
Title
ON THE SOLVABILITY OF SOME SYSTEMS OF INTEGRO-
DIFFERENTIAL EQUATIONS WITH THE DOUBLE SCALE
ANOMALOUS DIFFUSION IN HIGHER DIMENSIONS

Author(s) Vougalter, Vitali

Citation Osaka Journal of Mathematics. 2024, 61(4), p.
617-634

Version Type VoR

URL https://doi.org/10.18910/98472

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Vougalter, V.
Osaka J. Math.
61 (2024), 617–634

ON THE SOLVABILITY OF SOME SYSTEMS
OF INTEGRO-DIFFERENTIAL EQUATIONS

WITH THE DOUBLE SCALE ANOMALOUS DIFFUSION
IN HIGHER DIMENSIONS

Vitali VOUGALTER

(Received August 31, 2023, revised October 26, 2023)

Abstract
In the article we establish the existence of solutions of a system of integro-differential equa-

tions in the case of the double scale anomalous diffusion. Each equation of the system con-
tains the sum of the two negative Laplace operators raised to two distinct fractional powers in
R

d, d = 4, 5. The proof of the existence of solutions relies on a fixed point technique. We use
the solvability conditions for the non-Fredholm elliptic operators in unbounded domains.

1. Introduction

1. Introduction
The present article is devoted to the studies of the existence of stationary solutions of the

following system of the integro-differential equations in Rd, d = 4, 5

∂um

∂t
= −Dm[(−Δ)s1,m + (−Δ)s2,m]um +

∫
Rd

Km(x − y)gm(u(y, t))dy + fm(x),(1.1)

where 1 ≤ m ≤ N, 0 < s1,m < s2,m < 1 and
3
2
− d

4
< s2,m < 1 appearing in the cell population

dynamics. The results of the work are obtained in these particular ranges of the values
of the powers of the negative Laplacians, which is based on the solvability of the linear
Poisson type equations (1.13) and the applicability of the Sobolev inequality (1.7) for the
fractional Laplace operator. The solvability of the system analogous to (1.1) containing
a single fractional Laplacian in the diffusion term of each equation was covered in [29].
Note that the space variable x in our problem corresponds to the cell genotype, the functions
um(x, t) describe the cell density distributions for various groups of cells as functions of their
genotype and time,

u(x, t) = (u1(x, t), u2(x, t), ..., uN(x, t))T .

The right side of system (1.1) describes the evolution of cell densities by virtue of the cell
proliferation, mutations and cell influx or efflux. The double scale anomalous diffusion terms
with positive coefficients Dm correspond to the change of genotype due to small random
mutations, and the integral production terms describe large mutations. Functions gm(u) stand
for the rates of cell birth depending on u (density dependent proliferation), and the kernels
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618 V. Vougalter

Km(x − y) express the proportions of newly born cells changing their genotype from y to x.
Let us assume that they depend on the distance between the genotypes. The functions fm(x)
designate the influxes or effluxes of cells for different genotypes.

The fractional Laplace operator describes a particular case of the anomalous diffusion ac-
tively studied in the context of the various applications in plasma physics and turbulence [7],
[24], surface diffusion [19], [22], semiconductors [23] and so on. The anomalous diffusion
can be understood as a random process of the particle motion characterized by the probabil-
ity density distribution of the jump length. The moments of this density distribution are finite
in the case of the normal diffusion, but this is not the case for the anomalous diffusion. The
asymptotic behavior at the infinity of the probability density function determines the value
of the power of the negative Laplacian (see [20]). Weak error for continuous time Markov
chains related to fractional in time P(I)DEs was estimated in [17]. In the present article

we discuss the case of 0 < s1,m < s2,m < 1,
3
2
− d

4
< s2,m < 1, 1 ≤ m ≤ N and d = 4, 5. The

necessary conditions of the preservation of the nonnegativity of the solutions of a system of
parabolic equations in the situation of the double scale anomalous diffusion were obtained
in [13]. In the work [15] the authors consider the simultaneous inversion for the fractional
exponents in the space-time fractional diffusion equation.

We set here all Dm = 1 and demonstrate the existence of solutions of the system of
equations

(1.2) −[(−Δ)s1,m + (−Δ)s2,m]um +

∫
Rd

Km(x − y)gm(u(y))dy + fm(x) = 0,

where 0 < s1,m < s2,m < 1,
3
2
− d

4
< s2,m < 1, 1 ≤ m ≤ N and d = 4, 5. Let us treat the case

when the linear parts of the operators involved in our system fail to satisfy the Fredholm
property. Consequently, the conventional methods of the nonlinear analysis may not be
applicable. We use the solvability conditions for the non-Fredholm operators along with the
method of contraction mappings.

Consider the problem

(1.3) −Δu + V(x)u − au = f ,

where u ∈ E = H2(Rd) and f ∈ F = L2(Rd), d ∈ N, a is a constant and the scalar po-
tential function V(x) is either zero in the whole space or tends to 0 at the infinity. Such
model equation is discussed here in order to illustrate certain features of the problems with-
out the Fredholm property, the techniques used to solve them and the preceding results. If
a ≥ 0, the essential spectrum of the operator A : E → F, which corresponds to the left
side of equation (1.3) contains the origin. Consequently, such operator does not satisfy
the Fredholm property. Its image is not closed, for d > 1 the dimension of its kernel and
the codimension of its image are not finite. The present article deals with the studies of
the certain properties of the operators of this kind. The elliptic equations containing non-
Fredholm operators were studied actively in recent years. Approaches in weighted Sobolev
and Hölder spaces were developed in [2], [3], [4], [5], [6]. The Schrödinger type operators
without Fredholm property were treated with the methods of the spectral and the scattering
theory in [12], [25], [30], [33]. The nonlinear non-Fredholm elliptic equations were covered
in [12], [13], [29], [31], [32], [35]. The significant applications to the theory of reaction-
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diffusion type equations were developed in [9], [10]. Fredholm structures, topological in-
variants and applications were considered in [11]. The works [14] and [21] are important
for the understanding of the Fredholm and properness properties of the quasilinear elliptic
systems of the second order and of the operators of this kind on RN . The non-Fredholm
operators arise also when considering the wave systems with an infinite number of localized
traveling waves (see [1]). In particular, when a = 0 the operator A is Fredholm in some
properly chosen weighted spaces (see [2], [3], [4], [5], [6]). However, the case of a � 0
is significantly different and the method developed in these articles cannot be applied. The
front propagation equations with the anomalous diffusion were treated actively in recent
years (see e.g. [26], [27]).

Let us set Km(x) = εmHm(x), where εm ≥ 0, so that

(1.4) ε := max1≤m≤Nεm, s2 := max1≤m≤N s2,m,

where
3
2
− d

4
< s2 < 1 and assume the following.

Assumption 1.1. Let 1 ≤ m ≤ N, 0 < s1,m < s2,m < 1,
3
2
− d

4
< sm < 1, where d = 4, 5,

the functions fm : Rd → R do not vanish identically for some m, such that

fm ∈ L1(Rd), (−Δ)
3
2−s2,m fm ∈ L2(Rd).

Let us also assume that Hm : Rd → R, so that

Hm ∈ L1(Rd), (−Δ)
3
2−s2,m Hm ∈ L2(Rd).

Moreover,

(1.5) H2 :=
N∑

m=1

‖Hm‖2L1(Rd) > 0

and

(1.6) Q2 :=
N∑

m=1

‖(−Δ)
3
2−s2,m Hm‖2L2(Rd) > 0.

We choose here the space dimensions d = 4, 5. This is related to the solvability conditions
for the linear Poisson type equation (4.1) stated in Lemma 4.1 below. For the practical
applications, the space dimensions are not limited to d = 4, 5, because the space variable
here corresponds to the cell genotype but not to the usual physical space. Let us apply the
Sobolev inequality for the fractional negative Laplacian (see Lemma 2.2 of [16], also [18]),
namely

(1.7) ‖ fm‖
L

2d
d−6+4s2,m (Rd)

≤ cs2,m,d‖(−Δ)
3
2−s2,m fm‖L2(Rd),

with
3
2
− d

4
< s2,m < 1, d = 4, 5 and 1 ≤ m ≤ N. By virtue of the Assumption 1.1 above

along with the standard interpolation argument, we arrive at

(1.8) fm ∈ L2(Rd), d = 4, 5, 1 ≤ m ≤ N.

Let us use the Sobolev spaces for the technical purposes, namely
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(1.9) H2s2,m(Rd) := {φ : Rd → R | φ ∈ L2(Rd), (−Δ)s2,mφ ∈ L2(Rd)},

where
3
2
− d

4
< s2,m < 1, 1 ≤ m ≤ N, d = 4, 5.

Each space (1.9) is equipped with the norm

(1.10) ‖φ‖2
H2s2,m (Rd)

:= ‖φ‖2L2(Rd) + ‖(−Δ)s2,mφ‖2L2(Rd).

For a vector function

u(x) = (u1(x), u2(x), ..., uN(x))T ,

throughout the article we will use the norm

(1.11) ‖u‖2H3(Rd ,RN ) := ‖u‖2L2(Rd ,RN ) +

N∑
m=1

‖(−Δ)
3
2 um‖2L2(Rd),

with d = 4, 5 and

‖u‖2L2(Rd ,RN ) :=
N∑

m=1

‖um‖2L2(Rd).

We recall the Sobolev embedding in Rd, d = 4, 5, namely

(1.12) ‖φ‖L∞(Rd) ≤ ce‖φ‖H3(Rd),

where ce > 0 is the constant of the embedding. When all the nonnegative parameters εm are
trivial, we arrive at the linear Poisson type equations

(1.13) [(−Δ)s1,m + (−Δ)s2,m]um(x) = fm(x), 1 ≤ m ≤ N.

By virtue of Lemma 4.1 below under the stated assumptions each problem (1.13) admits a
unique solution

u0,m ∈ H2s2,m(Rd),
3
2
− d

4
< s2,m < 1, 1 ≤ m ≤ N,

and no orthogonality conditions for the right side of (1.13) are required here. Obviously, for
1 ≤ m ≤ N,

(1.14) [(−Δ)
3
2−s2,m+s1,m + (−Δ)

3
2 ]u0,m = (−Δ)

3
2−s2,m fm ∈ L2(Rd)

via Assumption 1.1. It can be easily derived from (1.14) using the standard Fourier transform
(2.1) that

(−Δ)
3
2 u0,m ∈ L2(Rd), 1 ≤ m ≤ N.

Hence, each linear equation (1.13) possesses a unique solution u0,m ∈ H3(Rd). By means of
the definition of the norm (1.11), we have

u0(x) := (u0,1(x), u0,2(x), ..., u0,N(x))T ∈ H3(Rd,RN).

Let us look for the resulting solution of the nonlinear system of equations (1.2) as

(1.15) u(x) = u0(x) + up(x),
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where

up(x) := (up,1(x), up,2(x), ..., up,N(x))T .

Evidently, we easily obtain the perturbative system of equations

(1.16) [(−Δ)s1,m + (−Δ)s2,m]up,m(x) = εm

∫
Rd

Hm(x − y)gm(u0(y) + up(y))dy,

where 0 < s1,m < s2,m < 1,
3
2
− d

4
< s2,m < 1, 1 ≤ m ≤ N, d = 4, 5.

We introduce a closed ball in our Sobolev space

(1.17) Bρ := {u ∈ H3(Rd,RN) | ‖u‖H3(Rd ,RN ) ≤ ρ}, 0 < ρ ≤ 1.

Let us seek the solution of problem (1.16) as the fixed point of the auxiliary nonlinear system

(1.18) [(−Δ)s1,m + (−Δ)s2,m]um(x) = εm

∫
Rd

Hm(x − y)gm(u0(y) + v(y))dy,

with 0 < s1,m < s2,m < 1,
3
2
− d

4
< s2,m < 1, 1 ≤ m ≤ N, d = 4, 5 in ball (1.17). For a given

vector function v(y) this is a system of equations with respect to u(x). The left side of the
mth equation in (1.18) involves the operator which fails to satisfy the Fredholm property

(1.19) lm := (−Δ)s1,m + (−Δ)s2,m : H2s2,m(Rd)→ L2(Rd), 1 ≤ m ≤ N.

We have (1.19) defined via the spectral calculus. It is the pseudo-differential operator with
the symbol |p|2s1,m + |p|2s2,m , such that for 1 ≤ m ≤ N

lmφ(x) =
1

(2π)
d
2

∫
Rd

(|p|2s1,m + |p|2s2,m)φ̂(p)eipxdp, φ ∈ H2s2,m(Rd),

with the standard Fourier transform defined in (2.1). The essential spectrum of (1.19) fills
the nonnegative semi-axis [0,+∞). Thus, this operator does not have a bounded inverse. The
similar situation appeared in articles [31] and [32] but as distinct from the present case, the
equations studied there required the orthogonality relations. The fixed point technique was
applied in [28] to evaluate the perturbation to the standing solitary wave of the Nonlinear
Schrödinger (NLS) equation when either the external potential or the nonlinear term in the
NLS were perturbed but the Schrödinger operator involved in the nonlinear problem there
had the Fredholm property (see Assumption 1 of [28], also [8]). Let us introduce the closed
ball in the space of N dimensions as

(1.20) I := {z ∈ RN | |z|RN ≤ ce‖u0‖H3(Rd ,RN ) + ce}, d = 4, 5.

Here and below |.|RN will denote the length of a vector in RN . The closed ball DM in the
space of C2(I,RN) vector functions is given by

(1.21) {g(z) := (g1(z), g2(z), ..., gN(z)) ∈ C2(I,RN) | ‖g‖C2(I,RN ) ≤ M},
where M > 0. Here the norms

(1.22) ‖g‖C2(I,RN ) :=
N∑

m=1

‖gm‖C2(I),
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(1.23) ‖gm‖C2(I) := ‖gm‖C(I) +

N∑
n=1

∥∥∥∥∂gm

∂zn

∥∥∥∥
C(I)
+

N∑
n,l=1

∥∥∥∥ ∂2gm

∂zn∂zl

∥∥∥∥
C(I)
,

where ‖gm‖C(I) := maxz∈I |gm(z)|. We make the following technical assumption on the nonlin-
ear part of the system of equations (1.2). From the perspective of the applications in biology,
gm(z) can be, for example the quadratic functions, which describe the cell-cell interactions.

Assumption 1.2. Let 1 ≤ m ≤ N. Suppose that gm : RN → R is such that gm(0) = 0 and
∇gm(0) = 0. We also assume that g ∈ DM and it does not vanish identically in the ball I .

We use the technical Assumptions 1.1 and 1.2 above in the proofs of our main theorems. It
is not clear at the moment if there is a more efficient way to analyze our system of equations
which would enable us to weaken these conditions.
Let us introduce the operator Tg, such that u = Tgv, where u is a solution of the system of
equations (1.18). Our first main statement is as follows.

Theorem 1.3. Let Assumptions 1.1 and 1.2 hold. Then for every ρ ∈ (0, 1] system (1.18)
defines the map Tg : Bρ → Bρ, which is a strict contraction for all

0 < ε ≤ ρ

M(‖u0‖H3(Rd ,RN ) + 1)2 ×
[
H2(‖u0‖H3(Rd ,RN ) + 1)

8s2
d −2d

(d − 4s2)(2π)4S2

( |Sd |
4S2

) 4S2
d

+ Q2
]− 1

2

.(1.24)

The unique fixed point up of this map Tg is the only solution of problem (1.16) in Bρ.

Note that ε, s2, H, Q and S2 are defined in formulas (1.4), (1.5), (1.6) and (2.6). Here
and further down Sd stands for the unit sphere in the space of d = 4, 5 dimensions centered
at the origin and |Sd | denotes its Lebesgue measure.

Clearly, the resulting solution u(x) of the system of equations (1.2) given by (1.15) will not
vanish identically because the influx/efflux terms fm(x) are nontrivial for some 1 ≤ m ≤ N
and all gm(0) = 0 as we assume. Let us make use of the following elementary lemma.

Lemma 1.4. Let R ∈ (0,+∞) and d = 4, 5. We consider the function

ϕ(R) := αRd−4s +
1

R4s ,
3
2
− d

4
< s < 1, α > 0.

It attains its minimal value at R∗ :=
(

4s
α(d − 4s)

) 1
d

, which is given by

ϕ(R∗) =
(
α

4s

) 4s
d d

(d − 4s)
d−4s

d

.

Our second main proposition deals with the continuity of the resulting solution of the sys-
tem of equations (1.2) given by formula (1.15) with respect to the nonlinear vector function
g. Let us use the following positive auxiliary expression

σ := M(‖u0‖H3(Rd ,RN ) + 1) ·
{

H2(‖u0‖H3(Rd ,RN ) + 1)
8s2

d −2d

(d − 4s2)(2π)4S2

( |Sd |
4S2

) 4S2
d

+ Q2
} 1

2

.(1.25)
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Theorem 1.5. Let j = 1, 2, the assumptions of Theorem 1.3 are valid, such that up, j is
the unique fixed point of the map Tg j : Bρ → Bρ, which is a strict contraction for all the
values of ε satisfying (1.24) and the resulting solution of the system of equations (1.2) with
g(z) = g j(z) is

(1.26) u j(x) := u0(x) + up, j(x).

Then for all the values of ε, which satisfy inequality (1.24), the bound

(1.27) ‖u1 − u2‖H3(Rd ,RN ) ≤ εσ

M(1 − εσ)
(‖u0‖H3(Rd ,RN ) + 1)‖g1 − g2‖C2(I,RN )

holds.

Let us turn our attention to the proof of our first main result.

2. The existence of the perturbed solution

2. The existence of the perturbed solution
Proof of Theorem 1.3. We choose arbitrarily a vector function v ∈ Bρ and designate the

terms involved in the integral expressions in the right side of the system of equations (1.18)
as

Gm(x) := gm(u0(x) + v(x)), 1 ≤ m ≤ N.

Let us use the standard Fourier transform throughout the article, namely

(2.1) φ̂(p) :=
1

(2π)
d
2

∫
Rd
φ(x)e−ipxdx, d = 4, 5.

Obviously, the estimate from above

(2.2) ‖φ̂‖L∞(Rd) ≤ 1

(2π)
d
2

‖φ‖L1(Rd)

is valid. We apply (2.1) to both sides of system (1.18) and arrive at

ûm(p) = εm(2π)
d
2

Ĥm(p)Ĝm(p)
|p|2s1,m + |p|2s2,m

,

where 0 < s1,m < s2,m < 1,
3
2
− d

4
< s2,m < 1, 1 ≤ m ≤ N, d = 4, 5. We obtain the expres-

sion for the norm given by

(2.3) ‖um‖2L2(Rd) = (2π)dε2
m

∫
Rd

|Ĥm(p)|2|Ĝm(p)|2
[|p|2s1,m + |p|2s2,m]2 dp.

As distinct from works [31] and [32] with the standard Laplacian in the diffusion term, here
we do not try to control the norms∥∥∥∥∥∥ Ĥm(p)

|p|2s1,m + |p|2s2,m

∥∥∥∥∥∥
L∞(Rd)

, 1 ≤ m ≤ N.

Instead, we estimate the right side of (2.3) using the analog of bound (2.2) applied to func-
tions Hm and Gm with R ∈ (0,+∞) as
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(2π)dε2
m

∫
Rd

|Ĥm(p)|2|Ĝm(p)|2
[|p|2s1,m + |p|2s2,m]2 dp(2.4)

≤ (2π)dε2
m

[ ∫
|p|≤R

|Ĥm(p)|2|Ĝm(p)|2
|p|4s2,m

dp +
∫
|p|>R

|Ĥm(p)|2|Ĝm(p)|2
|p|4s2,m

dp
]

≤ ε2
m‖Hm‖2L1(Rd)

{ |Sd |
(2π)d ‖Gm‖2L1(Rd)

Rd−4s2,m

d − 4s2,m
+
‖Gm‖2L2(Rd)

R4s2,m

}
.

By means of norm definition (1.11) along with the triangle inequality and using the fact that
v ∈ Bρ, we easily derive

‖u0 + v‖L2(Rd ,RN ) ≤ ‖u0‖H3(Rd ,RN ) + 1, d = 4, 5.

Sobolev embedding (1.12) yields

|u0 + v|RN ≤ ce(‖u0‖H3(Rd ,RN ) + 1).

Let the dot stand for the scalar product of two vectors in RN . Clearly,

Gm(x) =
∫ 1

0
∇gm(t(u0(x) + v(x))).(u0(x) + v(x))dt, 1 ≤ m ≤ N.

We use the ball I introduced in (1.20). Hence,

|Gm(x)| ≤ supz∈I |∇gm(z)|RN |u0(x) + v(x)|RN ≤ M|u0(x) + v(x)|RN ,

so that

‖Gm‖L2(Rd) ≤ M‖u0 + v‖L2(Rd ,RN ) ≤ M(‖u0‖H3(Rd ,RN ) + 1).

Evidently, for t ∈ [0, 1] and 1 ≤ m, j ≤ N, we can write

∂gm

∂z j
(t(u0(x) + v(x))) =

∫ t

0
∇∂gm

∂z j
(τ(u0(x) + v(x))).(u0(x) + v(x))dτ.

This implies that

∣∣∣∣∂gm

∂z j
(t(u0(x) + v(x)))

∣∣∣∣ ≤ supz∈I
∣∣∣∣∇∂gm

∂z j

∣∣∣∣
RN
|u0(x) + v(x)|RN ≤

N∑
n=1

∥∥∥∥ ∂2gm

∂zn∂z j

∥∥∥∥
C(I)
|u0(x) + v(x)|RN .

Therefore,

|Gm(x)| ≤ |u0(x) + v(x)|RN

N∑
n, j=1

∥∥∥∥ ∂2gm

∂zn∂z j

∥∥∥∥
C(I)
|u0, j(x) + v j(x)| ≤ M|u0(x) + v(x)|2

RN .

Thus,

(2.5) ‖Gm‖L1(Rd) ≤ M‖u0 + v‖2L2(Rd ,RN ) ≤ M(‖u0‖H3(Rd ,RN ) + 1)2.

This allows us to derive the upper bound for the right side of (2.4) given by

ε2
mM2‖Hm‖2L1(Rd)(‖u0‖H3(Rd ,RN ) + 1)2 ·

{ |Sd |(‖u0‖H3(Rd ,RN ) + 1)2Rd−4s2,m

(2π)d(d − 4s2,m)
+

1
R4s2,m

}
,

with R ∈ (0,+∞). Lemma 1.4 yields the minimal value of the expression above, such that
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‖um‖2L2(Rd) ≤ εm
2M2‖Hm‖2L1(Rd) · (‖u0‖H3(Rd ,RN ) + 1)2+

8s2,m
d

( |Sd |
4s2,m

) 4s2,m
d d

(d − 4s2,m)(2π)4s2,m
.

We define

(2.6)
( |Sd |
4S2

) 4S2
d 1

(2π)4S2
:= max

1≤m≤N

( |Sd |
4s2,m

) 4s2,m
d 1

(2π)4s2,m
,

where
3
2
− d

4
< S2 < 1. Hence, we obtain

‖u‖2L2(Rd ,RN ) ≤ ε2M2H2(‖u0‖H3(Rd ,RN ) + 1)2+ 8s2
d

d
d − 4s2

( |Sd |
4S2

) 4S2
d 1

(2π)4S2
.(2.7)

By means of (1.18),

[(−Δ)
3
2−s2,m+s1,m + (−Δ)

3
2 ]um(x) = εm(−Δ)

3
2−s2,m

∫
Rd

Hm(x − y)Gm(y)dy

with 0 < s1,m < s2,m < 1,
3
2
− d

4
< s2,m < 1, 1 ≤ m ≤ N, d = 4, 5.

We use the standard Fourier transform (2.1), the analog of upper bound (2.2) applied to
function Gm along with (2.5) to derive

‖(−Δ)
3
2 um‖2L2(Rd) ≤ ε2

m‖Gm‖2L1(Rd)‖(−Δ)
3
2−s2,m Hm‖2L2(Rd)

≤ ε2M2(‖u0‖H3(Rd ,RN ) + 1)4‖(−Δ)
3
2−s2,m Hm‖2L2(Rd).

Thus,

(2.8)
N∑

m=1

‖(−Δ)
3
2 um‖2L2(Rd) ≤ ε2M2(‖u0‖H3(Rd ,RN ) + 1)4Q2.

Let us recall the definition of the norm (1.11). Bounds (2.7) and (2.8) give us that

‖u‖H3(Rd ,RN ) ≤ εM(‖u0‖H3(Rd ,RN ) + 1)2 ·
[
H2(‖u0‖H3(Rd ,RN ) + 1)

8s2
d −2d

(d − 4s2)(2π)4S2

( |Sd |
4S2

) 4S2
d

+ Q2
] 1

2

≤ ρ

(2.9)

for all the values of ε, which satisfy (1.24). Hence, u ∈ Bρ as well.
Suppose that for a certain v ∈ Bρ there exist two solutions u1,2 ∈ Bρ of system (1.18).

Clearly, their difference w(x) := u1(x) − u2(x) ∈ H3(Rd,RN) satisfies the homogeneous
system of equations

[(−Δ)s1,m + (−Δ)s2,m]wm(x) = 0,

where 0 < s1,m < s2,m < 1,
3
2
− d

4
< s2,m < 1, 1 ≤ m ≤ N, d = 4, 5.

Each operator lm : H2s2,m(Rd)→ L2(Rd) introduced in (1.19) does not have any nontrivial
zero modes. Thus, w(x) vanishes in Rd. Therefore, problem (1.18) defines a map Tg : Bρ →
Bρ for all ε satisfying bound (1.24).

Our goal is to show that this map is a strict contraction. Let us choose arbitrarily v1, v2 ∈
Bρ. By virtue of the argument above, u1,2 := Tgv1,2 ∈ Bρ as well if ε satisfies (1.24).
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Obviously, by means of (1.18) we obtain for 1 ≤ m ≤ N

(2.10) [(−Δ)s1,m + (−Δ)s2,m]u1,m(x) = εm

∫
Rd

Hm(x − y)gm(u0(y) + v1(y))dy,

(2.11) [(−Δ)s1,m + (−Δ)s2,m]u2,m(x) = εm

∫
Rd

Hm(x − y)gm(u0(y) + v2(y))dy,

with 0 < s1,m < s2,m < 1,
3
2
− d

4
< s2,m < 1, d = 4, 5. We define

G1,m(x) := gm(u0(x) + v1(x)), G2,m(x) := gm(u0(x) + v2(x)), 1 ≤ m ≤ N

and apply the standard Fourier transform (2.1) to both sides of systems (2.10) and (2.11).
This gives us

û1,m(p) = εm(2π)
d
2

Ĥm(p)Ĝ1,m(p)
|p|2s1,m + |p|2s2,m

, û2,m(p) = εm(2π)
d
2

Ĥm(p)Ĝ2,m(p)
|p|2s1,m + |p|2s2,m

.

Evidently,

(2.12) ‖u1,m − u2,m‖2L2(Rd) = ε
2
m(2π)d

∫
Rd

|Ĥm(p)|2|Ĝ1,m(p) − Ĝ2,m(p)|2
[|p|2s1,m + |p|2s2,m]2 dp.

Clearly, the right side of (2.12) can be estimated from above by means of inequality (2.2) as

ε2
m(2π)d

[ ∫
|p|≤R

|Ĥm(p)|2|Ĝ1,m(p) − Ĝ2,m(p)|2
|p|4s2,m

dp +
∫
|p|>R

|Ĥm(p)|2|Ĝ1,m(p) − Ĝ2,m(p)|2
|p|4s2,m

dp
]

≤ ε2‖Hm‖2L1(Rd) ·
{‖G1,m −G2,m‖2L1(Rd)

(2π)d

|Sd |Rd−4s2,m

d − 4s2,m
+
‖G1,m −G2,m‖2L2(Rd)

R4s2,m

}
with R ∈ (0,+∞). Obviously, we can express for 1 ≤ m ≤ N

G1,m(x) −G2,m(x) =
∫ 1

0
∇gm(u0(x) + tv1(x) + (1 − t)v2(x)).(v1(x) − v2(x))dt.

For t ∈ [0, 1], we have

‖v2 + t(v1 − v2)‖H3(Rd ,RN ) ≤ t‖v1‖H3(Rd ,RN ) + (1 − t)‖v2‖H3(Rd ,RN ) ≤ ρ.
Hence, v2 + t(v1 − v2) ∈ Bρ. We easily obtain the upper bound

|G1,m(x) −G2,m(x)| ≤ sup
z∈I
|∇gm(z)|RN |v1(x) − v2(x)|RN ≤ M|v1(x) − v2(x)|RN ,

so that

‖G1,m −G2,m‖L2(Rd) ≤ M‖v1 − v2‖L2(Rd ,RN ) ≤ M‖v1 − v2‖H3(Rd ,RN ).

Let us write
∂gm

∂z j
(u0(x) + tv1(x) + (1 − t)v2(x)) for 1 ≤ m, j ≤ N as

∫ 1

0
∇∂gm

∂z j
(τ[u0(x) + tv1(x) + (1 − t)v2(x)]).[u0(x) + tv1(x) + (1 − t)v2(x)]dτ.

Thus, for t ∈ [0, 1]
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∂z j
(u0(x) + tv1(x) + (1 − t)v2(x))

∣∣∣∣
≤

N∑
n=1

∥∥∥∥∥∥ ∂
2gm

∂zn∂z j

∥∥∥∥∥∥
C(I)

(|u0(x)|RN + t|v1(x)|RN + (1 − t)|v2(x)|RN ),

so that

|G1,m(x) −G2,m(x)| ≤ M|v1(x) − v2(x)|RN

(
|u0(x)|RN +

1
2
|v1(x)|RN +

1
2
|v2(x)|RN

)
.

By virtue of the Schwarz inequality, we derive the estimate from above for the norm ‖G1,m−
G2,m‖L1(Rd) as

M‖v1 − v2‖L2(Rd ,RN )

(
‖u0‖L2(Rd ,RN ) +

1
2
‖v1‖L2(Rd ,RN ) +

1
2
‖v2‖L2(Rd ,RN )

)
(2.13)

≤ M‖v1 − v2‖H3(Rd ,RN )(‖u0‖H3(Rd ,RN ) + 1).

Therefore, the upper bound for the norm ‖u1,m − u2,m‖2L2(Rd) is given by

ε2‖Hm‖2L1(Rd)M
2‖v1 − v2‖2H3(Rd ,RN )

{
(‖u0‖H3(Rd ,RN ) + 1)2|Sd |Rd−4s2,m

(2π)d(d − 4s2,m)
+

1
R4s2,m

}
.

Let us minimize the expression above over R ∈ (0,+∞) using Lemma 1.4, such that

‖u1,m − u2,m‖2L2(Rd) ≤ ε2‖Hm‖2L1(Rd)M
2‖v1 − v2‖2H3(Rd ,RN )

× (‖u0‖H3(Rd ,RN ) + 1)
8s2,m

d

( |Sd |
4s2,m

) 4s2,m
d d

(2π)4s2,m(d − 4s2,m)
.

Then

‖u1 − u2‖2L2(Rd ,RN ) ≤ ε2H2M2‖v1 − v2‖2H3(Rd ,RN )(2.14)

× (‖u0‖H3(Rd ,RN ) + 1)
8s2

d
d

(2π)4S2 (d − 4s2)

( |Sd |
4S2

) 4S2
d

.

By means of (2.10) and (2.11) with 1 ≤ m ≤ N, we have

[(−Δ)
3
2−s2,m+s1,m + (−Δ)

3
2 ](u1,m(x) − u2,m(x))

= εm(−Δ)
3
2−s2,m

∫
Rd

Hm(x − y)[G1,m(y) −G2,m(y)]dy.

Let us use the standard Fourier transform (2.1) along with upper bounds (2.2) and (2.13).
Hence,

‖(−Δ)
3
2 (u1,m − u2,m)‖2L2(Rd) ≤ ε2‖G1,m −G2,m‖2L1(Rd)‖(−Δ)

3
2−s2,m Hm‖2L2(Rd)

≤ ε2M2‖v1 − v2‖2H3(Rd ,RN )(‖u0‖H3(Rd ,RN ) + 1)2‖(−Δ)
3
2−s2,m Hm‖2L2(Rd).

Therefore,
N∑

m=1

‖(−Δ)
3
2 (u1,m − u2,m)‖2L2(Rd) ≤ ε2M2‖v1 − v2‖2H3(Rd ,RN )(‖u0‖H3(Rd ,RN ) + 1)2Q2.(2.15)

Inequalities (2.14) and (2.15) imply that the norm ‖u1 − u2‖H3(Rd ,RN ) can be estimated from
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above by the expression

εM(‖u0‖H3(Rd ,RN ) + 1) ·
{

H2(‖u0‖H3(Rd ,RN ) + 1)
8s2

d −2d

(d − 4s2)(2π)4S2

( |Sd |
4S2

) 4S2
d

+ Q2
} 1

2

‖v1 − v2‖H3(Rd ,RN ).

(2.16)

It can be trivially checked that for all the values of ε satisfying (1.24) the constant in the
right side of (2.16) is less than one. Hence, the map Tg : Bρ → Bρ defined by the system
of equations (1.18) is a strict contraction. Its unique fixed point up is the only solution of
system (1.16) in the ball Bρ. The resulting u ∈ H3(Rd,RN) given by (1.15) solves problem
(1.2). Obviously, by virtue of (2.9), up converges to zero in the H3(Rd,RN) norm as ε → 0.

�

Let us proceed to the proof of the second main proposition of the work.

3. The continuity of the resulting solution

3. The continuity of the resulting solution
Proof of Theorem 1.5. Clearly, for all the values of ε satisfying (1.24)

up,1 = Tg1up,1, up,2 = Tg2up,2,

such that

up,1 − up,2 = Tg1up,1 − Tg1up,2 + Tg1up,2 − Tg2up,2.

Thus,

‖up,1 − up,2‖H3(Rd ,RN ) ≤ ‖Tg1up,1 − Tg1up,2‖H3(Rd ,RN ) + ‖Tg1up,2 − Tg2up,2‖H3(Rd ,RN ).

Upper bound (2.16) gives us

‖Tg1up,1 − Tg1up,2‖H3(Rd ,RN ) ≤ εσ‖up,1 − up,2‖H3(R2,RN ),

where σ is introduced in (1.25). We have εσ < 1 because our map Tg1 : Bρ → Bρ is a strict
contraction under the stated assumptions. Hence,

(3.1) (1 − εσ)‖up,1 − up,2‖H3(Rd ,RN ) ≤ ‖Tg1up,2 − Tg2up,2‖H3(Rd ,RN ).

Evidently, for the fixed point we have Tg2up,2 = up,2. We denote η(x) := Tg1up,2(x). For
1 ≤ m ≤ N, we obtain

(3.2) [(−Δ)s1,m + (−Δ)s2,m]ηm(x) = εm

∫
Rd

Hm(x − y)g1,m(u0(y) + up,2(y))dy,

[(−Δ)s1,m + (−Δ)s2,m]up,2,m(x) = εm

∫
Rd

Hm(x − y)g2,m(u0(y) + up,2(y))dy,(3.3)

with 0 < s1,m < s2,m < 1,
3
2
− d

4
< s2,m < 1, d = 4, 5. Let us designate

G1,2,m(x) := g1,m(u0(x) + up,2(x)), G2,2,m(x) := g2,m(u0(x) + up,2(x)).

We apply the standard Fourier transform (2.1) to both sides of systems (3.2) and (3.3) and
arrive at
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η̂m(p) = εm(2π)
d
2

Ĥm(p)Ĝ1,2,m(p)
|p|2s1,m + |p|2s2,m

, ûp,2,m(p) = εm(2π)
d
2

Ĥm(p)Ĝ2,2,m(p)
|p|2s1,m + |p|2s2,m

.

Then,

‖ηm − up,2,m‖2L2(Rd) = ε
2
m(2π)d

∫
Rd

|Ĥm(p)|2|Ĝ1,2,m(p) − Ĝ2,2,m(p)|2
[|p|2s1,m + |p|2s2,m]2 dp.(3.4)

Let us derive the upper bound on the right side of (3.4) via (2.2) as

ε2
m(2π)d

[ ∫
|p|≤R

|Ĥm(p)|2|Ĝ1,2,m(p)−Ĝ2,2,m(p)|2
|p|4s2,m

dp+
∫
|p|>R

|Ĥm(p)|2|Ĝ1,2,m(p)−Ĝ2,2,m(p)|2
|p|4s2,m

dp
]

≤ε2‖Hm‖2L1(Rd) ·
{ |Sd |

(2π)d

‖G1,2,m−G2,2,m‖2L1(Rd)R
d−4s2,m

d−4s2,m
+
‖G1,2,m−G2,2,m‖2L2(Rd)

R4s2,m

}
,

where R ∈ (0,+∞). Obviously, we can write

G1,2,m(x) −G2,2,m(x) =
∫ 1

0
∇[g1,m − g2,m](t(u0(x) + up,2(x))).(u0(x) + up,2(x))dt.

Hence,

|G1,2,m(x) −G2,2,m(x)| ≤ ‖g1,m − g2,m‖C2(I)|u0(x) + up,2(x)|RN .

This yields

‖G1,2,m −G2,2,m‖L2(Rd) ≤ ‖g1,m − g2,m‖C2(I)‖u0 + up,2‖L2(Rd ,RN )

≤ ‖g1,m − g2,m‖C2(I)(‖u0‖H3(Rd ,RN ) + 1).

Let us use another representation formula with 1 ≤ m, j ≤ N and t ∈ [0, 1], namely

∂

∂z j
(g1,m − g2,m)(t(u0(x) + up,2(x)))

=

∫ t

0
∇
[ ∂
∂z j

(g1,m − g2,m)
]
(τ(u0(x) + up,2(x))).(u0(x) + up,2(x))dτ.

Thus,∣∣∣∣ ∂
∂z j

(g1,m − g2,m)(t(u0(x) + up,2(x)))
∣∣∣∣ ≤ N∑

n=1

∥∥∥∥∥∥∂
2(g1,m − g2,m)
∂zn∂z j

∥∥∥∥∥∥
C(I)
|u0(x) + up,2(x)|RN .

Clearly,

|G1,2,m(x) −G2,2,m(x)| ≤ ‖g1,m − g2,m‖C2(I)|u0(x) + up,2(x)|2
RN ,

so that

‖G1,2,m −G2,2,m‖L1(Rd) ≤ ‖g1,m − g2,m‖C2(I)‖u0 + up,2‖2L2(Rd ,RN )(3.5)

≤ ‖g1,m − g2,m‖C2(I)(‖u0‖H3(Rd ,RN ) + 1)2.

This allows us to obtain the estimate from above for the norm ‖ηm − up,2,m‖2L2(Rd) as

ε2‖Hm‖2L1(Rd)(‖u0‖H3(Rd ,RN ) + 1)2
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× ‖g1,m − g2,m‖2C2(I)

[
(‖u0‖H3(Rd ,RN ) + 1)2 |Sd |Rd−4s2,m

(2π)d(d − 4s2,m)
+

1
R4s2,m

]
.

We minimize this expression over R ∈ (0,+∞) via Lemma 1.4 and arrive at the inequality

‖ηm − up,2,m‖2L2(Rd) ≤ ε2‖Hm‖2L1(Rd)(‖u0‖H3(Rd ,RN ) + 1)2+
8s2,m

d

( |Sd |
4s2,m

) 4s2,m
d d‖g1,m − g2,m‖2C2(I)

(2π)4s2,m(d − 4s2,m)
,

so that

‖η − up,2‖2L2(Rd ,RN ) ≤ ε2H2(‖u0‖H3(Rd ,RN ) + 1)2+ 8s2
d

d‖g1 − g2‖2C2(I,RN )

(d − 4s2)(2π)4S2

( |Sd |
4S2

) 4S2
d

.

By virtue of formulas (3.2) and (3.3) with 1 ≤ m ≤ N, we derive

[(−Δ)
3
2−s2,m+s1,m + (−Δ)

3
2 ]ηm(x) = εm(−Δ)

3
2−s2,m

∫
Rd

Hm(x − y)G1,2,m(y)dy,

[(−Δ)
3
2−s2,m+s1,m + (−Δ)

3
2 ]up,2,m(x) = εm(−Δ)

3
2−s2,m

∫
Rd

Hm(x − y)G2,2,m(y)dy,

where 0 < s1,m < s2,m < 1,
3
2
− d

4
< s2,m < 1, d = 4, 5.

By means of the standard Fourier transform (2.1) along with (2.2) and (3.5), the norm
‖(−Δ)

3
2 (ηm − up,2,m)‖2L2(Rd) can be bounded from above by

ε2‖G1,2,m −G2,2,m‖2L1(Rd)‖(−Δ)
3
2−s2,m Hm‖2L2(Rd)

≤ ε2‖g1,m − g2,m‖2C2(I)(‖u0‖H3(Rd ,RN ) + 1)4‖(−Δ)
3
2−s2,m Hm‖2L2(Rd).

Then
N∑

m=1

‖(−Δ)
3
2 (ηm − up,2,m)‖2L2(Rd) ≤ ε2‖g1 − g2‖2C2(I,RN )(‖u0‖H3(Rd ,RN ) + 1)4Q2.

Therefore,

‖η − up,2‖H3(Rd ,RN ) ≤ ε‖g1 − g2‖C2(I,RN )

× (‖u0‖H3(Rd ,RN ) + 1)2
[
H2(‖u0‖H3(Rd ,RN ) + 1)

8s2
d −2d

(d − 4s2)(2π)4S2

( |Sd |
4S2

) 4S2
d

+ Q2
] 1

2

.

By virtue of (3.1), the norm ‖up,1 − up,2‖H3(Rd ,RN ) can be estimated from above by

ε

1 − εσ (‖u0‖H3(Rd ,RN ) + 1)2 ·
[
H2(‖u0‖H3(Rd ,RN ) + 1)

8s2
d −2d

(d − 4s2)(2π)4S2

( |Sd |
4S2

) 4S2
d

+ Q2
] 1

2

‖g1 − g2‖C2(I,RN ).

Let us use formulas (1.25) and (1.26) to complete the proof of the theorem. �

4. Auxiliary results

4. Auxiliary results
We establish the solvability conditions for the linear Poisson type equation with a square

integrable right side in the situation of the double scale anomalous diffusion

(4.1) [(−Δ)s1 + (−Δ)s2 ]φ(x) = f (x), x ∈ Rd, d = 4, 5, 0 < s1 < s2 < 1.
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This auxiliary statement was proved in the previous work [35] using the standard Fourier
transform (2.1). Let us provide the argument below for the convenience of the readers.

Lemma 4.1. Let 0 < s1 < s2 < 1, f : Rd → R, d = 4, 5 and f ∈ L1(Rd) ∩ L2(Rd). Then
equation (4.1) admits a unique solution φ ∈ H2s2 (Rd).

Proof. It can be trivially checked that if φ ∈ L2(Rd) is a solution of problem (4.1) with a
square integrable right side, it will be contained in H2s2 (Rd) as well. Indeed, if we apply the
standard Fourier transform (2.1) to both sides of (4.1), we obtain

(|p|2s1 + |p|2s2 )φ̂(p) = f̂ (p) ∈ L2(Rd).

Hence, ∫
Rd

[|p|2s1 + |p|2s2 ]2 |̂φ(p)|2dp < ∞.

Clearly, the equality

‖(−Δ)s2φ‖2L2(Rd) =

∫
Rd
|p|4s2 |̂φ(p)|2dp < ∞

holds, so that (−Δ)s2φ ∈ L2(Rd). Let us recall the definition of the norm (1.10). Thus,
φ ∈ H2s2 (Rd) as well.

To establish the uniqueness of solutions for problem (4.1), we suppose that our equation
has two solutions φ1,2 ∈ H2s2 (Rd). Then their difference w := φ1 − φ2 ∈ H2s2 (Rd) solves the
homogeneous problem

[(−Δ)s1 + (−Δ)s2 ]w = 0.

The operator

(−Δ)s1 + (−Δ)s2 : H2s2 (Rd)→ L2(Rd)

does not have any nontrivial zero modes. Therefore, w(x) vanishes in Rd.
Let us apply the standard Fourier transform (2.1) to both sides of equation (4.1). This

yields

(4.2) φ̂(p) =
f̂ (p)

|p|2s1 + |p|2s2
χ{|p|≤1} +

f̂ (p)
|p|2s1 + |p|2s2

χ{|p|>1}.

In formula (4.2) and below χA will denote the characteristic function of a set A ⊆ Rd.
Evidently, the second term in the right side of (4.2) can be estimated from above in the

absolute value by
| f̂ (p)|

2
∈ L2(Rd) due to the one of our assumptions.

The first term in the right side of (4.2) can be bounded from above in the absolute value
by virtue of (2.2) by

(4.3)
‖ f ‖L1(Rd)

(2π)
d
2 |p|2s2

χ{|p|≤1}.

It can be easily verified that expression (4.3) with d = 4, 5 and 0 < s2 < 1 is contained in
L2(Rd). �
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Note that in the auxiliary lemma above we establish the solvability of equation (4.1)
in H2s2 (Rd), d = 4, 5 for all the values of the powers of the fractional Laplace operators
0 < s1 < s2 < 1, such that no orthogonality conditions are needed for the right side f (x).
This is similar to the case when the Poisson type equation is studied with a single fractional
Laplacian in the spaces of the same dimensions (see Theorem 1.1 of [33], also [29]). The
solvability of the problem analogous to (4.1) containing a scalar potential was considered
in [12].

Remark 4.2. The global well-posedness for the integro-differential equations and the sys-
tems of coupled equations of this kind in the context of the double scale anomalous diffusion
can be established via the fixed point technique. This will be accomplished in the consecu-
tive articles.

Remark 4.3. It is strongly believed that the results of the present work can be generalized
to the situation in other dimensions than d = 4, 5 using the similar methods. But the argu-
ment will rely on the different ranges of the powers of the fractional Laplacians involved in
our system.

Remark 4.4. The transport terms will be incorporated in the system discussed in the
following papers. But to generalize the results obtained above one might need to work
within the different ranges of the powers of the fractional Laplacians as well.

Remark 4.5. Solvability of the single integro-differential equation with anomalous diffu-
sion and transport in one dimension was discussed in [34]. These results will be generalized
to the case of the system of the coupled integro-differential equations of this kind using the
analogous ideas in a consecutive article.
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Math. Acad. Sci. Paris 340 (2005), 659–664.

[10] A. Ducrot, M. Marion and V. Volpert: Reaction-diffusion problems with non-Fredholm operators, Adv.
Differential Equations 13 (2008), 1151–1192.

[11] M. Efendiev: Fredholm Structures, Topological Invariants and Applications, AIMS Ser. Differ. Equ. Dyn.
Syst., 3, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2009.

[12] M. Efendiev and V. Vougalter: Linear and nonlinear non-Fredholm operators and their applications, Elec-
tron. Res. Arch. 30 (2022), 515–534.

[13] M. Efendiev and V. Vougalter: On the necessary conditions for preserving the nonnegative cone: double
scale anomalous diffusion, Adv. Math. Sci. Appl. 31 (2022), 197–206.

[14] H.G. Gebran and C.A. Stuart: Fredholm and properness properties of quasilinear elliptic systems of second
order, Proc. Edinb. Math. Soc. (2) 48 (2005), 91–124.

[15] N. Guerngar, E. Nane, R. Tinaztepe, S. Ulusoy and H.W. Van Wyk: Simultaneous inversion for the frac-
tional exponents in the space-time fractional diffusion equation ∂βt u = −(−Δ)

α
2 u − (−Δ)

γ
2 u, Fract. Calc.

Appl. Anal. 24 (2021), 818–847.
[16] H. Hajaiej, X. Yu and Z. Zhai: Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz

norms, J. Math. Anal. Appl. 396 (2012), 569–577.
[17] M. Kelbert, V. Konakov and S. Menozzi: Weak error for continuous time Markov chains related to frac-

tional in time P(I)DEs, Stochastic Process. Appl. 126 (2016), 1145–1183.
[18] E.H. Lieb: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2)

118 (1983), 349–374.
[19] P. Manandhar and J. Jang, G.C. Schatz, M.A. Ratner, S. Hong: Anomalous surface diffusion in nanoscale

direct deposition processes, Phys. Rev. Lett. 90 (2003), 4043–4052.
[20] R. Metzler and J. Klafter: The random walk’s guide to anomalous diffusion: a fractional dynamics ap-

proach, Phys. Rep. 339 (2000), 1–77.
[21] P.J. Rabier and C.A. Stuart: Fredholm and properness properties of quasilinear elliptic operators on RN ,

Math. Nachr. 231 (2001), 129–168.
[22] J. Sancho, A. Lacasta, K. Lindenberg, I. Sokolov and A. Romero: Diffusion on a solid surface: anomalous

is normal, Phys. Rev. Lett. 92 (2004), 250601.
[23] H. Scher and E. Montroll: Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B 12 (1975),

2455–2477.
[24] T. Solomon, E. Weeks and H. Swinney: Observation of anomalous diffusion and Lévy flights in a two-
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