(R2

β)H , #(R3
β)H) = (2, 2, 2). Then,

for any p ∈ H and J ∈ Qp, there are subspaces V,W of TpH such that

V ⊥ W, V +W = TpH , J(V) ⊂ V, J(W) ⊂ (TpH)⊥.

Let H ∈ a be type III and (#(R1
β)H , #(R2

β)H , #(R3
β)H) = (1, 1, 1). Then, ((R1

β)H , (R2
β)H , (R3

β)H)
is one of the following:

({ω1
1}, {ω2

1}, {ω3
4}), ({ω1

2}, {ω2
1}, {ω3

3}), ({ω1
3}, {ω2

1}, {ω3
2}), ({ω1

4}, {ω2
1}, {ω3

1}),
({ω1

1}, {ω2
2}, {ω3

3}), ({ω1
2}, {ω2

2}, {ω3
4}), ({ω1

3}, {ω2
2}, {ω3

1}), ({ω1
4}, {ω2

2}, {ω3
2}),

({ω1
1}, {ω2

3}, {ω3
2}), ({ω1

2}, {ω2
3}, {ω3

1}), ({ω1
3}, {ω2

3}, {ω3
4}), ({ω1

4}, {ω2
3}, {ω3

3}),
({ω1

1}, {ω2
4}, {ω3

1}), ({ω1
2}, {ω2

4}, {ω3
2}), ({ω1

3}, {ω2
4}, {ω3

3}), ({ω1
4}, {ω2

4}, {ω3
4}).

By Lemma 3.8, we see that there are no subspaces V,W of ToH ∩mβ such that

V ⊥ W, V +W = TpH ∩mβ, ad(iAβ)(V) ⊂ V, ad(iAβ)(W) ⊂ (TpH)⊥ ∩mβ.
Summarizing results in this subsection, we obtain Theorem 3.30.

Theorem 3.30. Let H ∈ a.
(i) If H is type I, then the immersion fH : K/(KH)0 → H is a K-equivariant totally CR

immersion by each K-invariant section I of f ∗HQ and such K-invariant sections correspond to
each point of the 2-dimensional sphere one-to-one. Moreover, cI = c′I and cI is independent
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of the choice of I. Also, H is a QR submanifold.
(ii) If H is type II, then the immersion fH : K/(KH)0 → H is a K-equivariant totally

CR immersion by the K-invariant section of f ∗HQ. Such K-invariant sections are unique up
to the sign.

(iii) If H is type III, then H satisfies one of the following:
(iii-1) H is a one-point set or a quaternionic submanifold.
(iii-2) For any p ∈ H and J ∈ Qp, there are subspaces V,W of TpH such that V ⊥

W,V +W = TpH , J(V) ⊂ V and J(W) ⊂ (TpH)⊥.
(iii-3) For any p ∈ H and J ∈ Qp, there are no subspaces V,W of TpH such that

V ⊥ W,V +W = TpH , J(V) ⊂ V and J(W) ⊂ (TpH)⊥.

3.7. Classification.
3.7. Classification. In this subsection, we decide what each K-orbit become one of (i),

(ii), (iii-1), (iii-2), (iii-3) in Theorem 3.30. Since rank M = 4, G is one of G = SO(n) (n ≥
8), F4, E6, E7, E8. In this subsection, we shall follow the notations of irreducible root sys-
tems in [6], that is

Bn = {±ep ; 1 ≤ p ≤ n} ∪ {±ep ± eq ; 1 ≤ p < q ≤ n},
Dn = {±ep ± eq ; 1 ≤ p < q ≤ n},

F4 = {±ep ; 1 ≤ p ≤ 4} ∪ {±ep ± eq ; 1 ≤ p < q ≤ 4} ∪
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

4∑
p=1

apep ; ap = ±1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

E6 = {±ep ± eq ; 1 ≤ p < q ≤ 5} ∪
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

8∑
p=1

apep ; ap = ±1,
8∏

p=1

ap = 1, a6 = a7 = a8

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

E7 = {±ep ± eq ; 1 ≤ p < q ≤ 6} ∪ {±(e7 + e8)} ∪
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

8∑
p=1

apep ; ap = ±1,
8∏

p=1

ap = 1, a7 = a8

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

E8 = {±ep ± eq ; 1 ≤ p < q ≤ 8} ∪
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

8∑
p=1

apep ; ap = ±1,
8∏

p=1

ap = 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Take some linear order in each type such that the highest root is β = e1 + e2. Let α1 =

e1+e3, α2 = e1−e3, α3 = e2+e4, α4 = e2−e4. Then, αi ∈ Σ1 and αi±α j � Σ (1 ≤ i � j ≤ 4).
In the case of G = SO(8), Σ is type D4. Then, we see Σ = Σβ and R = ±iRβ. Thus, R is

type D4.
In the case of G = SO(2n) (n ≥ 5), then Σ is type Dn. Then, Σ1 − (Σβ ∩ Σ1) = {e1 ±

em, e2 ± em ; 5 ≤ m ≤ n}. Thus, RΣ′ is {λ1 ± λ2} or {λ3 ± λ4} for each H-orbit Σ′. Hence,
R = ±i(Rβ ∪ R12) and R is type B4.

In the case of G = SO(2n + 1) (n ≥ 4), then Σ is type Bn. Then, Σ1 − (Σβ ∩ Σ1) =
{e1 ± em, e2 ± em ; 5 ≤ m ≤ n} ∪ {e1, e2}. Thus, RΣ′ is {λ1 ± λ2} or {λ3 ± λ4} for each H-orbit
Σ′. Thus, R = ±i(Rβ ∪ R12) and R is type B4.

In the case of G = F4, then Σ is type F4. Then,

Σ1 − (Σβ ∩ Σ1) = {e1 ± em, e2 ± em ; 5 ≤ m ≤ n} ∪ {e1, e2}

∪
{

1
2

(α1 + α3),
1
2

(α1 + α4),
1
2

(α2 + α3),
1
2

(α2 + α4)
}
.

We see that for any 1 ≤ i < j ≤ 4 there is some H-orbit Σ′ such that RΣ′ = {λi ± λ j}. Thus,
R = ±i(Rβ ∪⋃

2≤i≤4 R1i) and R is type F4.
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In the case of G = En (n = 6, 7, 8), then

Σ1 − (Σβ ∩ Σ1) = {e1 ± em, e2 ± em ; 5 ≤ m ≤ n}

∪
( ⎧⎪⎪⎨⎪⎪⎩

1
2

(α1 + α3) + δ,
1
2

(α1 + α4) + δ,
1
2

(α2 + α3) + δ,
1
2

(α2 + α4) + δ ; δ ∈
8∑

k=5

Rem

⎫⎪⎪⎬⎪⎪⎭ ∩ Σ
)

and R = ±i(Rβ ∪⋃
2≤i≤4 R1i). Hence, R is type F4.

If R = ±iRβ, we take some linear order such that ω1 = 2iλ2, ω2 = i(λ1−λ2−λ3−λ4), ω3 =

2iλ3, ω4 = iλ4 are simple roots. Then, the highest root η is 2iλ4.
If R = ±i(Rβ ∪ R12), we take some linear order such that ω1 = 2iλ1, ω2 = i(−λ1 + λ2 −

λ3 + λ4), ω3 = 2iλ3, ω4 = i(−λ3 − λ4) are simple roots. Then, the highest root η is 2iλ2.
If R = ±i(Rβ ∪⋃

2≤i≤4 R1i), we take some linear order such that ω1 = i(−λ1 − λ2 − λ3 +

λ4), ω2 = 2iλ3, ω3 = i(λ2 − λ3), ω4 = i(λ1 − λ2) are simple roots. Then, the highest root η is
2iλ4.

Recall arguments of subsection 2.2. Each K-orbit intersects π(expQ) at only one point
and Q = �Δ⊂ ,Δ∩F�φQΔ. Moreover, for H ∈ QΔ, it is true that R+H is independent of the
choice of H and only depend on Δ. In Table 2,3,4, we summarize that each K-orbit through
π(expH) (H ∈ QΔ) becomes one of (i),(ii),(iii-1),(iii-2),(iii-3) in Theorem 3.30 in each G.
In the list, Δ implies a subset of  . For example (1, 2, 3) implies {ω1, ω2, ω3} and (2, η)
implies {ω2, η}. The “type” implies the type of the K-orbit through π(expH) (H ∈ QΔ),
that is (i),(ii),(iii-1),(iii-2),(iii-3). The “dim” implies the dimension of K-orbit through
π(expH) (H ∈ QΔ). If H ∈ QΔ is type (i), then “c” implies cI of the CR immersion
fH : K/(KH)0 → H and a K-invariant section I of f ∗HQ. If H ∈ QΔ is type (ii), then
“c” and “c′” implies cI and c′I of the totally CR immersion fH : K/(KH)0 → H and the CR
structure I of fH . If H ∈ QΔ is type (iii-2), then “c” implies the dimension of V in Theorem
3.30. If the K-orbit becomes a principal orbit, a polar, a pole, a quaternionic submanifold or
the image of a totally complex immersion, then we specify this in “remark”, where a pole is
a polar which is a one-point set [7]. In Table 2 of the case of G = F4, E6, E7, E8, set m ∈ Z
as m = 1 if G = F4, m = 2 if G = E6, m = 4 if G = E7, m = 8 if G = E8. In Table 3 of the
case of G = SO(n) (n ≥ 8), set m = n − 3 if n is odd and m = n − 4 if n is even.

4. The case of rank M = 2

4. The case of rank M = 2
In this section, we consider the case of rank M = 2, that is M is a complex Grassmann

manifold SU(n)/S(U(2)×U(n−2)) (n ≥ 4) or the associative Grassmann manifold G2/SO(4).
In the present paper, we only consider the complex Grassmann manifold. We cite [12] about
the associative Grassmann manifold.

Let Ei j be the n × n matrix whose (i, j)-component is 1 and the others are 0. Let g̃ =
sl(n,C) = {X ∈ M(n,C) ; trX = 0} and h̃ = {H = ∑n

i=1 ziEii ; zi ∈ C, trH = 0}. Set a
complex conjugation τ such that τ(X) = −tX. Then, g = {X ∈ sl(n,C) ; τ(X) = X} = su(n)
and h = h̃ ∩ g = {H = ∑n

j=1(ix j)E j j ∈ h̃ ; x j ∈ R}. Let G = SU(n). Define a linear form
εi (1 ≤ i ≤ n) of h̃ such that εi(

∑n
j=1 z jE j j) = zi. Then, Σ = {±(εi − ε j) ; 1 ≤ i < j ≤ n}. Set

an invariant nondegenerate symmetric bilinear form ( , ) such that (X, Y) = tr(XY) (X, Y ∈
sl(n,C)). Then, Hεi−ε j = Eii − E j j and Aεi−ε j = Hεi−ε j for each 1 ≤ i � j ≤ n. Take some
linear order on ih such that β = ε1 − ε2 is the highest root. Let Σ+ be the set of all positive
roots. We see Σ1 = {ε1 − εk,−ε2 + εk ; 3 ≤ k ≤ n},Σ0 = {εi − ε j ; 3 ≤ i < j ≤ n}. Set a root
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Table 2. K-orbits in the case of G = F4, E6, E7, E8

Δ type dim c c′ remark

(1, 2) (i) 9m + 12 6m + 8
(1, 2, 3, η) (i) 11m + 12 10m + 8
(1, 2, 4, η) (i) 11m + 12 10m + 8

(1, 2, 3, 4, η) (i) 12m + 12 12m + 8 principal orbit
(1) (ii) 6m + 8 6m + 8 0 polar, fH is totally complex

(1, η) (ii) 6m + 9 6m + 8 2
(1, 2) (ii) 9m + 11 6m + 8 6m + 6
(2, η) (ii) 9m + 11 6m + 8 6m + 6
(1, 4) (ii) 10m + 9 10m + 8 8m + 2

(1, 4, η) (ii) 10m + 10 10m + 8 8m + 4
(1, 2) (ii) 11m + 10 10m + 8 10m + 4

(1, 2, 3) (ii) 11m + 11 10m + 8 10m + 6
(1, 2, 4) (ii) 11m + 11 10m + 8 10m + 6
(1, 3, η) (ii) 11m + 11 10m + 8 10m + 6
(2, 3, η) (ii) 11m + 11 10m + 8 10m + 6
(2, 4, η) (ii) 11m + 11 10m + 8 10m + 6
(1, 3, 4) (ii) 12m + 10 12m + 8 12m + 4

(1, 2, 3, 4) (ii) 12m + 11 12m + 8 12m + 6
(1, 3, 4, η) (ii) 12m + 11 12m + 8 12m + 6
(2, 3, 4, η) (ii) 12m + 11 12m + 8 12m + 6

(4) (iii-1) 8m polar, quaternionic
(3) (iii-2) 11m + 6 10m + 2

(3, 4) (iii-2) 12m + 6 12m + 2
(4, η) (iii-2) 12m + 6 8m + 2
(2) (iii-3) 9m + 9

(2, 3) (iii-3) 11m + 9
(2, 4) (iii-3) 11m + 9
(3, η) (iii-3) 11m + 9

(2, 3, 4) (iii-3) 12m + 9
(3, 4, η) (iii-3) 12m + 9

vector Xεi−ε j = Ei j for each 1 ≤ i � j ≤ n. Let Zεi−ε j := Xεi−ε j + τ(Xε j−εi) = Ei j − E ji and
Wεi−ε j = i(Xεi−ε j − τ(Xε j−εi)) = i(Ei j + E ji) for 1 ≤ i � j ≤ n. Let θ = exp(ad(πiAβ)). Then, θ
is an involutive automorphism of g and

m = {X ∈ g ; θ(X) = −X} =
n∑

i=3

(RZε1−εi + RWε1−εi + RZεi−ε2 + RWεi−ε2 ),

k = {X ∈ g ; θ(X) = X} = h + RZβ + RWβ +
∑

3≤i< j≤n

(RZεi−ε j + RWεi−ε j).

In particular, k = s(u(2)× u(n− 2)). Denote by the same symbol the involution of G induced
by θ. Then, K = {g ∈ G ; θ(g) = g} = S(U(2) × U(n − 2)).
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Table 3. K-orbits in the case of G = SO(n) (n � 8).

Δ type dim c c′ remark

(1, 2, 3, η) (i) 3m + 12 2m + 8
(1, 2, 3, 4, η) (i) 4m + 12 4m + 8 principal orbit

(2) (ii) 2m + 8 2m + 8 0 polar, fH is totally complex
(2, η) (ii) 2m + 9 2m + 8 2
(1, 2) (ii) 2m + 9 2m + 8 2

(1, 2, η) (ii) 2m + 10 2m + 8 4
(2, 3) (ii) 3m + 10 2m + 8 2m + 4

(1, 2, 3) (ii) 3m + 11 2m + 8 2m + 6
(1, 3, η) (ii) 3m + 11 2m + 8 2m + 6
(2, 3, η) (ii) 3m + 11 2m + 8 2m + 6
(2, 4) (ii) 4m + 9 4m + 8 4m + 2

(1, 2, 4) (ii) 4m + 10 4m + 8 4m + 4
(2, 3, 4) (ii) 4m + 10 4m + 8 4m + 4
(2, 4, η) (ii) 4m + 10 4m + 8 4m + 4

(1, 2, 3, 4) (ii) 4m + 11 4m + 8 4m + 6
(1, 2, 4, η) (ii) 4m + 11 4m + 8 4m + 6
(1, 3, 4, η) (ii) 4m + 11 4m + 8 4m + 6
(2, 3, 4, η) (ii) 4m + 11 4m + 8 4m + 6

(1) (iii-1) 0 pole
(4) (iii-1) 4m 4m polar, quaternionic

(1, η) (iii-2) m + 6 2
(3) (iii-2) 3m + 6 2m + 2

(1, 4) (iii-2) 4m + 6 4m + 2
(3, 4) (iii-2) 4m + 6 4m + 2
(4, η) (iii-2) 4m + 6 4m + 2
(1, 3) (iii-3) 3m + 9
(3, η) (iii-3) 3m + 9

(1, 3, 4) (iii-3) 4m + 9
(1, 4, η) (iii-3) 4m + 9
(3, 4, η) (iii-3) 4m + 9

Set α1 = ε1−ε3, α2 = −ε2+ε4 ∈ Σ1. Then, a = RZα1+RZα2 is a maximal abelian subspace
of m. Let A = λ1Zα1 + λ2Zα2 (λ1, λ2 ∈ R). We easily check that the followings are true.

adA(Zβ−α1 ± Zβ−α2 ) = (λ1 ∓ λ2)(Zβ ∓ Zβ−(α1+α2)),
adA(Zβ ∓ Zβ−(α1+α2)) = −(λ1 ∓ λ2)(Zβ−α1 ± Zβ−α2 ),
adA(Wβ−α1 ±Wβ−α2 ) = (λ1 ∓ λ2)(Wβ ∓Wβ−(α1+α2)),
adA(Wβ ∓Wβ−(α1+α2)) = −(λ1 ∓ λ2)(Wβ−α1 ±Wβ−α2 ),
adA(Wα1 ) = 2λ1(iAα1 ), adA(iAαi) = (−2λ1)Wα1 ,

adA(Wα2 ) = 2λ2(iAα2 ), adA(iAα2 ) = (−2λ2)Wα2 .

Moreover, for each 5 ≤ k ≤ n,
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Table 4. K-orbits in the case of G = SO(8).

Δ type dim c c′ remark Δ type dim c c′ remark
(1, 2, 3, 4, η) (i) 12 8 principal orbit (1) (iii-1) 0 pole
(1, 2, 3, η) (ii) 11 8 6 (3) (iii-1) 0 pole
(1, 2, 4, η) (ii) 11 8 6 (4) (iii-1) 0 pole
(1, 3, 4, η) (ii) 11 8 6 (1, 3) (iii-2) 6 2
(2, 3, 4, η) (ii) 11 8 6 (1, 4) (iii-2) 6 2
(1, 2, 3, 4) (ii) 11 8 6 (3, 4, η) (iii-2) 9
(1, 2, 4) (ii) 10 8 4 (1, η) (iii-2) 6 2
(1, 2, 3) (ii) 10 8 4 (3, η) (iii-2) 6 2
(2, 3, 4) (ii) 10 8 4 (4, η) (iii-2) 6 2
(1, 2, η) (ii) 10 8 4 (1,3,4) (iii-3) 9
(2, 3, η) (ii) 10 8 4 (1, 3, η) (iii-3) 9
(2, 4, η) (ii) 10 8 4 (1, 4, η) (iii-3) 9
(1, 2) (ii) 9 8 2 (3, 4, η) (iii-3) 9
(2, 3) (ii) 9 8 2
(2, 4) (ii) 9 8 2
(2, η) (ii) 9 8 2
(2) (ii) 8 8 0 polar, fH is totally complex

adA(Zε1−εk ) = λ1(−Zε3−εk ), adA(−Zε3−εk ) = (−λ1)Zε1−εk ,
adA(Wε1−εk ) = λ1(−Wε3−εk ), adA(−Wε3−εk ) = (−λ1)Wε1−εk ,
adA(Z−ε2+εk ) = λ2(Z−ε4+εk ), adA(Z−ε4+εk ) = (−λ2)Z−ε2+εk ,
adA(W−ε2+εk ) = λ2(W−ε4+εk ), adA(W−ε4+εk ) = (−λ2)W−ε2+εk .

Set elements of m as follows:

T 1
λ1−λ2

= Zβ−α1 + Zβ−α2 , T 2
λ1−λ2

= Wβ−α1 +Wβ−α2 ,

T 1
λ1+λ2

= Zβ−α1 − Zβ−α2 , T 2
λ1+λ2

= Wβ−α1 −Wβ−α2 , T2λi = Wαi (i = 1, 2)

and T k,1
λ1
= Zε1−εk , T

k,2
λ1
= Wε1−εk , T

k,1
λ2
= Z−ε2+εk , T

k,2
λ2
= W−ε2+εk for each 5 ≤ k ≤ n. Set

elements of k as follows:

S1
λ1−λ2

= Zβ − Zβ−(α1+α2), S2
λ1−λ2

= Wβ −Wβ−(α1+α2),

S1
λ1+λ2

= Zβ + Zβ−(α1+α2), S2
λ1+λ2

= Wβ +Wβ−(α1+α2), S2λ j = iAα j ( j = 1, 2)

and Sk,1
λ1
= −Zε3−εk , S

k,2
λ1
= −Wε3−εk , S

k,1
λ2
= Z−ε4+εk , S

k,2
λ2
= W−ε4+εk for each 5 ≤ k ≤ n. Let

Rβ = {λ1 ± λ2, 2λ1, 2λ2} and R0 = {λ1, λ2}. Then, for any A ∈ a, ω ∈ {λ1 ± λ2} and η ∈ R0,

adA(T i
ω) = ω(A)Si

ω, adA(Si
ω) = −ω(A)T i

ω,

adA(T k,i
η ) = η(A)Sk,i

η , adA(Sk,i
η ) = −η(A)T k,i

η (i = 1, 2 and 5 ≤ k ≤ n),
adA(T2λ j) = 2λ j(A)S2λ j , adA(S2λ j) = −2λ jT2λ j ( j = 1, 2).

Thus, the restricted root system R is given by ±i(Rβ ∪ R0). For each ω ∈ Rβ ∪ R0, we set
mω = {X ∈ m ; (adA)2(X) = −ω(A)2X (A ∈ a)}. Let mβ = mλ1−λ2 + mλ1+λ2 + m2λ1 + m2λ2

and mk = RT k,1
λ1
+ RT k,2

λ1
+ RT k,1

λ2
+ RT k,2

λ2
for each 3 ≤ k ≤ n. Then, m = a + mβ +

∑n
k=3mk.

By direct computations, we see adX(a +mβ) ⊂ a +mβ and adX(mk) ⊂ mk for any X ∈ s and
5 ≤ k ≤ n. Moreover, we obtain Lemma 4.1 and Lemma 4.2.

Lemma 4.1. Set subspaces m− and m+ of a +mβ as follows:

m− = mλ1−λ2 +R(Zα1 − Zα2 )+R(T2λ1 − T2λ2 ), m+ = mλ1+λ2 +R(Zα1 + Zα2 )+R(T2λ1 + T2λ2 ).
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Then, ads(m−) ⊂ (m−) and ads(m+) ⊂ (m+). The representation matrices of ad(iAβ)|m− ,
adZβ|m− , adWβ|m− with respect to T 1

λ1−λ2
, T 2
λ1−λ2
, Zα1 − Zα2 , T2λ1 − T2λ2 are

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
1

−1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1

−1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

−1
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where empty components are 0. Also, the representation matrices of ad(iAβ)|m+ , adZβ|m+ ,
adWβ|m+ with respect to T 1

λ1+λ2
, T 2
λ1+λ2
, Zα1 + Zα2 , T2λ1 + T2λ2 are

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
1

−1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1

−1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

−1
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Lemma 4.2. For each 5 ≤ k ≤ n, ads(mk) ⊂ mk. Moreover, the representation matrices
of ad(iAβ)|mk , adZβ|mk , adWβ|mk with respect to T k,1

λ1
, T k,2
λ1
, T k,1
λ2
, T k,2
λ2

are
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
1

−1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
1

1
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
−1

1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

where empty components are 0.

For H ∈ a, we set (Rβ)H = {ω ∈ Rβ ; ω(H) ∈ πZ}. If H ∈ a satisfies (Rβ)H = φ for each
ω ∈ Rβ, we say that H is type I. We easily see that if H is type I, then πs(kH) = {0} and H

is type I. If H satisfies (Rβ)H ⊂ {2λ1, 2λ2}, then we say that H is type II. We easily see that
if H is type II, then πs(kH) = R(iAβ) and H is type II. If H is not type I and type II, then we
say that H is type III. We see that if H is type III, then πs(kH) = s and H is type III.

Let H be type I. Then, λi(H) � πZ (i = 1, 2) and

ToH ∩m− = mλ1−λ2 + R(T2λ1 − T2λ2 ),

ToH ∩m+ = mλ1+λ2 + R(T2λ1 + T2λ2 ),

ToH ∩mk = mk (5 ≤ k ≤ n).

For any X ∈ s, let WX = adX(a) and VX be the orthogonal complement of WX in ToH . Then
VX ,WX satisfy

VX ⊥ WX , VX +WX = ToH , adX(VX) ⊂ VX , adX(WX) ⊂ (To)⊥.

Thus, the immersion fH : K/(KH)0 → H is a K-equivariant totally CR immersion by each
K-invariant section of f ∗HQ. Moreover, H is a QR submanifold. Thus, we obtain Lemma
4.3.

Lemma 4.3. Let H ∈ a be type I. Then, fH : K/(KH)0 → H is a K-equivariant totally
CR immersion by each K-invariant section I of f ∗HQ and K-invariant sections correspond
to each point of the 2-dimensional sphere. Moreover, cI = c′I and cI is independent of the
choice of I. Also, H is a QR submanifold.
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Let H be type II. Then, πs(kH) = R(iAβ) and ad(iAβ) defines the K-invariant section of
f ∗HQ. If (Rβ)H = {2λ1}, then ToH∩mβ = mλ1−λ2+mλ1+λ2+m2λ2 and (ToH)⊥∩mβ = a+m2λ1 .
If (Rβ)H = {2λ2}, then ToH ∩mβ = mλ1−λ2 +mλ1+λ2 +m2λ1 and (ToH)⊥ ∩mβ = a+m2λ2 . If
(Rβ)H = {2λ1, 2λ2}, then ToH ∩mβ = mλ1−λ2 +mλ1+λ2 and (ToH)⊥ ∩mβ = a+m2λ1 +m2λ2 .
By Lemma 4.1, ad(iAβ)(a + m2λ1 + m2λ2 ) ⊂ a + m2λ1 + m2λ2 . Moreover, ad(iAβ)(mλ j) ⊂
mλ j ( j = 1, 2) by Lemma 4.2. Thus, there are subspaces VA and WA of ToH such that

VA ⊥ WA, VA +WA = ToH , ad(iAβ)(VA) ⊂ VA, ad(iAβ)(WA) ⊂ (To)⊥.

Also, for any X ∈ RZβ + RWβ since adX(mλ1−λ2 +mλ1+λ2 ) ⊂ a +m2λ1 +m2λ2 by Lemma 4.1
and adX(mλ1 ) ⊂ mλ2 by Lemma 4.2, we see that there are subspaces VX ,WX of ToH such
that

VX ⊥ WX , VX +WX = ToH , adX(VX) ⊂ VX , adX(WX) ⊂ (To)⊥.

Thus, we obtain Lemma 4.4.

Lemma 4.4. Let H ∈ a be type II. Then, fH : K/(KH)0 → H is a K-equivariant totally
CR immersion by the K-invariant section of f ∗HQ and such K-invariant sections are unique
up to sign.

Let H be type III. Since (KH)0 acts on s as SO(3), we only consider ad(iAβ). Then,
(Rβ)H = {λ1−λ2}, {λ1+λ2} or Rβ. In the case of (Rβ)H = {λ1−λ2}, then λi(H) � πZ (i = 1, 2).
Thus, ToH = mλ1+λ2 +

∑2
a=1(m2λa + mλa) and (ToH)⊥ = a + mλ1−λ2 . Let WA = ad(iAβ)a

and VA be the orthogonal complement of WA in ToH . Then, VA and WA satisfy

VA ⊥ WA, VA +WA = ToH , ad(iAβ)VA ⊂ VA, ad(iAβ)WA ⊂ (ToH)⊥.

In the case of (Rβ)H = {λ1 + λ2}, we can prove that there are such subspaces by similar way.
In the case of (Rβ)H = Rβ, we see ToH = {0} or mλ1 + mλ2 . In the former case, H is
a one-point set. In the latter case, H is a quaternionic submanifold. Summarizing these
arguments, we obtain Lemma 4.5.

Lemma 4.5. Let H ∈ a be type III. Then, H is type III. If (Rβ)H = {λ1 − λ2} or {λ1 + λ2},
then for any p ∈ H and J ∈ Qp there are subspaces V and W such that

V ⊥ W, V +W = ToH , J(V) ⊂ V, J(W) ⊂ (ToH)⊥.

If (Rβ)H = Rβ, then H is a one-point set or a quaternionic submanifold.

Summarizing Lemma 4.3, Lemma 4.4, Lemma 4.5, we obtain Theorem 4.6.

Theorem 4.6. Let H ∈ a.
(i) If H is type I, fH : K/(KH)0 → H is a K-equivariant totally CR immersion by

each K-invariant section I of f ∗HQ and K-invariant sections correspond to each point of the
2-dimensional sphere one-to-one. Moreover, cI = c′I and cI is independent of the choice of
I. Also, H is a QR submanifold.

(ii) If H is type II, then the immersion fH : K/(KH)0 → H is a K-equivariant totally
CR immersion by a K-invariant section of f ∗HQ. Such K-invariant sections are unique up to
the sign.

(iii) If H is type III, H satisfies one of the following:
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(iii-1) H is a one-point set or a quaternionic submanifold.
(iii-2) For any p ∈ H and J ∈ Qp, there are subspaces V,W of TpH such that V ⊥

W,V +W = TpH , J(V) ⊂ V and J(W) ⊂ (TpH)⊥.

We summarize that each K-orbit becomes one of (i),(ii),(iii-1),(iii-2) as Section 3. Let
ω1 = i(λ1 − λ2), ω2 = iλ2. Then, ω1, ω2 are simple roots with respect to some linear order
of ia and the highest root η is 2iλ1. Let  = {ω1, ω2, η}. As the table in Section 3, we make
Table 5 in the following.

Table 5. K-orbits in G = SU(n) (n ≥ 4)

Δ type dim c c′ remark
(1, 2, η) (i) 4n − 10 4n − 12 principal orbit

(1) (ii) 2n − 4 2n − 4 0 polar, fH is totally complex
(1, η) (ii) 2n − 3 2n − 4 2
(1, 2) (ii) 4n − 3 4n − 4 4n − 6
(2) (iii-1) 4n − 16 4n − 16 pole (n = 4), polar and quaternionic (n > 4)

(2, η) (iii-2) 4n − 12 4n − 14

5. The case of rank M = 3

5. The case of rank M = 3
In this section, we consider the case of rank M = 3, that is M is the oriented real Grass-

mann manifold as the set of all oriented 3-dimensional subspaces of R7. In this case, g̃ =
so(7,C) = {X ∈ M(7,C) ; tX = −X}. Let τ : g̃ → g̃ ; X �→ X̄ and g = {X ∈ g̃ ; τ(X) = X} =
so(7). Set Fi j = Ei j−E ji for each 1 ≤ i � j ≤ n. Let h̃ = {H = z1F12+z2F34+z3F56 ; zi ∈ C}.
Then, h = h̃∩ g = {x1F12+ x2F34+ x3F56 ; xi ∈ R} and h is a maximal abelian subspace of g.
Let ε j be the linear form of h̃ such that ε j(z1F12 + z2F34 + z3F56) = iz j (1 ≤ j ≤ 3). The root
system of g̃ with respect to h̃ is given by Σ = {±εi ± ε j,±εk ; 1 ≤ i < j ≤ 3, 1 ≤ k ≤ 3}. Set
an invariant nondegenerate symmetric bilinear form ( , ) of g̃ such that (X, Y) = tr(XY) for
X, Y ∈ g̃. For each γ ∈ Σ, we set the element Hγ of the real part h0 = ih by (Hγ,H) = γ(H),
that is Hεi−ε j = − i

2 (F2i−1,2i − F2 j−1,2 j),Hεi+ε j = − i
2 (F2i−1,2i + F2 j−1,2 j),Hεi = − i

2 F2i−1,2i for
1 ≤ i � j ≤ 3. Let Aγ = 2

(Hγ,Hγ)
Hγ, that is Aεi−ε j = −i(F2i−1,2i −F2 j−1,2 j), Aεi+ε j = −i(F2i−1,2i +

F2 j−1,2 j), Aεi = −2iF2i−1,2i for 1 ≤ i � j ≤ 3. Take some linear order such that the highest
root β is ε1 + ε2 and the set of all positive roots Σ+ is {εi ± ε j, εk ; 1 ≤ i < j ≤ 3, 1 ≤ k ≤ 3}.
Then, Σ1 = {ε1, ε2, ε1±ε3, ε2±ε3} and Σ0 = {±(ε1−ε2),±ε3}. For 1 ≤ i < j ≤ 3 and 1 ≤ k ≤ 3,
we set root vectors

Xεi−ε j = −(F2i−1,2 j−1 + F2i,2 j) + i(F2i−1,2 j − F2i,2 j−1),

Xεi+ε j = (F2i−1,2 j−1 − F2i,2 j) + i(F2i−1,2 j + F2i,2 j−1),

Xεk = F2k−1,7 + iF2k,7.

For each γ ∈ Σ+, set Zγ = 1
2 (Xγ + τ(Xγ)) and Wγ = i

2 (Xγ − τ(Xγ)), that is for 1 ≤ i < j ≤ 3,

Zεi−ε j = −F2i−1,2 j−1 − F2i,2 j, Zεi+ε j = F2i−1,2 j−1 − F2i,2 j,

Wεi−ε j = −F2i−1,2 j + F2i,2 j−1, Wεi+ε j = −F2i−1,2 j − F2i,2 j−1,

Zεk = F2k−1,7, Wεk = −F2k,7.

Let θ = exp(πiAβ). Then,



Isotropy Action of Quaternionic Symmetric Spaces 555

k = {X ∈ g ; θ(X) = X} = h + RZβ + RWβ + RZε1−ε2 + RWε1−ε2 + RZε3 + RWε3 ,

m = {X ∈ g ; θ(X) = −X} =
∑
γ∈Σ1

(RZγ + RWγ).

Let G = SO(7) and denote by the same symbol the involution of G induced by θ. Let K be
the identity component of {g ∈ G ; θ(g) = g}, that is K = SO(4) × SO(3).

Let Ui = Fi,4+i (1 ≤ i ≤ 3) and a = {A = ∑3
i=1 λiUi ; λi ∈ R}. Then, a is a maximal abelian

subspace of m. We set elements of m as follows:

Tλ1=
1
2 (Wε2−ε3−Wε2+ε3 )=F45, Tλ2=− 1

2 (Zε2−ε3+Zε2+ε3 )=F46, Tλ3=−Wε2=F47,

Tλ1+λ2=Wε1−ε3=F25−F16, Tλ1−λ2=−Wε1+ε3=F25+F16,

Tλ1+λ3=
1
2 (−Zε2−ε3+Zε2+ε3 )−Zε1=F35−F17, Tλ1−λ3=

1
2 (−Zε2−ε3+Zε2+ε3 )+Zε1=F35+F17,

Tλ2+λ3=
1
2 (−Wε2−ε3−Wε2+ε3 )+Wε1=F36−F27, Tλ2−λ3=− 1

2 (Wε2−ε3+Wε2+ε3 )−Wε1=F36+F27,

These vectors give a basis of the orthogonal complement of a inm. Moreover, we set a basis
of k as follows:

Sλ1=
1
2 (Wε1−ε2+Wε1+ε2 )=−F14, Sλ2=

1
2 (Zε1−ε2+Zε1+ε2 )=−F24, Sλ3=−2iHε2=−F34,

Sλ1+λ2=−2iHε1−ε3=−F12+F56, Sλ1−λ2=2iHε1+ε3=F12+F56,

Sλ1+λ3=
1
2 (Zε1−ε2−Zε1+ε2 )+Zε3=−F13+F57, Sλ1−λ3=− 1

2 (Zε1−ε2−Zε1+ε2 )+Zε3=F13+F57,

Sλ2+λ3=− 1
2 (Wε1−ε2−Wε1+ε2 )−Wε3=−F23+F67, Sλ2−λ3=

1
2 (Wε1−ε2−Wε1+ε2 )−Wε3=F23+F67.

We use the notations used in the previous two sections. Let Rβ = {λi, λi±λ j ; 1 ≤ i < j ≤ 3}.
Then, for any ω ∈ Rβ and A ∈ a,

adA(Tω) = ω(A)Sω, adA(Sω) = −ω(A)Tω

and the restricted root system of (g, k) with respect to a is given by ±iRβ. We set Pi
j ∈ m (1 ≤

i ≤ 3, 1 ≤ j ≤ 4) as follows:

P1
1 =

1
2 (−Zε1−ε3 + Zε1+ε3 ) = F15, P1

2 =
1
2 (Tλ1+λ2 − Tλ1−λ2 ) = F25,

P1
3 =

1
2 (Tλ1+λ3 + Tλ1−λ3 ) = F35, P1

4 = Tλ1 = F45,

P2
1 = − 1

2 (Tλ1+λ2 + Tλ1−λ2 ) = F16, P2
2 = − 1

2 (Zε1−ε3 + Zε1+ε3 ) = F26,

P2
3 =

1
2 (Tλ2+λ3 + Tλ2−λ3 ) = F36, P2

4 = Tλ2 = P46,

P3
1 = − 1

2 (Tλ1+λ3 − Tλ1−λ3 ) = F17, P3
2 = − 1

2 (Tλ2+λ3 − Tλ2−λ3 ) = F27,

P3
3 = Zε2 = F37, P3

4 = Tλ3 = F47.

Remark that Pi
i ∈ a (1 ≤ i ≤ 3). Let mi =

∑4
j=1 RPi

j (i = 1, 2, 3). We obtain Lemma 5.1

Lemma 5.1. For any X ∈ s, adX(mi) ⊂ mi (i = 1, 2, 3). Moreover, for each i = 1, 2, 3, the
representation matrices of ad(iAβ)|mi and adZβ|mi and adWβ|mi with respect to Pi

1, · · · , Pi
4 are

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1

1
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1

−1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

−1
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where empty components are 0.

Set subsets R1,R2,R3 ⊂ Rβ as follows: R1 = {λ1, λ2 ± λ3},R2 = {λ2, λ1 ± λ3},R3 =
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{λ3, λ1±λ2}. If H ∈ a satisfies (Rβ)H = φ, we say that H is type I. If H ∈ a satisfies (Rβ)H � φ
and (Rβ)H ⊂ Ri for some 1 ≤ i ≤ 3, we say that H is type II. In the other cases, we say that
H is type III. Then, we see that H and H have the same type because πs(RSω) = RWβ if
and only if ω ∈ R1 and πs(RSω) = RZβ if and only if ω ∈ R2 and πs(RSω) = R(iAβ) if and
only if ω ∈ R3.

If H is type I, then To =
∑
ω∈Rβ mω and (ToH)⊥ = a. By Lemma 5.1, we see that

for each X ∈ s there are subspaces VX ,WX of ToH such that VX ⊥ WX ,VX + WX =

ToH , adX(VX) ⊂ VX , adX(WX) ⊂ (ToH)⊥. Thus, the immersion fH : K/(KH)0 → H

is a K-equivariant totally CR immersion by each K-invariant section of f ∗HQ and such K-
invariant section corresponds to each point of the 2-dimensional sphere. In particular, H is
a QR submanifold.

Let H be type II. We may assume (Rβ)H ⊂ R1. Then, πs(kH) = RWβ. We see that there
are subspaces V,W of ToH such that V ⊥ W,V + W = ToH , adWβ(V) ⊂ V, adWβ(W) ⊂
(ToH)⊥. Moreover, we see that for each X ∈ R(iAβ) + RZβ there are subspace VX ,WX of
ToH such that VX ⊥ WX ,VX + WX = ToH , adX(VX) ⊂ VX , adX(WX) ⊂ (ToH)⊥. Thus,
fH is a totally CR immersion by the K-invariant section of f ∗HQ. In particular, (Rβ)H = R1 if
and only if fH is a totally complex immersion.

Let H be type III. By the definition, we see #((Rβ)H ∩ {λ1, λ2, λ3}) = 0, 2, 3. If #((Rβ)H ∩
{λ1, λ2, λ3}) = 3, then obviously (Rβ)H = Rβ. Then, ToH = {0} and H is a one-point set. If
#((Rβ)H ∩{λ1, λ2, λ3}) = 2, then (Rβ)H is one of {λ1, λ2, λ1±λ2}, {λ2, λ3, λ2±λ3}, {λ3, λ1, λ1±
λ3}. In this case, for any p ∈ H and J ∈ Qp there are subspaces V,W of TpH such that
V ⊥ W,V +W = TpH , J(V) ⊂ V, J(W) ⊂ (TpH)⊥. If #((Rβ)H ∩ {λ1, λ2, λ3}) = 0, we see
that (Rβ)H is one of {λi ±λ j ; 1 ≤ i < j ≤ 3}, {λ1 − λ2, λ1 + λ3, λ2 +λ3}, {λ1 + λ2, λ1 − λ3, λ2 +

λ3}, {λ1+λ2, λ1+λ3, λ2−λ3}, {λ1−λ2, λ1−λ3, λ2−λ3}. If (Rβ)H = {λi±λ j ; 1 ≤ i < j ≤ 3}, then
H is a totally real submanifold. In the other cases, then for any p ∈ H and J ∈ Qp there are
no subspaces V,W of TpH such that V ⊥ W,V +W = TpH , J(V) ⊂ V, J(W) ⊂ (TpH)⊥.

Summarizing these arguments, we obtain Theorem 5.2.

Theorem 5.2. Let H ∈ a.
(i) If H is type I, then fH : K/(KH)0 → H is a K-equivariant totally CR immersion by

each K-invariant section I of f ∗HQ and K-invariant sections correspond to each point of the
2-dimensional sphere one-to-one. Moreover, cI = c′I and cI is independent of the choice of
I. Also, H is a QR submanifold.

(ii) If H is type II, then the immersion fH : K/(KH)0 → H is a K-equivariant totally
CR immersion by the K-invariant section of f ∗HQ. Such K-invariant sections are unique up
to the sign.

(iii) If H is type III, then H satisfies one of the following:
(iii-1) H is a one-point set or a totally real submanifold.
(iii-2) For any p ∈ H and J ∈ Qp, there are subspaces V,W of TpH such that V ⊥

W,V +W = TpH , J(V) ⊂ V, J(W) ⊂ (TpH)⊥.
(iii-3) For any p ∈ H and J ∈ Qp, there are no subspaces V,W of TpH such that

V ⊥ W,V +W = TpH , J(V) ⊂ V, J(W) ⊂ (TpH)⊥.

We summarize what type (i), (ii), (iii-1), (iii-2), (iii-3) each K-orbit becomes as Section
3. Let ω1 = i(λ1 − λ2), ω2 = i(λ2 − λ3), ω3 = iλ3. Then, ω1, ω2, ω3 are simple roots with
respect to some linear order of ia and the highest root η is 2iλ1. Let  = {ω1, ω2, ω3, η}. As
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the table in Section 3, we make Table 6.

Table 6. K-orbits in G = SO(7)

Δ type dim c c′ remark

(1, 2, 3, η) (i) 9 6 principal orbit
(2) (ii) 6 6 0 polar, fH is totally complex

(1, 2) (ii) 7 6 2
(2, 3) (ii) 7 6 2
(2, η) (ii) 7 6 2

(1, 2, 3) (ii) 8 6 4
(1, 2, η) (ii) 8 6 4
(1, 3, η) (ii) 8 6 4
(2, 3, η) (ii) 8 6 4

(1) (iii-1) 0 pole
(3) (iii-1) 3 0 totally real

(1, η) (iii-2) 5 2
(3, η) (iii-3) 6
(1, 3) (iii-3) 6
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