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Abstract
Twisted knot theory introduced by M. Bourgoin is a generalization of knot theory. It leads us

to the notion of twisted virtual braids. In this paper we show theorems for twisted links corre-
sponding to the Alexander theorem and the Markov theorem in knot theory. We also provide a
group presentation and a reduced group presentation of the twisted virtual braid group.

1. Introduction

1. Introduction
M. O. Bourgoin [1] introduced twisted knot theory as a generalization of knot theory.

Twisted link diagrams are link diagrams on R2 possibly with some crossings called virtual
crossings and bars which are short arcs intersecting the arcs of the diagrams. Twisted links
are diagrammatically defined as twisted link diagrams modulo isotopies of R2 and local
moves called extended Reidemeister moves which are Reidemeister moves (R1, R2, R3),
virtual Reidemeister moves (V1, V2, V3, V4) and twisted moves (T1, T2, T3) depicted
in Figure 1. Twisted links correspond to stable equivalence classes of links in oriented
three-manifolds which are orientation I-bundles over closed but not necessarily orientable
surfaces.

Twisted links are analogous to virtual links introduced by L. H. Kauffman [7]. Virtual link
diagrams are link diagrams on R2 possibly with some virtual crossings. Virtual links are de-
fined as virtual link diagrams modulo isotopies of R2 and local moves called generalized
Reidemeister moves which are Reidemeister moves (R1, R2, R3) and virtual Reidemeister
moves (V1, V2, V3, V4) depicted in Figure 1. Virtual links correspond to stable equivalence
classes of links in oriented three-manifolds which are orientation I-bundles over closed ori-
ented surfaces.

The Alexander theorem states that every link is represented as the closure of a braid,
and the Markov theorem states that such a braid is unique modulo certain moves so called
Markov moves. In virtual knot theory, analogous theorems are established in [8, 9].

In this paper we show theorems for twisted links corresponding to the Alexander theo-
rem and the Markov theorem. We also provide a group presentation and a reduced group
presentation of the twisted virtual braid group.

This article is organized as follows. In Section 2, we state the definition of the twisted
virtual braid group and provide a group presentation of the group. In Section 3, the Alexan-
der theorem for twisted links is shown by introducing a method of braiding a given twisted
link diagram, which we call the braiding process. In Section 4, we give the statement of the
Markov theorem for twisted links and prove it. In Section 5, virtual exchange moves are
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Fig.1. Extended Reidemeister moves.

discussed. In Section 6, we give a reduced presentation of the twisted virtual braid group,
and concluding remarks.

2. The twisted virtual braid group

2. The twisted virtual braid group
Let n be a positive integer.

Definition 2.1. A twisted virtual braid diagram on n strands (or of degree n) is a union of
n smooth or polygonal curves, which are called strands, in R2 connecting points (i, 1) with
points (qi, 0) (i = 1, . . . , n), where (q1, . . . , qn) is a permutation of the numbers (1, . . . , n),
such that these curves are monotonic with respect to the second coordinate and intersections
of the curves are transverse double points equipped with information as a positive/negative/
virtual crossing and strings may have bars by which we mean short arcs intersecting the
strings transversely. See Figure 2, where the five crossings are negative, positive, virtual,
positive and positive from the top.

Fig.2. A twisted virtual braid diagram on 3 strands.

Here is an alternative definition.
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Definition 2.2. Let E be [0, n + 1] × [0, 1] and let p2 : E → [0, 1] be the second factor
projection. A twisted virtual braid diagram of n strands (or of degree n) is an immersed 1-
manifold b = a1∪ . . .∪an in E, where a1, . . . , an are embedded arcs, called strands, possibly
with bars by which we mean short arcs intersecting the strands transversely, satisfying the
following conditions (1)–(5):

(1) ∂b = {1, 2, . . . , n} × {0, 1} ⊂ E.
(2) For each i ∈ {1, . . . , n}, p2|ai : ai → [0, 1] is a homeomorphism.
(3) The set of multiple points of the strands consists of transverse double points, which

are referred to as crossings of the diagram.
(4) Each crossing is equipped with information of a positive crossing, a negative cross-

ing or a virtual crossing.
(5) Every bar avoids the crossings.

Let X(b) denote the set of crossings of b and the points on the strands where bars intersect
with. A twisted virtual braid diagram is said to be good if it satisfies the following condition.

(6) The restriction map p2|X(b) : X(b)→ [0, 1] is injective.

The twisted virtual braid diagram depicted in Figure 2 is good. On the other hand, the
twisted virtual braid diagram depicted in Figure 3 is not good, since there exists a pair of
bars lying in p−1

2 (y) for some y ∈ [0, 1], or since there exists a virtual crossing and a bar
lying in p−1

2 (y′) for some y′ ∈ [0, 1].

Fig.3. A twisted virtual braid diagram which is not good.

Definition 2.3. Two twisted virtual braid diagrams b and b′ of degree n are equivalent if
there is a finite sequence of twisted virtual braid diagrams of degree n, say b0, b1, . . . , bm,
with b = b0 and b′ = bm such that for each j = 1, . . . ,m, b j is obtained from b j−1 by one of
the following:

• An isotopy of E keeping the conditions (1)–(5) of a twisted virtual braid diagram.
• An extended Reidemeister move.

A twisted virtual braid is an equivalence class of twisted virtual braid diagrams.

The set of twisted virtual braids forms a group, where the product is defined by the con-
catenation similar to the braid group such that bb′ is b on b′ when we draw the braid diagram
vertically. The twisted virtual braid group is denoted by TVBn.

Let σi, σ−1
i , vi (i = 1, . . . , n − 1) and γi (i = 1, . . . , n) be twisted virtual braid diagrams

depicted in Figure 4. Twisted virtual braids represented by them will be also denoted by the
same symbols. The group TVBn is generated by σi, vi (i = 1, . . . , n−1) and γi (i = 1, . . . , n),
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Fig.4. Generators of the group of twisted virtual braids.

which we call standard generators.
Figure 5 shows classical braid moves, corresponding to R2 and R3. Figure 6 shows virtual

braid moves, corresponding to V2, V3, and V4. (There are some other moves corresponding
to R3 and V4. However, it is well known that those moves are equivalent to the moves in
the figure, cf. [8].)

Fig.5. Classical braid moves.

Fig.6. Virtual braid moves.

Fig.7. Twisted braid moves.

We call the two moves depicted in the top row of Figure 7 twisted braid moves of type I,
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and the move on the left of the second row a twisted braid move of type II. The move on
the right of the bottom is called a twisted braid move of type III or of type III(+). When we
replace the positive crossings with negative ones, it is called a twisted braid move of type III
or of type III(−).

Braid moves corresponding to extended Reidemeister moves are classical braid moves,
virtual braid moves and twisted braid moves.

Theorem 2.4. The twisted virtual braid group TVBn is generated by standard generators,
σi, vi (i = 1, . . . , n−1) and γi (i = 1, . . . , n), and the following relations are defining relations,
where e denotes the identity element:

σiσ j = σ jσi for |i − j| > 1;(1)

σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n − 2;(2)

v2i = e for i = 1, . . . , n − 1;(3)

viv j = v jvi for |i − j| > 1;(4)

vivi+1vi = vi+1vivi+1 for i = 1, . . . , n − 2;(5)

σiv j = v jσi for |i − j| > 1;(6)

viσi+1vi = vi+1σivi+1 for i = 1, . . . , n − 2;(7)

γ2
i = e for i = 1, . . . , n;(8)

γiγ j = γ jγi for i, j = 1, . . . , n;(9)

γ jvi = viγ j for j � i, i + 1;(10)

σiγ j = γ jσi for j � i, i + 1;(11)

γi+1vi = viγi for i = 1, . . . , n − 1;(12)

viσivi = γi+1γiσiγiγi+1 for i = 1, . . . , n − 1.(13)

Remark 2.5. Using (3), we see that relations (7) and (12) are equivalent to the following
(14) and (15), respectively:

σi+1 = vivi+1σivi+1vi for i = 1, . . . , n − 2,(14)

γi+1 = viγivi for i = 1, . . . , n − 1.(15)

Remark 2.6. There are two kinds of twisted braid moves of type I as shown in Figure 7.
The left one corresponds to relations (12) and the right one to (16):

γivi = viγi+1 for i = 1, . . . , n − 1.(16)

Using (3), we see that relations (12) are equivalent to (16).

Remark 2.7. There are two kinds of twisted braid moves of III; one is type III(+) as
shown in Figure 7 and the other is type III(−). The former corresponds to relations (13) and
the latter to (17):

viσ
−1
i vi = γi+1γiσ

−1
i γiγi+1 for i = 1, . . . , n − 1.(17)

Using (3) and (8), we see that relations (13) are equivalent to (17).
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Proof. Note that the inverse elements of vi and γi in TVBn are themselves. Let  be the
set of standard generators of TVBn and let ∗ be the set of standard generators and their
inverse elements of TVBn:

 = {σi, vi | i = 1, . . . , n − 1} ∪ {γi | i = 1, . . . , n},

∗ = {σi, σ

−1
i , vi | i = 1, . . . , n − 1} ∪ {γi | i = 1, . . . , n}.

Let b be a twisted virtual braid diagram. When it is good, it is presented uniquely as a
concatenation of elements of ∗, which we call a preferred word of b. When it is not good,
one can modify it slightly by an isotopy of E keeping the condition of a twisted virtual braid
diagram to become good. Thus,  generates the group TVBn.

Let b and b′ are good twisted virtual braid diagrams. Suppose that b′ is obtained from b
by an isotopy of E keeping the condition of a twisted virtual braid diagram. Then they are
related by a finite sequence of changing heights of a pair of points in X(b). A single height
change of a pair of such points corresponds to one of relations (1), (4), (6), (9), (10), (11)
and variants of (1), (6) and (11) with σi replaced by σ−1

i and/or σ j replaced by σ−1
j . Note

that the variants are consequences of the original relations up to relations (3) and (8). Thus,
we see that the preferred words of b and b′ are congruent modulo relations (1), (4), (6), (9),
(10), (11) and relations (3) and (8).

Suppose that b′ is obtained from b by an extended Reidemeister move. When the move
is R2, the change of preferred words corresponds to σεiσ

−ε
i = σ

−ε
i σ

ε
i (ε ∈ {±1}), which is a

trivial relation. When the move is R3, it is well known that the change of preferred words
corresponds to a relation which is a consequence of relations (2). When the move is V2, the
change of preferred words corresponds to relations (3). When the move is V3, the change
of preferred words corresponds to relations (5). When the move is V4, we may assume that
it is the move as in Figure 5, which corresponds to relations (7). When the move is T1, the
change of preferred words corresponds to relations (12) or (16). When the move is T3, the
change of preferred words corresponds to relations (13) or (17). Therefore we see that the
preferred words of b and b′ are congruent each other modulo all relations (1)–(13).

Since all relations (1)–(13) are valid in the group TVBn, these relations are defining rela-
tions. �

Remark 2.8. The twisted virtual group TVBn is different from the ring group ([2]) or
the extended welded braid group ([5]). Brendle and Hatcher [2] discussed the space of
configurations of n unlinked Euclidean circles, called rings, whose fundamental group is the
ring group Rn. They showed that the ring group is isomorphic to the motion group of the
trivial link of n components in the sense of Dahm [3]. The ring group has a finite index
subgroup isomorphic to the braid-permutation group, also called the welded braid group,
introduced by Fenn, Rimányi and Rourke [6]. Damiani [4] studied the ring group from
various points of view. In particular, she introduced in [5] the notion of the extended welded
braid group defined by using diagrams motivated from the work of Satoh [11]. Damiani’s
extended welded braid group is isomorphic to the ring group.

The twisted virtual braid group TVBn is different from the ring group and the extended
welded braid group for n > 2, since they admit a relation v1σ2σ1 = σ2σ1v2, which is not
allowed in the twisted virtual braid group TVBn.
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3. Braid presentation of twisted links

3. Braid presentation of twisted links
The closure of a twisted virtual braid (diagram) is defined by a similar way for a classical

braid.

Example 3.1. The closure of a twisted virtual braid diagram is shown in Figure 8.

Fig.8. The closure of braid γ1σ
−1
1 γ2.

In this section we show that every twisted link is represented by the closure of a twisted
virtual braid diagram (Theorem 3.6).

3.1. Gauss data.
3.1. Gauss data. For a twisted link diagram K, we prepare some notation:
• Let VR(K) be the set of all real crossings of K.
• Let S(K) be the map from VR(K) to the set {+1,−1} assigning the signs to real

crossings.
• Let B(K) be the set of all bars in K.
• Let N(v) be a regular neighborhood of v, where v ∈ VR(K) ∪ B(K).
• For c ∈ VR(K), we denote by c(1), c(2), c(3), and c(4) the four points of ∂N(c) ∩ K as

depicted in Figure 9.

Fig.9. Boundary points of N(c) ∩ K.

• For γ ∈ B(K), we denote by γ(1) and γ(2) the two points of ∂N(γ) ∩ K as depicted in
Figure 10.
• Put W = W(K) = Cl(R2 \ ∪v∈VR(K)∪B(K)N(v)), where Cl means the closure.
• Let V∂R(K) = {c( j)|c ∈ VR(K), 1 ≤ j ≤ 4}, and B∂(K) = {γ( j)|γ ∈ B(K), 1 ≤ j ≤ 2}.
• Let K|W be the restriction of K to W, which is a union of some oriented arcs and

loops generically immersed in W such that the double points are virtual crossings of
K, and the set of boundary points of the arcs is the set V∂R(K) ∪ B∂(K).

• Let μ(K) be the number of components of K.
• Define a subset G(K) of (V∂R(K)∪ B∂(K))2 such that (a, b) ∈ G(K) if and only if K|W

has an oriented arc starting from a and ends at b.
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Fig.10. Boundary points of N(γ) ∩ K.

The Gauss data of a twisted link diagram K is the quintuple

(VR(K), S(K), B(K),G(K), μ(K)).

Example 3.2. Let K be a twisted link diagram depicted in Figure 11. When we name the
real crossings c1 and c2 as in the figure, the Gauss data is

({c1, c2}, {+1,+1}, {γ1}, {(c(4)
1 , c

(2)
2 ), (c(3)

2 , c
(2)
1 ), (c(4)

2 , γ
(1)
1 ), (γ(2)

1 , c
(1)
1 ), (c(3)

1 , c
(1)
2 )}, 1).

Fig.11. A twisted link diagram with one bar.

We say that two twisted link diagrams K and K′ have the same Gauss data if μ(K) = μ(K′)
and there exists a bijection g : VR(K) ∪ B(K) → VR(K) ∪ B(K) satisfying the following
conditions:

• g(VR(K)) = VR(K), and g(B(K)) = B(K).
• g preserves the signs of real crossings; S(K)(c) = S(K′)(g(c)) for c ∈ VR(K).
• (a, b) ∈ G(K) if and only if (g∂(a), g∂(b)) ∈ G(K′), where g∂ : V∂R(K) ∪ B∂(K) →

V∂R(K′) ∪ B∂(K′) is the bijection induced from g, i.e., g∂(c( j)) = (g(c))( j) for c ∈
VR(K), 1 ≤ j ≤ 4 and g∂(γ( j)) = (g(γ))( j) for γ ∈ B(K), 1 ≤ j ≤ 2.

Let K be a twisted link diagram and W = W(K) = Cl(R2 \ ∪v∈VR(K)∪B(K)N(v)) as before.
Suppose that K′ is a twisted link diagram with the same Gauss data with K. Then by an
isotopy of R2 we can move K′ such that

• K and K′ are identical in N(v) for every v ∈ VR(K) ∪ B(K),
• K′ has no real crossings and bars in W, and
• there is a bijection between the arcs/loops of K|W and those of K′|W with respect to

the endpoints of the arcs.
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In this situation, we say that K′ is obtained from K by replacing K|W .

Lemma 3.3. Let K and K′ be twisted link diagrams, and let W = W(K) = Cl(R2 \
∪v∈VR(K)∪B(K)N(v)).

(1) If K′ is obtained from K by replacing K|W, then they are related by a finite sequence
of isotopies of R2 with support W and V1, V2, V3, V4, and T1 moves.

(2) If two twisted link diagrams K and K′ have the same Gauss data, then K is equivalent
to K′.

Proof. (1) Let N1,N2, . . . ,Nm be regular neighborhoods of the real crossings and bars
of K. Let a1, a2, . . . , an and a′1, a

′
2, . . . , a

′
n be the arcs/loops of K|W and K′|W respectively.

Using an isotopy of R2 with support W, we may assume that the intersection of a′1 with
a2, . . . , an are transverse double points. The arc/loop a1 is homotopic to a′1 in R2 (relative
to the boundary when a1 is an arc). Taking the homotopy generically with respect to the
arcs/loops a2, . . . , an, and the 2-disks N1,N2, . . . ,Nm, we see that the arc/loop a1 can be
changed into a′1 by a finite sequence of moves as shown in Figure 12 up to isotopy of R2

with support W. Considering that all crossings in Figure 12 are virtual crossings, we regard
these moves as V1, V2, V3, V4, and T1 moves. In this way, we can change a1 into a′1
without changing other arcs/loops of K|W and K′|W . Applying this argument inductively, all
arcs/loops of K|W change into the corresponding ones of K′|W .

Fig.12. Moves on immersed curves.

(2) Moving K by an isotopy ofR2, we may assume that K′ is obtained from K by replacing
K|W . By (1), we obtain the assertion. �

3.2. Braiding process.
3.2. Braiding process. Let O be the origin of R2 and identify R2 \ {O} with R+ × S1 by

polar coordinates, where R+ is the set of positive numbers. Let π : R2 \ {O} = R+ × S1 → S1

denote the radial projection.
For a twisted link diagram K, we denote by VR(K) the set of real crossings, by VB(K)

the set of points on K where bars intersect with, and by X(K) the set of all (real or virtual)
crossings and the set of points on K where bars intersect with.

Definition 3.4. A closed twisted virtual braid diagram is a twisted link diagram K satis-
fying the following conditions (1) and (2):

(1) K is contained in R2 \ {O}.
(2) Let k : 
S1 → R2 \ {O} be the underlying immersion of K, where 
S1 is a disjoint

union of copies of S1. Then π ◦ k : 
S1 → S1 is a covering map of S1 of degree n
which respects the orientations of 
S1 and S1.

A closed twisted virtual braid diagram is good if it satisfies the following condition.
(3) Let N1,N2, . . . ,Nm be regular neighborhoods of the real crossings and bars of K.

Then π(Ni) ∩ π(Nj) = ∅ for i � j.
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Proposition 3.5. Every twisted link diagram K is equivalent, as a twisted link, to a good
closed twisted virtual braid diagram K′ such that K and K′ have the same Gauss data.

Proof. Let K be a twisted link diagram and let N1,N2, . . . ,Nm be regular neighborhoods
of the real crossings and bars of K. Moving K by an isotopy of R2, we may assume that all
Ni are in R2 \ {O}, π(Ni) ∩ π(Nj) = ∅ for i � j and the restriction of K to Ni satisfies the
condition of a closed twisted virtual braid diagram. Replace the remainder K|W(K) such that
the result is a good closed twisted virtual braid diagram K′. Then K and K′ have the same
Gauss data, and by Lemma 3.3 they are equivalent as twisted links. �

The procedure in the proof of Proposition 3.5 makes a given twisted link diagram to a
good closed twisted virtual braid diagram having the same Gauss data with K. This is the
braiding process in our paper.

A point θ of S1 is called a regular value for a closed twisted virtual braid diagram K if
X(K) ∩ π−1(θ) = ∅. Cutting K along the half line π−1(θ) for a regular value of θ, we obtain a
twisted virtual braid diagram whose closure is equivalent to K.

Thus, Proposition 3.5 implies the following.

Theorem 3.6. Every twisted link is represented by the closure of a twisted virtual braid
diagram.

4. The Markov theorem for twisted links

4. The Markov theorem for twisted links
In this section we show a theorem on braid presentation of twisted links which is analo-

gous to the Markov theorem for classical links.
A twisted Markov move of type 0 or a TM0-move is a replacement of a twisted virtual braid

diagram b with another b′ of the same degree such that b and b′ are equivalent as twisted
virtual braids, i.e., they represent the same element of the twisted virtual braid group.

A twisted Markov move of type 1 or a TM1-move is a replacement of a twisted virtual
braid (or its diagram) b with b1bb−1

1 where b1 is a twisted virtual braid (or its diagram) of
the same degree with b. We also call this move a conjugation.

A twisted Markov move of type 1 or a TM1-move may be defined as a replacement of a
twisted virtual braid (or its diagram) b = b1b2 with b′ = b2b1 where b1 and b2 are twisted
virtual braids (or their diagrams) of the same degree. See Figure 13.

Fig.13. A twisted Markov move of type 1 or a TM1-move.

For a twisted virtual braid (or its diagram) b of degree n and non-negative integers s and
t, we denote by ιts(b) the twisted virtual braid (or its diagram) of degree n + s + t obtained
from b by adding s trivial strands to the left and t trivial strands to the right. This defines a
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monomorphism ιts : TVBn → TVBn+s+t.
A stabilization of positive, negative or virtual type is a replacement of a twisted virtual

braid (or its diagram) b of degree n with ι10(b)σn, ι10(b)σ−1
n or ι10(b)vn, respectively.

Fig.14. A twisted Markov move of type 2 or a TM2-move.

A twisted Markov move of type 2 or a TM2-move is a stabilization of positive, negative or
virtual type, or its inverse operation. See Figure 14.

A right virtual exchange move is a replacement

ι10(b1)σ−1
n ι

1
0(b2)σn ←→ ι10(b1)vnι10(b2)vn,

and a left virtual exchange move is a replacement

ι01(b1)σ−1
1 ι

0
1(b2)σ1 ←→ ι01(b1)v1ι01(b2)v1,

where b1 and b2 are twisted virtual braids (or their diagrams). A twisted Markov move of
type 3 or a TM3-move is a right/left virtual exchange move or its inverse operation. See
Figure 15.

Fig.15. A twisted Markov move of type 3 or a TM3-move.

Definition 4.1. Two twisted virtual braids (or their diagrams) are Markov equivalent if
they are related by a finite sequence of twisted Markov moves TM1–TM3 (or TM0–TM3
when we discuss them as diagrams).

Theorem 4.2. Two twisted virtual braids (or their diagrams) have equivalent closures as
twisted links if and only if they are Markov equivalent.

Remark 4.3. In Section 5, it turns out that if two twisted virtual braids (or their diagrams)
is related by a left virtual exchange move then they are related by a sequence of TM1-moves
(or TM0-moves and TM1-moves when we discuss them as diagrams) and a right virtual
exchange move. Thus we may remove left virtual exchange moves from the definition of
Markov equivalence.



580 K. Negi, M. Prabhakar and S. Kamada

Let K and K′ be closed twisted virtual braid diagrams and let b and b′ be twisted virtual
braid diagrams obtained from K and K′ by cutting along π−1(θ) and π−1(θ′) for some regular
values θ and θ′. We say that K′ is obtained from K by a twisted Markov move of type 0 or
a TM0-move if they are equivalent as closed twisted virtual braids. Note that K′ is obtained
from K by a TM0-move if and only if b and b′ are related by a finite sequence of TM0-moves
and TM1-moves. We say that K′ is obtained from K by a twisted Markov move of type 2 or
a TM2-move if b and b′ are related by a TM2-move and some TM1-moves. We say that K′

is obtained from K by a twisted Markov move of type 3 or a TM3-move if b and b′ are related
by a TM3-move and some TM1-moves.

Definition 4.4. Two closed twisted virtual braid diagrams K and K′ are Markov equiva-
lent if they are related by a finite sequence of TM0-, TM2- and TM3-moves.

Proposition 4.5. Two closed twisted virtual braid diagrams K and K′ are Markov equiv-
alent if and only if twisted virtual braid diagrams b and b′ are Markov equivalent, where
b and b′ are obtained from K and K′ by cutting along π−1(θ) and π−1(θ′) for some regular
values θ and θ′.

Proof. For a given closed twisted virtual braid diagram K, b is uniquely determined up to
TM1-moves. Then the assertion is trivial by definition. �

By Proposition 4.5, Theorem 4.2 is equivalent to the following theorem.

Theorem 4.6. Two closed twisted virtual braid diagrams are equivalent as twisted links
if and only if they are Markov equivalent.

To prove Theorem 4.6, we require the following lemma.

Lemma 4.7. Two closed twisted virtual braid diagrams with the same Gauss data are
Markov equivalent.

Proof. Let K and K′ be closed twisted virtual braids with the same Gauss data. Modifying
them by isotopies of R2 \ {O}, we may assume that they are good. Let N1,N2, . . . ,Nm be
regular neighborhoods of the real crossings and bars of K, and N′1,N

′
2, . . . ,N

′
m be regular

neighborhoods of the corresponding real crossings and bars of K′.
Case (I). Suppose that π(N1), π(N2), . . . , π(Nm) and π(N′1), π(N′2), . . . , π(N′m) appear in S1

in the same cyclic order. Modifying K by an isotopy of R2 \ {O} keeping the condition of a
good closed twisted virtual braid, we may assume that N1 = N′1,N2 = N′2, . . . ,Nm = N′m and
the restrictions of K and K′ to these disks are identical. Let a1, . . . , as be the arcs/loops of
K|W and a′1, . . . , a

′
s be the corresponding arcs/loops of K′|W . Let θ ∈ S1 be a regular value for

K and K′ such that π−1(θ) is disjoint from N1∪ · · · ∪Nm. If there exists an arc/loop ai of K|W
such that |ai∩π−1(θ)| � |a′i ∩π−1(θ)|, then move a small segment of ai or a′i toward the origin
O by some V2 moves which are TM0-moves and apply some TM2-moves of virtual type so
that |ai ∩ π−1(θ)| = |a′i ∩ π−1(θ)| after the modification. Thus without loss of generality, we
may assume that |ai ∩ π−1(θ)| = |a′i ∩ π−1(θ)| for all i = 1, . . . , s.

Let k : 
S1 → R2 \ {O} and k′ : 
S1 → R2 \ {O} be the underlying immersions of K
and K′, respectively, such that they are identical near the preimages of the real crossings
and bars. Let I1, . . . , Is be arcs/loops in 
S1 with k(Ii) = ai and k′(Ii) = a′i for i = 1, . . . , s.
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Note that π ◦ k|Ii and π ◦ k′|Ii are orientation-preserving immersions into S1 with π ◦ k|∂Ii =

π ◦ k′|∂Ii . Since ai and a′i have the same degree, so we have a homotopy kt
i : Ii → R2 \ {O}

(t ∈ [0, 1]) of Ii relative to the boundary ∂Ii such that k0
i = k|Ii and k1

i = k|Ii and π ◦ kt
i is

an orientation-preserving immersion. Taking such a homotopy generically with respect to
the other arcs/loops of K|W and K′|W and the 2-disks N1,N2, . . . ,Nm, we see that ai can be
transformed to a′i by a sequence of TM0-moves. Apply this procedure inductively, we can
change a1, . . . , as to a′1, . . . , a

′
s by a sequence of TM0-moves and TM2-moves. Thus we see

that K is transformed into K′ by a finite sequence of TM0 and TM2-moves.
Case (II). Suppose that π(N1), π(N2), . . . , π(Nm) and π(N′1), π(N′2), . . . , π(N′m) do not ap-

pear in S1 in the same cyclic order. It is sufficient to show that we can interchange the
position of two consecutive π(Ni)’s. Suppose that we want to interchange π(N1) and π(N2).

(1) Suppose that N2 is a neighborhood of a real crossing. Figure 16 shows how to inter-
change π(N1) and π(N2) by TM0-moves and TM2-moves.

Fig.16. Interchange the positions of N1 and N2.

(2) Suppose that N2 is a neighborhood of a bar. Figure 17 shows how to interchange π(N1)
and π(N2) by TM0-moves and TM2-moves.

Fig.17. Interchange the positions of N1 and N2.

Applying this argument, we can make π(N1), π(N2), . . . , π(Nm) and π(N′1), π(N′2), . . . ,
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π(N′m) to appear in the same cyclic order on S1 using TM0 and TM2-moves. Then we
can reduce the case to Case (I). �

Proof of Theorem 4.6. If two closed twisted virtual braids (or their diagrams) are Markov
equivalent then they are equivalent as twisted links. Conversely, suppose that K and K′ are
closed twisted virtual braid diagrams which are equivalent as twisted links. There is a finite
sequence of twisted link diagrams, say, K = K0,K1, . . . ,Kn = K′ such that Ki+1 is obtained
from Ki by one of the extended Reidemeister moves.

For each i = 1, . . . , n − 1, Ki may not be a closed twisted virtual braid diagram. Let K̃i

be a closed twisted virtual braid diagram obtained from Ki by the braiding process in the
previous section. We assume K0 = K̃0 and Kn = K̃n. Then for each i = 0, 1, . . . , n, K̃i and Ki

have the same Gauss data. It is sufficient to prove that K̃i and K̃i+1 are Markov equivalent.
It is shown in [9] that K̃i and K̃i+1 are Markov equivalent when Ki+1 is obtained from Ki

by one of R1, R2, R3, V1, V2, V3, and V4. (In [9] virtual links and closed virtual braid
diagrams are discussed. However the argument in [9] is valid in our current situation.)

Thus, it is sufficient to consider the case that Ki+1 is obtained from Ki by a twisted move
T1, T2 or T3.

(1) Let Ki+1 be obtained by Ki from a T1 move. Then Ki and Ki+1 have same Gauss
data, and hence K̃i and K̃i+1 have same Gauss data. By Lemma 4.7, K̃i and K̃i+1 are Markov
equivalent.

(2) Let Ki+1 be obtained by Ki by a T2 move. Assume that a pair of bars in Ki is removed
by the T2 move to obtain Ki+1. Let N be a 2-disk where the T2 move is applied such
that N ∩ Ki is an arc, say α, with two bars and N ∩ Ki+1 is the arc α. Let N1 and N2

be neighborhoods of the two bars such that N1 ∪ N2 ⊂ N. By an isotopy of R2, deform
Ki, α and N such that N ∩ Ki is α with two bars and π|α : α → S1 is an orientation-
preserving embedding. Let K̃′i be a closed twisted virtual braid obtained from the deformed
Ki by applying the braid process in the previous section such that N is pointwise fixed,
and let K̃′i+1 be a closed twisted virtual braid obtained from K̃′i by removing the two bars
intersecting α. Then K̃′i and K̃′i+1 are related by a TM0-move. Since K̃i and K̃′i have the
same Gauss data, they are Markov equivalent. Since K̃i+1 and K̃′i+1 have the same Gauss
data, they are Markov equivalent. Thus K̃i and K̃i+1 are Markov equivalent. The case that a
pair of bars are introduced to Ki to obtain Ki+1 is shown similarly.

(3) Let Ki+1 be obtained from Ki by a T3 move. There are 4 possible orientations for a T3
move, say T3a, T3b, T3c, and T3d as in Figure 18.

First consider the case that Ki+1 is obtained from Ki by a move T3a or T3b. Assume that
Ki is as in the left and Ki+1 is as in the right of Figure 18. Let N be a 2-disk where the move
is applied. Then N ∩ Ki is a pair of arcs, say α1 and α2, intersecting transversely at a real
crossing and there are four bars. Let N1 be a neighborhood of the real crossing of Ki and
N2, . . . ,N5 be neighborhoods of the four bars of Ki in N such that N1 ∪ · · · ∪ N5 ⊂ N. By
an isotopy of R2, deform Ki, α1, α2, and N such that π|α1 : α1 → S1 and π|α2 : α2 → S1

are orientation-preserving embeddings. Let K̃′i be a closed twisted virtual braid diagram
obtained from the deformed Ki by applying the braid process in the previous section such
that N is pointwise fixed, and let K̃′i+1 be a closed twisted virtual braid diagram obtained
from K̃′i by applying a T3a (or T3b) move. Then K̃′i and K̃′i+1 are related by a TM0-move.
Since K̃i and K̃′i have the same Gauss data, they are Markov equivalent. Since K̃i+1 and
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Fig.18. Oriented T3 moves.

K̃′i+1 have the same Gauss data, they are Markov equivalent. Thus K̃i and K̃i+1 are Markov
equivalent. The case that Ki is as in the right and Ki+1 is as in the left of the figure is shown
similarly.

Now consider the case that Ki+1 is obtained from Ki by a move T3c or T3d. Note that
a move T3c (or T3d) is a consequence of a move T3b (or T3a) modulo moves V1, V2,
V3, and V4. One can see this by rotating the two diagrams in T3c (or T3d) by 90 degrees
clockwise. Then the left hand side becomes the same diagram with the left hand side of T3b
(or T3a). The right hand side of T3c (or T3d) after the rotation has a real crossing and no
bars. One can see that the right hand side of T3b (or T3a) also has a real crossing and no
bars. Considering the Gauss data of the tangle in N and applying the same argument to the
proof of Lemma 4.7, we see that the right hand side of T3c (or T3d) after the rotation is
transformed to the right hand side of T3b (or T3a) by V1, V2, V3, and V4 moves in N. Thus
we can reduce the case to T3a (or T3b) and the case of V1, V2, V3, and V4 moves. �

5. On virtual exchange moves of twisted virtual braids

5. On virtual exchange moves of twisted virtual braids
It turns out that if two twisted virtual braids (or their diagrams) are related by a left virtual

exchange move then they are related by a sequence of TM1-moves (or TM0-moves and
TM1-moves) and a right virtual exchange move. Thus we may remove left virtual exchange
moves from the definition of Markov equivalence.

Let fn : TVBn → TVBn be an isomorphism determined by

σi �→ σn−i, for i = 1, . . . , n − 1

vi �→ vn−i, for i = 1, . . . , n − 1

γi �→ γn−i+1, for i = 1, . . . , n.

For a twisted virtual braid diagram b of degree n which is good, we also denote by fn(b) a
twisted virtual braid diagram obtained from the diagram b by applying the above correspon-
dence to the preferred word of b.

Let ∇n be a twisted virtual braid (or its diagram) with
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∇n =

n−1∏
i=1

(vivi−1 . . . v1)
n∏

j=1

γ j.

Let Fn : TVBn → TVBn be an isomorphism determined by

b �→ ∇nb∇−1
n for b ∈ TVBn.

Then ∇2
n = e in TVBn and Fn(b) = fn(b) for b ∈ TVBn. In particular b and fn(b) are related

by a TM1-move (or TM0-moves and TM1-moves when we discuss them as diagrams).

Theorem 5.1. If two twisted virtual braids of degree n (or their diagrams) are related by
a left virtual exchange move, then they are related by a sequence of TM1-moves (or TM0-
moves and TM1-moves) and a right virtual exchange move.

Proof. Let b and b′ be twisted virtual braid diagrams of degree n related by a left virtual
exchange move. Suppose that

b = ι01(b1)σ−1
1 ι

0
1(b2)σ1 and b′ = ι01(b1)v1ι01(b2)v1,

where b1 and b2 are good twisted virtual braid diagrams of degree n − 1. Then

fn(b) = ι10( fn−1(b1))σ−1
n ι

1
0( fn−1(b2))σn and fn(b′) = ι10( fn−1(b1))vnι10( fn−1(b2))vn,

and hence fn(b) and fn(b′) are related by a right virtual exchange move. Since b is conjugate
to Fn(b) = fn(b) as elements of TVBn, and b′ is conjugate to Fn(b′) = fn(b′), we see that b
and b′ are related by a sequence of TM1-moves (or TM0-moves and TM1-moves when we
discuss them as diagrams) and a right virtual exchange move. �

6. A reduced presentation of the twisted virtual braid group

6. A reduced presentation of the twisted virtual braid group
L. Kauffman and S. Lambropoulou [8] gave a reduced presentation of the virtual braid

group. Motivated by their work, we give a reduced presentation of the twisted virtual braid
group. Using the reduced presentation, one can deal with the twisted virtual braid group
with less number of generators and relations.

In this section, we show that the presentation of the twisted virtual braid group TVBn

given in Theorem 2.4 can be reduced to a presentation with n+1 generators and less relations
by rewriting σi (i = 2, . . . , n − 1) and γi (i = 2, . . . , n) in terms of σ1, γ1 and v1, . . . , vn−1 as
follows:

σi = (vi−1 . . . v1)(vi . . . v2)σ1(v2 . . . vi)(v1 . . . vi−1) for i = 2, . . . , n − 1,(18)

γi = (vi−1 . . . v1)γ1(v1 . . . vi−1) for i = 2, . . . , n.(19)

See Figure 19. These can be seen geometrically from their diagrams or algebraically from
(14) and (15).

Theorem 6.1. The twisted virtual braid group TVBn has a presentation whose generators
are σ1, γ1, v1, . . . , vn−1 and the defining relations are as follows:

v2i = e for i = 1, . . . , n − 1;(20)

viv j = v jvi for |i − j| > 1;(21)
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Fig.19. σi and γi.

vivi+1vi = vi+1vivi+1 for i = 1, . . . , n − 2;(22)

σ1(v2v3v1v2σ1v2v1v3v2) = (v2v3v1v2σ1v2v1v3v2)σ1,(23)

(v1σ1v1)(v2σ1v2)(v1σ1v1) = (v2σ1v2)(v1σ1v1)(v2σ1v2),(24)

σ1v j = v jσ1 for j = 3, . . . , n − 1;(25)

γ2
1 = e,(26)

γ1v j = v jγ1 for j = 2, . . . , n − 1;(27)

γ1v1γ1v1 = v1γ1v1γ1,(28)

γ1v1v2σ1v2v1 = v1v2σ1v2v1γ1,(29)

γ1v1γ1σ1γ1v1γ1 = σ1.(30)

In what follows, we refer to relations (3), (4) and (5) or equivalently (20), (21) and (22)
as the virtual relations.

Lemma 6.2 (cf. [8]). Relations (7) follow from relations (18) and the virtual relations.

This lemma is directly seen. The following three lemmas are proved in [8]. So we omit
the proofs.

Lemma 6.3 (Lemma 1 of [8]). Relations (6) follow from relations (18), the virtual rela-
tions, and relations (25).

Lemma 6.4 (Lemma 3 of [8]). Relations (1) follow from relations (18), the virtual rela-
tions, and relations (23) and (25).
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Lemma 6.5 (Lemma 2 of [8]). Relations (2) follow from relations (18), the virtual rela-
tions, and relations (24) and (25).

In the following proofs, we underline the expressions which we focus on.

Lemma 6.6. Relations (8) follow from relations (19), the virtual relations, and relation
(26).

Proof.

γ2
i = (vi−1 . . . v1)γ1(v1 . . . vi−1)(vi−1 . . . v1)γ1(v1 . . . vi−1)

= (vi−1 . . . v1)γ2
1(v1 . . . vi−1)

= (vi−1 . . . v1)(v1 . . . vi−1)

= e. �

Lemma 6.7. Relations (10) follow from relations (19), the virtual relations, and relations
(27).

Proof. Since j � i, i + 1, we consider the following two cases.
Case(i) Suppose j ≤ i − 1. Then i ≥ 2 and we have

viγ j = vi(v j−1 . . . v1)γ1(v1 . . . v j−1)

= (v j−1 . . . v1)viγ1(v1 . . . v j−1)

= (v j−1 . . . v1)γ1vi(v1 . . . v j−1)

= (v j−1 . . . v1)γ1(v1 . . . v j−1)vi
= γ jvi.

Case(ii) Suppose j ≥ i + 2. Then

viγ j = vi(v j−1 . . . v1)γ1(v1 . . . v j−1)

= (v j−1 . . . vi+2vivi+1vivi−1 . . . v1)γ1(v1 . . . v j−1)

= (v j−1 . . . vi+2vi+1vivi+1vi−1 . . . v1)γ1(v1 . . . v j−1)

= (v j−1 . . . vi+2vi+1vivi−1 . . . v1)vi+1γ1(v1 . . . v j−1)

= (v j−1 . . . v1)γ1vi+1(v1 . . . v j−1)

= (v j−1 . . . v1)γ1(v1 . . . vi−1vi+1vivi+1vi+2 . . . v j−1)

= (v j−1 . . . v1)γ1(v1 . . . vi−1vivi+1vivi+2 . . . v j−1)

= (v j−1 . . . v1)γ1(v1 . . . v j−1)vi
= γ jvi. �

Lemma 6.8. Relations (9) follow from relations (19), the virtual relations, and relations
(27) and (28).

Proof. By the previous lemma, we may assume relations (10). It is sufficient to consider
the case of j > i.

γiγ j = (vi−1 . . . v1)γ1(v1 . . . vi−1)(v j−1 . . . v1)γ1(v1 . . . v j−1)
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= (vi−1 . . . v1)γ1(v j−1 . . . v1)(v2 . . . vi)γ1(v1 . . . v j−1) (by (10))

= (vi−1 . . . v1)(v j−1 . . . v2)γ1v1γ1(v2 . . . vi)(v1 . . . v j−1) (by (28))

= (vi−1 . . . v1)(v j−1 . . . v2)v1γ1v1γ1v1(v2 . . . vi)(v1 . . . v j−1)

= (v j−1 . . . v2v1)(vi . . . v2)γ1v1γ1v1(v2 . . . vi)(v1 . . . v j−1)

= (v j−1 . . . v2v1)(vi . . . v2)γ1v1γ1v1(v1 . . . v j−1)(v1 . . . vi−1)

= (v j−1 . . . v2v1)(vi . . . v2)γ1v1γ1(v2 . . . v j−1)(v1 . . . vi−1) (by (10))

= (v j−1 . . . v2v1)γ1(vi . . . v2)v1(v2 . . . v j−1)γ1(v1 . . . vi−1)

= (v j−1 . . . v2v1)γ1v1(v2 . . . v j−1)(vi−1 . . . v1)γ1(v1 . . . vi−1)

= γ jγi. �

Lemma 6.9. Relations (11) follow from relations (18), (19), the virtual relations, rela-
tions (25), (27) and (29).

Proof. By previous lemmas, we may assume relations (6) and (7) or equivalently (14).
First we show (11) when j = 1, i.e., σiγ1 = γ1σi for i � 1. We apply induction on i, with

initial condition i = 2. The relation σ2γ1 = γ1σ2 follows from (18) and (29).
Assuming σiγ1 = γ1σi, we obtain σi+1γ1 = γ1σi+1 as follows:

σi+1γ1 = vivi+1σivi+1viγ1

= vivi+1σivi+1γ1vi

= vivi+1σiγ1vi+1vi

= vivi+1γ1σivi+1vi

= viγ1vi+1σivi+1vi

= γ1vivi+1σivi+1vi

= γ1σi+1.

Hence,

(31) σiγ1 = γ1σi for i � 1.

Now, we show relations (11): σiγ j = γ jσi for j � i, i + 1.
Case(i) Suppose j ≤ i − 1. Then

σiγ j = σi(v j−1 . . . v1)γ1(v1 . . . v j−1)

= (v j−1 . . . v1)σiγ1(v1 . . . v j−1) (by (31))

= (v j−1 . . . v1)γ1σi(v1 . . . v j−1)

= (v j−1 . . . v1)γ1(v1 . . . v j−1)σi

= γ jσi.

Case(ii) Suppose j ≥ i + 2. Then

σiγ j = σi(v j−1 . . . v1)γ1(v1 . . . v j−1)

= (v j−1 . . . vi+2)σi(vi+1 . . . v1)γ1(v1 . . . v j−1)
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= (v j−1 . . . vi+2)vi+1viσi+1vivi+1(vi+1vivi−1 . . . v1)γ1(v1 . . . v j−1)

= (v j−1 . . . vi)σi+1(vi−1 . . . v1)γ1(v1 . . . v j−1)

= (v j−1 . . . vi)(vi−1 . . . v1)σi+1γ1(v1 . . . v j−1) (by (31))

= (v j−1 . . . v1)γ1σi+1(v1 . . . v j−1)

= (v j−1 . . . v1)γ1(v1 . . . vi−1)σi+1(vi . . . v j−1)

= (v j−1 . . . v1)γ1(v1 . . . vi−1)vivi+1σivi+1vi(vivi+1vi+2 . . . v j−1)

= (v j−1 . . . v1)γ1(v1 . . . vi+1)σi(vi+2 . . . v j−1)

= (v j−1 . . . v1)γ1(v1 . . . vi+1)(vi+2 . . . v j−1)σi

= γ jσi. �

Lemma 6.10. Relations (12) follow from relations (19) and the virtual relations.

Proof.

γi+1vi = (vi . . . v1)γ1(v1 . . . vi)vi
= vi(vi−1 . . . v1)γ1(v1 . . . vi−1)

= viγi. �

Lemma 6.11. Relations (13) follow from relations (18), (19), the virtual relations, and
relations (27) and (30).

Proof.

γi+1γiσiγiγi+1 = (vi . . . v1)γ1(v1 . . . vi)(vi−1 . . . v1)γ1(v1 . . . vi−1)(vi−1 . . . v1)(vi . . . v2)

σ1(v2 . . . vi)(v1 . . . vi−1)(vi−1 . . . v1)γ1(v1 . . . vi−1)(vi . . . v1)γ1(v1 . . . vi)

= (vi . . . v1)γ1(v1 . . . vi−1vivi−1 . . . v1)γ1(vi . . . v2)σ1(v2 . . . vi)γ1

(v1 . . . vi−1vivi−1 . . . v1)γ1(v1 . . . vi)

= (vi . . . v1)γ1(vi . . . v2v1v2 . . . vi)γ1(vi . . . v2)σ1(v2 . . . vi)γ1

(vi . . . v2v1v2 . . . vi)γ1(v1 . . . vi)

= (vi . . . v1)(vi . . . v2)γ1v1(v2 . . . vi)(vi . . . v2)γ1σ1γ1(v2 . . . vi)(vi . . . v2)

v1γ1(v2 . . . vi)(v1 . . . vi)

= (vi . . . v1)(vi . . . v2)γ1v1γ1σ1γ1v1γ1(v2 . . . vi)(v1 . . . vi)

= vi(vi−1 . . . v1)(vi . . . v2)σ1(v2 . . . vi)(v1 . . . vi−1)vi
= viσivi. �

Proof of Theorem 6.1. In the twisted virtual braid group, it is verified that all relations
(18)–(30) are valid by a geometrical argument using diagrams or algebraic argument using
the relations (1)–(13). On the other hands, we see that the relations (1)–(13) follow from the
relations (18)–(30) by the previous lemmas. �

Concluding remarks

In this paper we study twisted virtual braids and the twisted virtual braid group, and pro-
vide theorems for twisted links corresponding to the Alexander theorem and the Markov
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theorem. We also provide a group presentation and a reduced group presentation of the
twisted virtual braid group. As future work, it will be interesting to study the pure twisted
virtual braid group and construct invariants for twisted virtual braids and twisted links. For
example, biquandles with structures related to twisted links introduced in [10] may be dis-
cussed by using twisted virtual braids.
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