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Abstract

We investigate some geometric properties of orbits of the isotropy group action on quater-
nionic irreducible symmetric spaces of compact type. We show that such orbits, except for a
one-point set, satisfy one of some four properties and classify which orbits satisfy which prop-
erties in each such symmetric space. In a symmetric space, a connected component of the fixed
point set of a geodesic symmetry, except for a one-point set, is called a polar. A polar is a totally
geodesic submanifold and an orbit of the isotropy group action. By the classification, we show
that an orbit which is a quaternionic submanifold or the image of a totally complex immersion
is a polar, and a polar becomes a quaternionic submanifold or the image of a totally complex
immersion.

1. Introduction

We study some geometric properties of orbits of the isotropy group action on quaternionic
irreducible symmetric spaces of compact type with respect to the quaternionic structure. In
[8], Enoyoshi and Tsukada show that a polar is the image of a totally complex immersion in
the associative Grassmann manifold which is a quaternionic symmetric space. In a symmet-
ric space, a polar is a connected component, except for a one-point set, of the fixed point set
of a geodesic symmetry and it is known that a polar is a totally geodesic submanifold and an
orbit of the isotropy group action [7]. In [12], the author studies orbits of the isotropy group
action in the associative Grassmann manifold. In the present paper, we study orbits of the
isotropy group action in each quaternionic irreducible symmetric space of compact type.

First, recall the definition of a quaternionic Kéhler manifold. Let M be a 4n-dimensional
(n > 2) Riemann manifold and ¢ be the Riemann metric and Q be a 3-dimensional subbundle
of End T'M satisfying the following conditions:

(1) For any x € M, there is a local frame field {/, J, K} defined in a neighborhood U of x
such that for any p € U

2 _ 92 _ 2 _
Ip = ‘]]) = K[) = _IdTpM’
1,0, =-J,1,=K,, J,K,=-K,J,=1, K,l,=-1,K,=J,.
(2)Foranyxe M,I € Q,and X,Y € T, M,
g(I(X),Y) + g(X, I(Y)) = 0.
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3) Ois parallel with respect to the Riemann connection of g.
Then, we call (M, g, O) a quaternionic Kihler manifold and Oa quaternionic structure of M.
Uxemd € O 5 J? = —1dr,y} is denoted by Q. Then, Q is an S>-bundle over M and called
the twistor space of M. It is known that Q is a complex manifold and has a holomorphic
contact structure [11]. In O, we define an inner product ( , )0 as follows:

1 ~
(A,B)y = —Etr(AB) (A, B € Qy).

Then, Q ={Ac Q; (A,A)p = 1} Also, the Riemann connection of g is metric with respect
to (, >Q'

Next, we recall some submanifolds of a quaternionic Kéhler manifold. Let N be a man-
ifold and f : N — M be an immersion. We denote by f*Q the pullback bundle of
Q by f. If there is I € T'(f*Q) such that I(df(T N)) c df(TN) for any x € N, we
call f an almost complex immersion and / the almost complex structure of f. We set
o' ={Je fQ; (Lo =0 ={J € fQ;1J=-JI}. Then, Q' is an S'-bundle over
N. If J(df(T,N)) L df(T,N) for any p € N and J € Q, then we call f a totally com-
plex immersion. It is known that if f is totally complex, then the almost complex structure
of f is integrable [16]. Totally complex submanifolds are studied well by several authors
([21,[10L,[13],[15D.

In an almost Hermitian manifold, CR submanifolds are defined as an analogy of almost
complex submanifolds [3]. Let L be an almost Hermitian manifold. We denote the almost
complex structure of L by /. Let U be a submanifold of L. If there is a distribution H on U
such that I(H) c H and the orthogonal complemental distribution H* of H in TU satisfies
I(H}) c (T,U)* for any x € U, we call U a CR submanifold of L [3]. U is an almost
complex submanifold if H = TU and U is a totally real submanifold if H* = TU.

We naturally consider an analogy of an almost complex immersion of a quaternionic
Kéhler manifold. Let M be a quaternionic Kéhler manifold, N be a manifoldand f : N - M
be an immersion. If there is a section I € I'(f*Q) and a distribution V, W of N such that

V+W=TN, df(V)Ldf(W), Idf(V)cdf(V), Idf(W)c (T(N)),

where (7'( f(N)))l is the normal bundle of f(N) in TM, then we call f a CR immersion
and I a CR structure of f. We denote the dimension of V by ¢;. If V = TN, then f is an
almost complex immersion. Moreover, if for any p € N and J € (Qy), there are subspaces
Vy, Wy C T,N such that

Vi+ Wy =T,N, df(Vp) Ldf(Wy), JAf(vy)cdf(vy, JdfWp)c (T(F(N))

and dim V; is independent of the choice of p € N and J € (Qy),, then we call f a totally
CR immersion. We denote dim V; by ¢}. A totally complex immersion is a totally CR
immersion.

We recall QR submanifolds [4]. Let N C M be a submanifold and (TN)* be the normal
bundle of N. If there are subbundles u, v € (TN)* such that

u+v=(TN), puLv, JucTN, JW¥)cCv

for any J € Q. (x € N), then we call N a QR submanifold. A typical example of a QR
submanifold is a hypersurface. QR submanifolds are studied in [4], [S]. We say that a
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OR submanifold is a quaternionic submanifold if « = {0}, that is TN is invariant under the
quaternionic structure. It is known that a quaternionic submanifold of a quaternionic Kéhler
manifold is totally geodesic [1]. Moreover, we say that a submanifold N is totally real if
J(X) e (T,N)" forany pe N,X € T,N,J € Q,.

We obtain Theorem 1.1 as the main result of the present paper.

Theorem 1.1. Let M be a quaternionic irreducible symmetric space of compact type, Q
be the twistor space of M and G be the identity component of the isometry group of M. Fix
o€ MandletK ={g € G; g(o) = o). Foreach p € M, we set K, = {k € K ; k(p) = p}
and denote the identity component of K, by (K,)o. Then, each K-orbit K(p), except for a
one-point set, satisfies one of the following properties.

() Let f : K/(Ky)o — K(p); k(Ky)o — k(p). Then, f is a K-equivariant totally CR
immersion by each K-invariant section I of the induced bundle f*Q of Q by f. Moreover, all
K-invariant sections correspond to each point of the 2-dimensional sphere one-to-one and
cr, ¢ are independent of the choice of I. Also, K(p) is a QR submanifold.

(i1) f is a K-equivariant totally CR immersion by each K-invariant section of f*Q and
K-invariant sections are unique up to the sign.

(ii1) For any x € K(p) and J € Q,, there are subspaces V,W C T, K(p) such that

V+W=TK(p), VLW JV)CV, JW)cC(TK(p)"

Moreover, K acts on the restricted bundle of Q to K(p) transitively.
(iv) For any x € K(p) and J € Q,, there are no subspaces of T K(p) satisfying the
property of (iii). K acts on the restricted bundle of Q to K(p) transitively.

In the present paper, we classify which orbits satisfy which properties of Theorem 1.1 in
each quaternionic irreducible symmetric space of compact type (Table 2, 3, 4, 5, 6). By this
classification, we obtain Theorem 1.2.

Theorem 1.2. If a K-orbit K(p) is a quaternionic submanifold or f : K/(K,)o — K(p)
is a totally complex immersion, then K(p) is a polar. Conversely, a polar is a quaternionic
submanifold or the image of a totally complex immersion.

This paper is organized as follows. In Section 2, we observe some results of quaternionic
symmetric spaces classified by Wolf [17]. It is known that the rank of a quaternionic irre-
ducible symmetric space is 1,2,3, or 4. Also, we observe some facts of orbits of the isotropy
group action on a compact symmetric space. Moreover, we study orbits of the quaternionic
projective space HP" (n > 2). In Section 3, we study orbits of a quaternionic symmetric
space M in the case of rank M = 4, thatis M = SO(n)/SO(4)xSO(n—-4) (n > 8), F4/((Sp(1)x
Sp(3))/Z2), Es/(Sp(1) X SU(6))/Zs), E7/((Sp(1) X Spin(12))/Zs), Eg/((Sp(1) X E7)/Z3). In
subsection 3.7, we classify which orbits satisfy which properties of Theorem 1.1. In Sec-
tion 4, we consider the case of rank M = 2, thatis M = SU(n)/S(UQ2) x U(n — 2)) (n >
4) and G,/SO(4). We only consider M = SUn)/S(U2) X U(n — 2)). In the case of
M = G,/S0(4), we refer to [12]. In Section 5, we consider the case of rank = 3, that
is M =S0(7)/SO4) x SOQ3).

The author thanks the referee for reading carefully the original version of the manuscript
and for the suggestions for improvement.
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2. Preliminaries

2.1. Quaternionic symmetric spaces. Let (M, g, Q) be a quaternionic Kihler manifold.
We call M a quaternionic symmetric space if M is a symmetric space and Qp is contained in
the linear holonomy group J, of (M, g) for each p € M. In the present paper, we consider
quaternionic irreducible symmetric spaces of compact type. By Wolf [17], all quaternionic
irreducible symmetric spaces of compact and noncompact type are constructed from com-
plex simple Lie algebras. We shall review this construction in this section.

Let g be a complex simple Lie algebra which is not of type A}, A», By. Let 7 be a complex
conjugation of § and g be the compact real form of § corresponding to 7. Let [) be a maximal
abelian subalgebra of g and b be the complexification of §). Then, b is a Cartan subalgebra
of §. Denote the root system of § with respect to b by £. Let (, ) be an invariant non-
degenerate symmetric bilinear form of . Set by = ih. For each y € X, we set H,, € by such

that (H,, H) = y(H) for any H € by. Let A, = LHT For any «, 8 € X, we set the Cartan

- (HysHy)
integer a, g = (Aq, Hp) = 2((:‘”5“)) € Z. Take some linear order on b and let 3 be the highest

root of X and X" be the set of all positive roots. Forn € Z, we set X, = {y € X ; ag, = n}.
Then, X, = {B},Z > = {-Bland X = X ,UZ_|UZ UX| UX,. Let 6 = exp(admiAg). Then, 6 is
an involutive automorphism of g. Setf={X e g; 6(X) = X}and m = {X € g; 0(X) = —-X}.
Then, g = T+ m.

Let G be the simply connected compact Lie group whose Lie algebra is g. Moreover, we
denote by the same symbol the induced involutive automorphism of G by 6. Let K = {g €
G ; 0(g) = g}. Since G is simply connected, K is connected. Let M = G/K andn: G - M
be the natural projection. Denote o = n(e). Then, T,M = m. Let (, ) be the G-invariant
Riemann metric on M induced by c(, )|mxm, Where c is a negative constant. Then, (M, (, ))
is a simply connected irreducible symmetric space of compact type.

For y € %, let X, be a root vector of v, that is X, satisfies [H, X, ] = y(H)X, for H € b.
Let Z, = X, + 7(X,) and W, = i(X, — 7(X,)) for y € X*. Then, Z,, W,, € g and

g=h+ > (RZ, +RW,).

yext

Moreover, by the definition of 6

t=D+ (RZs + RWp) + Z (RZ, +RW,), m= Z(RZ7 +RW,).
yeZTNT, YEZ

Let s = R(iAg) + RZz + RWp. Then, s is a 3-dimensional ideal of t and Ad(k)(s) C s for
any k € K because K is connected. By the restriction of the linear isotropy representation of
f on m to s, we may consider s C Endm = End7,M. Then, G Xk s defines a quaternionic
structure O on M, where G Xx s = (G X s)/ ~ and (91, X1) ~ (92,X2) € G X s if and
only if (g1, X1) and (g2, X») satisfy g;'g> € K and X; = Ad(g,'g2)X>. Let S(s) = {X €
s ((adX)|w)? = —Id} = {a(iAg) + bZg + cWp ; a,b,c € R,a® + b* + ¢* = 1}. Then, G Xg S(s)
is the twistor space of M since the action of K on s is isometric and Ad(K)(S(s)) C S(s).
Thus, we construct a quaternionic irreducible symmetric space of compact type. Conversely,
any quaternionic irreducible symmetric space of compact type is given by this method. All
quaternionic irreducible symmetric spaces of compact type are classified as Table 1.
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Table 1. quaternionic irreducible symmetric spaces of compact type

I G K | dimM [rankM | | G | K | dim M | rank M
Sp(n+1) Sp()x Sp(n) | 4n(n>2) 1 G, SO4) 8 2
SUm+2) || SWQxUm) [4n(n=2) [ 2 Fy [ Sp(1) xSp(3))/Z, 28 4

50(7) || S04) x S0(3) 12 3 Es [ (Sp(1) x SU(6))/Z, 40 4
S0(n+4) || SO(4)xSO(n) [4n(n=4)| 4 E; [ (Sp(1) x Spin(12))/Z, | 64 4
Eg Sp(1) X E)/Z, 112 4

2.2. Orbits of the isotropy group action. Let a be a maximal abelian subspace of m and
R be the restricted root system with respect to a. For w € R, we set §, = {X € §; [A,X] =
w(A)X (A € a)}. Remark that a(H) € iR for any @ € R and H € a. Take a linear order on ia
and the set of all positive roots is denoted by R*. For each w € R*, we set

f, =tN @, +8.0) = {S€t; (adA)’S = —w(A)*S (A € a)},
My = MN @y + 3-y) = {T € m; (adA)*T = —w(A)*T (A € a)}.

It is obvious that adA(m,,) C f, and adA(f,) € m, for any A € a. Let fy be the set of all
centralizers of a in f. Then,

f:f0+wa, m:a+2mw.
weR* weR*
Lemma 2.1 ([14]). For each w € R, there is an orthonormal basis Sy, -+ , Syw) of tw
and Ty, - - - Ty of my, such that
[H,Si] = ia(H)T;, [H,T]=-ia(H)S;,
Ad(expH)S; = cos(ia(H))S; + sin(ia(H))T;,
Ad(expH)T; = —sin(ia(H))S; + cos(ia(H))T;

forany H € aand 1 <i < n(w), where n(w) is the multiplicity of w.

For each H € a, we denote m(exp(—H)KexpH) by Oy. Let Ky = {k € K ; n(kexpH) =
n(expH)} and ty = {X € t; Ad(expH)X € 1}. Then, the Lie algebra of Kj is f5. Denote
the identity component of Ky by (Kg)o. Define a K-action on Oy such that K X Oy >
(k,m(p)) — n(exp(—H)k(expH)p) € Oy. Then, Oy = K/Ky. For each H € a, we set
R}, = {@ € R" ; ia(H) € nZ}. Then, the following direct sum decompositions are true.

1
ty =1+ Z to, TOOH = Z My, (TOOH) =a+ Z My,
weRL WER™, a)eER; a)eRl*_[

where (T,0y)* is the orthogonal complement of 7,0y in m = T,M.
Let F = {w;. - ,w,} be the set of all simple roots of R* and n be the highest root. Let
F = F U({n}. Set

O={Hea; 0<id(H)<n (1€ F)}.
Then, each K-orbit intersects m(expQ) at only one point. For any subset A ¢ F such that

A # {n}, we set

QA:{HGQ; 0<il(H)(Ae ANF), in(H)<7r(neA),}

0=iu(H) (ue F=A), inH)=nr(¢A).
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Then, @ = Uacr a#(; Oa and R}, is independent of the choice of H € Q4 and depends on the
choice of A.

Let m; : £ — s be the orthogonal projection. Then, n,(fy) is a subalgebra of s for any
H € a. Since s = sp(1), dimny(ty) = 0,1,3. If dimn,(ty) = 0, then my(ty) is trivial. If
dimn,(ty) = 1, then m.(fy) is isomorphic to u(1). If dimzs(ty) = 3, then n.(fy) = s. We
say H € ais type | if dimn,(fy) = 0, H is type 1l if dimn,(fy) = 1, and H is type III if
dimm(ty) = 3. Remark that (Ky)g acts on s and S(s) since K acts on them. Because (K)o
is connected and s is an ideal of i, it is ture that (K)o acts on S(s) trivially if H is type I,
acts on as rotations if H is type II, and acts on transitively if H is type III.

We consider the following immersion:

Ju + K/(Ki)o = On 5 k(K)o > n(exp(—H)kexpH).

Let f;;Q be the pull-back bundle of Q by fy. Set o' = e(Ky)o. Then, (Ky)o acts on
(f7 Q). If H is type I, then (Ky)o acts on (f;;Q), trivially, so for any A € S(s) a sec-
tion J : K/(Kg)o — [0 k(Kg)o > dko Ao dk™' (A € S(s)) is a K-invariant section of
S Q. Thus, we can construct K-invariant sections of fy;Q corresponding to each point of
S(s) = S?. If H is type II, then (Kp)o acts on S(s) as rotations, so there is unique B € S(s)
such that +B is fixed by (Ky)o. By the similar way, we can construct the K-invariant sec-
tion / of f;;0 by +B. In particular, K-invariant sections of f;;Q are unique up to sign. Let
Or:=1{J € f;0: 1J = =JI}. Then, Q; is given by Sp(s) := {C € S(s) : C L B}. Since
(Kp)o acts on Sp(s) transitively, K acts on Qy transitively. Let Qg be the restricted bundle
of O to Oy. If H is type III, then Ky acts on S(s) transtively, so K acts on Qg transitively.
Summarizing these arguments, we obtain Proposition 2.2.

Proposition 2.2. Let H € aand fy : K/(Ky), — Oy ; k(Ky)o — n(exp(—H)kexpH).

(1) If H is type I, then there is a K-invariant section of f;,Q and all K-invariant sections
correspond to each point of S(s) = S? one-to-one.

(i1) If H is type 11, then there is a K-invariant section of f;;Q and K-invariant sections are
unique up to sign. Let I be a K-invariant section of f;,Q and Q; :={J € f;,0; IJ = -JI}.
Then, K acts on Qy transitively.

(iii) Let Qg be the restricted bundle of Q to Oy. If H is type 1lI, then K acts on Qg
transitively.

We say that Oy and n(KexpH) are type I (resp. ILIII) if H is type I (resp. ILIII). In the
present paper, for each quaternionic irreducible symmetric space of compact type, we study
that each orbit of the isotropy group action becomes which of type I, type II, and type III
and has what properties these K-invariant sections have.

At the end of this section, we consider the quaternionic irreducible symmetric space M of
compact type whose rank is 1, that is the quaternionic projective space HP" (n > 2). In HP”",
it is known that orbits of the isotropy group action become one of the following: the trivial
point, principal orbits, or HP"~! which is a polar [7]. We see easily that the polar is type III
and a quaternionic totally geodesic submanifold. In general, if O is a principal orbit, then
(T,On)* = aand ny(ty) = {0}, so O is type L. Since rank HP" = 1, each principal orbit Oy
is a hypersurface of HP". Thus, principal orbits are QR submanifolds. For each X € s, set
subspaces Vy, Wy of 7,0y as follows: Wy = adX(a) and Vy is the orthogonal complement
of Wy in T,0y. Then, Vy, Wy satisfy
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VX L Wx, VX + WX = TUOH, adX(Vx) C Vx, adX(Wx) C (TOOH)J'.

Thus, fy is a K-equivariant totally CR immersion by each K-invariant section of f;;Q. Sum-
marizing these arguments, we obtain Theorem 2.3.

Theorem 2.3. In HP" (n > 2), an orbit of the isotropy group action is one of the follow-

ing.:

(1) the trivial point,

(ii) BHP"! which is a quaternionic totally geodesic submanifold,

(ii1) a principal orbit which is a QR-submanifold.
If Oy is a principal orbit, the immersion fy is a K-equivariant totally CR immersion by any
K-invariant section I of f;Q and all K-invariant sections correspond to each point of 52
one-to-one. Moreover, cy, ¢ are independent of the choice of 1.

3. The case of rank M = 4

In this section, we consider the case of rank M = 4, that is G = SO(n) (n > 8), F4, E¢, E7,
Eg and § = so(n, C),fy, ¢¢, €7, ¢g. In subsection 3.1, 3.2, and 3.3, we consider an explicit
descripion of the restricted root system and some preparations for this description. In sub-
section 3.4, we consider adX|,, : m — m (X € s) for studying the quaternionic structure.
In subsection 3.5, we study H € a satisfying w(H) € inZ for some restricted roots w and
in subsection 3.6, we study orbits of the action of the isotropy group of the isometry group.
In subsection 3.7, we summarize properties of each orbit with respect to the quaternionic
structure.

3.1. H-orbit. Let (, ) be the Killing form of § and {X,, ; a € X} be a Chevalley basis, that
is X, satisfies
(1) [Xow X—a] = Am _
(11) [H’ X(x] = Q(H)Xw (H € b)’
(i) Forany a,y € X, [X,, X, =0if o +y ¢ T and [X,, X, ] = NoyXosy if @ +y € X,
where N,,, = £(p + 1) and p is the greatest positive number such that y — pa € X.

Take a linear order in by and denote the set of all positive roots by * and let 8 be the highest
root. For each n € Z, we set X, as section 1. Set the complex conjugation 7 such that

T(Ay) = —Ag, T(Xp) = -X_, (@ €X).
LetZ, = X, +7X,) = X, — X_, and W, = i(X, — 7(X,)) = (X, + X_,) for each a € X.
Then, g = {X € §; 7(X) = X} is a compact real from and

g=h+ > (RZ, +RW,).

aeXt

By simple computations, we obtain Lemma 3.1 and Lemma 3.2.

Lemma 3.1. N,g = —Ng, = —N_o_p for a,f € X. Moreover, is a,B,y € X satisfy
a+B+y=0and|B| =yl |a| = \/IEI,BI (k € N), then it follows that Ny g = %Nﬁ,y =Ny,
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Lemma 3.2. Forany a,f € X (B # —a),
[Za, Z,B] = Na/,ﬁZa+ﬁ - N—a/,,BZ—a/+,B> [Za, Wﬁ] = Na,ﬁWa+ﬁ - N—a,ﬁW—a+ﬁ’
(W, W,B] = - oz,,BZa+,B - N—a,,BZ—ar+ﬁ’ (W, Z,B] = Na,BWaﬂi’ + N—a,ﬁW—(Hﬁ-

Set § = exp(ad(niAg)) and f, m as section 2. Since the rank of M is 4, there are a,--- , a4
€ X; such that they are longest roots and a; + @; ¢ £ (1 < i # j < 4) and the subspace
a = Z?:, RZ,, is a maximal abelian subspace of m. In ly, the reflection with respect to
H, (y € Z) is denoted by 7,, thatis 7,,(X) = X - (21(17711)3 H, (X € b). Let H be the subgroup of
the Weyl group generated by 74, - , Ty Since (Hy,, Ho) =0 (1 <i# j<4), 74, ,Ta,
commute to each other and H = (Z,)*. We consider the action of H on X. Obviously, the
H-orbit through «; is {a;} for each 1 < i < 4. For an H-orbit ¥’ such that ¥’ N X; # ¢ and
Y #{a;} (1 <i<4),set my and sy, as follows:

my = Z (RZ, +RW,), Iy = Z (RZ, + RW,).
ye(Z Uz )Nx’ ye(ZoUZy)NZ!
Then, ad(a)(my) C ty and ad(a)(fy) C my. In the following, we study H-orbits intersecting
2.
Denote by Xz the H-orbit through f, that is

B,
B-ai, B -, B—as, B—ay,
Y, = B—(a; +x), B—(a; + a3), B = (a1 + ay),
A B (ar+ ), B— (a2 + ), B - (a3 +ay),
B— (a1 +ay + a3), B-—(1+ar+ay), B-(v+az+ay), B—(a+az+ay),

—(al+az+a'3+a'4)

By the definition of 5, @y, - - - , a4, itis obvious that f—(a +- - - +a4) = —f SINCE dgg—(a, +-+ay)
= —2. Thus, any y € Xz satisfies —y € g and Zg U {+a, a7, £@3, a4} is a subsystem of X
which is isomorphic to Dy. Set
Z+:{ﬂ_a1’ B_GZV ﬁ_afﬁ ﬁ_(l4, }
B B B-(a+@), B-(o1+as), B-(a+ay]’
Then, Z;; U (—2;) = X, where for any subset A C X we set —A = {~y; vy € A}. We see
ngzl ={f—-a;; 1 sis4},zgmzz = {,8},25020 ={8—-(a; +qa;); 2 <i<4}. Thus,

4 4

ms, = > (RZpa, +RWp o), T5, = (RZs + RWp) + D (RZs (0,40 + RWp_(aya)-

i=1 i=2

Lety € X be a longest root and y ¢ Xz. Denote by X, the H-orbit through . Then, we
see that aq,y = g, = 1 forsome 1 <i < j<4anda,, =ds, =0forl <k<l<4
such that k,1 # i, j. Also, ag,p-y = dop-y = 1 and a4, 5, = ae,p-y = 0. Hence, X, =
v, y—ai,y—aj,y— (a;+a;)}. Then, X (y-(a+ay) = —Zy. Because T, NE; = rhE,NZ =
ly—(ai+aphZ,NZ ={y—a;,y—-aj}

my, = (RZ)’ + RW)’) + (RZV—(UH'UJJ') + RWY—(GI"’%))’
ty, = RZ)q, + RWy_o) + RZy_o, + RW,)_, ).

We say that an H-orbit through such y € X is type L(i, j) or simply type L. Letd € X; be a
shortest root and denote by X; the H-orbit through 6. It is easily seen that an, s = da;6 = 1
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forsome 1 <i< j<4andags=des=0forl <k <[<4suchthatk,!# i, j. Moreover,
Ao -5 = Aoy p-6 = 1 and Ao, p-6 = aa,-,ﬁ—d =0. ThUS, 25 = {5, 0— i, 0— a;, 0— (Q’,‘ + (}’j)}. We
see that 6 — (a; + @;) = —0 sInce dss—(a,+a;) = —2 and L is a subsystem of X and isomorphic
toA; UA . Because ZsNX; = {0} and s N X = {£(6 — a})},

myg, = RZs + RWs, fzd = RZ(;_%. + RW(;_Q[.

We say that an H-orbit through such ¢ € X is type S(i, j) or simply type S.

Let =X(1), - - -, ZE(n) be H-orbits of type L such that Z-(1), —=2E(1), - - -, ZE(n), —ZE(n) are
all H-orbits of type L. Moreover, let 25(1), - - -, Z5(m) be all H-orbits of type S. Then, the
following direct sum decomposition follows:

m=a+RW, + - +RW,, +mg, + Z My + Z Mgs(p)-
a=1 b=1
3.2. Structure coefficient N, . In the Chevalley basis {X, ; @ € X}, the sign of the

structure coeflicient N,z depends on an orientation of each X,. In the following, we fix
orientations of some X, and decide the sign of some structure coefficients. First, we fix an

orientation of Xg, X4, Xo,, Xo, and set w; = exp5Z,, (i = 1,2,3). Foreachy = g — (€11 +

6oy + 6a3) € Z;)S (¢ =0,1, i=1,2,3), we set an orientation of X, such that
Xﬁ—(61(11+62(lz+63a/3) = Ad(w? wgzw?)xﬂ

By the commutativity of w;, w;, ws, these orientations are well-defined. For any y € X and
teR,

y-aeXandy+a; ¢ X = Ad(exptZ,)X, = costX, — N_,,, sintX,_,,,
y-—a¢Zandy+a; €X = Ad(exptZy,)X, = costX, + N,y SintX, ,q,.

Hence, N_y,, = -lify—a;€eXandy+a; ¢ X, and N,,, = -lify—-a; ¢ Tandy +a; € X.
Next, we fix an orientation of X, such that Ad(w; - - - w4)Xp = —X_g.

Lemma 3.3. N_y,5 = N_o,g-(aj+a) = —1 and N_o, 3o, = N-o,p~(a,+ar+ay) = 1 for any
1<i#j<3.

Proof. First,
~N_o, sXp-0, = Ad(ws)Xg = ~Ad(wiwrws) ' X_p = Ad(w wrws) ' 7(Xp)
= T(Ad(w1w2w3)_1Xﬁ) = T(_X,B—((11+a/2+(l3)) = X—ﬁ+(a|+az+w3) = Xﬁ—(hu

so we obtain N_,, g = —1. Moreover, N_u, g—(a1+ar+as) = 1 since N_o, 3 = N_giay—a, =
—N_o, p—(ay +ar+ay) DY Lemma 3.1. Next, we will show N_,, 3., = 1. The other cases are
proved by the similar way.

~N-_, p-a Xp—(@+a) = Adwiwa)Xp = —~Ad(wrws) ™' X_5 = Ad(wows) ' 7(Xp)
= T(Ad(wrw3) "' Xp) = T(Xp_(ar+a5) = —Xpriarsas) = —Xp(a) +as)s
$0 N_gyp-ay = 1. Also, N_y,g-(ar+ay) = —1 because N_y, 30, = N_q, Brm+astas) =

Nﬂ—(f12+03),—04 = _N—fu,ﬁ—((lzﬂls)' o

By Lemma 3.1 and Lemma 3.3, we obtain Corollary 3.4 immediately.
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Corollary 3.4. Forany 1 < i # j < 3, Ny p-a, = Nap-(airan) = N-v;p-(a;+a) =
Na4ﬁ—(0i+f¥4) =1, and Nm&ﬁ—fm =-1

Let X% be an H-orbit of type L(i, j) (1 < i < j < 4) and ¥ N X; = {y}. Fix an orientation
of X, and set an orientation of X, 4., X,—a;, X,~(a;+a;) such that

X'y—a; = Ad(wi)X'y, Xy—aj = Ad(wj)Xy’ Xy—(ai+(rj) = Ad(wiwj)X'y-

Then, we can prove that for any € € XX and k € {i, j} it is true that Nye=-life+aeX
and N_,, . = —1 if € — ¢ € Z by the similar way to the above arguments.

Let =5 be an H-orbit of type S(i, j) (1 < i < j < 4)and 2! NZ5 = {6}. Then, o0—(aj+aj) =
—o0. Fix an orientation of X; and set an orientation of Xs_,, such that X5_,, = Ad(w;)X5.
Then, we easily see N_y, s = —1 and N_o, 5-0, = No,—a;-

3.3. Restricted root system. It is known that the restricted root system of quaternionic
irreducible symmetric space of compact type whose rank is 4 is type Dy, B4 or F4 [9]. In
this subsection, using the Chevalley basis {X, ; @ € X} and the structure coefficient N, g,
we describe the restricted root system explicitly. Let R be the restricted root system of (g, f)
with respect to a. Let A = ?:1 AiZy, € a (4; € R). If the linear form w of a satisies
w(A) = Z?:] a;d; (a; € R), then we often denote w by Z?:l a;A;. Conversely, Z?:] a;A; often
means the linear form w of a such that w(A) = Z?zl a;A;. For any linear form w of a, we
denote the extension of w as complex linearly to a© by the same symbol. Moreover, for any
subset W C a*, {+iw € (a©)* ; w € W} is denoted by +iW, where for any vector space V the
dual space of V is denoted by V*.

First, we study ad(A)lmzﬁ :my, — fy, and ad(A)lsz :fg, & my,. Weseta basis of My, as
follows:

T+ ao4dstdy = Zp-ay + Zp-ar + Zp-ay + Zp-ays
Toy+iy-25-4 = Zpa) + Zp-ay = Zp-as ~ ZLp-ay>

Ta -ty 25— = Zpa) = Zp-ay + Lp-as ~ ZLp-ay>

T —po-4ay 1= _Zﬁ—fll + Zﬁ—flz + Z,B—(la - Z,B—(M'
Ty osas-a4 1= Wﬁ—(ll + Wﬁ—az + Wﬁ—(la - Wﬁ—aw
Thyo-a54as 1= Wﬁ—(ll + Wﬁ—ﬂz - Wﬁ-% + Wﬁ—fu’
T —ppriedy 1= Wﬁ—(ll - Wﬁ—flz + Wﬁ—% + Wﬁ—ﬂu
~Wp-a, + Wp—q, + Wp—o; + Wp_q,.

T —ar-ns-ay -

and T»,, 1= W,, (1 <i < 4). Next, we define a basis of fy, as follows:

Su+dottstds = ~Zp + Zp—(ay+a)  Zp—(r+az) ~ Lp—(+a)>

S/11+/12—/13—/14 : _Z,B + Zﬁ—(mﬂlz) - Zﬁ—(<l1+a3) + Z,B_(QI‘HM)’

St-t4s-A 1= —Lg = Lp—(a+ar) T Lp—(ar+az) T Lp—(ar+au)s

St-t-t+ds = 2+ Zpi(ay+ar) t Lp-(a1+a3) T Lp-(ar+ay)-

Strtarts=as 2= ~Wp + Wp_(@14a2) + Wp—(a14a5) + Wp-(a1+as)»
_Wﬁ + Wﬁ—(01+012) - Wﬁ—((llﬂh) - Wﬁ—(al+fl4)’
_Wﬁ - W,B—((h+012) + Wﬁ—((11+a3) - Wﬂ—(01+014)’

S/l]—/lz—/13—/14 = Wﬁ + Wﬁ+((l]+a/2) + W,B—((l/1+a/3) - Wﬁ—((l]+(k4)'
and Sy, = iA,, (1 <i<4). Set

S/l] +A—A3+Ay :

S/l] —/12+/l3 +A4 :
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/11+/12+/l3+/l4, /11+/12—/l3—/l4, /11—/12-1-}.3—/14, /11—/12—/134-/14,
Rﬁ: /11+/12+/l3—/l4, /11+/12—/l3+/l4, /11—/12+/l3+/l4, /11—/12—/13—14,
244, 24;, 2413, 244

Lemma 3.5. ad(A)(T,,) = w(A)S,, and ad(A)(S.) = ~w(A)T, for any w € R.
Proof. By results of the structure coefficient in subsection 2.2,
adA(Zp-a,) = \Ng, -1 Zp — A2N-0; g0, Zp—(a +a2)
— B3N—0; p-o Zp~(@+a3) = AN-ay -y Zp—(@1+a)
= (—ADZg + V22— (a)+ar) T BZLp—(a1+a3) + (—A)Zp— (0 +as)-
Similarly, we obtain

adA(Zp-o,) = (=) 2 + M1Zp—(ay+ar) + AZp—(a1+a3) T (—A3)Zp—(a1+as)s
adA(Zp_o,) = (=3)Zg + AZp_(ay+ar) + M Zg—(a)+a3) T (—A2)Z—(a1+a4)s
adA(Zg-o,) = (—A4)Zg + B3Zp—(ay+ar) + 2 Zp—(ay+a3) T (A1) Zg—(a; +as)
adA(Zg) = N1 Zp0, + A2 Zpay + N3 Zg—ay + MaZgary»
AdA(Zp—(a1+a2) = —(A2Zg—ay + M1 Zg—g, + AaZp_oy + 325_0,),
0dAZs- 0 v0) = ~(13Z5-01 + A4Zpa + 1125 + 12 Zpa),
0dAZp—ar +a)) = AsZpar + 3Zpay + 1o Zpas + M1 Zga
adA(Ws_a,) = (=ADWs + W01 10 + B Wa—iarran) + (=) Ws(ay2a0).
adA(Wp_o,) = (22)Wp + U Wp_(¢+a5) + (=D Wp_(a+a3) T A3 Wp—(a+a4)
adA(Wp_o,) = (=3)Wg + (=D Ws_(0,+a2) + At Wa—(a1+a3) + 12 Wp—(a1+a4)
adA(Wp_o,) = ()W + (= 3)Wp_(a+as) T (=) Wp_(a14a5) T+ (—AD)Wp_(a, +as)»
adA(Wg) = 1 Wy_, + A2 Wp_ay + 13 W, + A3 Wy,
adA(Wp_(q,+a2)) = (mA2)Wp_o, + (=A1) Wp_o, + Ay Wp_o, + 13Wp_p,,
adA(Wp_(a,+a3)) = (—B3)Wp_o, + A W, + (=A1) Wp_o, + 12 Wp_s,,
adA(Wp—(a,+a3) = AaWp_o, + (=23) Wp_q, + (=A2) Wp_o, + 11 Wp_y,.

Moreover, adA(W,,) = 24;(iA,,), adA(iA,,) = —24:W,, (1 < i < 4). By these results, we
obtain the statement. O

Thus, +iRg C R because C(T,, + iS,,) C 35, = {X € d; adA(X) = Fiw(A)X} for each
w € Rg. Moreover, we can easily check that iR is a subsystem of type Dj.

Let XX be an H-orbit of type L(i,j) (1 < i < j < 4) and X N X; = {y}. Then, It =
v,y —ai,y —a;,y — (a; + a;)}. Set a basis of my: as follows:

vl vl

Ty =2y = Zymasaps Ty, = Zy + Zytasas
YW — W Y2 W+ W

T/lﬁ-/l,- = Wy = Wy—(ai+a)) T/l,._ﬂj =Wyt y—(ai+a;)-

Moreover, we set a basis of fy. as follows:

vl vl —

S/l,-+/1j T Z?’*di + ZJ’*%’ S/l‘-—ﬁj e Zy—a,- Zy—a/,
2 . ¥2

Syt = Woear + Wyeays SY20 = Wymgy = Wy,

Set Ry = {4, = /lj}
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Lemma 3.6. adA(T") = w(A)S7* and adA(SY") = —w(A)TY* for any w € Ryt and
k=1,2.

Proof. By the simialr way to the proof of Lemma 3.5, we obtain the followings and the
statement is true.

adA(Z),) = /liZy—a,- + /lij—a/j’ adA(Zy_(mmj)) = _/lij—a/l- — /l,»Zy_ai,
adA(Zy_ai) = —/ll‘Zy + /lij—(a/,--Hlj)’ adA(Zy_a/.) = —/lij + /l,'Zy_(Q,._,_aj),

adA(Wy) = /liWy—al- + /le'}/—Q’j’ adA(W'y_((li+aj)) = _ﬂjWy—a, - /L'W),_Qj,
adA(Wy_m.) = —/1,'W7 + /ley_(ai+Qj), adA(Wy_aj) = —ﬂ,jwy + /L'Wy_(aiﬂlj). O

Let X5 be an H-orbit of type S(i, j) (1 <i < j < 4)and 25N, = {6}. Then, 5 = {6, 6—a;}.
Set cs := N_q, 6. Then, cs = £1. Set a basis of mys as follows:

5 o 5 o
T/l,'+(,‘§/lj T Zd’ T/l,'—C(y/lj T Wd.
Moreover, we set a basis of fys as follows:
S§ = Z(S—(l," Sé = W(S—(l,"

A,’+C§/lj . /l[—Cg/i/ .

Set Rys = {A; = cs4} = {4; £ A;}. By the similar way to Lemma 3.5, we obtain Lemma 3.7.
Lemma 3.7. adA(T?) = w(A)S°, and adA(S?) = —w(A)T? for any w € Rys.

For an H-orbit £ of type L, if £“ N T, = {y}, then we denote myz, fsz, Ryz by my, t,, Ry.
Similarly, for an H-orbit 5 of type S, if 5 N X, = {6}, then we denote mys, fss, Rys by
ms, 5, Rs. Let (1), -, ZE(n) be H-orbits of type L such that £4(1), -ZE(1), - - -, ZE(n),
—X%(n) are all H-orbits of type L. Moreover, let £5(1), - - - , £5(m) be all H-orbits of type S.
Let ZE(p) NEy = {y,} (1 < p <n)and Z5(¢) N Z; = {6,} (1 < ¢ < m). For w € iR, we set
m, = {T € m; (adA)’T = -w(A)*T (A € a)}. We denote a + 3 cg, My, by mg. Then, the
following direct sum decomposition is true.

n m
m =g+ me + Zm(;q
p=1 g=1

Moreover, the restricted root system R with respect to a is given by

n m
R==i(RsU| JR,, U| JRs,).
=1 g=1

3.4. The representation of s on m. In thlis subsection, we study adX|,, : m — m for each
X € s. Since iAg, Zg, Wp is a basis of s, we consider ad(iAg), ad(Zg), ad(Wp). Remark that
(ad(iAﬁ)|1n)2 = (ad(Zﬁ)|m)2 = (ad(Wﬁ)lm)z = —idy.
We easily see adX(mg) C mg for any X € s since mg = Z?:](RZG; +RW,,)+ Z?:1(Rzﬁ—ai +
RW;_,,). Denote each element of Ry as follows:
w =21 (1 <i<4),

w;=A1+ b+ A3+ Ay, wgz/ll+/lz—/l3—/l4, w§=11_12+ﬂ3_14, wﬁ=/11—/lz—/l3+/l4,
w; =1+ A+ A3 — Ay, w%:/l|+ﬁz—/l3+/l4, w§:/l|—/12+/13+/l4, a)i:/l]—/lz—/13—/l4.

om0~

Set Ry = {w}; 1 < i < 4)and my = Yoert RT,, for each 1 < k < 3. Then, my =

a+ mé + mé + mé. By direct computations and using N_gg_o, = Ng_q, (1 < i < 4), we obtain
Lemma 3.8, Lemma 3.9, Lemma 3.10.
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Lemma 3.8. ad(iAg)a C m[l; and ad(iAﬁ)mé C mg. Moreover, the representation matrices
of ad(iAg)|, with respectto Z,, (1 <i<4)and T, (1 <i<4)and ofad(iAﬁ)lmz with respect
toTp,(1<i<4)and T, (1 <i<4)are

1 11 1 1

1 1 1 -1 -1
1 and S0 1 )

1 1 -1 -1 1

where empty components are 0.

Lemma 3.9. ad(Zg)a C mé and ad(Zﬁ)m}; C mg. Moreover, the representation matrices
of ad(Zp)|, with respect to Z,, (1 <i <4)and T (1 <i < 4) and of ad(Z[g)|]1Ij’ with respect
toT, (1<i<4)and T, (1 <i<4)are

1111 11 1 -1
11 1 -1 -1 11 1 -1 1
20 o o | ™oz

111 -1 11 11

Lemma 3.10. ad(Wp)a C mz and ad(Wﬁ)mé C mlzg. Moreover, the representation matrice
of ad(Wp)l, with respect to Z,, (1 <i<4)and T, (1 <i<4)and ofad(Wﬁ)lmé with respect
toT, (1<i<4)and T, (1 <i<4)are

1 1 -1 11 11
1 1 -1 1 11 1 -1 -1
iR R T e B T

T S T

Let X be an H-orbit of type L(i, j) (1 < i < j < 4) and £ N Z; = {y}. Then, we see
that the H-orbit through g — vy is type L(k,]) (1 < k # [ < 4, k,I # i, j) and adX(m, +
mg_,) C m, + mg_, for any X € s. For each w € iR, we denote (m,), = m, N m,. Then,
my, = ()4, + (My)4,-, and ()40, = RT}; 4t RTﬁ ,,- By direct computations, we
obtain Lemma 3.11 immediately.

Lemma 3.11. ad(iAg)(my)a+a, C ()44, The representation matrix of ad(iAg)|um,) .y
with respectto T*" . (a =1,2) and T;yf " (a=1,2)is

/1,'+/lj
0 -1
1 0/

Proof. Since Ad(w; - - w4)X, = X~ (a;+a; and Ad(w; - - - wy)X_p = —Xp, we obtain

Lemma 3.12. N g, = =Ng,—(a;+a))

Ad(wy -+ - wa)[Xp, X, ] = Ng, Ad(wy - - ws)X gy = =N_g, 7(Ad(wy - - - w4)Xp_y)

= =N_gy T(Xp-y—(os+a)) = N-pyX_pry++a)
Ad(wy - wi)[X_p, Xy = [Adw - wi)X_p, Ad(w; -+ w3)X,] = ~[Xp, Xy—(arva)]

= _Nﬁ,y—(a;+az)Xﬁ+y—(m+a/) = _N,B,}’—(flz+dj)X—ﬁ+)’+(ak+f11)'
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Thus, N_/;’y = _Nﬁ,)f—(<li+aj)' O

Remark N_g, = £1. By direct computations and Lamme 3.12, we obtain Lemma 3.13,
Lemma 3.14.

Lemma 3.13. ad(Z[g)(myh +2; C (ﬂ’Iﬁ 7),]“_/1[ and ad(Z/g)(my),l /1 C (mﬁ )’)/lk A More-
over, the representation matrix of ad(Zp)lam,),,. 4 with respect to T'",, (a = 1,2) and TI ° "
(a =1,2) and of ad(Zp)lw,),,_,, with respect to Ty‘__ a@=12) and Tyk(i L a=1,2)is

Ngy, O
0 -Ng, |

Lemma 3.14. ad(Wﬁ)(my)A,.Mj C (my)lk_/b and ad(ng)(my)A,._ﬂj C (my),lﬁ.,{[. Moreover,
the representation matrix of ad(Wp)la,), , y with respect to Ty’“ "y (a=1,2) and T}k‘i , a=
1,2) and Ofad(l'A/a)kmy)ﬁi,ﬁj with respect to Ty al (a=1,2) and i/l; (a=1,2)is

0 Ny
N_g, 0 '
Let 5 be an H-orbit of type S(i,j) (1 < i < j < 4)and 5N X, = {5}. Then, we
see that the H-orbit through 8 — ¢ is type S(k,)) (1 < k # 1 < 4, k,I,# i,j, k < [)and
adX(m(g + mﬁ,(;) C ms + Mp_s for any X es Letcs = N,a, o and Cg-5 = N,m/g s. Then, cs

and cg_;s are +1. For each w € iR, we set (ns),, = Ms ﬂmw Then, (M) 4,1¢, A= RT;S ol and
=Zsand T} . = Ws, we obtain Lemma 3. 15 by

/l,'—(,‘( j

<
<

My = (M) 1,44, + (Ms)a-1,- Since T4 "

direct computations.

Lemma 3.15. It is true that ad(iAﬁ)(m(;)ﬂ[ﬂj C (m(;)}[”j, ad(Z/g)(Tn(;)/l[ich C (m(;)/lkicﬁfé/l,
and ad(Wﬁ)(Tné)ﬂ,iCéﬂj C (mé)ﬂkicl/jﬂj/ll'

Summarizing the above arguments we obtain Proposition 3.16.
Proposition 3.16. Let 1 <i< j<4and1 <k <l <4 suchthatk,l # i, j. Then,

ad(iA,B)(m/th/lj) - m/l,'*/lj’
ad(Zﬁ)(m/l,-+/l,- + m/l,-—/l_,-) C My, + MYy,
ad(Wp)(My,10; + Ma—2;) C Mg, + Mgy

3.5. Root system Dy C By C F4. For H € a and any subset A C a, set Ay = {w €
A ; w(H) € nZ}. We easily check that the following are true.

1 2 3 _ 1 2
w%+w%+w4— w%+w%
—w}+w2+w3:0 —w2+w2—
b b
—w1+w3+w2—0 w2+w3—w
1 3 _
1

2
4

7=0
—w1+w4+w = w2+w4—w§ 0
=0
3=0
0

1 2,3 _ _ _ _

wl3+w21 32—0 a)4+a)1 =

a)31+a)22—a)]3=0 w4+w2—w3=

—w; + w3 w4=O w4+w3—w3
0

3 _
—w4 +a)4 wy = 0



IsoTrROPY ACTION OF QUATERNIONIC SYMMETRIC SPACES 543

Lemma 3.17. Let H € a. If#(R[‘),)H =1, then #(Rg)H = #(Rg,)H =0or #(R[%)H = #(Rg)H =
1.

Proof. If #(R/zf)H > 2, then we obtain #(R}a)H > 2 by (*), but this contradicts to the
assumption. (For example, we assume w| € (Ré)H and w?, w3 € (Ré)H. By (¥), —w| — w} -
w) = 0,—w) + w3 — w, = 0 and we obtain w) € (Ré)H.) Thus, #(RZ,)H,#(R;;)H =0,1, and
#(Ré)H = 1 if and only if #(Rg,)H =1, and #(Ré)H = 0 if and only if #(Rg,)H = 0. Thus, the
statement follows. O

Lemma 3.18. Let H € a. If #(Rp)n = 2, then #(R)y = #(R)y = 0 or #(R)y = #(R) =
2.

Proof. #(Ré)y # 1 by (%). (For example, we assume wi,wé € (R[l;)]_] and w% € (Ré)y. By
(), —w) —wi —w) =0,-w) +w; —w, =0and w3 € (Ré)H.) Moreover, #(Rg,)H < 2 by (x).
(For example, we assume w}, w} € (R}g)H and wi, w3, W] € (R/%,)H. By (), —w| —wi—w; =0,
—wi+wi—w; = 0and w} € (R;%)H' This contradicts to the assumption.) Thus, #(Ré)H =0,2.
We see #(Ré p = 0 if and only if #(Rg, u = 0. Also, #(RZ, g = 2 if and only if #(Rg = 2.
In particular, if #(Rp)y = #(Rp)u = #(R)u = 2, then (Rpu, (R, (R)m)) is one of the

following:

(o Wil (0?02 0} 0}). (ol (0 o) (0. 0}). (]l (el (0, ),
(fe}. @i et @3) (3. 3)). ((0]. wih (@ Wil (0] W), ()0l (0], 03). (], ©3),
(0], 0} (03, 02 (03, 03), (w0l (00l (03 0d), (), ol () (W, o})),
({w},wi},{w%,wi},{w?,wi}) ({w;,w}t} {w%,wi},{wg,wi}), ({a);,w}‘},{wg,wﬁ},{wg,wi}). O

Lemma 3.19. Let H € a. I[f #(R)u = 3, then #(R)u = #(R)u = 0.

Proof. By (%), the statement follows. (For example, we assume a)}, w;, w; € (R/13)H and
w% € (Rlzg)H. Then, by (%), —w} - w% - wi =0, —w% + w% - wi =0, —a)é + w% - wi =0 and
w3, wi € (Ré,)H. Moreover, we see (R?),)H = Rg. Hence, (R,(Z),)H = Ré and (Ré)H = Ré. This
contradicts to the assumption.) O

By similar arguments to the proof of Lemma 3.19, we obtain Lemma 3.20.

Lemma 3.20. Let H € o. I[f #(RY)y = 4, then #(R2)y = #(R})y = 0 or #(RD)y = #(R})y =
4.

Summarizing the above arguments, we obtain Proposition 3.21 by the homogeneity of
Dy.

Proposition 3.21. For each H € q, (#(R;),)H, #(Ré)H, #(R;;)H) is one of the following:

(0,0,0),(1,1,1),(2,2,2),(4,4,4),(1,0,0), (0, 1,0),(0,0, 1),(2,0,0), (0, 2,0), (0,0,2),
(3,0,0),(0,3,0),(0,0,3), (4,0,0),(0,4,0),(0,0,4).
If H € a satisfies (#(Ré)H,#(Ré)H,#(Rg)H) = (0,0,0), then we say H is type . If H € a

satisfies (#(R;)H,#(Rg)H, #(Rg,)H) = (n,0,0),(0,n,0),(0,0,n) (n = 1,2,3,4), then we say H
is type II. If H € a satisfies (#(R[l;)H, #(Ré)H, #(R;)H) = (n,n,n) (n = 1,2,4), then we say H
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is type III. Let 7y : ¥ — s be the orthogonal projection. Set fg = [a, mg] (a =1,2,3). Then,
ns(f;;) = R(iAﬁ),ﬂs(fé) = RZﬁ,ﬂ's(fg) = RWj. Moreover, since ty = ) + X,er: to for each
H € aand n,(X) = {0} for any X € f which is orthogonal to [a, mz], we see that H € ais type
a (a = LILII) if and only if the K-orbit through m(expH) is type a.

3.6. Orbits of the isotropy group action. We consider properties of each K-orbit with
respect to the quaternionic structure. Let mé = m[]g + mé + mg. Then, mg = a + mr,;. Set
Ry =iRN{A;+4;; 1 <i<j<4}and mg = },eg, Mo. Moreover, foreach 1 <i < j<4,
setR,-j ={1; + ﬂj,/lk + A}, where 1 <k <1<4, k,l#1i,j. Then, Ry C R URj3UR4. We
set m;; = ZweR,-,- m,,. Then, my C niyp + my3 + Myy.

Let H € a be type . Recall the immersion fy : K/(Ky)y — Og. Then, n.(ty) = {0} and
each X € S(s) defines the K-invariant section J of f;,0. We study each K-invariant section

Jof f;0.
Lemma 3.22. Foreach1 <i< j <4, #R;j)n < 1.

Proof. We see a+b,a—b € +Rg forany a,b € R;; (a # b). Since (Rg)y = ¢, the statement
follows. o

Lemma 3.23. For any X € s, there are subspaces V,, W, of T,Oy N mq such that
Vo LWy, Vo+Wy=T,0gNmy, adX(Vy) cVy, adX(Wp) C (TOOH)J'

Proof. By Proposition 3.16, adX(my;) € my; (i = 2,3,4). By Lemma 3.22, for each
1 <i < 3, there is some w; € (R;;)y such that

T,Oy Nmy; = Z g, (T,0r)" Nmy; =m,,
WER|j,WH#W;
or T,0y Nmy; = my;, (T,O0x)*F N my; = {0}. In any case, adX((T,O)* Nmy) € T,O0y Nmy.
Set W, = adX((T,On)* Nmyp) and let V; be the orthogonal complement of Wy in T,y Nmy.
Then, Vj, W, satisfy the statement. O

Since H is type I, we see T,0y N mg = mé,(To(DH)L Nmg = a and adX(a) C mé =
T,0y N mg for any X € s by Lemma 3.8, Lemma 3.9, Lemma 3.10. Set Wz = adX(a) and
let V3 be the orthogonal complement of Wy in T,0 N mg. Then, Vg, Wp satisfy

Vlg 1 Wﬁ, Vﬁ + W[g = mg, ad(X)(V,g) C V[g, ad(X)(Wﬁ) C (TDOH)J'
Summarizing these arguments and subsection 1.3, we obtain Proposition 3.24.

Proposition 3.24. Let H € a be type I and fy : K/(Kp)y — Oy be the immersion. Then,
Oy is type I and fy is a K-equivariant totally CR immersion by any K-invariant section of

15 O. Moreover, for any K-invariant section 1, c; = ¢ and cy is independent of the choice of
1. Also, Oy is a QR submanifold.

Let H € s be type II. We can assume (#(Ré)H,#(Ré)H,#(Rg)H) = (a,0,0) (a = 1,2,3,4).
Then, 7,(ty) = R(iAg) and ad(iAg) defines the K-invariant section of f;;Q. Set ' = RZg +
RWp. (K)o acts on s” as U(1)-action.



IsoTrROPY ACTION OF QUATERNIONIC SYMMETRIC SPACES 545

Lemma 3.25. Let X € R(iAg) U s'. There are subspaces Vo, Wy of T,Ony N Mg such that
Vo L Wy, Vo+Wy=T,0yNmy, adX(Vy)CVy, adX(Wy) C (T,0n)".
Proof. For each 1 <i < j <4, since H is type II, (T,Ox)*" N m;; is one of the following:
{0}, MR M2, M2 + M0, M-, M4, M-, + M40, TG,

where 1 <k <1<4, k,1+#1,j. Set Wy = adX( Z‘}zz((T,,OH)L Nm;)) N T,Oy and let V, be
the orthogonal complement of W, in Z‘}:z(T,,OH Nmy;). Then, Vy, W satisfy the statement.

O
We remark
T,0n Nmg = mé + mg, + Z My, (T,0m)* Nmg=a+ Z Mgy.
weRL~(RY)u weRPn
Let V4 = + m and W, = ZwERl R my,. Since ad(iAg)(a) C mk, V4 and Wy satisfy

Va LWy, Va+Wy= TOOH N mg, ad(lA,g)(VA) C Vy, ad(zA,g)(WA) C (TDOH) .

Let X € ¢'. Then, adX(a + mé) - mf, + mg. Set Wy = adX((T,On)* N mg) and let Vy be the
orthogonal complement of Wy in 7,0y N mg. Then, Vx, Wy satisfy

Vi L Wy, Vx+Wx=T,05Nmy, adX(Vx) C Vy, adX(Wx) C (TUOH)J'.
Summarizing these arguments we obatin Proposition 3.26.

Proposition 3.26. Let H € a be type Il and fy : K/(Kp)o — Oy be the immersion. Then,
Oy is type Il and fy is a K-equivariant totally CR immersion by the K-invariant section 1

of [ Q-

Let H € a be type III. Then, since n.(fy) = s and (Kg)p acts on s as SO(3)-action. Thus,
we only consider ad(iAg). Let (#(Rp)u, #(R)u, #(R)u) = (4,4,4). Then, mg C (T,0n)*.
Moreover, for each 1 <i < j <4, (Rjj)u = ¢ or (Rij))y = R;j since a £ b € Ry for any
a,b € R;j (a # b). Hence, T,0Oy N m;; = {0} or T,0y N m;; = m;;. Since ad(iAg)m;; C m;;,
we obtain Proposition 3.27 immediately.

Proposition 3.27. Let H € a be type III and (#(Ré)y,#(Ré)H, #(Rg,)H) = (4,4,4). Then,
Oy is a one-point set or a quaternionic submanifold.

Next, let H € a satisfy (#(Rp)u, #(R))u, #(R)u) = (2,2,2). Then, by the proof of Lemma
3.18, (Rpu, (RPwu, (Rm) is one of the following:

(], Wik 1w} ik (03 0f), (1o} i)l (0 od) (0} wl)), (o), o)) (0] W) (o), ©3)),

(], i) 0 W2} {03, 03}, (lo}, wl)(0d W) (@) o)), (() ol w3 e, W),

(0], 0} (03, 0203, 0d), (w0} (0 0l (03 0d), (ol (W) (W}, o)),

({w{,w}l},{w%,wﬁ},{w?,wi}), ({w;,w}l},{w%,wi},{w%,wi}), ({wé,w}‘},{wg,wi},{wg,wi}).
Let (RPx = {1}, m3} (a = 1,2,3) and Ry — (R = {13,713} Then,
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T,0pNnmg = Z(m,ﬁ + M),

a=1
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3
(T,0p)" Nmg = Z(mné’ + Me).

a=1

By Lemma 3.8, ad(iA[,:)(m,]]l + mn;) C a C (T,On)*. Moreover, we see that unique v, €

{T,ﬁ + T,,%} satisfies ad(iAg)v, € s +m
ad(iAg)w, € M, + s C (T,0p)*

s C T,0y and the other w, € {T,ﬁ + Tnﬁ} satisfies

. Similarly, unique v3 € {T,ﬁ + Tni} satisfies ad(iAg)v; €

e+, C T,0y and the other ws € {T,ﬁ + Tni} satisfies ad(iAg)ws € M2+, C (T,0p)*.
In particular, ad(iAg)(w>) € Rws. Thus, Vg = Ru, + Ruvz and W = My + e+ Rws + Rws

satisfy

Vlg 1 Wﬁ, Vﬁ + Wﬁ =T,05 N mg,

ad(iAﬁ)(Vﬁ) C V,B’

ad(iAg)(Wg) C (T,On)*.

Because ((R}g)H, (Rlzg)H, (Rg)H) is one of the above, we obtain Lemma 3.28.

Lemma 3.28. Let H € a satisfy (#(Ré)H,#(Ré)H,#(Rz)H)

1<i<j<4 #Ry # 2.

Thus, by some w € R;;, we obtain

= (2,2,2). Then, for each

TOOH N m;; = {0} and (TUOH)J' N m;; = mgj,
or T,0y Nmy;; =my; and (T,0p)" Nnmy; = {0},
or T,0pNm;;=m, and (T,0p)" Nm;j = Zn€R+ e M
or T,0ypNm;;= ZneR;,n#w m, and (T,0mt N m;; =m,.

In any case of the above, there are subspaces V;;, W;; of T,0Oy N m;; such that

Vii L Wi, Vij+ W =T,0pnmy;, ad(iAg) (Vi) C Vij,  ad(iAg)(W;)) € (T,On)*.

Summarizing these arguments we obtain Proposition 3.29.

Proposition 3.29. Let H € a be type Il and (#(R;,)H, #(Ré)H, #(Rg)H) =
forany p € Oy and J € Q,, there are subspaces V,W of T,Oy such that

(2,2,2). Then,

VLW, V+W=T,04 JV)CV, JW)C(T,0n"

Let H € abe type Il and (#(R}),)H, #(Rg)H, #(Rg)H) =(1,1,1). Then, ((R/g)H, (Rg)H, (R;)H)
is one of the following:

(ol {wih fog), (w3 fwi) (w3)), ({wg}’ {wil (3)), (wh {wih {w}),
(fwih {wd) (@3), (W) (w3h fwy)), ({w3}, {wil o), (wh (w3) f3)),
(ol (w3l i3], {w)) fwi) {(wih), ({w3}, (Wil {w3),  (wyh (w3h (W),
(ol {wihiol), (o)) il (@), (ol {wihiol), (o) fwg) (W),

By Lemma 3.8, we see that there are no subspaces V, W of T,,0Oy N mg such that

VLW, V+W=T,04nmg adiiAg)(V)CV, adiiAg)(W) C (T,0n)*" Nmg.

Summarizing results in this subsection, we obtain Theorem 3.30.

Theorem 3.30. Let H € a.

(1) If Oy is type I, then the immersion fy : K/(Ky)o — Oy is a K-equivariant totally CR
immersion by each K-invariant section I of f;,Q and such K-invariant sections correspond to
each point of the 2-dimensional sphere one-to-one. Moreover, c; = ¢; and cy is independent
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of the choice of I. Also, Oy is a QR submanifold.

(11) If Oy is type I, then the immersion fy : K/(Ky)o — Oy is a K-equivariant totally
CR immersion by the K-invariant section of f;,Q. Such K-invariant sections are unique up
to the sign.

(iii) If Oy is type I, then Oy satisfies one of the following:

(iii-1) Oy is a one-point set or a quaternionic submanifold.

(i1i-2) For any p € Oy and J € Q,, there are subspaces V,W of T,Oy such that V L
W,V+W=T,04,J(V)CVand JW) C (T,0n)"

(iii-3) For any p € Oy and J € Q,, there are no subspaces V,W of T,Oy such that
VIW,V+W=T,04,J(V)CVand J(W) C (T,0n)".

3.7. Classification. In this subsection, we decide what each K-orbit become one of (i),
(i), (iii-1), (iii-2), (iii-3) in Theorem 3.30. Since rank M = 4, G is one of G = SO(n) (n >
8), F4, E¢, E7, Eg. In this subsection, we shall follow the notations of irreducible root sys-
tems in [6], that is

B,={xe,; 1 <p<njUfzxe,+e,; 1 <p<gqg<nj
Dy ={tepteq; 1 <p<g<nj

Take some linear order in each type such that the highest root is § = e; + €. Let a; =
ej+ez,ay =ej—e3,a3 =ey+e4,a4 =er—ey4. Then,; €Tyand i +a; ¢ (1 <i# j<4).

In the case of G = SO(8), X is type Dy4. Then, we see X = Zg and R = +iRg. Thus, R is
type Dy.

In the case of G = SO(2n) (n > 5), then X is type D,. Then, X1 — (Zg N X)) = {e;
em.2 £ e, ; 5 <m < n}. Thus, Ry is {1; £ A} or {A3 = A4} for each H-orbit ¥’. Hence,
R = +i(Rg U Ry) and R is type Bjy.

In the case of G = SO(2n + 1) (n > 4), then X is type B,. Then, £} — (Zg N X)) =
{e1 £ep,e0 e, 5<m<n}Uf{e, e} Thus, Ry is {A; £ A} or {13 = A4} for each H-orbit
2'. Thus, R = £i(Rg U R|) and R is type By.

In the case of G = Fy, then X is type F4. Then,

i —-(XZgNnX)={ertemerte,; S<m<niUler, e
Ul a1+ am), 2@ + ), 2(@n + a3), ~(an + )
Zall a3$zal C¥492G"2 CY3,2C¥2 @y .

We see that for any 1 < i < j < 4 there is some H-orbit X’ such that Ry, = {4; + 4;}. Thus,
R = +i(Rg U | Us<j<q R1;) and R is type Fj.
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Inthe case of G = E,, (n = 6,7, 8), then

-GN ={eitenerte,; 5<m<n}

U ({l(al Fa) 48 S(ar @) 6 2@y b an) 46, Santag) b6 S e zS:Rem} nz)
2 2 2 2 —
and R = +i(Rg U | Js<;<4 R1;). Hence, R is type Fy.

If R = +iRp, we take some linear order such that wy = 2idy, wr = i(A; — Ay — A3 —A4), w3 =
2id3, wy = id4 are simple roots. Then, the highest root 7 is 2id4.

If R = +i(Rg U Ry), we take some linear order such that w; = 2idy,w, = i(=41 + A -
A3 + Ay), w3 = 2id3, wy = i(—A3 — Ay) are simple roots. Then, the highest root 7 is 2i1;.

If R = +i(Rg U (Jp<j<q R1;), we take some linear order such that w; = i(-=4; — A, — A3 +
Ag), wr = 2id3, w3 = i(A; — A3), wg = i(A; — Ap) are simple roots. Then, the highest root 7 is
2idy.

Recall arguments of subsection 2.2. Each K-orbit intersects 7(expQ) at only one point
and @ = Uacr.anrz¢Qa. Moreover, for H € Q,, it is true that R}, is independent of the
choice of H and only depend on A. In Table 2,3,4, we summarize that each K-orbit through
n(expH) (H € Qa) becomes one of (i),(ii),(iii-1),(iii-2),(iii-3) in Theorem 3.30 in each G.
In the list, A implies a subset of . For example (1,2, 3) implies {w;, w,, w3} and (2,1)
implies {w,,n}. The “type” implies the type of the K-orbit through m(expH) (H € Qa),
that is (i),(ii),(iii-1),(iii-2),(iii-3). The “dim” implies the dimension of K-orbit through
n(expH) (H € Qa). If H € Q, is type (i), then “c” implies ¢; of the CR immersion
S+ K/(Kg)o — Op and a K-invariant section I of f;;0. If H € Q, is type (ii), then
“c” and “c’” implies ¢; and ¢ of the totally CR immersion fy : K/(Kp)o — Oy and the CR
structure I of fy. If H € Q, is type (iii-2), then “c” implies the dimension of V in Theorem
3.30. If the K-orbit becomes a principal orbit, a polar, a pole, a quaternionic submanifold or
the image of a totally complex immersion, then we specify this in “remark”, where a pole is
a polar which is a one-point set [7]. In Table 2 of the case of G = Fy4, E¢, E7, Eg, setm € Z
asm=1ifG=Fy,m=2ifG=E¢s, m=4if G = E7, m = 8 if G = Eg. In Table 3 of the
case of G = SO(n) (n > 8),setm =n—3if nisodd and m = n — 4 if n is even.

4. The case of rank M = 2

In this section, we consider the case of rank M = 2, that is M is a complex Grassmann
manifold SU(n)/S(UR)xU(n-2)) (n > 4) or the associative Grassmann manifold G,/SO(4).
In the present paper, we only consider the complex Grassmann manifold. We cite [12] about
the associative Grassmann manifold.

Let E;; be the n X n matrix whose (i, j)-component is 1 and the others are 0. Let § =
si(n,C) = {X € M(n,C) ; uX = O}and b = {H = X', zE; ; z € C,trH = 0}. Seta
complex conjugation 7 such that 7(X) = —'X. Then, g = {X € sl(n,C) ; 7(X) = X} = su(n)
andh =bhNng={H =3 (x)Ej; € b; x; € R}. Let G = SU(n). Define a linear form
€ (1 <i < n)of b such that €i(2?:1 ZjE;;) = z;. Then, £ = {+(€, —€;) ; 1 <i < j < n}. Set
an invariant nondegenerate symmetric bilinear form (, ) such that (X, Y) = tr(XY) (X, Y €
sl(n,C)). Then, H—¢, = Eii — Ejj and A¢_, = H,—, for each 1 < i # j < n. Take some
linear order on if) such that 8 = € — & is the highest root. Let £* be the set of all positive
roots. Wesee Xy = {e1 —g,-e +&; 3 <k<n},X ={g—¢€;; 3 <i<j<n} Setaroot
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Table 2. K-orbits in the case of G = Fy, E¢, E7, Eg

/

‘ A H type ‘ dim ‘ c ‘ c remark

(1,2) 1) Om+12 | 6m+38
(1,2,3,7n) O |[11lm+12 | 10m+8
(1,2,4,n) O |[11lm+12 | 10m+8

(1,2,3,4,n) @) 12m+12 | 12m + 8 principal orbit
(1) (i1) bm+8 | 6m+8 0 polar, fy is totally complex

(1,7) (ii) 6m+9 | 6m+38 2

(1,2) (i) | 9m+11 | 6m+8 | 6m+6
2,1) (i) | 9m+11 | 6m+8 | 6m+6
(1,4) (i1) 10m+9 | 10m+8| 8m+2
(1,4,7n) (i) | 10m+10 | 10m+8 | 8m+4
(1,2) (i) | 1lm+10|10m+8 | 10m+4

(1,2,3) i) |[1lm+11|10m+8 | 10m+6
(1,2,4) i) |[1lm+11|10m+8 | 10m+6
(1,3,7m) ) |11lm+11{10m+8 | 10m+6
2,3,n) ) | 11lm+11{10m+8 | 10m+6
(2,4,1n) @) | 11lm+11{10m+8 | 10m+6
(1,3,4) @) | 12m+10|12m+8 | 12m+4
(1,2,3,4) i) |[12m+11 | 12m+8 | 12m+6
(1,3,4,7n) i) |[12m+11 | 12m+8 | 12m+6
(2,3,4,7n) ) |[12m+11|12m+8 | 12m+6
4) (>iii-1) 8m polar, quaternionic

3) @{i-2) | 11lm+6 | 10m+2
(3,4) (ii-2) | 12m+6 | 12m+2
4,n) (iii-2) | 12m+6 | 8m+2
2) (iii-3) | 9m+9
(2,3) (1i-3) | 11m+9
2,4) (iii-3) | 11m+9
3.n) (1ii-3) | 11m+9
(2,3,4) (iii-3) | 12m+9
(3.4,n) >iii-3) | 12m+9

vector X, = Ejjforeach 1 < i # j<n. LetZq ¢ := Xe—e + T7(Xe—e) = Eij — Ej; and
Wee; = ilXe—e; — T(Xe—¢)) = i(E;j + Ejp) for 1 < i # j < n. Let 6 = exp(ad(niAp)). Then, 6

is an involutive automorphism of g and

m=(Xeg; 0X) = X} = ) (RZqq +RWq ¢ +RZo ¢ +RWe o),
i=3
t=(Xe€g; 0X) =X =h+RZg+RWg+ > (RZq ¢ +RW ).

3<i<j<n

In particular, t = s(u(2) X u(n — 2)). Denote by the same symbol the involution of G induced
by 6. Then, K ={g e G ; 0(g) = g} = S(U2) x U(n —2)).
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Table 3. K-orbits in the case of G = SO(n) (n # 8).

‘ A H type ‘ dim ‘ c ‘ c ‘ remark
(1,2,3,n) 1) |3m+12 | 2m+8
(1,2,3,4,n) 1) dm+ 12 | dm + 8 principal orbit
2) (i1) 2m+8 | 2m+ 8 0 polar, fy is totally complex
2,1) (ii) 2m+9 | 2m+8 2
(1,2) (ii) 2m+9 | 2m+ 8 2
(1,2,nm) (i) |2m+10|2m+ 8 4
(2,3) (i) |3m+10|2m+8 |2m+4
(1,2,3) (i) |3m+11 |2m+8|2m+6
(1,3,n) (i) |3m+11 |2m+8|2m+6
2,3,n) (i) |3m+11|2m+8|2m+6
2,4) (ii) dm+9 |dm+8 | 4m+2
(1,2,4) (i) |4m+10|4m+8 |4m+4
(2,3,4) (i) |4m+10 |dm+8 |dm+4
2,4,n) (i) |4m+10 |dm+8 |4dm+4
(1,2,3,4) (i) |d4m+11 |4m+8 |4m+6
1,2,4,n) (i) |dm+11 |4m+8 |4m+6
(1,3,4,n) i) [4m+11 |4m+8 |4m+6
(2,3,4,n) (i) |d4m+11 |4m+8 |4m+6
(1) (i11-1) 0 pole
4) (iii-1) dm dm polar, quaternionic
(1,m) (iii-2) | m+6 2
3) (iii-2) | 3m+6 |2m+2
(1,4) (iii-2) | 4dm+6 |4m+2
(3,4) (iii-2) | dm+6 |4m+2
4,n) (1ii-2) | 4dm+6 |4m+2
(1,3) (1ii-3) | 3m+9
G.n) (iii-3) | 3m+9
(1,3,4) (iii-3) | 4m+9
(1,4,n) (iii-3) | 4m+9
3,4,n) (iii-3) | 4m+9

Seta) =€ —€,a, = —e+¢& € X;. Then, a = RZ, +RZ,, is a maximal abelian subspace

of m. Let A = 11Z,, + 12Z,, (41, 42 € R). We easily check that the followings are true.

adA(Zg_o, + Zpo,) = (1 F 1)L F Zg_(a)+a2)s
adA(Zg F Zg—(ay+a) = —(1 F ) (Lo, * Zp-a,),
adA(Wp_o, = Wp_o,) = (11 F )W F Wp_(4,1a0))>
adA(Wﬁ + Wﬁ—(a1+a2)) == F AZ)(Wﬁ—al + W,B—az),

adA(W,,) = 22, (iAq, ),
adA(W,,) = 222(iAq,),

Moreover, for each 5 < k < n,

adA(idy,) = (~22)W,,,
adA(iAy,) = (—20)W,,.
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Table 4. K-orbits in the case of G = SO(8).

| A | type [ dim | ¢ [ ] remark [ A [ type [dim|c ¢ [ remark
1,2,3,4,7) | (1) 12 | 8 principal orbit (€))] @i-1) | 0O pole
(1,2,3,n) Gy | 11 | 8|6 3) (iii-1) | 0 pole
(1,2,4,n) G) [ 11 | 8] 6 ) Gii-1) | 0 pole
(1,3,4,n) G) [ 11 | 8] 6 (1,3) | Gii-2) | 6 |2
(2,3,4,n) G) | 11 | 8] 6 1,4) | Gi-2) | 6 |2
(1,2,3,4) Gy [ 11 | 8] 6 3,4, | Gii-2) | 9
(1,2,4) G) | 10 | 8| 4 1,p | Gii-2) | 6 |2
(1,2,3) @) | 10 | 8| 4 B, | Gii-2) | 6 |2
(2,3,4) G) | 10 | 8| 4 4,np | Gii-2) | 6 |2
1,2, G) | 10 | 8| 4 1,3,4) | Gii-3) | 9
2,3,1) (ii) 10 | 8| 4 1,3, | Gii-3) | 9
2,4,1) G) | 10 | 8| 4 1,4, | Gii-3) | 9
(1,2) (ii) 9 |82 3,4,n) | Gii-3) | 9
2,3) (ii) 9 [8]|2
2,4) (ii) 9 [8]|2
2,n) (ii) 9 |82
2) (i) 8 | 8| 0 | polar, fy is totally complex

adA(Zel—ek) = /ll(_Z@—ek)a adA(_Ze3—ek) = (_/ll)Zel—ek’
adA(Wel—ek) = /11(_W63—Ek)’ adA(_W53—ek) = (_/l])WE]—Ek,
adA(Z—Ez+Ek) = /12(Z—E4+Ek)’ adA(Z—E4+Ek) = (_/lZ)Z—Ez-FEk’
adA(W,62+€k) = /12(W764+6;{), adA(Wfa;Jrek) = (_/12)W762+Ek-

Set elements of m as follows:

T/% = Zﬁ—ﬂl + Zﬁ-‘h’ T3 = W/a’—m + Wﬁ—ﬂz’

1—42 A=
1 _ 2 _ — L
T/l]_'_/12 = Z,B—(ll —Z[g_a,z, T/ll+/12 = W[g_a,l - wﬁ—az, T2/l,- = Wai (l = 1,2)

and Ty' = Ze 0. TV = Weao T4 = Zogian Ty) = W_guq foreach 5 < k < n. Set
elements of T as follows:

1 _ 2 _
Sh-ty =28 = Zp—(@+ar Sy, = W = Wp—(@y+an)»
Shen, =28+ Zp-aivars Siin, = Wot Wp-avans S2; = iAg; (= 1,2)

and S = ~Z, .S = ~Wo_ .SV = Z (0,8 = Wiy foreach 5 < k < n. Let
1 1 2 2
Rg = {41 £ A2,24;,24} and Ry = {4y, A2}. Then, for any A € a,w € {1; + A2} and 7 € Ry,
adA(T') = w(A)S., adA(S!) = —w(A)T,
adA(T}") = n(A)SY, adA(Sy) = —n(A)Ty" (i=1,2and 5 < k < n),

adA(T2,) = 2(A)Sy,. adA(S2) = =240y, (j=1.2).

Thus, the restricted root system R is given by +i(Rg U Ry). For each w € Rg U Ry, we set
m, = {X € m; (adA)*(X) = —w(AP’X (A € a)}. Let mg = my,_a, + My,40, + Moy, + Moy,
and my = RTﬁ;l + RTﬁ;z + RT/’;;I + ]RTZ2 for each 3 < k < n. Then, m = a + mg + Y};_; my.
By direct computations, we see adX(a + mg) C a + mg and adX(my) C ny for any X € s and
5 < k < n. Moreover, we obtain Lemma 4.1 and Lemma 4.2.

Lemma 4.1. Set subspaces m_ and m,. of a + mg as follows:

mo =1y, +R(Zy, —Zp,) +R(T2y, — Tap,), My =My, +R(Zy, +Zy,) + R(T2y, + Tha,).
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Then, ads(m_) C (m_) and ads(m,) C (my). The representation matrices of ad(iAg)ly._,

adZgly_, adWgl,,_ with respect to T/L—/lz’ T/%l _/lz,Za1 —Zo,, Top, — T2y, are

1 1

-1
1

-1 ‘ 1
b _1 9
1 -1

-1/ -1
1
where empty components are 0. Also, the representation matrices of ad(iAg)lw,, adZg|y,,

. 1 2
adWpgl,,, with respect to T/11+/lz’ TAIMZ,ZQ1 + Zo,, Top, + T2, are

-1 1
1

-1 -1
1
Lemma 4.2. For each 5 < k < n, ads(my) C my. Moreover, the representation matrices

. . k1 k2 okl k2
of ad(iAg)|w,, adZgly,, adWgl,, with respect to T 1 ,T/l] ,T/12 s T/12 are

-1 -1
1

-1/ 1
1
where empty components are Q.

For H € a, we set (Rg)y = {w € Rg ; w(H) € nZ}. If H € a satisfies (Rg)y = ¢ for each
w € Rg, we say that H is type I. We easily see that if H is type I, then 7,(ty) = {0} and Oy
is type L. If H satisfies (Rg)y C {24, 21>}, then we say that H is type II. We easily see that
if H is type II, then 7.(ty) = R(iAp) and Op is type L. If H is not type I and type II, then we
say that H is type III. We see that if H is type III, then .(fy) = s and Oy is type III.

Let H be type 1. Then, A;(H) ¢ nZ (i = 1,2) and

T,0g Nm_ =1y, + R(T2y, — T2a,),
T,0g Ny =y 49, + R(T2, + T2p,),
T,0pNny =ny (5 <k<n).

For any X € s, let Wy = adX(a) and Vy be the orthogonal complement of Wy in 7,0y. Then
Vx, Wy satisfy

Vy L Wy, Vyx + Wy = T,0p, adX(Vy) C Vy, adX(Wy) C (T,O)*.

Thus, the immersion fy : K/(Ky)o — Op is a K-equivariant totally CR immersion by each
K-invariant section of f;, Q. Moreover, Oy is a OR submanifold. Thus, we obtain Lemma
4.3.

Lemma 4.3. Let H € a be type I. Then, fy : K/(Ky)y — Oy is a K-equivariant totally
CR immersion by each K-invariant section I of f;,Q and K-invariant sections correspond
to each point of the 2-dimensional sphere. Moreover, ¢c; = ¢} and cy is independent of the
choice of 1. Also, Oy is a QR submanifold.
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Let H be type II. Then, n(ty) = R(iApg) and ad(iAg) defines the K-invariant section of
SO It (Rp)n = {241}, then T,OgNmg = My, _a, +1M4, 14, +M2,, and (T,Op) Nmg = a+nyy,.
If (Rg)u = {242}, then T,On Ny = My, _y, + My 40, + Moy, and (T,0)" N = a+myy,. If
(Rp)u = {241,245}, then T,0n Ny = My, _y, + My, 14, and (T,0p)" Ng = a+ My, +Moy,.
By Lemma 4.1, ad(iAg)(a + myy, + Myy,) C a + My, + myy,. Moreover, ad(iAﬁ)(mﬁj) C
my, (j = 1,2) by Lemma 4.2. Thus, there are subspaces V4 and W, of T,0p such that

Va LWy, Va+ Wy =T,0q, ad(zAﬁ)(VA) C Va, ad(zAB)(WA) C (TUO)L.

Also, for any X € RZg + RWp since adX(my,_», + My, 14,) C a+ myy, + myy, by Lemma 4.1
and adX(m,,) € m,, by Lemma 4.2, we see that there are subspaces Vx, Wx of 7,0y such
that

Vy L Wy, Vx + Wy = TOOH, adX(Vx) c Vx, adX(Wx) C (TOO)J'.
Thus, we obtain Lemma 4.4.

Lemma 4.4. Let H € a be type Il. Then, fy : K/(Ky)o — Oy is a K-equivariant totally
CR immersion by the K-invariant section of f,;Q and such K-invariant sections are unique
up to sign.

Let H be type III. Since (Kp)o acts on s as SO(3), we only consider ad(iAg). Then,
(Rp)u = {41 — A2}, {41 + A2} or Rg. In the case of (Rg)y = {41 — A2}, then 4;(H) ¢ nZ (i = 1,2).
Thus, T,0y = My, + 22, (Mpy, +my,) and (T,O0p)* = a +my,_,,. Let Wy = ad(iAg)a
and V4 be the orthogonal complement of Wy in 7,0y. Then, V4 and W, satisfy

Va LWy, Va+ Wy =T,0y, ad(iAﬁ)VA C Va, ad(iAB)WA C (TOOH)J'.

In the case of (Rg)y = {41 + A2}, we can prove that there are such subspaces by similar way.
In the case of (Rg)y = Rp, we see T,0y = {0} or my, + m,,. In the former case, Oy is
a one-point set. In the latter case, Oy is a quaternionic submanifold. Summarizing these
arguments, we obtain Lemma 4.5.

Lemma 4.5. Let H € a be type IIl. Then, Oy is type III. If (Rg)y = {A1 — A2} or {41 + A2},
then for any p € Oy and J € Q,, there are subspaces V and W such that

VIW, V+W=T,04, JIV)CV, JW)C (T,0n)".
If (Rg)n = Rg, then Oy is a one-point set or a quaternionic submanifold.
Summarizing Lemma 4.3, Lemma 4.4, Lemma 4.5, we obtain Theorem 4.6.

Theorem 4.6. Let H € a.

G) If Oy is type I, fy : K/(Ky)o — Oy is a K-equivariant totally CR immersion by
each K-invariant section I of f;,Q and K-invariant sections correspond to each point of the
2-dimensional sphere one-to-one. Moreover, c; = ¢} and cy is independent of the choice of
1. Also, Oy is a QR submanifold.

(1) If Oy is type II, then the immersion fy : K/(Ky)y — Oy is a K-equivariant totally
CR immersion by a K-invariant section of f;,Q. Such K-invariant sections are unique up to
the sign.

(iii) If Oy is type 1II, Oy satisfies one of the following:
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(iii-1) Oy is a one-point set or a quaternionic submanifold.
(iii-2) For any p € Oy and J € Q,, there are subspaces V,W of T,Oy such that V L
W, V+W =T,0y4,J(V)CVand JW) C (T,0On)".

We summarize that each K-orbit becomes one of (i),(ii),(iii-1),(iii-2) as Section 3. Let
w1 = i(A] — A2),wyr = idy. Then, w, w, are simple roots with respect to some linear order
of ia and the highest root i is 2id;. Let F = {w, wy,n}. As the table in Section 3, we make
Table 5 in the following.

Table 5. K-orbitsin G = SU(n) (n > 4)

‘ A || type | dim | c ‘ c’ | remark
(1,2,n) @) dn—10 | 4n—12 principal orbit
(nH (ii) 2n—-4 | 2n—-4 0 polar, fy is totally complex

(1,m) (ii) 2n—-3 | 2n—-4 2

(1,2) (ii) 4n—-3 | 4n—4 |4n-6
2) (iii-1) | 4n—16 | 4n— 16 pole (n = 4), polar and quaternionic (n > 4)

2,n) || (ii-2) |[4n—-12 | 4n-14

5. The case of rank M = 3

In this section, we consider the case of rank M = 3, that is M is the oriented real Grass-
mann manifold as the set of all oriented 3-dimensional subspaces of R’. In this case, §
50(7,C) ={X e M(7,C); 'X=-X}.Lett:§3—3; X~ Xandg={Xe€g; 7X) =X} =
s0(7). Set F,‘j = Eij_Eji foreachl <i# j<n. Letf) ={H =7 Fn+z2F34+73Fs5 ; z; € C}.
Then, h = hNg = {x;F12 + x2F34 + x3Fs6 ; x; € R} and b is a maximal abelian subspace of g.
Let €; be the linear form of b such that €j(z1F12 + 20F34 + 73F5¢) = izj (1 < j < 3). The root
system of § with respect to b is given by T = {+¢ + €,*e; 1 <i< j<3,1<k<3}) Set
an invariant nondegenerate symmetric bilinear form (, ) of § such that (X, Y) = tr(XY) for
X,Y € §. For each y € X, we set the element H,, of the real part by = i by (H,, H) = y(H),
that is He—e, = —4(Faic12i = Faj-12)), Heve, = —5(Faic12i + Fajo12)), He = —5Fai-12; for
L <i# j<3. LetAy = grhsHy, thatis A-¢; = —i(Fai-1.2i = F2j-127), Aqre; = —i(Fai1i +
Faj12),Aq = —2iF5i_1p; for 1 < i # j < 3. Take some linear order such that the highest
root 3 is € + & and the set of all positive roots X* is {g; + €, ; 1 <i< j<3,1 <k<3}
Then, Z; = {€, 6,61 t63,6+6aland Xy = {+(61—6),+t6}. Forl <i< j<3and1 <k <3,
we set root vectors

Xe—e; = —(Faim12j-1 + Fainj) + i(Faim125 = Faizj-1),
Xeve; = (Faic12j-1 — Foing) + i(Foim12j + Fainj-1),
Xe

k

= Fop-17 + iF7.
Foreachy € X, set Z, = %(Xy +7(X,)) and W,, = %(Xy -7(X,)), thatisfor 1 <i< j<3,

Ze—e; = —Fric1pj-1 = Foinjs  Zere, = Faic12j-1 — Fainj,

i

We-e, = —Faic12j+ Foinj-1s Were, = —Faic12j = Fainj-1,

i

Ze = For-17, We, = —Fay.
Let 6 = exp(niAg). Then,
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I={Xeg; 0X) =X} =bh+RZs + RWg+RZ, _, + RW_,, + RZ, + RW,,

m={Xeqg; 0X)=-X} = Z(Rzy +RW,).
Y€
Let G = SO(7) and denote by the same symbol the involution of G induced by 6. Let K be
the identity component of {g € G ; 6(g) = g}, thatis K = SO(4) X SO(3).
LetU;=Fiayi(1 <i<3)anda={A = Z?:l A;U; ;5 A; € R}. Then, a is a maximal abelian
subspace of m. We set elements of m as follows:

T/l] :%(W62—63_W62+E3)=F45’ T/lzz_%(zé‘z—Q +Z62+63)=F469 T/13:_W62:F47’

Th+2,=We—e=Fa5—Fie, Ty-2,==Were=Fos+Fie,
1 1
T/l]+/l3=§(_zfz—63 +Z€2+€3)_Z€] :F35_F177 T/l]—/l3=§(_zfz—63 +ZEQ+E3)+Z€] :F35+F177
1 1
T/12+/l3 = z(_sz—Q _W€2+E3)+W€| :F36_F279 T/lz—/h :_E(Wsz—ﬁ +W€2+63)_W€] :F36+F279

These vectors give a basis of the orthogonal complement of a in m. Moreover, we set a basis
of t as follows:

S/ll :%(W€1—62+W61+€2):_F145 S/lzzé(zél—fz +Z€1+€2):_F247 S/l3:_2iH€2:_F349

Sy+1,=—2iHe e =—F12+ Fse, Sa-2,=2iHe +e,=F12+ Fse,
1 1
S/ll+/l3:§(zél—62 _ZEI+62)+ZE3:_F13+F577 S/ll—/13:_E(ZEI—EZ_ZEI+62)+ZE3:Fl3+F577
1 1
S/12+/l3:_E(Wél—éz_W€1+E2)_W€3:_F23+F67’ S/lz—/lg,:E(Wfl—SQ_W€1+62)_W€3:F23+F67'

We use the notations used in the previous two sections. Let Rg = {4;, ;+4;; 1 <i < j < 3}
Then, for any w € Rg and A € q,

adA(T,) = w(A)S,, adA(S,) = —w(A)T,,

and the restricted root system of (g, f) with respect to a is given by +iRg. We set Pi. em(l<
i<3,1 <j<4)asfollows:

Pi = %(_Zel—ss +Ze+e) = Fis, Pé = %(T/lﬁ/lz —Ta-1,) = Fos,
Py = %(IT/ll-i-/lg +Ty-1) = F3s5, Py= T/lll = Fus,

P} = =5(Taeay + Ta-) = Frs, P53 = =5(Zey-e + Zeyve) = Fas,
P = %(1T12+A3 +Th-1,) = F3e,  Pj = Talz = Pus,

P? = _E(T/ll+/l3 =Ta-a) = Fi7, P% = _E(Tﬂzwls —Th-2,) = For,
P3:Z€2:F377 PZ:T/13:F47'

Remark that P € a (1 <i<3). Letm' = 31, RP’ (i = 1,2,3). We obtain Lemma 5.1

Lemma 5.1. Forany X € s, adX(m') ¢ m’ (i = 1,2,3). Moreover, foreachi=1,2,3, the
representation matrices of ad(iAg)l, and adZg|, and adWpgl,,; with respect to Pi .-, Pi are

1 ‘ 1 1

-1

1| -1
-1

where empty components are (.

Set subsets R',R%, R C Rp as follows: R' = (A, + 3L, R? = {1, 4, + LR =
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{43, 1 £ A}, If H € asatisfies (Rg)y = ¢, we say that H is type I. If H € a satisfies (Rg)y # ¢
and (Rg)y C R' for some 1 < i < 3, we say that H is type IL In the other cases, we say that
H is type IIL. Then, we see that Oy and H have the same type because m5(RS,,) = RWp if
and only if w € R' and 7,(RS,,) = RZg if and only if w € R* and n,(RS,,) = R(iAp) if and
only if w € R®.

If H is type I, then 7,0 = ZweRﬁ m,, and (T,0y)* = a. By Lemma 5.1, we see that
for each X € s there are subspaces Vx, Wy of T,0y such that Vx L Wy, Vx + Wy =
T,0y,adX(Vy) C Vyx,adX(Wy) C (T,Of)*. Thus, the immersion fy : K/(Kp)y — Og
is a K-equivariant totally CR immersion by each K-invariant section of f;;Q and such K-
invariant section corresponds to each point of the 2-dimensional sphere. In particular, Oy is
a OR submanifold.

Let H be type II. We may assume (Rg)y C R'. Then, n,(ty) = RWjp. We see that there
are subspaces V, W of 7,0y such that V. L W,V + W = T,0y,adWs(V) C V,adWg(W) C
(T,Op)*. Moreover, we see that for each X € R(iAg) + RZg there are subspace Vx, Wy of
TUOH such that Vy L Wx,Vx + Wy = TUOH,adX(Vx) C Vx,adX(Wx) C (TUOH)l. Thus,
Jfu is a totally CR immersion by the K-invariant section of f;;Q. In particular, (Rg)y = R'if
and only if fy is a totally complex immersion.

Let H be type III. By the definition, we see #((Rg)y N {41, A2, A3}) = 0,2,3. If #(Rg)y N
{41, 42, 43}) = 3, then obviously (Rg)y = Rg. Then, T,0y = {0} and O is a one-point set. If
#((R,B)H N{A;, A2, A3}) = 2, then (RB)H isone of {1, Ay, A1 £ Az}, {2, A3, Aa £ A3}, {43, A1, A1 £
A3}. In this case, for any p € Oy and J € Q,, there are subspaces V, W of 7,0y such that
VLIW,V+W=T,04J(V)CV,J(W)C(T,0n)". If #(Rp)u N {11, A2, 43}) = 0, we see
that (Rﬁ)H is one of {A4; + /lj ;1 <i<j<3L{l -, i+ A3, L+ 3} {41+ Ao, 41 — A3, o +
/13}, {/11 +Ay, A1 +A13, /12—/13}, {/l] A, A1 —A3, /12—/13}. If (R'g)H = {/L'i/lj ;1 <i< ] < 3}, then
Oy is a totally real submanifold. In the other cases, then for any p € Oy and J € Q,, there are
no subspaces V, W of T,0y such that V1L W,V + W =T,0y,J(V) C V,J(W) C (TPOH)L.

Summarizing these arguments, we obtain Theorem 5.2.

Theorem 5.2. Let H € a.

() If Oy is type I, then fy : K/(Ky)o — Op is a K-equivariant totally CR immersion by
each K-invariant section I of f;;Q and K-invariant sections correspond to each point of the
2-dimensional sphere one-to-one. Moreover, c; = ¢; and cy is independent of the choice of
1. Also, Oy is a QR submanifold.

(ii) If Oy is type II, then the immersion fy : K/(Ky)) — Oy is a K-equivariant totally
CR immersion by the K-invariant section of f;,Q. Such K-invariant sections are unique up
to the sign.

(iii) If Oy is type 111, then Oy satisfies one of the following:

(iii-1) Oy is a one-point set or a totally real submanifold.

(iii-2) For any p € Oy and J € Q,, there are subspaces V,W of T\,Oy such that V L
W,V+W =T,04,J(V)CV,J(W) C(T,0n)"

(i1i-3) For any p € Oy and J € Q,, there are no subspaces V,W of T,Oy such that
VLIW,V+W=T,04,J(V)CV,J(W)C(T,0On)"

We summarize what type (i), (ii), (iii-1), (iii-2), (iii-3) each K-orbit becomes as Section
3. Let w; = i(A; — A2), wy = i(Ay — A3), w3 = ids. Then, w;, w,, w3 are simple roots with
respect to some linear order of ia and the highest root 7 is 2id;. Let F = {wy, wy, w3, n7}. As
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the table in Section 3, we make Table 6.

Table 6. K-orbits in G = SO(7)

‘ A H type ‘ dim ‘ c ‘ c remark
(1,2,3,7) (1) 9 |6 principal orbit
2) (ii) 6 | 6|0 |polar, fy is totally complex
(1,2) (ii) 7 162
(2,3) (ii) 7 162
2,1) (ii) 7 16|2
(1,2,3) (ii) 8 |6]4
(1,2,1) (ii) 8 |6]4
(1,3,1) (ii) 8 |64
(2,3,1) (ii) 8 |64
(D) (iii-1) | O pole
3) @i-1) | 3 |0 totally real
(1,7) ({i-2) | 5 |2
(3,n) >iii-3) | 6
(1,3) (iii-3) | 6
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