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If H is a closed subgroup of a topological group G it is well-known that
there is a bijection

which is actually a homeomorphism when the mapping space is equipped with
compact-open topology. Homeomorphisms correspond to the subspaces

HomeoG(G/H) ^ NH/H.

Our main purpose is to prove

Theorem. If G is a Lie group and H is a closed subgroup then NH/H is open
in {G/Hf.

In [tD, Ch. IV. 1] Tammo torn Dieck defines a universal additive invariant
U{G) of pointed finite G-CW-complexes for arbitrary topological groups G and
computes it for compact Lie groups. As a corollary we obtain that his result is
valid for arbitrary Lie groups, too.

Corollary. U(G) is a free abelian group on elements u(G/H+) where H runs
through a complete set of conjugacy classes of closed subgroups H in G for any
Lie group G.

The condition

(O) NH/H is open in (G/H)H

was introduced in a study with Wolfgang Liick [LL] in order to define the
equivariant Lefschetz class of a G-endomorphism/: X^> X of a finite G-CW-complex.

The inverse images of the subspaces NH/Ha(G/H)H <^G/H are
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NH={geG\g-1Hg = H} and SH={geG\g'1Hg a H)

and we claim that NH is open in SH, when G is a Lie group. It is well-known
that NH=SH when H is compact. As H is closed in G, both NH and SH are
always closed in G, so that for Lie groups G the fixed point space splits as a
topological sum

H = NH/H+(G/H)>H

The Lie theory we need can be found e.g. in the books Helgason [H, Ch.II] or
Kawakubo [K, Ch.3].

Reduction to a discrete subgroup

Let G be a Lie group and H be a closed subgroup. We first claim that it
suffices to prove the Theorem for all Lie groups G in the case where H is
discrete. Indeed, let Ho denote the unit component of H. Then Ho is a closed
and open subgroup of H and H/H0 = π0(H). If g~1HgaH then g~1HogczH is a
connected set which contains e, whence g~1HogaHo. Then it holds for the Lie
algebras that L(g~ιHog)c:L(Ho\ but as they have the same dimension they must
coincide. By connectedness g~ γHog = Ho and NHc= SHa N(H0). We can therefore
assume that G = N(H0\ i.e. that Ho is normal in G. Then the normalizer of the
discrete subgroup πo(H) = H/Ho of G/Ho is Nπo(H) = NH/Ho, Sπo(H) = SH/Ho and
it clearly suffices to prove the claim for the subgroup πo(H) of G/Ho.

Lie algebra of the centralizer

Let G be a Lie group and let H be a discrete closed subgroup of G. The
centralizer

ZH={geG\ghg-ι=h for heH)

is a closed subgroup of G and is normal in NH for any closed H. When H is
moreover discrete, then it holds (NH)0 = (ZH)0: each ge(NH)0 can be connected to
e by a path gt in NH. The corresponding conjugations cgt:H-* Hgive a homotopy
from cg to ce = ίdH. As // is discrete, the homotopy is constant and therefore
cg = idH, i.e. geZH. We conclude that LNH=LZH.

Recall that the adjoint representation of G in LG is defined by attaching to
an element geG the differential Λd(g)\ LG-+LG of the conjugation cg:G-+G.

Lemma. LZH={XeLG\X=Ad{h)Xfor heH}.

Proof. A closed subgroup H of a Lie group G is itself a Lie group with Lie
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algebra

LH={XeLG\exp(ίX)eH for /eR},

see [H, Theorem II 2.3] or [K, Theorem 3.36]. Hence

LZH={XeLG\exp(tX)eZH for teR}

= {XeLG\φxp{ίX)) = exp(tλ) for heH, teR}

as Ad(h) is the differential of ch, the last set equals to

= {XeLG\exp(tX) = exp(tAd(h)X) for heHjeR)

= {XeLG\X=Ad(h)X for Ae/7}

as ex/? is a diffeomorphism near the origin. This proves the Lemma.

Proof of the Theorem

Let G be a Lie group and let H be a closed discrete subgroup. The quotient

space G/H is then a smooth manifold and the projection π: G —>• G/i/ is a smooth

covering projection. Then the diagrams

Ad{h)

G/H-

exp

>G/H

exp

commute for each heH, where lg: G/H-» G/H is left translation by g and cg\G^G

is conjugation by g. As the exponential map exp is a local diffeomorphism at the

origin 0, exp(0) = e and similarly π is a local diffeomorphism at the unit element

e and π(e) = eH, the composite πexp is a diffeomorphism of a small enough open

disk Uh c= LG onto its image FΛ a G/H. Vh is an open neighborhood of eH and

the diagram

A{d){h)
Ad(h)Uh

πexp πexp

commutes. In paricular U^d{h) is diffeomorphic to V\.

By the Lemma LZH={XeLG\X=Ad(h)X for heH}. As the spaces in ques-

tion are finite-dimensional vector spaces, we can choose a finite set huh2, -,hneH
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such that LZH={XeLG\X=Ad(hi)X for /= 1, -- ,/i}. Let U=f]UiUhi and
V=f]n

i=1 Vhi. The map πexp restricts to a diffeomorphism U-* V, which induces
a diffeomorphism

UnLZH= p)JL j [#«*'> ̂  f|?= 1 *ΐί = J**' - H

Choose U and consequently V is so small that πexp(UnLZH)=Vn(ZH/H)
holds. Then the neighborhood V of the point eH=G/H satisfies

Vn(ZH/H)= Vn(G/H){hl-"'M.

But clearly we have ZH/HczNH/Hcz(G/H)H cz(G/H){hι>hn} so in fact equality

Vn(NH/H)=Vn(G/H)H

holds. Hence NH/H^(G/H)H is open at the point eHeNH/H. Using the left
action of NH/H we see that NH/H is open in (G/H)H. This proves the Theorem.

Proof of the Corollary

Recall torn Dieck's definition of the universal additive invariant of a topological
group G. An additive invariant consists of an pair (2?, b\ B an abelian group and
b an assignement which associates to each pointed finite G-CW-complex X an
element b(X)eB such that b(X) = b(Y) if Xand Fare pointed G-homotopy equivalent
and that the condition

holds when A is a pointed subcomplex of X. An additive invariant (£/, u) is universal
if every other additive invariant factors through it uniquely. A universal additive
invariant is uniquely determined by the usual Grothendieck construction, and it
is denoted by (U{G%u).

It follows by an easy argument that U(G) is always generated by the classes
u(G/H+) [tD, Proposition IV. 1.8]. Although not explicitly stated, the proof that
there are no relations between the classes u(G/H+) uses implicitly the fact that G
is a compact Lie group since it is based on the Euler characteristics χ(XH/NH),
which are guaranteed to exist if G is a compact Lie group since then XH/NH is
a compact ENR but not otherwise (cf. the example given below.)

Let G be a Lie group. Using our Theorem we can alternatively proceed as
follows. As noted in [LL, p. 495], the condition (O) implies that a G-CW-complex
structure on X induces a relative NH/H-CW-complex structure on the pair
(XH,X>H). The quotient (XH/NH,X>H/NH) is then an ordinary relative CW-
complex (possibly non-Hausdorff) whose cells correspond to the G-cells of X of
type G/H. If n(X, //, ΐ) is the number of such /-cells, it follows that the numbers
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^ , H J ) are G-homotopy invariants of X as

n(X9 H) = χ(XH/NH, X> H/NH).

Then (Z,n(X,H)) is an additive invariant such that

n(G/H+

9H)=ln(G/K+

iH) = O for K not conjugate to H.

This proves the Corollary.

Example

We conclude with an example taken from Fuchsian groups. Let G = PSL(2,R)
considered as the group of Mδbius transformations

, . az + b , , 4 , , ^
g(z) = , ad-bc=U a,b,c,deR

cz + d

of the complex plane. Let H be the discrete subgroup of translations

h(z) = z + n, neZ.

Then it is easy to check that the normalizer NH oϊH'mG consists of translations

n(z) = z + b, fteR,

whereas SH equals the affine transformations

, m=l,2, •• ,In particular NH/H is a circle Sι and SH/H=NxSι.
Taking X= G/H gives an example of a finite (j-CW-complex (a zero-cell) with

XH/NH a countable discrete set and therefore of infinite Euler characteristic.
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