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TOPICAL REVIEW
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Abstract
Topology optimization (TO) has emerged as a prominent trend in recent years, driven by its ability
to explore optimized material distributions from scratch. Recently, there has been a significant shift
in the application of TO, in optimizing systems involving complex electrochemical reactions,
particularly electrode porous structures. This paper aims to examine the utilization of TO in
enhancing electrodes across various electrochemical energy devices (EEDs). It encompasses a
broad spectrum of applications, including the optimization of porous electrodes through the
density-based method and interfaces between electrodes and electrolytes through the level-set
method. The paper will delve into the challenges and opportunities associated with employing TO
in electrode design for EEDs. These challenges involve addressing computational complexity, the
absence of theoretical foundations for optimized structures, and the fabrication of complex
structures for practical real-world applications. Additionally, beyond TO, the paper will spotlight
other notable techniques in the structural design of porous electrodes using mathematical
optimization. By offering insights into state-of-the-art research and developments in TO’s
application to electrode design, this paper provides researchers with valuable resources to navigate
the evolving landscape of electrode design for EEDs.

1. Introduction

With energy production being a major contributor to greenhouse gas emissions, electrochemical energy
storage and conversion systems are critical components in the global shift towards renewable energy
adoption. One of the primary challenges in this transition stems from the intermittent nature of renewable
energy sources, such as solar and wind power. While electricity can be generated efficiently from these
sustainable resources, its production is subject to variations in weather conditions and daylight hours.
Consequently, this intermittent availability poses limitations and uncertainties on a continuous and stable
supply of energy. To address this challenge, electrochemical energy storage and conversion systems serve as
vital solutions. These systems enable the efficient storage of excess energy generated during periods of high
production, subsequently distributing it during times of low generation or high demand. The incorporation
of electrochemical energy devices (EEDs), such as batteries and fuel cells, can enhance the reliability of
renewable energy sources by mitigating the dependence on external factors like weather patterns. This
improvement can take various forms, including but not limited to the storage of electricity through
secondary batteries, the conversion of chemical energy stored in molecular bonds into electricity, as observed
in fuel cells, or the utilization of surplus electricity to produce energy carrier substances and other valuable
fuels or compounds, such as through water or carbon dioxide electrolyzers. In essence, these systems provide
a means to bridge the gap between energy supply and demand, thereby facilitating the integration of
renewable energy into the mainstream power grid. In addition to stationary applications, certain EEDs,
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Figure 1. Schematic diagram showing the components of EEDs including (a) polymer electrolyte fuel cells, (b) lithium-ion
batteries, (c) redox flow batteries, and (d) proton exchange membrane water electrolyzers.

exemplified by lithium-ion batteries, have found increasing utility in the transportation sector, particularly in
electric vehicles. As a result, electrochemical energy storage and conversion technologies play a pivotal role in
enabling a sustainable and resilient energy future.

EEDs comprise various components that depend on their specific type and application. However, they all
share a critical component, the ‘electrode’, which typically functions as a porous medium composed of one or
several materials. Schematics of various EEDs with their components are shown in figure 1. The performance
and lifespan challenges in EEDs are particularly associated with their electrodes, where essential
electrochemical reactions occur alongside various transport phenomena. These phenomena include the
transfer of mass, momentum, heat, and charge, all of which are critical for the device’s overall performance.
Electrodes serve as the interfaces where electrochemical reactions take place, converting chemical energy into
electrical energy (and vice versa) or breaking chemical bonds using electricity. However, achieving optimal
electrode performance requires comprehensive understanding of complex interactions between the materials
used, the design of the electrode structure as well as other components, and the dynamics of transport and
rate processes within the device. To drive widespread adoption of EEDs in commercial applications, several
key objectives must be addressed. First, there is a need to reduce the fabrication costs associated with
electrode materials and manufacturing processes. This involves finding cost-effective materials and
production methods without compromising performance or durability. Furthermore, there is a continuous
push to enhance the overall performance of EEDs. This includes increasing energy efficiency and capacity,
power output, and stability while minimizing losses and degradation over time. Improving electrode design
and optimizing material properties are crucial aspects of achieving these performance enhancement
requirements. Lastly, extending the operational lifespan of EEDs is paramount for their practical utility and
economic viability. This involves developing electrode materials and configurations that can withstand
prolonged operation under various operating conditions without significant degradation or loss of
performance. Addressing the challenges associated with electrodes in EEDs requires a multidisciplinary
approach that integrates materials science, engineering, and electrochemistry.
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Given the pivotal role of electrodes in these devices, one of the key challenges in improving electrode
performance lies in minimizing irreversible losses that are attributed to the transport phenomena and
electrochemical reactions. Irreversible losses can result from various factors, including overpotentials,
electrical resistance in the electrode materials, sluggish mass transport, and side reactions that consume
energy without contributing to the desired output. To address these challenges and improve electrode
performance, a direct approach involves redesigning the electrode structure to minimize these irreversible
losses. This can include optimizing the material, composition, and morphology of the electrode to enhance
their electrochemical activity and transport properties while mitigating undesirable side reactions and other
phenomena. By focusing on minimizing irreversible losses in electrodes, researchers aim to maximize the
efficiency and overall performance of EEDs.

In the quest to enhance the performance of EEDs, researchers have explored various avenues, including
the synthesis of novel materials [1–3] and modification of electrodes [4–7]. However, despite these strides,
many previous studies [8–10] have relied on a trial-and-error approach to optimize electrode performance.
In this methodology, researchers systematically test different materials, configurations, or fabrication
techniques to identify optimal conditions for device operation. While this approach has yielded valuable
insights and incremental improvements, it can be time-consuming, resource-intensive, and limited in its
ability to explore the full design space for a broad range of applications and operational conditions.
Moreover, this approach primarily relies on the researcher’s intuition and experience, potentially limiting the
exploration of design solutions that may not be readily realizable. As a result, there is a growing recognition
of the need for more systematic and efficient approaches to electrode design and optimization. By leveraging
computational modeling and simulation, advanced characterization techniques, and optimization
algorithms, researchers aim to accelerate the discovery and development of high-performance electrode
materials and structures. These approaches allow for a more comprehensive exploration of the design space,
enabling researchers to identify optimal design solutions more effectively while minimizing the need for
extensive experimental testing. Furthermore, by integrating computational modeling with experimental
validation, researchers can gain deeper insights into the underlying mechanisms governing multiphysics
phenomena occurring in electrodes at nano to macro-scales. This synergistic approach enables researchers to
develop a more fundamental understanding of electrochemical processes and design principles, leading to
the development of next-generation EEDs with enhanced performance and functionality.

Topology optimization (TO) has emerged as a systematic bottom–up design approach in material
informatics, allowing for the spatial redistribution of materials to achieve enhanced structural performance
within a specified design domain [11]. It is defined as a computational method for optimizing material
distribution within a defined design space to achieve the best possible performance while meeting specific
constraints. While TO has been successfully applied to address various physical challenges in engineering and
design [12–18], its application in optimizing systems involving complex (electro-) chemical reactions,
particularly in the realm of electrochemistry, has presented ongoing challenges. In the domain of EEDs, TO
has previously been utilized for optimizing the design of components such as flow channels [19–21], cooling
plates [22–25], and end plates [26–29]. However, recent years have witnessed a notable shift in focus towards
the application of TO in the design of porous electrodes across various EEDs. The adoption of TO for porous
electrode design represents a departure from traditional approaches and opens up new possibilities for
enhancing the performance of EEDs that was not possible through conventional methods. By systematically
reshaping the microstructure of porous electrodes, TO offers the potential to optimize key transport and rate
properties such as effective mass diffusivity, charge conductivity, and electrochemical reactive surface area.
This shift in approach reflects a growing recognition of the importance of electrode design in determining
overall device performance and efficiency. The adoption of TO in porous electrode design represents a
promising avenue for advancing the field of electrochemical energy conversion and storage. By leveraging the
principles of material informatics and systematic design optimization, researchers aim to unlock new
insights into the fundamental relationships between electrode microstructure, electrochemical performance,
and device efficiency.

This review seeks to provide a comprehensive examination of the utilization of TO in the design and
enhancement of electrodes across various EEDs such as secondary batteries, fuel cells, electrolyzers, and
capacitors. These devices are pivotal in the storage, conversion, and utilization of energy. Throughout the
article, as outlined in figure 2, we will delve into diverse applications of TO in electrode design, encompassing
areas like the optimization of porous electrodes and the interfaces between electrodes and electrolytes.
Additionally, the present review will explore the challenges and opportunities associated with applying TO in
EEDs electrode design. These challenges include managing computational complexity, addressing the lack of
theoretical underpinning for optimized structures, and overcoming obstacles in fabricating complex
structures for real-world practical applications. Moreover, beyond TO, we will also highlight some other
noteworthy techniques in the structural design of porous electrodes based on mathematical optimization.
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Figure 2. An illustration summarizing the organization of this review (Reproduced from [30], Copyright (2019), with permission
from IOP Publishing; Reproduced from [31], with permission from Springer Nature; Reprinted from [32], Copyright (2023),
with permission from Elsevier; Reprinted from [33], Copyright (2023), with permission from Elsevier; Reproduced from [34].
CC BY 4.0; Reprinted from [35], Copyright (2023), with permission from Elsevier).

The aim is to offer insights into cutting-edge research and developments in TO’s application to electrode
design, providing researchers with valuable resources to navigate the evolving landscape of EEDs.

2. Topology optimization

TO is a computational technique employed for the automated creation of an optimal structural layout,
achieved by identifying the most efficient spatial allocation of material across a predetermined design space
[11, 12]. The primary objective of TO is to enhance the performance of a structure, adhering to prescribed
design specifications and constraints. Though both fall under the umbrella of layout optimization, TO adopts
a more radical approach compared to shape optimization. Unlike shape optimization, which refines an
existing design by adjusting its boundaries while preserving the overall layout, TO transcends this limitation.
It treats the design space as a vast, unexplored territory, employing computational algorithms to identify the
optimal layout from scratch [36]. This allows TO to potentially discover entirely new configurations that may
not have been conceived with traditional approaches. Essentially, TO entails iteratively modifying the
material allocation within a designated design space to optimize structural performance. Through the
elimination of material from non-essential zones and its redistribution to critical areas, the design is refined
to fulfill performance goals, such as weight reduction, stiffness maximization, or stress concentration
minimization. In the field of porous electrodes, these goals may extend to other factors beyond mechanical
properties. These factors include but are not limited to high reactive surface area, electrical charge
conductivity, and hydraulic permeability, which ultimately contribute to the overall performance of EEDs.

TO originates from structural engineering and computational mechanics. The concept of enhancing
structural efficacy by optimizing material distribution emerged in the latter part of the 20th century [12]. An
important contribution to contemporary TO methodologies is evident in the work of Bendsøe and Kikuchi,
documented in their publication of 1988 [37]. In this paper, Bendsøe and Kikuchi pioneered the application
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of homogenization techniques to generate optimal structural topologies. This work represented a notable
progression in structural optimization, showcasing the viability of optimizing material configurations to
attain enhanced structural integrity. Building on this foundational work, subsequent researchers advanced
the theoretical framework, methodological approaches, and application domains of TO. The integration of
mathematical optimization techniques, sophisticated algorithms, and computational advancements
empowered engineers and designers to explore unconventional material distributions and generate
high-performing structural designs. Consequently, the application of TO has proliferated across diverse
problems, such as mechanical [12], chemical [33], thermal [13, 38], fluid [16], microfluidics [36], and
acoustic [39] systems. The potential of TO to automate design processes and generate structurally efficient
solutions has established it as an indispensable tool for engineers seeking to optimize performance through
improved structural designs. As research efforts and computational methods continue to mature, the field of
TO undergoes continuous evolution, unveiling novel avenues for structural optimization and fostering
advancements in structural efficiency and design innovation.

The field of TO has witnessed significant advancements, with researchers introducing diverse strategies
for optimizing structural configurations. Existing literature can be categorized based on various criteria,
including parameterization methods, system modeling, optimization algorithms, and design update
schemes, each offering advantages and drawbacks. Given the wide variety of TO approaches, we briefly
introduce the main techniques used for electrode design. Interested readers may refer to previously published
comprehensive reviews [11, 12, 40–43] for more details on mathematical and algorithmic foundations of TO.
It is noteworthy that these reviews primarily focus on compliance optimization in mechanical design
problems, such as the classical Messerschmitt–Bölkow–Blohm beam and cantilever beam. In contrast,
optimizing electrode structures involves multi-physics systems that integrate various physical and chemical
phenomena, presenting challenges beyond the mathematical aspects of TO, which is the focus of the present
paper. Selecting the appropriate TO framework hinges on factors like problem formulation, geometric
complexity, relevant physical phenomena, and chosen models for performance evaluation. Design
parameterization refers to the method used to establish the connection between design variables and the
resulting physical properties [44]. Two dominant approaches include density-based and level-set methods.
Bendsøe and Kikuchi [37] introduced the concept of numerical homogenization, aiming to modify the
internal topology for achieving anisotropic material properties instead of solely focusing on boundary
variations. This approach leverages homogenization theory, which estimates the effective material properties
at a macroscopic level by treating the material as a uniform medium [12]. It is important to note, as pointed
out in [12], that the terms ‘micro’ and ‘macro’ scales within this context are used comparatively and do not
correspond to specific length scales (such as ‘microscale’ or ‘microstructure’ typically referring to sizes less
than 1 mm). Following homogenization, a density-based method represented by solid isotropic material
with penalization (SIMP) was introduced [45]. Density-based TO is a technique that modifies the density of
elements within a fixed finite element mesh, using an interpolation function to adjust mechanical properties
and determine the optimal distribution of solid and void material. SIMP, the most commonly used version of
density-based TO, seeks to find the optimal material distribution based on an auxiliary density function
assigned to each discrete element of the design domain, with values ranging from zero to one. Here, a density
ρ= 1 and ρ= 0 represent solid and void phases, respectively. Intermediate density values (0< ρ < 1)
correspond to fictitious materials with properties (e.g. Young’s modulus in mechanics or thermal
conductivity in heat transfer) lying between those of solid and void phases. While these ‘gray elements’ lack
an explicit physical interpretation, the introduction of a continuous density function significantly simplifies
the mathematical calculations by transforming the problem from an integer-based to a continuous
formulation. It is crucial to remember that the material properties within each element are assumed to be
homogeneous, even though the overall (global) material behavior exhibits heterogeneity throughout the
entire design domain due to the varying density distribution. Although the properties of the solid and void
phases are known, SIMP interpolation, i.e. a power-law relationship, is employed to estimate the properties
of these intermediate-density elements. The penalized material density can then be defined as:

ρpenalized = ρmin +(1− ρmin)ρ
p (1)

where ρpenalized is the penalized density, ρmin is minimum penalized density, and p is a penalty exponent. It is
noteworthy that while the penalized density can theoretically reach zero, introducing a minimum penalized
density is often necessary for numerical stability during optimization. The penalty exponent, p, plays a crucial
role in steering the optimizer towards assigning either solid or void densities (ρ= 0 or 1). By increasing the
cost associated with intermediate densities, the penalty term discourages the formation of ‘gray elements.’ In
other words, assigning a partial density leads to higher material usage without a significant improvement in
beneficial properties like mechanical stiffness. Consequently, the optimizer prioritizes assigning densities
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close to either zero or one, ultimately leading to a clear distinction between solid and void regions within the
design. The effective material properties in each element as a function of penalized density is given by [44]:

λeff = λmin +(λmax −λmin)ρpenalized (2)

in which λmin and λmax are minimum and maximum values of physical properties, corresponding to the void
and solid phases. Other interpolation schemes with similar principles exist, such as rational approximation
of material properties and Darcy [46–48]. Porous electrodes in EEDs typically comprise multiple phases. For
instance, carbon fiber electrodes contain a carbon phase and voids, while fuel cell catalyst layers involve a mix
of catalyst material, support material, polymer binder, and voids. Extensive research has explored the
connection between electrode microstructure and key properties like catalytic activity, mass diffusivity,
reactive surface area, and permeability. These studies employ experimental, numerical, and theoretical
approaches to establish correlations linking macroscopic material characteristics (e.g. volume fraction of
each phase or porosity) to bulk material properties [49–58]. A prominent example is the Bruggeman
equation, which relates tortuosity and porosity based on effective medium theory [52]. Despite their
limitations, assuming these established relationships hold true at the microscopic (element) level, and
considering that each element is isotropic and homogeneous, existing correlations could be leveraged for
topological optimization of electrode microstructure instead of SIMP.

While density-based TO is popular due to its broad applicability and ability to avoid re-meshing during
optimization, it struggles to capture intricate interface shapes between different phases. Level-set
parameterization methods address this limitation by representing the structure’s geometry with a level-set
function. Unlike traditional explicit boundary representations, where the geometry is explicitly defined, the
level-set method utilizes a higher-dimensional function, the level set function. This scalar function
mathematically defines the interface between various materials or phases within the design space [59]. Each
point in the design domain receives a value from the level-set function, with positive values indicating one
material (e.g. solid), negative values indicating another (e.g. void), and zero representing the exact location
of the interface, as expressed by: 

Φ (x)> 0; x ∈ Ω
Φ (x) = 0; x ∈ ∂Ω
Φ (x)< 0; x ∈ D\Ω

(3)

where Φ is the level-set function, x represent any point in the design domain, and D, Ω, and ∂Ω are the
design domain, material domain, and the interface between the two phases, respectively. By cleverly
manipulating this level set function, the method can track the interface’s motion implicitly. This method
excels at capturing sharp boundaries and complex interfaces between materials, making it ideal for problems
in which performance hinges on interfacial properties or behavior. This approach offers significant
advantages by decoupling the representation of the geometry from its topology, allowing for seamless
handling of complex topological changes such as merging, splitting, or evolving boundaries [60]. Moreover,
the use of an implicit representation allows for easy incorporation of shape optimization techniques, offering
designers and engineers a versatile toolset for achieving optimal geometric configurations tailored to specific
design objectives [59]. However, the final design obtained from this method can be significantly influenced
by the initial configuration provided [44]. The level set method’s inherent numerical stability and avoidance
of mesh-dependent spatial oscillations, such as staircasing, further enhance its applicability in diverse
engineering domains [59]. Regardless of the chosen parameterization method, all TO procedures rely on
optimization algorithms to update design solutions. Updating design solutions involve evolution of either
density or level-set function through an algorithmic procedure. These algorithms can be gradient-based,
such as Method of Steepest Descent [61], sequential linear programming [62], method of moving
asymptotes (MMA) [63], globally convergent MMA [64]. Alternatively, derivative-free methods [65], such as
evolutionary algorithms [66] can be employed. While evolutionary structural optimization (ESO) methods
are not the focus of this review, it is worth mentioning that these approaches are often computationally
expensive and may get stuck in local optima.

Gradient-guided TO involves an iterative process, akin to other optimizations. The optimization process
begins with defining the problem and formulating the objective function. The primary optimization loop
then starts with an initialization step, where an initial design is created. Subsequently, the objective function
value is assessed, typically as a function of one or multiple state variables, necessitating the solution of a set of
governing equations constituting the mathematical model. Researchers employ various modeling and
simulation techniques to describe system behavior, such as the finite element method, finite volume method,
and lattice Boltzmann method (LBM). Upon solving the state equations and obtaining the values of state
variables, the objective function is determined. Next, a sensitivity analysis is performed to evaluate the
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gradient of the objective function with respect to the design variables (e.g. material densities), often
employing variational calculus methods such as the adjoint state method [67]. Subsequent to sensitivity
analysis, regularization techniques [59, 68] may be employed to address issues such as the checkerboard
pattern problem [11, 69, 70], eliminate numerical artifacts, and to promote convergence and smooth
solutions. The design variables are then updated utilizing the optimizer and the sensitivity information. This
iterative process continues until a convergence criterion, such as a maximum number of iterations, is met. It
is worth noting that, as with any optimization problem, the initial configuration (initialization step of
optimization) and model boundary conditions play a critical role in shaping the optimization process. An
unsuitable initialization may cause the method to converge slowly or get trapped in a local optima. Similarly,
improper boundary conditions can lead to unrealistic or unphysical outcomes. To minimize these risks,
sensitivity analysis can be conducted to assess how different initial configurations and boundary conditions
influence the results. This involves running the optimization with various initial shapes (layouts) and
boundary conditions to observe their impact on the final solution. Such analysis helps ensure that the results
are robust and not overly dependent on arbitrary choices of conditions.

Although not within the scope of this paper, other TO approaches are worth noting, including ESO [71],
bi-directional ESO (BESO) [71], moving morphable component (MMC) [72], and moving morphable void
(MMV) [73]. ESO optimizes structures by progressively removing elements with the least stress. BESO
extends this by also adding new elements in high-stress areas, allowing for improvements from both
directions. MMC and MMV, based on explicit Lagrangian descriptions, are dual methods. MMC uses
adaptable components that can move, change shape, overlap, and merge, facilitating precise geometric
designs and complex structures. In contrast, MMV employs voids to refine the topology. Both methods use
geometric approaches to optimization, reviving classical shape optimization techniques.

3. Topology optimization for electrodes of EEDs

In the preceding section, we discussed two primary methodologies employed in TO, namely level-set and
density-based approaches. In the realm of porous electrode design, level-set methods have been prevalent in
studies examining the influence of interfacial boundaries between different phases (e.g. electrode–electrolyte
interface shape). In this case, interfaces between material phases are defined implicitly by iso-contours of a
level-set function. This implicit function provides a clear description of the boundaries, enhancing the
accuracy of the response captured near the boundaries and eliminating ambiguities associated with
intermediate material phases encountered in density-based approaches. Consequently, the chosen
mathematical model should be capable of capturing the specific phenomena under investigation, particularly
how structural changes impact those phenomena. Density-based methodologies, on the other hand, find
application in scenarios where optimization of macroscopic properties distribution—such as porosity or
solid volume fraction—is the focal point. As previously mentioned, density-based methods describe the
layout through a set of material distribution functions, comprising two or more phases, with one phase
typically representing ‘no material’ (i.e. the void phase). This material distribution is often discretized using
element-wise constant or nodal shape functions. The following subsections review previous works that
utilize these two approaches for structural design of porous electrodes in EEDs.

3.1. Level-set methods
The initial investigations in the area of electrode optimization focused on employing structural TO using
level-set methods. This can be traced back to 2011 (see figures 3(a)–(c)) when Iwai et al [74] conducted
optimization based on level-set techniques to explore the optimized cathode-electrolyte interface of solid
oxide fuel cells (SOFCs) at meso-scale. The authors used a 2D model of a SOFC to find the best design for
maximizing current density at a fixed voltage level. Their simulation included the entire cell: the anode,
electrolyte, and cathode. These components were 300 microns long (through-plane direction) and
50 microns wide (in-plane direction). However, they only optimized the design of a smaller rectangular area
within the cathode and electrolyte, measuring 150 microns long by 50 microns wide. They discovered that a
non-flat wavy design of the cathode-electrolyte interface led to improved performance compared to the
conventional flat interface as seen in figure 3(a). This figure depicts the changes of interface shape throughout
the optimization process. As shown in figure 3(a), the initial interface had a step-like rectangular shape;
however, the optimizer favored a more curved form in the final step. The optimal interface shape, however,
depends on the simulation conditions. Their findings suggest that a flatter interface is preferable when gas
diffusion resistance within the cathode is higher. Although the fabricated interface did not precisely match
the optimized design obtained from mathematical optimization (see figure 3(b)), preliminary experiments
involving the modification of the interface, such as fabricating grooved electrodes (a structure similar to the
optimized results to some extent), demonstrated enhanced performance compared to electrodes with a flat
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Figure 3. Examples of applying topology optimization based on level-set techniques to optimize the electrode/electrolyte interface
in EEDs. Schematics and images show (a) the evolution of the cathode/electrolyte interface of a solid oxide fuel cell during the
optimization process, (b) a cross-section view of the cathode/electrolyte interface with small and large grooves, (c) a comparison
of IV performance curves of cells with grooved and flat electrolytes (Reprinted from [74], Copyright (2011), with permission
from Elsevier); (d) a schematic illustration of a 3D-microbattery considered in the study of applying the level-set method with
topology optimization, (e) the evolution of the electrode/electrolyte interface of the 3D-microbattery during the optimization
process, (f) discharge curves of cells with optimized and non-optimized electrode/electrolyte interfaces at various current
densities, where dashed lines represent the non-optimized interface and solid lines represent the optimized interface (Reprinted
from [75], Copyright (2013), with permission from Elsevier); (g) a schematic illustration of the solid oxide fuel cell considered in
the study of applying the level-set method with topology optimization representing the anode electrode–electrolyte interface, (h)
the evolution of the anode/electrolyte interface of a solid oxide fuel cell during the optimization process, and (i) the convergence
history of the optimization (Reproduced from [30]. © 2019 The Electrochemical Society. All rights reserved).

interface. As illustrated in figure 3(b), two configurations with varying groove sizes—small and large—were
fabricated, both with an overall thickness of 500 microns. Figure 3(c) compares the experimental I–V curves
of modified electrodes with small and large grooves, at various operating temperatures, to that of a
conventional electrode. It reveals a noticeable increase in current density across a range of terminal voltages.
This finding highlights the practical challenges and opportunities in translating optimized designs into
real-world applications. The experiments underscore the potential for performance gains through interface
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modification, even when the fabrication does not perfectly align with the theoretical optimization. In 2013,
Zadin et al [75] embarked on a study aimed at enhancing the design of 3D-microbatteries, as depicted in
figures 3(d)–(f). To achieve this, they employed a structural TO based on the level-set method. The
investigation centered around optimizing the geometries, displayed in figure 3(d), of the positive electrode
(LiCoO2) and negative electrode (LiC6), separated by a LiPF6·PEO20 polyethylene oxide polymer electrolyte.
With the idea of obtaining a more uniform electrochemical activity on the electrode surface, the researchers
formulated the optimization problem as a function of current density. Moreover, to maintain the volume of
electrode material in the cell, a Heaviside function was applied to the level-set variable, helping to control the
electrode volume over the optimization course. Following the optimization process, the researchers found
that coating the current collectors with active material distributed in a non-uniform manner yielded
favorable results (see figure 3(e)). Further analysis compared the performance of the optimized battery
designs with those that were not optimized. It was discovered that geometry optimization led to a remarkable
increase in cell performance, with improvements of up to 2.25 times observed, as shown in figure 3(f). This
significant enhancement was attributed to the mitigation of internal energy losses, which were caused by
nonuniformities in the ionic transport occurring within the battery.

Onishi and Shikazono’s research group [30, 76–79] stands out among notable research teams that have
utilized the level-set TO technique to enhance the performance of SOFCs. Their considered geometries are
shown in figure 3(g). Their approach involves considering the spatial distribution of the level-set function as
a design variable, resulting in a design space with significant degrees of freedom. To address the challenges
associated with this approach, they adopted the adjoint method, wherein adjoint equations are solved to
compute the sensitivity of the objective function concerning the design variable. In their initial study, Onishi
et al [30] discovered that the optimal meso-scale structure for the electrolyte-anode interfaces of SOFCs
exhibited multiple branches at the top side and characteristic sub-structures like wrinkles at the bottom side
(see figure 3(h)). These wrinkles were found to contribute to performance enhancement by homogenizing
the electrochemical potential. Figure 3(i) illustrates that the optimized electrolyte-anode interfaces show an
improvement of around 18.8% after 10 000 optimization iterations. Building upon this research, He et al [77,
78] employed a similar approach, incorporating local radius constraints, to optimize the cathode porous
microstructure of SOFCs made of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF). Subsequently, they extended their efforts
[79] to apply TO with multiple level-set methods to the nickel–yttria-stabilized zirconia (Ni-YSZ) anode.
Given that a single level-set function can only distinguish between two different phases, the multiphase
level-set method was employed to parametrize structures with more than two phases. Simulation results
indicated that the optimal microstructure comprised Ni particles embedded into YSZ scaffolds, exhibiting a
pillar-like structure along the thickness direction. In addition to the studies focusing on the
electrode–electrolyte interface of EEDs, Ishizuka et al [80] utilized TO with level-set methods to design
anodes placed in an electroplating bath. This application aimed to achieve uniform deposition thickness, a
critical factor in ensuring desirable surface qualities in various products. The uniformity of the current
density on a cathode was employed as the objective function in this context.

TO employing level-set methods has found widespread applications across various fields, ranging from
electroplating to SOFCs and lithium-ion batteries. Typically, level-set methods are employed in scenarios
where the focus lies on material interfaces. This preference stems from the fact that the interface between
different material phases can be precisely defined by iso-contours of a level-set function. This implicit
function provides a clear delineation of boundaries, facilitating accurate representation of interfaces.
Depending on how the interface is represented in the physical model, using level-set methods can enhance
the accuracy of mechanical response predictions near boundaries. Additionally, employing level-set methods
helps to mitigate the uncertainties associated with intermediate material phases, a challenge often
encountered when utilizing density-based approaches. This inherent capability of level-set methods
contributes to their widespread adoption in TO tasks.

3.2. Density-based methods
Building on a previous work [74], two years later, Song et al [81] initiated a different modeling and
optimization perspective. Iwai et al [74] treated the cathode-gas as a homogeneous porous medium and
aimed to find the optimal shape for the electrode–electrolyte interface. On the other hand, the subsequent
research by Song et al [81] shifted focus to the cathode-gas interface itself. The authors limited the scope of
their study to a specific electrode configuration consisting of a mixed ionic–electronic conducting material
deposited by infiltration onto an ionically conducting scaffold. In such a case, their model predicted that a
larger perimeter and a greater amount of scaffold material, regardless of the specific electrode structure,
resulted in lower Ohmic resistance. Consequently, to isolate the effect of shape exclusively during the
optimization process, the authors introduced isoperimetric constraints on both the perimeter and the
amount of material used. The researchers utilized a formulation of TO based on the SIMP method. Their
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approach involved design-dependent boundary conditions, necessitating a dynamic treatment of material
boundaries within the optimization process rather than predefined delineations. Consequently, specialized
methodologies were employed to address the implications of design-dependent boundary conditions. The
investigation revealed notable enhancements in performance ranging from 18% to 50% across varied
geometrical dimensions and material properties compared to conventional column designs. This
underscores the considerable potential for performance improvement through meticulous organization of
the cathode microstructure, yielding intricate configurations that were not realizable without a robust
mathematical scheme. In addition to the efforts initiated by other researchers, Mathieu-Potvin and Gosselin
[82] employed density-based methods to optimize platinum distribution in polymer electrolyte fuel cells
(PEFCs). Their primary aim was to maximize current density while maintaining a fixed total amount of
platinum. The findings of their study unveiled that the most effective design showcased a gradient-based
distribution, concentrating the majority of platinum near the membrane layer. It is crucial to acknowledge
that Mathieu-Potvin and Gosselin simplified the system by assuming high conductivity in the solid phase,
enabling rapid electron transport and eliminating Ohmic losses related to electron transport. Furthermore,
their design domain mesh consisted of only 50 nodes along the in-plane direction and 15 nodes along the
through-plane direction, indicating a relatively coarse discretization. A key limitation acknowledged by the
authors is their model’s inability to account for liquid water transport. This omission leaves the significant
negative impact of flooding, caused by concentrating catalyst material in a confined space near the
membrane, unaddressed in the results. Despite these simplifications, their research shed light on the
potential advantages of optimizing platinum distribution in PEMFCs for enhanced performance.
Meanwhile, Lamb et al [83–87] tackled a similar topic by optimizing catalyst distribution in PEFCs with the
computational domain depicted in figure 4(a). In these studies, TO is performed by allowing the catalyst
amount to vary independently at each location within the design domain. This freedom translates to a
significant increase in the number of design variables compared to Mathieu-Potvin and Gosselin [82],
exceeding 104, since the catalyst amount at each node of the finite element mesh becomes an optimization
variable. They also considered the impact of land and channel on optimized catalyst distribution. In their
findings, Lamb et al recommended placing more catalyst material (i.e. platinum) under the gas channel than
under landings and toward the membrane interface, as seen in figure 4(b), might improve the output power.
Figure 4(b) also compares the optimized catalyst distribution under two different overall loadings of 0.1 and
0.2 mg cm−2. While the exact distributions are different, both cases show a similar increasing incremental
trend when moving from the gas diffusion interface toward the membrane side. However, it is important to
note that they solely considered the amount of catalyst as a design variable, without considering the
reorganization of porosity and ionomer distributions, which could potentially benefit cell performance.
Evidently, since the total volume fractions of all materials in an electrode must add up to unity, optimizing
the amount of one component requires flexibility in another. For instance, if the amount of ionomer is fixed
and uniform throughout the electrode, then the porosity needs to be freely adjustable when optimizing the
catalyst loading. Lamb and colleagues acknowledged the limitation of their study in simultaneous
optimization of multiple materials and successfully addressed it in 2020. In their recent studies [86, 87], they
tackled the challenge of optimizing the distribution of multiple components within the catalyst layer,
including platinum particles (catalyst material), Nafion polymer (ionic conductive material), carbon
(catalyst support and electric conductive material), and porosity. They achieved this by treating the volume
fraction of each constituent as a design variable at every location within the layer. However, managing such a
complex optimization problem presented a significant computational hurdle. To address this, the authors
employed an adjoint variable method. Particularly [87], involved optimizing the distribution of all
constituents (catalyst, Nafion, carbon) simultaneously. Similar to the individual optimization of various
constituents that was presented in [86], porosity was not directly optimized. The results consistently
demonstrated that a higher volume fraction of catalyst and electrolyte material near the membrane was
favorable as the proxy to the ion exchange membrane improves the overall electrochemical reaction rate.
Additionally, higher porosity at the opposite side of the catalyst layer (near the diffusion layer) and under the
channel area enhances oxygen delivery, ultimately boosting overall performance. It is important to note that,
similar to the work by Chen [36], their model does not account for two-phase flow, neglecting the transport
of liquid water within the catalyst layer. In addition, since the models used in these studies are 2D, the impact
of longitudinal direction on the final optimum design has not been well studied.

In addition to the advancements made in PEFCs, Mitchell and Ortiz [88] ventured into applying
density-based TO to design optimal multifunctional silicon anode structures for lithium-ion batteries,
aiming to develop next-generation high-performance secondary batteries. While the silicon anode holds
promise due to its inherent high capacity for storing lithium ions, its structures undergo a substantial 310%
volume expansion upon lithiation, leading to severe damage such as active particle pulverization and
disconnected charge transport paths. Furthermore, the low intrinsic electric conductivity of silicon results in
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Figure 4. Examples of applying topology optimization based on density-based methods to optimize the electrode in EEDs.
Schematics and images show (a) the computational domain of a proton exchange membrane fuel cell considered in the study of
applying the density-based method with topology optimization, (b) optimized catalyst distributions for two different Pt loadings
and the 1D optimum platinum distribution at the middle of the computational domain (Reproduced from [83]. © The Author(s)
2017. Published by ECS. CC BY 4.0.); (c) the computational domain of a negative half-cell compartment of a vanadium flow
battery by which the electrode is split into portions with a unit cell, (d) optimized porosity distribution of the electrode
(Reproduced from [92], Copyright (2021), with permission from Elsevier); (e) two systems considered in the study of, which are a
device operates through redox reaction and a device operates through charge storage using a double layer, (f) schematic diagram
showing the porous electrode before and after optimization in which the material seen is, in fact, porous, (g) 3D optimized
designs of two systems considered in the study (Reproduced from [31], Copyright (2022), with permission from Springer
Nature); (h) flowchart of the algorithm for conventional and mixed topology optimization, (i) convergence history of mixed
topology optimization with various starting points showing its self-guidance feature, and (j) performance curves as well as the
optimal volume fraction distribution of each material constituent (Reproduced from [32], Copyright (2023), with permission
from Elsevier).
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poor rate performance due to sluggish electron transport through the material. To tackle these structural and
charge conduction design challenges, Mitchell and Ortiz employed TOmethods. Initially, they considered the
objectives individually and later extended the methodology to a bi-objective formulation to simultaneously
address both the structural and conduction design criteria. Through their research, they discovered that a
rigid frame structure served as an excellent compromise between the structural and conduction design
criteria, offering both the required structural rigidity and direct conduction pathways. In a recent work by
Pejman and Raeisi Najafi [89], the authors introduced a novel approach for multi-objective TO aimed at
crafting Structural Battery Electrolytes (SBE) within multifunctional structural battery composites. The
study aimed to overcome the inherent conflict in achieving both high mechanical strength (stiffness) and
high ionic conductivity, while also minimizing heat generation in the electrolyte, which are crucial factors for
maximizing battery performance. The researchers implemented a multiphysics, multi-objective
gradient-based approach to simultaneously maximize both the ionic conductivity and stiffness of the SBE. To
ensure prevention of overheating, the optimization process incorporated constraints on the maximum
allowable temperature and void volume fraction. The proposed design framework integrates electrochemical,
thermal, and structural physics, enabling the creation of an optimized SBE microstructure. The study
investigated two optimization scenarios, including (1) bulk condition, and (2) carbon fiber included
condition. The former focused on optimizing the microstructure of SBE assuming a bulk material, where
carbon fibers were not explicitly included as part of the design solution. However, the latter scenario built
upon the first by introducing carbon fibers as an explicit element within the design space. It is important to
note that the carbon fibers were treated as fixed, non-optimizable elements during the optimization process.
In both cases, two materials, including a solid phase and a compliant phase, were used. While the solid phase
ensured high stiffness and thermal conductivity, the compliant phase enabled efficient electric charge
transport. The study successfully generated a set of Pareto optimal microstructures with various trade-offs
between effective ionic conductivity and compliance. Additionally, explicit incorporation of carbon fibers
within the design space significantly altered the optimized SBE design compared to the bulk scenario.

Meanwhile, thermal mismatch significantly influences the stress state and lifetime of SOFCs. In response,
Li et al [90, 91] endeavored to mitigate this issue by designing LSM–YSZ cathodes and Ni–8YSZ anodes using
density-based TO. The microstructures of the cathode and anode took the form of periodic fiber bundles.
The results demonstrated that the coefficients of thermal expansion of these microstructures closely matched
those of the electrolyte layer at different temperatures, effectively eliminating thermal mismatch issues.

Inspired by the configuration of electrodes in redox flow batteries (RFBs), where the electrode typically
comprises a disordered, homogeneous assembly of micron-scale electroactive particles like carbon fibers and
felts, Beck and Worsley’s research group [31, 92] stands out as a prominent contributor in applying TO to
enhance porous electrode structures. The primary goal behind their design philosophy is to maximize surface
reactions while minimizing overpotential and hydraulic losses. In their initial study, Beck et al [92] focused
on restructuring porosity distributions with the objective of minimizing power loss and creating electrodes
with engineered porosity distribution, as shown in figure 4(c). A comparison between these architectured
electrodes (demonstrated in figure 4(d)) and bulk, uniform porosity electrodes revealed enhanced power
efficiency across various flow rates and currents. Continuing their investigation, Roy et al [31] illustrated a
framework of TO in designing porous electrodes for two applications: one involving a porous electrode
driving a steady Faradaic reaction (as seen in RFBs), and the other operating transiently without a Faradaic
reaction (like in electric double layer capacitors), as depicted in figure 4(e). In their research, they utilized a
porous model (illustrated in figure 4(f)), wherein the porous material is termed microporous to differentiate
it from the larger pores formed through the optimization process. Across all scenarios, the optimized designs
exhibited superior performance compared to undesigned, monolithic single porosity electrodes. In the case
of RFBs, this translated to overpotentials reduced by up to 84%, while the electric double layer capacitor
electrode showed energy losses reduced by up to 98%. Moreover, they demonstrated the versatility of these
techniques by extending them to a three-dimensional electrode design (displayed in figure 4(g)), paving the
way for manufacturing and testing high-performance architected electrodes. This exploration holds
significant promise in advancing the efficiency and functionality of porous electrode systems across various
electrochemical applications. However, the model developed by Roy et al [31] has limitations regarding its
consideration of concentration effects and hydraulic requirements. In systems with convective-reactive
transport, like those in RFBs, the concentration of the solution flowing through the electrodes depends on
the flow rate. This flow rate in turn affects the pressure drop needed to pump the solution (hydraulic
requirements). Higher pressure drop requirements mean more power loss by the cell-pump system, which
could affect the net generated power and should be considered in the optimization objective function.
Another key factor is the difference between the concentration of the solution in the bulk and at the surface
of the electrodes. Electrochemical reactions happen at the electrode surface, so for accurate simulations, it is
necessary to distinct surface and bulk concentrations. This difference can be accounted for by including a
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mass transfer coefficient, which typically depends on the flow velocity. However, the authors oversimplified
the modeling and optimization by ignoring the concentration effect and hydraulic requirements.

In a recent study, Charoen-amornkitt et al [93] explored the application of TO in the design of anode
catalyst layers for proton exchange membrane water electrolyzers (PEMWEs). They focused on a 2D
electrochemical porous electrode model, which encompasses various processes such as water transport,
species diffusion, electric charge transport, ionic charge transport, and redox reactions. The porous electrode
was conceptualized to consist of three phases: a void phase, an electrolyte phase, and a carbon-supported
catalyst phase. Their optimization approach aimed to maximize cell performance by adjusting the volume
fractions of the electrolyte and carbon-supported catalyst materials. The results revealed that introducing a
heterogeneously-distributed structure led to more efficient cells. During the optimization process, changes in
the volume fraction of constituent materials occurred, resulting in the formation of a zigzag interface in the
reactor. This interface facilitated a sufficient supply of charges required for the electrochemical reaction.
Compared to cases with uniform spatial distribution of constituent materials, the proposed heterogeneous
structure demonstrated a notable enhancement in the electrochemical reaction, achieving approximately a
40% improvement. This highlights the effectiveness of TO in enhancing the performance of PEMWEs by
optimizing the electrode design. Despite this, the authors simplified the system by disregarding the effects of
oxygen bubble formation within the electrode, among other factors, resulting in a uniform distribution of
porosity that eliminates the necessity for an oxygen bubble removal pathway. Additionally, their research
indicates that distinguishing between electronically conductive materials and the catalyst, coupled with
utilizing multi-objective optimization to minimize the catalyst volume fraction, has the potential to
significantly reduce catalyst usage. While fuel cells have a longer history of modeling, water electrolyzers are
catching up. Researchers are adapting their knowledge from fuel cells to improve existing electrolyzer
models. However, water electrolyzers involve additional complexities, like bubble formation [94], which need
to be factored in. The coverage of reaction sites by these bubbles is an additional limiting factor that requires
detailed consideration of the bubble evolution process, such as nucleation and bubble growth. This means
there is a need not only for better optimization methods, but also for more advanced modeling techniques to
create robust and reliable electrode designs for electrolyzers. To overcome some of the limitations mentioned
earlier, Passakornjaras et al [95] optimized the anode catalyst layer of a PEMWE, accounting for limitations
related to gas coverage and effects of temperature distribution. Although their modeling of physical
phenomena differs, the optimization process is similar to that in [93]. The resulting optimized structures
significantly outperformed a homogeneous electrode design, with electrode current densities 2.7 times
higher at high operating voltage (2.03 V) and 1.2 times higher at low operating voltage (1.73 V). Future
research on TO for PEMWEs should incorporate more advanced models of the various physical and
chemical phenomena occurring in the electrode and consider the durability of optimized structures under
thermal and mechanical stress. Additionally, exploring multi-objective optimizations to balance reaction
rates and material usage may be necessary.

While TO has been widely used to search for optimized electrode structures in EEDs, previous studies
have not achieved maximum output power for power sources. This limitation arises because researchers are
typically constrained to either minimizing overpotential at a fixed current density or maximizing current
density at a specified overpotential. While both strategies can improve performance in terms of power
density, they do not necessarily lead to maximum output power. Alizadeh et al [32] proposed a novel mixed
TO approach to enhance the performance of these systems by simultaneously modifying the electrode
structure and the working conditions (see figure 4(h)). Unlike conventional approaches, this method focuses
on enhancing the maximum power point. Their research demonstrates that the mixed TO approach
outperforms conventional vertical and horizontal optimizations, where either terminal voltage or current
density is optimized. Additionally, it has been tested under various starting points, as shown in figure 4(i),
consistently yielding the same output. This self-guidance feature of this method eliminates the need for a
prior decision on the optimization starting point. Figure 4(j) reveals that the optimal distribution of
materials within the design domain resembles a complex tree-root-like structure. The formation of diffusion
channels, facilitated by high concentrations of voids in certain parts of the system, enables the delivery of
reactant material across the entire system. This structural pattern bears resemblance to the vascular layout
observed in nature, such as in the leaves of plants. The network of veins in plant leaves, which transports
water and nutrients, exhibits a similar structural pattern.

Charoen-amornkitt et al [33] utilized TO to engineer porosity distributions within a system characterized
by a 1D nature. In this system, the concentration remains constant at x = 0, and there are no fluxes at x = L.
By exploring various dimensional models, they discovered that increasing the design dimensionality beyond
one enhances system performance by minimizing entropy generation. However, they observed a relatively
modest performance improvement when transitioning from 2D to 3D designs. This led to the hypothesis that
due to the inherently 1D nature of the problem, a 2D model suffices to significantly enhance performance.
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Building on this insight, Long et al [96] focused on systems with a 2D flow nature, specifically investigating
the impact of rib structures and electrode thickness. They evaluated three different geometries, including one
with fixed species concentration at the inlet and zero-flux boundary conditions, effectively confining the
system to a 1D nature. To increase the nature of the species diffusion to a 2D flow characteristics, they
introduced a rib at the inlet. Beneath the rib, a region restricted reactant movement while allowing electron
transfer. Additionally, they reduced the thickness to encourage more 2D flow characteristics. Their findings
indicated that in rib-containing cases, reduced inlet area limited species availability, a challenge mitigated by
decreasing reactor thickness. Examining the optimized porosity distribution, they observed the formation of
diagonal channels in systems exhibiting 2D characteristics. Interestingly, augmenting the system model’s
dimensionality beyond its inherent nature did not significantly impact the reaction rate.

Until now, with a few exceptions, prior research primarily focused on maximizing the reaction rate
within the designated design domain. However, as previously discussed, there exists an alternative approach:
minimizing overpotential at a fixed current density. Alizadeh et al [97] undertook a comparative analysis of
two optimization strategies aimed at enhancing the performance of electrochemical reaction–diffusion
systems, as displayed in figures 5(a)–(c). These strategies involved minimizing overpotential at a fixed
current density and maximizing current density at a specified overpotential. The researchers analyzed a 2D
triple-material electrode, similar to the catalyst layer found in PEFCs. However, their model simplified the
processes occurring in PEFCs by neglecting the two-phase flow of gas and liquid water, a common
phenomenon in low-temperature fuel cells. The electrode consisted of solid, electrolyte, and void phases.
While the solid phase was responsible for electron transport and provided necessary reactive surface area, the
two other phases facilitated ion transport and mass diffusion. The optimization aimed to find the best
distribution of constituents volume fractions through a density-based method. The resulting optimal layouts
exhibited intricate root-like structures (see figure 5(a)), which facilitated transport processes and led to a
remarkable improvement in the conversion rate of up to 116.7%. Further analysis revealed that the optimal
layout varied significantly depending on the dominant processes at different voltages (or current densities).
For instance, when the optimization focused on low voltages (high current density), where concentration
overpotential limits performance, the algorithm favored designs with higher porosity and larger diffusion
channels. Conversely, optimization at high voltages (lower current density) resulted in a design with a higher
solid phase volume fraction distributed throughout the electrode. This increased the reactive surface area,
thereby reducing activation overpotential.

To the best of our knowledge, density-based methods are more prevalent than level-set methods in
optimizing the structure of electrodes for EEDs, as evidenced by the abundance of studies employing this
approach. A closer examination of these studies reveals a fundamental difference in the focal point of interest
compared to those utilizing level-set methods. Density-based methods primarily concentrate on optimizing
the distribution of materials within the electrode structure rather than delineating the interface between
different materials. These density-based methods have found applications across a wide range of EEDs,
spanning from power sources like PEFCs and SOFCs to power-consuming devices such as PEMWEs, as well
as energy storage systems like lithium-ion batteries and RFBs. However, it is important to note that the
treatment of material density may vary across different studies employing density-based methods. In
density-based methods, material density typically ranges from 0 to 1, signifying regions containing a mixture
of material and void. While this ‘gray area’ typically holds no physical meaning in structural mechanics
applications, it holds physical significance in the context of EEDs, particularly in porous models used at the
macroscale level. Here, material density values between 0 and 1 are meaningful and directly inform the
modeling process. To address the gray area and ensure meaningful material distribution for structural
mechanics problems, projection methods are often employed. However, in EEDs, where porous models are
prevalent, material density values between 0 and 1 are utilized and hold relevance in representing the actual
physical structure of the electrode materials by assigning them as macroscopic properties, like volume
fraction and porosity.

3.3. Connection between entropy generationminimization and TO
TO plays a pivotal role as a mathematical tool in the intricate design and optimization of complex structures.
However, it is crucial to acknowledge the numerical nature of the solutions derived from TO, which are
influenced by various factors including the choice of objective function, algorithmic approach, and tuning
parameters. Consequently, it becomes imperative to establish a robust theoretical framework to underpin
these optimized solutions. In addressing this need, Tsushima’s research group [32, 33, 93, 96–99] advocates
for the integration of principles derived from entropy generation minimization theory. Inspired by the
widespread use of entropy generation analysis in evaluating thermal systems, their objective is to align with a
system characterized by minimal entropy generation. This approach aims to lay the groundwork for a design
methodology that is firmly grounded in physical principles, thereby reducing reliance on arbitrary tuning
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Figure 5. Examples of works attempting to draw connections between topology optimization and entropy generation
minimization. Schematics and images show (a) optimized volume fraction distribution of material constituents in
electrochemical porous reactors, (b) global entropy generation of each phenomenon occurring in porous reactors, approaching
minima post-optimization, (c) 1D projected entropy generation distribution of each phenomenon in porous reactors, displaying
increased uniformity akin to the equipartition principle (Reproduced from [97].© 2023 The Author(s). Published on behalf of
The Electrochemical Society by IOP Publishing Limited. CC BY 4.0.; (d) 3D optimized porosity distribution from different
angles, where surfaces represent areas with porosity higher than 0.95, (e) scaled entropy generation distribution during
optimization, (f) history of global scaled entropy generation and 1D projected scaled entropy generation distribution, showcasing
the approach towards minima and a more uniform distribution resembling the equipartition principle (Reprinted from [33],
Copyright (2023), with permission from Elsevier); (g) computational domain of two-species reaction–diffusion system, (h)
history of global entropy generation during the optimization process, and (i) spatial distribution of entropy generation by various
mechanisms at different iterations (Reproduced from [98], Copyright (2023), with permission from Elsevier).

parameters that are usually necessary for optimization algorithms (e.g. filter radius). Entropy generation
analysis offers a rigorous framework for assessing the thermodynamic efficiency of systems, enabling the
identification of optimal designs that minimize energy wastage and maximize performance. By
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incorporating these principles into the design process, it is anticipated that the resulting electrode structures
will exhibit heightened reliability and effectiveness. This is because they are founded on fundamental
physical principles rather than ad hoc parameter adjustments.

Charoen-amornkitt et al [33] embarked on a comprehensive research endeavor, commencing with the
utilization of TO to optimize the structure of porous electrodes (see figures 5(d)–(f)). To evaluate the
entropy generation during this optimization process, they employed entropy generation analysis, recognizing
the complexity of assessing entropy generation in the porous media of EEDs. The nonequilibrium nature of
these systems, compounded by the presence of chemical reactions, posed significant challenges. In response,
they adopted nonequilibrium thermodynamics as a theoretical framework, enabling the assessment of local
entropy generation rates in systems not in a state of global equilibrium. In their study, the researchers
simplified the system by focusing solely on a porous reactor within reaction–diffusion systems involving a
single species. As the optimization progressed with the objective of maximizing reaction within the design
domain, entropy generation inevitably increased. To facilitate comparison, they introduced scaled entropy
generation, mitigating the influence of the increasing objective function. An essential aspect of their
investigation was to examine the effects of design dimensionality on optimization. They found that while 0D
and 1D optimization results exhibited little difference in overall reaction, significant increases in reaction
were observed when 2D or 3D optimization was permitted. This phenomenon stemmed from the emergence
of a geometrically intricate diffusion field reminiscent of biological structures in 2D or 3D optimization. The
3D optimized porosity distribution obtained from their work is illustrated in figure 5(d). As the optimization
process advanced, not only did the global scaled entropy generation approach a minimum, but the
distribution of scaled entropy generation in 1D also gradually transitioned towards greater uniformity (see
figures 5(e) and (f)). These findings align with the equipartition principle, indicating that uniform entropy
generation across space may result in less dissipation, leading to the minimum entropy generation rate and a
thermodynamically optimal design.

In the subsequent phase of their research, Alizadeh et al [98] expanded their investigation to encompass a
reaction–diffusion system involving two species operating in a steady-state mode, as depicted in figure 5(g).
They utilized a density-based TO algorithm, which resulted in a remarkable 57% improvement in system
performance compared to a uniform layout with equivalent average porosity. Throughout the optimization
process, the researchers closely monitored the porosity distribution, concentrations of reactant and product
substances, and reaction rates. The study’s outcomes underscore the importance of achieving a delicate
balance between diffusion and reaction mechanisms to enhance performance. This equilibrium was achieved
through the formation of primary and secondary channels within the reactor during the optimization
process. The optimized porosity distribution, derived from the algorithm, exhibited a tree-root-like
configuration, resembling patterns observed in previous research [33]. Similar to their earlier study, this
research delved into dissecting the contributions to system entropy generation and quantifying them
throughout the optimization procedure (see figures 5(h) and (i)). The findings revealed that the optimized
design solution corresponded to the minimum scaled entropy generation resulting from chemical reactions.
The researchers suggested that these findings could have significant implications for advancing the
understanding of the theoretical upper limit of reaction–diffusion system performance, regardless of the
inherent limitations of optimization methods.

Additionally, Alizadeh et al [97] also introduced an entropy generation model to quantitatively evaluate
irreversibilities in a system involving transport phenomena and electrochemical reactions. By analyzing
entropy generation trends for both optimization approaches, the research provided insights into optimizing
the distribution of constituents in porous electrochemical reactors and elucidated the relationship between
TO and entropy generation rate. As depicted in figures 5(b) and (c), the findings aligned with principles of
entropy generation minimization [100] and equipartition of entropy production [101, 102]. It is noteworthy
that when employing the strategy of maximizing current density at a specified overpotential, scaling of
entropy generation is necessary to counteract the escalating entropy flux during optimization. However, the
proper scaling becomes more complicated with additional physics introduced to the system. In contrast,
minimizing overpotential at a fixed current density corresponds to reducing entropy generation without
requiring scaling. This distinction arises intuitively as overpotential is commonly associated with irreversible
losses within EEDs.

In various applications, researchers have observed intricately distributed pores that resemble
tree-root-like structures, reminiscent of natural patterns such as root systems in trees and respiratory
networks in lungs. These natural systems are characterized by efficient mass transport mechanisms,
suggesting that exploring similar structures in engineered systems could enhance our understanding of
natural design principles. The studies discussed above utilize TO techniques to design electrodes for
electrochemical energy storage and conversion systems. By integrating these optimized structures with
established theories like entropy generation minimization, researchers aim to uncover connections between
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engineered designs and natural phenomena. With a design reminiscent of nature, it may very well be the
optimal design we are in search of, acknowledging that nature tends to design its systems in the most effective
manner. By drawing parallels between topologically optimized structures and entropy generation
minimization, researchers seek to unravel the underlying principles governing natural design. This area of
research has the potential to bypass the optimization process by minimizing the need for repetitive
evaluation of the objective function and governing equations. By doing so, it could significantly reduce the
computational resources and the reliance on tuning parameters typically required in optimization tasks. This
interdisciplinary field has the potential to revolutionize the design of various technologies by harnessing
insights from nature’s efficient solutions. Ultimately, by emulating nature’s design strategies, humanity may
unlock new avenues for innovation and enhance the performance of engineered systems.

One of the significant contributions in this field was made by Long et al [103]. In their study, Long et al
[103] derived exact solutions for 0D optimization of reaction–diffusion systems, focusing on both
maximization (maximizing the reaction) and minimization (minimizing the concentration at the boundary)
problems. Their work provided critical insights into the relationship between optimized structure and
entropy generation. Following this, they extended their research to 2D and 3D TO to explore the
characteristics that an optimized system should possess. They projected the concentration distribution into a
1D representation, identifying that the key characteristic of an optimized system is a linear concentration
distribution. Based on this observation, they developed a design theory suggesting that an optimized system
should exhibit a linear concentration distribution. By assuming that the optimized structure consistently
produces a linear concentration distribution, they were able to substitute this assumption into the governing
equations to directly solve for the porosity distribution. This approach allowed them to obtain the porosity
distribution without relying on an iterative optimization process. However, it is important to note that this
assumption was primarily applied to 1D optimization. Further research is necessary to extend these findings
to 2D and 3D optimization, as the complexities introduced in higher dimensions may require additional
considerations and refinements to the design theory.

4. Other notable numerical studies in electrode structural optimization

While the primary focus of this paper is formal implementation of TO methods, as described in section 2, for
innovative electrode design in EEDs, other approaches exist for optimizing electrode morphology. Over the
years, researchers have utilized various mathematical techniques, such as parametric optimization and
functionally graded methods, to improve the topographical design of electrode structures. Parametric
optimization aims to find the optimal value(s) for one or more macroscopic properties (e.g. porosity) of a
homogenous design to enhance overall cell performance. While TO adjusts material distribution locally,
resulting in a heterogeneous design, parametric optimization operates at a global level, fine-tuning design
variables. Examples include optimizing Nafion loading in PEFC catalyst layers for maximized power output
or finding the ideal porosity or fiber diameter in RFB electrodes to balance reactive surface area with
hydraulic permeability. While simpler to implement, these methods are limited in generating highly efficient
designs. Functionally graded methods are more advanced approaches building upon parametric
optimization. It can involve: (1) dividing the electrode design domain into multiple regions and performing
independent parametric optimization on each [104], and (2) utilizing pre-defined distributions based on
mathematical functions (e.g. sinusoidal or polynomial) [105]. Despite offering greater design freedom than
standard parametric optimization, functionally graded methods are still limited by the number of
pre-defined domains or functionalities. In contrast, TO provides a robust framework for automatically
generating material distributions with high resolution. It is noteworthy that approaches like functionally
graded design differ from the formal TO which automatically manipulates the material distribution itself.
Nonetheless, the algorithmic approaches share similarities, as they both offer a heterogeneous material
property distribution for improved performance. While this review focuses on TO, we briefly mention some
noteworthy works that have employed mathematical techniques for morphological modification and
improved electrode performance. These studies offer valuable insights for interested readers but are not in
any way inclusive.

He et al [106], for instance, investigated the effect of catalyst layer design on the performance of a PEFC.
The researchers developed a macroscopic 3D multiphase non-isothermal model of PEFC to simulate the cell
behavior under various conditions. The study aimed to understand how different design parameters, such as
platinum (Pt) loading, platinum-to-carbon (Pt/C) ratio, ionomr-to-carbon (I/C) ratio, carbon particle
radius, and electrochemical specific area (ECSA) of platinum particles, influence oxygen transport resistance,
performance, water transport, and the oxygen transport process within the electrode. Through their
numerical simulations and analysis, the researchers found significant correlations between the electrode
design parameters and the performance of the cell. They observed that variations in Pt loading, Pt/C ratio,
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and I/C ratio directly impacted the oxygen transport resistance within the catalyst layer. Additionally, they
highlighted the importance of considering the carbon particle radius and ECSA in optimizing the
performance of PEFCs. While the study is primarily a parametric sweep analysis, rather than an algorithmic
optimization, it provided valuable insights into the complex interplay between design parameters and
performance metrics in PEFCs, offering a foundation for further research and development in the field of
fuel cell technology. In a different application, Tsushima and Suzuki [107] used a bound optimization by
quadratic approximation algorithm to simultaneously optimize fibrous electrode architecture of a vanadium
RFB. The multi-parameter optimization included porosity, fiber diameter, and electrode thickness as well as
two other channel-related geometrical parameters. Each of these parameters were allowed to vary in a given
range. Their results showed that a combination of thinner fibers and thicker electrodes could enhance the
overall cell performance thanks to a higher reactive surface area. However, this should be accompanied with a
relatively high porosity (∼0.89) to facilitate electrolyte flow that can directly affect the active species
transport resistance between bulk solution and solid/liquid interface. The authors suggested simultaneous
optimization of various electrode parameters are crucial for a comprehensive design with boosted
performance. Functionally graded electrode design has been used for various applications, such as fuel cells
and batteries [104, 108]. Srinivasarao et al [109] used a multi-layer design of catalyst layer to maximize the
generated current density and minimize platinum loading. To achieve this, the researchers considered an
innovative design with four catalyst layers as shown in figure 6(a) and optimized various design variables
such as the platinum loading, ionomer loading, weight fraction of platinum on carbon, and thickness of
layers under a range of cell voltages from 0.4 to 0.7 V. By optimizing these parameters for each layer, the study
sought to achieve cost reduction and performance enhancement in comparison to the base case design with
uniform material distribution. The findings revealed that the PEFC with multiple catalyst layers exhibited
superior performance compared to an optimized PEFC with a single catalyst layer across all operating
voltages. Under all operating conditions, the optimization favored a higher porosity in the layers closer to the
gas diffusion layer (see figure 6(b)). The optimal ionomer volume fraction, on the other hand, shows an
opposite trend with more ionomers concentrated in the layer neighboring the membrane (see figure 6(c)).
Additionally, the study demonstrated a significant reduction of 17% to 60% in platinum loading with an
increase in the number of catalyst layers for low and high current density regions, respectively.

Although the formal implementation of TO typically involves coupling an optimization algorithm with a
continuum macroscopic model to find the best distribution of continuous variables, applying topological
optimization to electrode structures extends beyond this method. Various phenomena at micro- or
nano-scales take place at electrodes of EEDs. Geometrically resolved models can describe these intertwined
multiphysics phenomena at a higher resolution. However, the high computational cost of approaches like
direct numerical simulation (DNS) of geometrically resolved structures has posed challenges in integrating
these models with TO algorithms. As computer technology advances and more efficient modeling and
mathematical schemes are developed, a new trend is emerging. Pore- and particle-scale models are now
combined with optimization algorithms for morphological optimization of porous electrodes. An exemplary
instance is the use of TO with the LBM. Previously applied in thermofluidic systems [111–114], TO using
LBM has recently been extended to electrode design for RFBs [110]. Tanaka et al [110] focused on fluid
behavior in fibrous porous electrodes and optimized electrode structure using adjoint-state LBM. By
updating solid and fluid distribution through a level-set function, the optimization algorithm aimed to
minimize concentration flow rate at the outlet of a domain with a resolution of 1 µm per voxel. Figure 6(d)
compares the structure and vanadium ion concentration distribution of an ordered fibrous electrode with
those of optimized one. According to figure 6(e), compared to an ordered structure with fiber diameter of
4 microns, the optimized structure had a lower cost function value by about an order of magnitude in only
25 iterations. The optimization boosted reaction rate by minimizing the amount of active species leaving the
electrode before reacting, leading to a more efficient process. Another research direction for designing
electrodes with engineered microstructure, initiated by Forner-Cuenca’s research group [34, 115], employs
pore network modeling (PNM) together with metaheuristic optimization algorithms. This approach seeks
optimal pore network topology to enhance cell performance. Despite methodological differences with
level-set or density-based TO, they also investigate how a heterogeneous design of porous electrodes could
benefit overall cell performance. To achieve higher resolution not attainable through macroscale models and
to mitigate the intensive computational cost of DNS methods, authors initially developed a PNMmodel of
RFB (see figure 6(f)). With the goal of building a predictive design framework, the developed PNMmodel is
coupled with a genetic algorithm to optimize network morphology based on a bottom–up design approach.
In their first attempt [34], they employed a cubic lattice as shown in figure 6(f) and manipulated the pore
and throat size distributions without changing the pores positions. The optimized structures exhibit
improved fluid distribution through the formation of a bimodal pore size distribution (see pore size
distribution in figure 6(f)), resulting in preferential longitudinal flow pathways (see figure 6(g)) and a 73%
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Figure 6. Examples of other notable efforts in electrode optimization (functionally graded design, LBM, and PNM). Schematics
and images show (a) schematic of PEFC with multiple catalyst layer, (b) optimum void volume fraction (porosity), (c) optimum
ionomer volume fraction in a multiple catalyst layer design under various terminal voltage conditions (Reprinted from [109],
Copyright (2012), with permission from Elsevier); (d) results of fiber-scale simulations of electrode structure and vanadium ion
concentration distribution under charging condition (optimized structure is on the right; initial structure is in the center; left is
the ordered structure with a fiber diameter of 4 microns), (e) evolution of concentration flow rate at the outlet of the domain
(objective function) over the optimization course in comparison to that of ordered structure (Reproduced with permission
from [110]); (f) schematic representation of pore network modeling of RFB electrode, (g) evolution history of cost function,
electrical power, and pumping power during the optimization as well as comparison of pore size distribution and polarization
curves before and after optimization, and (h) comparison of pore network morphologies, including pore diameter and throat
radius, before and after optimization Reproduced from [34] CC BY 4.0.

decrease in required pumping power as depicted in figure 6(g). The optimization also led to a 47% increase
in surface area and a 42% improvement in electrochemical performance. Despite the initial motivation for
using PNM to capture various phenomena at a pore level, their model uses a uniform value for the mass
transfer coefficient without considering the impact of local fluid velocity. Additionally, keeping porosity
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constant throughout the optimization iterations imposes an extra limitation on design freedom. The use of a
cubic lattice also restricts pore movement within the design domain. This limitation was somewhat
addressed in their subsequent study [115] by introducing a pore merging and splitting function. Their
research highlights the importance of optimizing electrodes tailored to specific reactor designs and operating
conditions. Results reveal that electrolyte kinetics and ionic conductivity can affect the final optimal design.
Electrodes with a large number of tiny pores and a large surface area are more effective for kinetically slow
electrolytes and high ionic conductivity. Conversely, low through-plane tortuosity and high hydraulic
conductance are advantageous for kinetically active electrolytes with low ionic conductivity. A recent study
[116] on multi-objective optimization of pore network morphologies in an advection–diffusion–reaction
system addressed some limitations of earlier research [34, 115] by introducing a local velocity-dependent
mass transfer coefficient and a morphable pore network that extends beyond a fixed cubic lattice. However,
the model is limited to a first-order chemical reaction and does not account for electrochemistry-related
phenomena, such as electric charge transport, species transport via electromigration, or electrochemical
reactions.

5. Summary and future challenges on electrode optimization using topology
optimization

TO holds the promise of crafting groundbreaking electrode structures capable of reducing material usage
while enhancing the performance of EEDs. Nonetheless, several challenges loom on the horizon, including:

1. Given that topologically optimized electrode structures tend to be intricate, the fabrication process
presents challenges, particularly due to the electrodes’ thickness, often less than 1 mm (for PEFCs, it can
be as thin as 10 µm). This issue caused many studies in this field to rely solely on mathematical
computations to generate optimal designs but lack sufficient experimental validation to confirm these
designs actually work well.

2. The primary drawback of this approach lies in its high computational expense, stemming from the
iterative assessment of the objective function. This cost can become unaffordable, especially for complex
systems with a realistic size and 3D model. To mitigate this challenge, previous research endeavors have
frequently resorted to simplifying phenomena into more manageable problems or reducing the design
domain or dimensionality to curtail computational expenses. Hence, incorporating all the relevant
physics into the TO posed a significant challenge. In addition to that, on the mathematics side,
researchers are constantly refining the algorithms used in TO. Their goal is to speed up the optimization
process using one or a combination of techniques, including but not limited to multi-grid solvers, model
reduction, and machine learning [117].

3. The topologically optimized electrode structure represents a mathematical solution that depends on
several parameters, including the objective function, algorithmic approach, tuning parameters, and so
on. However, to eliminate dependence on these factors, a robust design theory is necessary. This theory
would provide a solid framework for optimizing structures without relying on specific parameters, thus
bypassing the optimization process.

4. In optimization techniques like TO, a mathematical model of the system is initially developed, which is
solved for evaluation of objective function(s). To ensure reliable design solutions that translate to
real-world performance improvements, validating these continuum models against experimental data is
crucial. While existing studies using TO for electrode design have validated their models under various
operating conditions (e.g. temperature, flow rate, and relative humidity), the applicability of these
models to different structural designs remains unclear. To address this, future TO applications should
incorporate validation with experimental data encompassing a broader range of operational and
structural variations. Specifically, the employed continuum models should accurately describe the
correlation between local microstructure and overall performance [118].

In terms of fabricating topologically optimized electrodes, there is a push to experimentally demonstrate
the potency of topologically optimized porous electrodes in practical applications. Currently, the fabrication
of these optimized designs proves challenging due to their geometrical complexity. However, with the
ongoing progress in additive manufacturing and 3D printing technologies, it is envisioned that these
advancements could be leveraged to create such complex structures [119–126]. In one notable study [35],
conducted by Beck and Worsley’s research team, projection micro-stereolithography was employed to
fabricate electrodes for electric double-layer capacitors, as illustrated in figures 7(a) and (b), resulting in
observed enhancements in capacitance. Specifically, a 77% and 99% increase in capacitance was achieved for
the optimized electrode compared to the control lattice electrode in numerical simulations and experiments,

20



Prog. Energy 7 (2025) 012003 M Alizadeh et al

Figure 7. Examples of employing additive manufacturing to fabricate topologically optimized electrodes. Schematics and images
show (a) the experimental procedure of electrode fabrication employing 3D printing technology, (b) topologically optimized and
lattice porous electrodes for supercapacitor application after printing, and (c) comparison between capacitances of topologically
optimized and lattice porous electrodes showing the superiority of the topologically optimized electrode over the lattice electrode
(Reprinted from [35], Copyright (2023), with permission from Elsevier).

respectively (see figure 7(c)). It is essential to note that this demonstration is currently limited to applications
involving electrodes with a single material. There is substantial room for researchers to delve into the
fabrication of complex structures incorporating multiple materials, such as electrodes for PEFCs containing
electronically conductive materials, catalysts, and ionomers. Nevertheless, this type of structure holds
promise as a potential avenue for advancing the performance of electrochemical energy storage systems.

In addressing computational costs, the field has long recognized the imperative need for efficient
techniques to expedite the design process. To mitigate computational expenses, effective solution schemes
and innovative methodologies have been developed. In recent years, machine learning technologies,
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particularly deep learning methods, have witnessed remarkable success across various applications. These
methods have also been employed to alleviate the computational burden of TO by offering predictive
solutions [117]. Many of these techniques are generative models, trained on optimal solutions, which can
forecast solutions for similar problems under diverse conditions. The generative models depend on existing
optimal designs as training data, setting them apart from conventional TO algorithms. The predictive
capabilities of these models are limited by the coverage of the training datasets, necessitating the
consideration of new datasets and networks to accommodate diverse domain geometries or constraints.
Motivated by these limitations, Deng et al [127] recently proposed the Self-directed Online Learning
Optimization (SOLO) algorithm to significantly expedite the TO process. This algorithm approximates the
original costly-to-calculate function by replacing it with a deep neural network (DNN), which learns and
maps designs to objectives as a surrogate model. Based on the DNN’s optimal predictions, a small amount of
training data is dynamically generated. As the algorithm converges, the DNN adapts to the new training data,
providing improved predictions in the area of interest. SOLO was tested on four types of simple
problems—truss optimization, heat transfer enhancement, fluid-structure optimization, and compliance
minimization—and outperformed state-of-the-art algorithms. It substantially reduced computational time
by 2–5 orders of magnitude compared to directly applying gradient-free heuristic optimization. In the
context of utilizing TO to discover groundbreaking electrode structures in EEDs, the integration of machine
learning-assisted algorithms is particularly vital. Electrodes pose a complex 3D problem involving multiple
non-linear coupled partial differential equations (mass, electronic charge, and ionic charge transports as well
as electrochemical rate process). Therefore, employing machine learning techniques can significantly
enhance the efficiency and effectiveness of TO processes in this domain.

Various objective functions, algorithmic approaches, and tuning parameters yield diverse optimal
solutions in TO. To ascertain whether a solution obtained is globally optimal, robust theoretical frameworks
are essential. Recently, efforts have been made to link entropy generation to topologically optimized
structures, proposing that the optimized structure should minimize entropy generation. Recent findings
have indeed demonstrated a connection between entropy generation and optimized structures [33, 97–99].
However, while entropy generation analysis offers valuable insights into electrode design, it falls short of
becoming a comprehensive design theory capable of guiding the creation of optimal electrode structures.
Research in establishing a theory to design electrodes for high-performance EEDs is pivotal for advancing
energy storage and conversion technologies. While the ultimate goal is to develop a comprehensive design
theory that obviates the need for TO, current TO outcomes can serve as valuable benchmarks and represent
the best available designs for specific applications. The key challenge now is to establish a robust theoretical
framework capable of generating these optimal designs without relying on numerical techniques like TO.
Such a theory would provide researchers with a systematic approach to electrode design, enhancing the
efficiency and effectiveness of EEDs.

In summary, TO for the design of porous electrodes in electrochemical energy storage and conversion
systems represents a new emerging research direction. Topologically optimized electrodes possess the
potential to overcome longstanding barriers in efficiency, cost, and performance. By reviewing studies
published in recent years, we highlight the main challenges spanning from computer-aided design through
TO to the practical realization of these innovative designs. Furthermore, by exploring the intersection of
natural design principles and engineering innovation, this paper inspires future research directions that not
only enhance technological capabilities but also deepen our understanding of complex systems in nature.
The synthesis of cutting-edge research presented in this review is expected to stimulate fruitful discussions
and inspire new avenues of inquiry, thereby contributing to the advancement of the global transition towards
a sustainable energy future.

Data availability statement

The data cannot be made publicly available upon publication because they are not available in a format that
is sufficiently accessible or reusable by other researchers. The data that support the findings of this study are
available upon reasonable request from the authors.

Acknowledgments

This research project is supported by King Mongkut’s University of Technology Thonburi (KMUTT),
Thailand Science Research and Innovation (TSRI), and National Science, Research and Innovation Fund
(NSRF) Fiscal year 2024. This work was also supported by Grant-in-Aid for JSPS Fellows Numbers 22KJ2198
and JSPS KAKENHI Grant Number 21H04540.

22



Prog. Energy 7 (2025) 012003 M Alizadeh et al

ORCID iDs

Mehrzad Alizadeh https://orcid.org/0000-0001-5086-1683
Patcharawat Charoen-Amornkitt https://orcid.org/0000-0001-6382-3715
Shohji Tsushima https://orcid.org/0000-0001-8935-0135

References

[1] Najib S and Erdem E 2019 Current progress achieved in novel materials for supercapacitor electrodes: mini review Nanoscale Adv.
1 2817–27

[2] Mishra A, Mehta A, Basu S, Malode S J, Shetti N P, Shukla S S, Nadagouda M N and Aminabhavi T M 2018 Electrode materials
for lithium-ion batteriesMater. Sci. Energy Technol. 1 182–7

[3] Sadykov V A et al 2020 Novel materials for solid oxide fuel cells cathodes and oxygen separation membranes: fundamentals of
oxygen transport and performance Carbon Resour. Convers. 3 112–21

[4] Lee C, Kort-KampW J M, Yu H, Cullen D A, Patterson B M, Arman T A, Komini Babu S, Mukundan R, Borup R L and
Spendelow J S 2023 Grooved electrodes for high-power-density fuel cells Nat. Energy 8 685–94

[5] Pfleging W and Gotcu P 2019 Femtosecond laser processing of thick film cathodes and its impact on lithium-ion diffusion
kinetics Appl. Sci. 9 3588

[6] Okuhata G, Tonoike T, Nishida K, Tsushima S and Hirai S 2013 Effect of perforation structure of cathode GDL on liquid water
removal in PEFC ECS Trans. 58 1047–57

[7] Mayrhuber I, Dennison C R, Kalra V and Kumbur E C 2014 Laser-perforated carbon paper electrodes for improved
mass-transport in high power density vanadium redox flow batteries J. Power Sources 260 251–8

[8] Wang X, Chen S, Fan Z, Li W, Wang S, Li X, Zhao Y, Zhu T and Xie X 2017 Laser-perforated gas diffusion layer for promoting
liquid water transport in a proton exchange membrane fuel cell Int. J. Hydrog. Energy 42 29995–30003

[9] Lee J K, Schuler T, Bender G, Sabharwal M, Peng X, Weber A Z and Danilovic N 2023 Interfacial engineering via laser ablation for
high-performing PEM water electrolysis Appl. Energy 336 120853

[10] Lv W, Luo Y, Xu Y, Xu K and Zheng M 2024 Laser perforated porous electrodes in conjunction with interdigitated flow field for
mass transfer enhancement in redox flow battery Int. J. Heat Mass Transfer 224 125313

[11] Sigmund O and Maute K 2013 Topology optimization approaches: a comparative review Struct. Multidiscip. Optim. 48 1031–55
[12] Wu J, Sigmund O and Groen J P 2021 Topology optimization of multi-scale structures: a review Struct. Multidiscip. Optim.

63 1455–80
[13] Lee J S, Yoon S Y, Kim B, Lee H, Ha M Y and Min J K 2021 A topology optimization based design of a liquid-cooled heat sink with

cylindrical pin fins having varying pitch Int. J. Heat Mass Transfer 172 121172
[14] Alexandersen J, Sigmund O and Aage N 2016 Large scale three-dimensional topology optimisation of heat sinks cooled by natural

convection Int. J. Heat Mass Transfer 100 876–91
[15] Yaji K, Yamada T, Kubo S, Izui K and Nishiwaki S 2015 A topology optimization method for a coupled thermal–fluid problem

using level set boundary expressions Int. J. Heat Mass Transfer 81 878–88
[16] Alexandersen J and Andreasen C S 2020 A review of topology optimisation for fluid-based problems Fluids 5 29
[17] Zhang X, Takezawa A and Kang Z 2018 Topology optimization of piezoelectric smart structures for minimum energy

consumption under active control Struct. Multidiscip. Optim. 58 185–99
[18] Wang Y, Kang Z and Zhang X 2023 A velocity field level set method for topology optimization of piezoelectric layer on the plate

with active vibration controlMech. Adv. Mater. Struct. 30 1326–39
[19] Yaji K, Yamasaki S, Tsushima S and Fujita K 2019 A framework of multi-fidelity topology design and its application to optimum

design of flow fields in battery systems Volume 2A: 45th Design Automation Conf. ASME 2019 Int. Design Engineering Technical
Conf.s and Computers and Information in Engineering Conf. (American Society of Mechanical Engineers) p V02AT03A059

[20] Yaji K, Yamasaki S, Tsushima S, Suzuki T and Fujita K 2018 Topology optimization for the design of flow fields in a redox flow
battery Struct. Multidiscip. Optim. 57 535–46

[21] Chen C-H, Yaji K, Yamasaki S, Tsushima S and Fujita K 2019 Computational design of flow fields for vanadium redox flow
batteries via topology optimization J. Energy Storage 26 100990

[22] Liu Z, Zeng X, Zhao W, Gao Y, Sun Y and Yan P 2022 A topology optimization design of three-dimensional cooling plate for the
thermal homogeneity of lithium-ion batteries Energy Convers. Manage. X 14 100215

[23] Mo X, Zhi H, Xiao Y, Hua H and He L 2021 Topology optimization of cooling plates for battery thermal management Int. J. Heat
Mass Transfer 178 121612

[24] Wanittansirichok V, Mongkholphan K, Chaowalitbumrung N, Sukjai Y and Promoppatum P 2022 Topology optimization for
liquid-based battery thermal management system under varied charge rates J. Energy Storage 55 105703

[25] Sun Y, Bai R and Ma J 2023 Design and thermal analysis of a new topological cooling plate for prismatic lithium battery thermal
management Appl. Therm. Eng. 219 119547

[26] Lin P, Zhou P and Wu CW 2011 Multi-objective topology optimization of end plates of proton exchange membrane fuel cell
stacks J. Power Sources 196 1222–8

[27] Liu B, Wei M Y, Ma G J, Zhang W and Wu CW 2016 Stepwise optimization of endplate of fuel cell stack assembled by steel belts
Int. J. Hydrog. Energy 41 2911–8

[28] Herzog D, Röver T, Abdolov S, Becker F and Gentner C 2022 Optimization and design for additive manufacturing of a fuel cell
end plate J. Laser Appl. 34 042027

[29] Yang D, Hao Y, Li B, Ming P and Zhang C 2022 Topology optimization design for the lightweight endplate of proton exchange
membrane fuel cell stack clamped with bolts Int. J. Hydrog. Energy 47 9680–9

[30] Onishi J, Kametani Y, Hasegawa Y and Shikazono N 2019 Topology optimization of electrolyte-electrode interfaces of solid oxide
fuel cells based on the adjoint method J. Electrochem. Soc. 166 F876–88

[31] Roy T, Salazar De Troya M A, Worsley M A and Beck V A 2022 Topology optimization for the design of porous electrodes Struct.
Multidiscip. Optim. 65 171

[32] Alizadeh M, Charoen-amornkitt P, Suzuki T and Tsushima S 2023 Mixed topology optimization: a self-guided
boundary-independent approach for power sources Energy Convers. Manage. 294 117567

23

https://orcid.org/0000-0001-5086-1683
https://orcid.org/0000-0001-5086-1683
https://orcid.org/0000-0001-6382-3715
https://orcid.org/0000-0001-6382-3715
https://orcid.org/0000-0001-8935-0135
https://orcid.org/0000-0001-8935-0135
https://doi.org/10.1039/C9NA00345B
https://doi.org/10.1039/C9NA00345B
https://doi.org/10.1016/j.mset.2018.08.001
https://doi.org/10.1016/j.mset.2018.08.001
https://doi.org/10.1016/j.crcon.2020.08.002
https://doi.org/10.1016/j.crcon.2020.08.002
https://doi.org/10.1038/s41560-023-01263-2
https://doi.org/10.1038/s41560-023-01263-2
https://doi.org/10.3390/app9173588
https://doi.org/10.3390/app9173588
https://doi.org/10.1149/05801.1047ecst
https://doi.org/10.1149/05801.1047ecst
https://doi.org/10.1016/j.jpowsour.2014.03.007
https://doi.org/10.1016/j.jpowsour.2014.03.007
https://doi.org/10.1016/j.ijhydene.2017.08.131
https://doi.org/10.1016/j.ijhydene.2017.08.131
https://doi.org/10.1016/j.apenergy.2023.120853
https://doi.org/10.1016/j.apenergy.2023.120853
https://doi.org/10.1016/j.ijheatmasstransfer.2024.125313
https://doi.org/10.1016/j.ijheatmasstransfer.2024.125313
https://doi.org/10.1007/s00158-013-0978-6
https://doi.org/10.1007/s00158-013-0978-6
https://doi.org/10.1007/s00158-021-02881-8
https://doi.org/10.1007/s00158-021-02881-8
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121172
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121172
https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.013
https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.013
https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.005
https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.005
https://doi.org/10.3390/fluids5010029
https://doi.org/10.3390/fluids5010029
https://doi.org/10.1007/s00158-017-1886-y
https://doi.org/10.1007/s00158-017-1886-y
https://doi.org/10.1080/15376494.2022.2030444
https://doi.org/10.1080/15376494.2022.2030444
https://doi.org/10.1115/DETC2019-97675
https://doi.org/10.1007/s00158-017-1763-8
https://doi.org/10.1007/s00158-017-1763-8
https://doi.org/10.1016/j.est.2019.100990
https://doi.org/10.1016/j.est.2019.100990
https://doi.org/10.1016/j.ecmx.2022.100215
https://doi.org/10.1016/j.ecmx.2022.100215
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121612
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121612
https://doi.org/10.1016/j.est.2022.105703
https://doi.org/10.1016/j.est.2022.105703
https://doi.org/10.1016/j.applthermaleng.2022.119547
https://doi.org/10.1016/j.applthermaleng.2022.119547
https://doi.org/10.1016/j.jpowsour.2010.08.072
https://doi.org/10.1016/j.jpowsour.2010.08.072
https://doi.org/10.1016/j.ijhydene.2015.12.047
https://doi.org/10.1016/j.ijhydene.2015.12.047
https://doi.org/10.2351/7.0000789
https://doi.org/10.2351/7.0000789
https://doi.org/10.1016/j.ijhydene.2022.01.024
https://doi.org/10.1016/j.ijhydene.2022.01.024
https://doi.org/10.1149/2.0031913jes
https://doi.org/10.1149/2.0031913jes
https://doi.org/10.1007/s00158-022-03249-2
https://doi.org/10.1007/s00158-022-03249-2
https://doi.org/10.1016/j.enconman.2023.117567
https://doi.org/10.1016/j.enconman.2023.117567


Prog. Energy 7 (2025) 012003 M Alizadeh et al

[33] Charoen-amornkitt P, Alizadeh M, Suzuki T and Tsushima S 2023 Entropy generation analysis during adjoint variable-based
topology optimization of porous reaction-diffusion systems under various design dimensionalities Int. J. Heat Mass Transfer
202 123725

[34] Van Gorp R, Van Der Heijden M, Amin Sadeghi M, Gostick J and Forner-Cuenca A 2023 Bottom-up design of porous electrodes
by combining a genetic algorithm and a pore network model Chem. Eng. J. 455 139947

[35] Reale Batista M D et al 2023 Design and additive manufacturing of optimized electrodes for energy storage applications Carbon
205 262–9

[36] Chen X 2016 Topology optimization of microfluidics—a reviewMicrochem. J. 127 52–61
[37] Bendsøe M P and Kikuchi N 1988 Generating optimal topologies in structural design using a homogenization method Comput.

Methods Appl. Mech. Eng. 71 197–224
[38] Dbouk T 2017 A review about the engineering design of optimal heat transfer systems using topology optimization Appl. Therm.

Eng. 112 841–54
[39] Dilgen C B, Dilgen S B, Aage N and Jensen J S 2019 Topology optimization of acoustic mechanical interaction problems: a

comparative review Struct. Multidiscip. Optim. 60 779–801
[40] Eschenauer H A and Olhoff N 2001 Topology optimization of continuum structures: a review∗ Appl. Mech. Rev. 54 331–90
[41] Rozvany G I N 2001 Aims, scope, methods, history and unified terminology of computer-aided topology optimization in

structural mechanics Struct. Multidiscip. Optim. 21 90–108
[42] Rozvany G I N 2009 A critical review of established methods of structural topology optimization Struct. Multidiscip. Optim.

37 217–37
[43] Deaton J D and Grandhi R V 2014 A survey of structural and multidisciplinary continuum topology optimization: post 2000

Struct. Multidiscip. Optim. 49 1–38
[44] Fawaz A, Hua Y, Le Corre S, Fan Y and Luo L 2022 Topology optimization of heat exchangers: a review Energy 252 124053
[45] Bendsøe M P 1989 Optimal shape design as a material distribution problem Struct. Optim. 1 193–202
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