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ABSTRACT

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been widely used in therapy of
ischemic heart disease. However, there are still remaining issues that limit the therapeutic efficacy, such as
immune rejection and low retention of hiPSC-CMs. Human adipose mesenchymal stromal cells (hADSCs) have
been reported to be able to regulate the immune response, promote angiogenesis and promote the maturation of
hiPSC-CMs. In this study, we co-cultured these two types of cells on fiber scaffold made of biodegradable poly (D,
L-lactic-co-glycolic acid) (PLGA) polymer for several days to develop a composited 3D cardiac tissue sheet. As
expected, the cells formed 231.00 + 15.14 pm thickness tissue, with improved organization, alignment, ECM
condition, contractile ability, and paracrine function compared to culture hiPSC-CMs only on PLGA fiber.
Furthermore, the composited 3D cardiac tissue sheet significantly promoted the engraftment and survival after
transplantation. The composited 3D cardiac tissue sheet also increased cardiac function, attenuated ventricular
remodeling, decreased fibrosis, and enhanced angiogenesis in rat myocardial infarction model, indicating that
this strategy wound be a promising therapeutic option in the clinical scenario.

1. Introduction

Currently, ischemic heart disease is the leading cause of death
worldwide [1,2]. A major underlying pathophysiological issues in this
disease is the constrained intrinsic regeneration capacity of the human
myocardium after injury [3]. Although clinical treatments for myocar-
dial infarction (MI) can achieve myocardial reperfusion, cardiomyocyte
(CM) death caused by ischemia cannot be reversed [4].

Cell-based therapies, involving cell transplantation to compensate
for cell loss, ameliorate non-specific inflammatory processes, rebuild the
damaged tissue, and restore the organ function, have emerged as novel
treatment strategies in regenerative medicine [5,6]. Various cell types
have been explored as treatment options for ischemic heart disease
leading to different outcomes in terms of therapeutic benefit [7,8].
Mesenchymal stem cells (MSCs) offer several advantages including easy
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acquisition, low immunogenicity, and rapid proliferation, among them,
hADSCs have been shown to improve cardiac contractility, reduce
inflammation, adverse remodeling, and enhance vascularization via the
secretion of several cytokines [9-15]. However, the cardiac functional
recovery capacity of MSCs is limited owing to severe cell loss, uneven
local distribution, and inability to restore the lost contractility necessary
for proper electromechanical heart function. Several studies have
demonstrated the potential of induced pluripotent stem cell-derived
CMs (iPSC-CMs) to engraft and improve the performance of myocar-
dium after MI [16-21]. Several iPSC-CMs are currently in the clinical
trial phase [22]. However, iPSC-CMs exhibit limited retention and poor
paracrine function after transplantation. Therefore, we aimed to
simultaneously use these two cell types to develop composite tissues
with the biomaterials as scaffold.

Poly (lactic-co-glycolic-acid) (PLGA) is a biodegradable and
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biocompatible copolymer, which is widely used as a therapeutic device
in drug delivery and tissue engineering applications. Its clinical use in
humans has been approved by the U.S. Food and Drug Administration
(FDA) [23,24]. In our previous studies, we have constructed 3D
hiPSC-CM tissue sheets and 3D MSC tissue sheets using PLGA fiber
scaffold [17,25]. Our tissue sheet technology based on PLGA fiber
scaffold exhibits numerous advantages, including well-organized and
thick tissue, abundant ECM deposition, enhanced secretion, simple
construction methods, excellent operability, and ultimately contributes
to MI therapy [13,16-20,25]. In addition, previous studies have
demonstrated that MSCs can reduce the apoptosis, improve the matu-
ration, and inhibit the immune rejection of CM [26-28]. Therefore, in
this study, we co-cultured human adipose-derived mesenchymal stem
cells (hADSCs) with human induced pluripotent stem cell-derived CMs
(hiPSC-CMs) on a PLGA fiber scaffold using a one-step seeding process,
resulting in the development of composite, highly functional, and
well-organized 3D cardiac tissue sheets (as shown in Graphical
Abstract).

To the best of our knowledge, this study is the first to generate thick
and functional 3D cardiac tissue sheets via composite assembly of hiPSC-
CMs and hADSCs. Their organization, contractile properties, and cyto-
kines secretion were assessed in vitro. Additionally, their therapeutic
effects, including the improvement in cardiac function, reduction in
fibrosis, inhibition of remodeling, and promotion of angiogenesis, were
evaluated in a rat MI model in vivo.

2. Materials and methods
2.1. Construction of poly (lactic-co-glycolic acid) (PLGA) fiber scaffold

To prepare the scaffold, poly (lactic-co-glycolic acid) (PLGA) (75/25;
molecular weight: 66,000-107000; Sigma-Aldrich, St. Louis, MO, USA)
was mixed with hexafluoro-2-propanol (HFIP, Wako Pure Chemical In-
dustries, Tokyo, Japan) in a centrifugal tube (1.2 g:3 mL, w/v). Fibers
were synthesized using an automated electrospinning machine (NF-103,
MECC, Fukuoka, Japan). The mixed solution was loaded into a 3-mL
syringe, to which a needle of 0.6-mm inner diameter was attached,
connecting it to the positive electrode of the high-voltage power supply
(10 kV). A layer of aluminum foil was attached to the grounded drum,
which was rotated at 1000 rpm to collect the PLGA fiber scaffold. The
distance between the needle tip and drum was maintained at 15 cm, and
spinning was performed for 60 min. Finally, the fiber sheets were
transferred to a polydimethylsiloxane (PDMS) frame (1 cm x 1 cm) for
subsequent cell seeding. After formation, the fibers were examined using
a scanning electron microscope, as previously described [17].

2.2. Preparation and characterization of human-induced pluripotent stem
cell-derived cardiomyocytes (hiPSC-CMs)

Human-induced pluripotent stem cells (hiPSCs) (253G1; Riken,
Tsukuba, Japan) were cultured in a primate embryonic stem cell me-
dium (ReproCELL, Kanagawa, Japan) supplemented with the basic
fibroblast growth factor (bFGF; ReproCELL, Kanagawa, Japan) at 37 °C.
Mitomycin Ctreated mouse embryonic fibroblasts (ReproCELL, Kana-
gawa, Japan) were used as feeder cells. Cardiomyogenic induction was
performed in the StemPro 34 medium (Thermo Fisher Scientific, Wal-
tham, MA) containing 2 mM i-glutamine (Thermo Fisher Scientific,
Waltham, MA), 50 mg/mL ascorbic acid (Wako, Pure Chemical In-
dustries, Tokyo, Japan), and 400 mM 1-thioglycerol (Sigma-Aldrich, St.
Louis, MO), as previously described [18].

To obtain hiPSC-CMs, hiPSCs were dissociated using Accmax
(Nacalai Tesque, Kyoto, Japan), and induced in a bioreactor (ABLE
Corporation & Biott Co., Tokyo, Japan). Human recombinant bone
morphogenetic protein 4 (BMP4), activin A, bFGF, and vascular endo-
thelial growth factor (VEGF) (R&D Systems, Minneapolis, MN), along
with the small-molecule compounds IWR-1 and IWP-2 (Sigma-Aldrich,
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St. Louis, MO) were used for induction as follows: BMP4 from day 0-1;
activin A, BMP4, and bFGF from days 1-4; IWR-1 and IWP-2 from days
4-6; and VEGF and bFGF after day 6. Flow cytometry analysis was
performed on day 14 using a FACS Canto II (BD, Franklin Lakes, NJ) as
previously reported [18].

2.3. Culture of human adipose mesenchymal stromal cells (hADSCs)

Next, hADSCs were obtained from PromoCell (C-12977, PromoCell,
Heidelberg, Germany). The hADSCs were cultured and expanded as
previously described [25]. Briefly, cryopreserved passage 2 (P2) cells
were obtained and cultured in the mesenchymal stem cell (MSC)
Xeno-Free culture medium (Takara Bio Inc., Shiga, Japan) at 37 °C in a
5% CO3 incubator. The culture medium was changed every 2-3 days,
and upon reaching 80-90% confluency, the cells were detached using
TrypLE Select (Gibco, Waltham, MA, USA) for further expansion. Cells of
passages 4-7 were used for all experiments.

2.4. Characterization of human adipose mesenchymal stromal cells
(hADSCs)

A flow cytometry (BD FACSCanto II; BD Biosciences, Erembodegem,
Belgium) was used for immunophenotyping. hADSCs were harvested
after seven passages, dissociated into single cells, washed with
phosphate-buffered saline (PBS), and stained with the fluorescence-
conjugated antibodies, including the anti-hCD31-PE, anti-hCD34-PE,
anti-hCD45-PE, anti-hCD73-PE, anti-hCD90 (Thy1)-PE, anti-hCD105-
PE, anti-HLA-G-PE, and anti-HLA-DR-PE antibodies (Table S1). Mouse
IgG1 « isotype was used as a control for cell staining. Antibodies were
purchased from BioLegend (San Diego, CA, USA). FlowJo software
v10.5.3 (BD, Franklin Lakes, NJ, USA) was used for data analysis.

Differentiation potential of hADSCs into adipogenic, osteogenic, and
chondrogenic lineages was evaluated using a differentiation medium
(PromoCell, Heidelberg, Germany) for 2, 2, and 3 weeks, respectively.
Differentiation of hADSCs was further confirmed via Oil red O, Alizarin
red S, and Alcian blue (Sigma-Aldrich) staining, respectively. Samples
were examined under a fluorescence microscope (BZ-X800; KEYENCE,
Osaka, Japan).

2.5. Cardiomyocyte (CM) tissue sheets and CM + adipose mesenchymal
stromal cell (ADSC) tissue sheets formation

To construct CM tissue sheets, hiPSC-CMs were dissociated into
single cells with Trypsin-EDTA (GIBCO, Tokyo, Japan) and seeded onto
PLGA fiber scaffolds at a density of 5 x 10° cells/cm? Then, 3 umol/L
Rho-kinase (ROCK) inhibitor (FUJIFLIM, Tokyo, Japan) and 10 pg/mL
iMatrix-511 (Matrixome, Osaka, Japan) were added during cell seeding.
The tissue sheets were cultured in a humidified atmosphere containing
5% CO; at 37 °C for 3-5 days before transplantation, and the medium
was changed every 2 days.

For CM + ADSC tissue sheet formation, hADSCs from the 2nd passage
were seeded in a 100 mm dish (Falcon 353,003, Arizona, USA) after
thawing. When the cell confluency reached approximately 70-80%,
hADSCs were collected from the dishes and rinsed with PBS. The hiPSC-
CMs obtained through the above steps were mixed with hADSCs and
seeded onto PLGA fiber scaffolds at a density of 5 x 10° cells/cm?
(hiPSC-CMs: hADSCs = 9 : 1). Then, 3 pmol/L ROCK inhibitor (FUJI-
FLIM, Tokyo, Japan) and 10 pg/mL iMatrix-511 (Matrixome, Osaka,
Japan) were added during cell seeding. The tissue sheets were cultured
in a humidified atmosphere containing 5% CO3 at 37 °C for 3-5 days
before transplantation, and the medium was changed every 2 days.

2.6. Western blotting

To isolate total protein, CM + ADSC tissue sheets and CM tissue
sheets were dissolved in Radioimmunoprecipitation assay (RIPA) buffer
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with protease inhibitor (Thermo Fisher Scientific, Rockford, Illinois,
USA), placed on ice for more than 30 min, and centrifuged at 400xg for
5 min to remove all insoluble matter. Protein concentration was
measured using the Bicinchoninic acid (BCA) assay (Thermo Fisher
Scientific, Rockford, Illinois, USA). Sodium dodecyl sulfate-
polyacrylamide gel electrophoresis was performed by applying 10 pg
of protein sample in each lane. After the membrane transfer of the
proteins and blocking with EveryBlot Blocking Buffer (Bio-Rad Labo-
ratories, Hercules, CA, USA), the membranes were incubated overnight
at 4 °C with the primary antibodies listed in Table S1. Thereafter, they
were incubated for 1 h at 25 °C with anti-rabbit or anti-mouse horse-
radish peroxidase-coupled secondary antibody. Bands were visualized
using SuperSignal™ West Atto Ultimate Sensitivity Substrate (Thermo
Fisher Scientific) and quantified using a ChemiDoc multiplex fluores-
cence imaging system (Bio-Rad Laboratories).

2.7. Motion analysis

The contractile properties of CM + ADSC tissue sheets and CM tissue
sheets were evaluated using a cell motion imaging system (SI8000;
SONY, Tokyo, Japan). The tissues were cultured for 5 days. Videos were
recorded at a rate of 150 frames per second, a resolution of 1024 x 1024
pixels, and a depth of 8 bits. The beating rate, contraction velocity,
relaxation velocity, acceleration, contraction deformation distance, and
relaxation deformation distance were measured using SI8000C analyzer
software (Sony).

2.8. Electrophysiological recording using microelectrode arrays (MEA)

The field potentials of the cardiac tissue were recorded using a MEA
data system (USB-ME64-System, Multi-Channel Systems, Germany)
with an MC_ Rack (Multi-Channel Systems). The activation map was
generated using the local activation time from the single electrodes by
calculating the minimum of the raw curve’s first-derivative plot. Linear
interpolation between the electrodes was used to calculate the
isochronal map using MATLAB (MATLAB, MathWorks, USA) [16].

2.9. Seahorse mitochondrial function test

According to the manufacturer’s instruction of the seahorse XF Cell
Mito Stress Test kit (Agilent, CA, USA), we detected the Oxygen Con-
sumption Rate (OCR) of cells in tissue sheets. Specifically, CM + ADSC
tissue sheets and CM tissue sheets were digested into single cells, and
after cell counting, 4.0 x 10* cells were seeded in each well of an XFe 96
cell culture plate, and cultured in 37 °C, 5% CO? incubator for 24 h. Prior
to the experiment, we preheated the machine and hydrated the sensor
cartridge. To prepare the detection solution, we added 1 ml of glucose, 1
ml of pyruvate, and 1 ml of r-glutamine to 97 ml of Seahorse XF RPMI
medium. This solution was mixed thoroughly and added to the cell plate.
The cell plate was then placed in a CO?-free incubator at 37 °C for 1 h
1.5 pM Oligomycin, 1 pM carbonyl cyanide p-(trifluoromethoxy) phe-
nylhydrazone (FCCP) and 0.5 pM Rotenone + 0.5 pM antimycin A were
added to sensor cartridge ports in sequence. Immediately insert the cell
culture microplate into the XF96 Extracellular Flux Analyzer (Agilent,
CA, USA) and run the Cell Mitochondrial Stress Test. After measuring
OCR, cells were lysed and the protein in each well was quantified using
the BCA protein quantification kit. All values of OCR parameters
calculated were normalized to the quantified protein content. Data were
analyzed using Wave software (Agilent, CA, USA).

2.10. In vitro angiogenesis cytokines array

The expression of angiogenesis-related proteins was measured using
a RayBio® C-Series Human Angiogenesis Antibody Array C1000 (Ray-
Biotech, Inc., Norcross GA, USA) according to the manufacture’s pro-
tocols. It is a combination of Human Angiogenesis Antibody Array C1
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and C2, which detects 43 human angiogenic factors. Experiments were
made using supernatants from two biological samples of CM tissue
sheets and CM + ADSC tissue sheets after 24 h of serum-free (Basel
DMEM medium only) culture.

Briefly, membranes were incubated with blocking buffer for 30 min
at room temperature, after which the supernatant was added and
incubated at 4 °C overnight. The membranes were then washed 5 times
with washing buffer and incubated with Biotinylated Antibody Cocktail
overnight at 4 °C. After 5 times washing, membranes were incubated
with HRP-Streptavidin Concentrate for 2 h at room temperature, washed
twice, and placed in detection buffer for 2 min. The signals were
detected using the ImageQuant Imaging System (ChemiDoc Touch MP,
Osaka, Japan, Bio-Rad). Relative cytokine levels were determined by
densitometric analysis using the ImageJ software (NIH, Bethesda, MD,
USA).

2.11. Engyme-linked immunosorbent assay (ELISA) assay

The culture supernatants obtained from the CM tissue sheets and CM
-+ ADSC tissue sheets were analyzed using enzyme-linked immunosor-
bent assay (ELISA), including vascular endothelial growth factor (VEGF,
DVEO0), hepatocyte growth factor (HGF, DHGOOB) and basic fibroblast
growth factor (B-FGF, DFB50, R&D Systems, Minneapolis, MN, USA,
Quantikine ELISA), and was performed according to the manufacturer’s
instructions. The absorbance rate was determined using a microplate
reader (Powerscan H1, DS Pharma Biomedical, Osaka, Japan) at a
wavelength of 450 nm, with the wavelength correction set to 540 nm.

2.12. In vitro tube formation assay

In vitro tube formation assay was performed using Human Umbilical
Vein Endothelial Cells (HUVECs) cultured on Matrigel (Corning, Ari-
zona, USA) [29]. In brief, a 96-well plate was coated with Matrigel for
20 min at 37 °C, and the HUVECs were seeded at a density of 1.5 x 10*
cells per well. After incubation with supernatant from CM tissue sheets
and CM + ADSC tissue sheets for 16 h. Images were taken under a
brightfield microscope (OLYMPUS CKX53, Tokyo, Japan). Statistical
analysis was performed using the angiogenesis analyzer tool [30] of
ImageJ software (NIH, Bethesda, MD, USA).

2.13. Rat myocardial infarction (MI) model and transplantation

All animal procedures were performed in accordance with the
guidelines for animal experimentation approved by the Osaka Univer-
sity (01-062-000). Male F344/NJcl-rnu/rnu nude rats (7 weeks old,
weight: 175.7 + 8.7 g; CLEA Japan, Inc., Shizuoka, Japan) were used for
all experiments. The rats were observed for one week before MI
induction.

The MI model was induced through left anterior descending (LAD)
coronary artery ligation under mechanical ventilation as previous
described [31]. Briefly, rats were anesthetized by 1.5% isoflurane
inhalation (Mylan Inc., Canonsburg, PA, USA), incubated, and placed on
respirator during surgery to maintain ventilation. Thoracotomy was
performed between the fourth and fifth intercostal spaces, and MI was
induced by permanently ligating the LAD coronary artery with a
non-absorbable 6-0 polypropylene suture (Ethicon, Johnson & Johnson,
USA). Two weeks after left coronary artery ligation (week 0), trans-
thoracic echocardiography was performed to validate the extent of MI.
And the rats with left ventricular (LV) ejection fraction (EF) > 55% were
excluded.

These model rats were randomly divided into four groups: (1) tho-
racotomy without LAD ligation (Sham group), (2) MI model without
treatment (MI group) (3) transplantation of CM tissue sheets (CM
group), (4) transplantation of CM + ADSC tissue sheets (CM + ADSC
group). In the MI group, no intervention was performed except for
thoracotomy. For transplantation, the PDMS frame of PLGA fiber
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scaffold was cut and removed, and the pericardium was peeled back to
identify the infarcted area. The tissue sheets were placed directly onto
the infarcted area of heart between the visceral and parietal pericar-
dium. Four weeks after transplantation, the rats were sacrificed through
an anesthetic overdose and the hearts were harvested for further
analysis.

2.14. Echocardiography

Echocardiographic imaging was performed as previously described.
Briefly, rats were maintained under 1.5% isoflurane anesthesia, and kept
warm on a heated platform. Transthoracic echocardiographic exami-
nations were then performed on the rats under inhaled isoflurane
anesthesia by a blinded technician. Two-dimensional (2D) bright mode
(B-mode) and motion mode (M-mode) were obtained from a parasternal
long-axis view with a micro-ultrasound system (Vivid i, GE Healthcare,
WI, USA). The left ventricle internal diameter at end-systole (LVIDs) and
left ventricle internal diameter at end-diastole (LVIDd) were determined
from M-mode images, using averaged measurements from four cardiac
cycles, in accordance with the American Society of Echocardiography
guidelines. The left ventricle end-systolic volume (LVESV) and end-
diastolic volume (LVEDV) were then calculated using the Teichholz
method:

7 x LVIDs®

LVESY =— "~
VESV =3 4 LviDs
7 x LVIDd®
LVEDV =-—— ="
2.4 + LVIDd

Other parameters such as ejection fraction, fractional shortening (FS)
was calculated:

LVEDV — LVESV
LVEDV

LVEF =100 x

LVIDd — LVIDs
LVFS— 100 x 2V1P4 — LVIDs
LVIDd

2.15. Immunofluorescence and histological analysis

The CM tissue sheets and CM + ADSC tissue sheets were fixed in 4%
paraformaldehyde for 0.5 h and cryosections were prepared for immu-
nohistology. The cryosections were incubated with primary antibodies
(for detailed information on antibodies, refer to Table S1) for overnight
at 4 °C, followed by washing with PBS and incubation with respective
secondary antibodies at 37 °C for 1 h. After counterstaining with 2-(4-
amidinophenyl)-1H-indole-6-carboxamidine (DAPI) or Hoechst 33,342,
the sections were observed under a fluorescence microscope (BZ-X800;
KEYENCE, Osaka, Japan) and a confocal microscope (Nikon A1, Nikon,
New York, NY, USA).

After four weeks of transplantation, the rats were euthanized for
heart tissue harvesting through echocardiography. Following this, the
samples were fixed in formalin, transferred to ethanol, and embedded in
paraffin. Serial sections, 5-pm in thickness, were prepared to examine
normal tissue architecture using hematoxylin and eosin (H&E) staining.
For immunohistology of heart tissue sections, dewaxed paraffin sections
were washed in PBS, and antigen retrieval was performed in Target
Retrieval Solution (pH = 6; DAKO Japan, Inc, Tokyo, Japan) at 121 °C
for 10 min. The sections were stained as described above.

2.16. Terminal deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL) staining

Cryosections prepared above were also used for TUNEL staining
using the Click-iT TUNEL kit (C10619 Invitrogen, ThermoFisher Scien-
tific, Waltham, MA, USA) following the manufacturer’s instructions.
And the sections were observed under a confocal microscope (Nikon A1,
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Nikon, New York, NY, USA). The percentage of apoptotic nuclei was
calculated by dividing the total number of TUNEL-stained nuclei by the
total number of Hoechst-positive nuclei using ImageJ software (NIH,
Bethesda, MD, USA).

2.17. Infarct size

The infarct size was measured using Masson’s trichrome staining,
and the fibrosis area was evaluated using picrosirius red staining as
described previously [13]. Digital images of stained sections were
captured via light microscope (BZ-X800; KEYENCE, Osaka, Japan) and
analyzed with ImageJ software (NIH, Bethesda, MD, USA). Infarct size
was calculated as follows:

epicardial infarct ratio + endocardial infarct ratio

5 x 100

The epicardial infarction ratio was calculated by dividing the
epicardial infarction length by the epicardial circumference, and the
endocardial infarction ratio was calculated in a similar manner. The
percentage of fibrotic area was calculated as the average ratio of the
fibrotic area to the total LV area:

fibrotic area

—————— x 100
total LV area

percentage of fibrotic area =

2.18. Vascular density

To quantify the density of neovessels and arterioles in the graft and
the MI border zone of host, von Willebrand Factor (vWF) and alpha-
smooth muscle actin (a-SMA) were used to stain the endothelial cells
and vascular smooth muscle cells, respectively, while cell nuclei were
counterstained blue for DAPI. The neovessels were represented by or-
ange staining, and orange/green double staining represented arterioles,
as previously reported [25]. Images were captured using a confocal
microscope (Nikon A1, Nikon, New York, NY, USA) and analyzed with
ImageJ software (NIH, Bethesda, MD, USA).

2.19. Statistical analysis

All quantitative data are presented as mean + standard deviation
(SD) and were analyzed using GraphPad Prism 9.5.0 (GraphPad Soft-
ware, USA). The difference in normal variates was tested using Student’s
t-test within the two groups. One-way analysis of variance (ANOVA)
followed by Tukey’s post-hoc test (variance homogeneity) was used for
comparisons among three or more groups. Statistical significance was
defined as a p-value <0.05, (significance was set at *p < 0.05, **p <
0.01, and ***p < 0.001).

3. Results

3.1. Characterization of human-induced pluripotent stem cell-derived
cardiomyocytes (hiPSC-CMs)

Human-induced pluripotent stem cells (hiPSCs) were differentiated
into hiPSC-CMs as previously reported (Fig. 1A), and subsequent as-
sessments confirmed the expression of the appropriate lineage markers.
Flow cytometry analysis was performed on day 14, and the percentage
of cardiac troponin T (cTnT)-positive cells was 90.2 + 1.6 % (Fig. 1B).
Immunofluorescence staining revealed that the hiPSC-CMs expressed
a-actinin and ¢TnT (Fig. 1C and D), indicating a well-arranged and clear
sarcomeric structure native to cardiomyocytes (CMs). Furthermore,
immunofluorescence staining for N-Cadherin and connexin 43 (Cx43)
revealed cell-cell communications and gap junctions between hiPSC-
CMs (Fig. 1C and D). These results demonstrated the successful differ-
entiation of hiPSCs into high-purity functional CMs.
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Fig. 1. Characterization of human adipose-derived stem cells (hADSCs) and human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CMs). (A)
Schematic diagram of cardiomyocytes induction from hiPSCs. (B) Representative induction rate of hiPSC-CMs (cTnT). (C) Immunostaining of a-actinin (green) and N-
cadherin (orange) in hiPSC-CMs. Nuclei were counterstained with DAPI (blue). Scale bar = 100 pm. (D) Immunostaining of cardiac troponin T (cTnT) (green) and
connexin 43 (CX43) (orange) in hiPSC-CMs. Nuclei were counterstained with DAPI (blue). Scale bar = 100 pm. (E) Flow cytometry analysis of hADSCs surface
markers CD31, CD34, CD45, CD73, CD90, CD105, HLA-DR, and HLA-G. (F) Bright field microscopic images showing the spindle-like morphology of hADSCs. Scale
bar = 200 pm. (F-H) Differentiation potential of hADSCs demonstrated by detection of adipocytes (using Oil Red O staining), osteoblasts (using Alizarin Red
staining), and chondrocytes (using Alcian Blue staining). Scale bars = 50 pm, 100 pm, and 100 pm, respectively.
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3.2. Characterization of human adipose mesenchymal stromal cells
(hADSCs)

To confirm the characterization of hADSCs, flow cytometry-based
analysis was performed to determine the expression levels of specific
surface markers for mesenchymal stem cells (MSCs) at passage 7. Our
data revealed that hADSCs were highly positive for CD73, CD90, and
CD105, while significantly negative for CD31, CD34, CD45, HLA-G, and
HLA-DR (Fig. 1E). In addition, bright-field microscopy revealed that the
cells exhibited a typical spindle-like morphology (Fig. 1F). In vitro dif-
ferentiation assays were performed after the 4th passage to determine
whether the hADSCs retained their differentiation potential. The plas-
ticity of hADSCs was confirmed via adipogenic, osteogenic, and chon-
drogenic differentiation using Oil red O (adipogenic marker) (Fig. 1C),
Alizarin S red (osteogenic marker) (Fig. 1D), and Alcian blue
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(chondrogenic markers) (Fig. 1E) staining, respectively. The expression
profiles of these surface markers and their differentiation abilities were
consistent with the properties of MSCs.

3.3. Development and evaluation of CM and CM + ADSC tissue sheets

The Poly (lactic-co-glycolic acid) (PLGA) fiber scaffold was utilized
as a culture substrate to facilitate tissue formation by hADSCs and
hiPSC-CMs. Based on the Hematoxylin and Eosin (HE) staining results
(Fig. 2A), CM tissue sheets and CM + ADSC tissue sheets showed a
thickness of 185.52 £+ 16.02 pm and 231.00 £+ 15.14 pym (Fig. 2E),
respectively. Furthermore, the terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) staining was used to evaluate the
viability of cells within the tissues (Fig. 2B), the apoptotic rate of CM +
ADSC tissue sheets was lower than that of CM tissue sheets (Fig. 2F). In
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Fig. 2. Construction and evaluation of CM + ADSC tissue sheets. (A) Hematoxylin and eosin (HE) staining of CM and CM + ADSC tissue sheet (side view). Scale
bar = 100 pm. (B) TUNEL staining of CM and CM + ADSC tissue sheet. Nuclei were counterstained with Hoechst (blue). Scale bar = 100 pm. (C) Immunohisto-
chemical staining of vimentin (green) and ¢TnT (red) expression in the CM and CM + ADSC tissue sheet. Nuclei were counterstained with DAPI (blue). Scale bar =
100 pm. (D) Immunohistochemical staining of collagen I (green) and collagen III (red) expression in the CM and CM + ADSC tissue sheet. Nuclei were counterstained
with DAPI (blue). Scale bar = 100 pm. (E) Quantitative analysis of thickness of CM and CM + ADSC tissue sheet. (F) Quantitative analysis of apoptotic rate in CM and
CM + ADSC tissue sheet. (G) Fourier component analysis of iPSC-CMs in CM and CM + ADSC tissue sheet. (H) Representative western blots (WB) of MYH7, N-
Cadherin, and GAPDH from CM and CM + ADSC tissue sheet. (I-J) Quantification of protein expression from WB by densitometry, normalized to GAPDH, in the CM
and CM + ADSC group, n represented independent experiment samples. Results are presented as mean + SD. Statistical significance was determined using Student’s

t-test. *p < 0.05, ***p < 0.001.
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addition, immunostaining revealed a well organization of CM + ADSC
tissue sheets and CM tissue sheets (Fig. 2C and Fig. S1A), however, the
CM + ADSC tissue sheets exhibited improved alignment of hiPSC-CMs
within the tissues than that of CM tissue sheets (Fig. 2G). As shown in
Fig. 2D and Fig. S1B and a more abundant expression of extracellular
matrix (ECM) was observed in CM + ADSC tissue sheets in comparison
to the CM tissue sheets. Moreover, we also found that the proliferation
rate in CM tissue sheet and CM + ADSC tissue sheet remained at rela-
tively low levels (Fig. S2). In CM + ADSC tissue sheets, N-Cadherin and
Myosin Heavy Chain 7 (MYH7) showed markedly higher expression
than those of the CM tissue sheets (Fig. 2H-J). In conclusion, the CM +
ADSC tissue sheets exhibited superior tissue organization compared to
CM tissue sheets.

Bioactive Materials 37 (2024) 533-548

3.4. Contractile and respiration properties of CM and CM + ADSC tissue
sheets

To evaluated the contractility of CM + ADSC tissue sheets, we per-
formed motion analysis using a high-speed camera-based motion anal-
ysis system as described above. Fig. 3A depicted the high-velocity area
as red, middle-velocity area as green, and low-velocity area as blue.
Contraction velocity, relaxation velocity, and acceleration were signif-
icantly higher in CM + ADSC tissue sheets than that in CM tissue sheets
(Fig. 3B-D). Moreover, the contraction deformation distance and
relaxation deformation distance were remarkably longer in CM + ADSC
tissue sheets than that in CM tissue sheets (Fig. 3E and F). However, the
beating rate of CM + ADSC tissue sheets is lower than that of CM tissue
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analysis parameters of CM and CM + ADSC tissue sheet: contraction velocity (B), relaxation velocity (C), acceleration (D), contraction deformation distance (E), and
relaxation deformation distance (F), and beating rate (G). (H) Map of conduction velocity of cardiac tissue on CM and CM + ADSC tissue sheet using a microelectrode
arrays (MEA) data system. Scale bar = 200 pm. (I) Quantitative analysis of conduction velocity of cardiac tissue on CM and CM + ADSC tissue sheet. (J) Repre-
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sheets (Fig. 3G). Therefore, the CM + ADSC tissue sheets had improved
contractile properties compared to the CM tissue sheets.

Furthermore, electrophysiological data recorded using Microelec-
trode Arrays (MEA) indicated there is no significant differences in
electrical conduction velocity between CM + ADSC tissue sheets and CM
tissue sheets (Fig. 3H and I). To characterize mitochondrial function, we
detected tissue sheets using the seahorse XF assay. Fig. 3J showed
representative traces of cells in CM + ADSC group and CM group. The
CM + ADSC group had significantly higher maximal respiration than the
CM group (Fig. 3L), whereas the basal respiration in CM + ADSC group
was similarly to that in CM group (Fig. 3K). Therefore, we concluded
that CM + ADSC tissue sheets exhibited stronger mitochondrial
function.

3.5. Cytokines secretion and angiogenesis function of CM and CM +
ADSC tissue sheets

In order to examine the cytokines secretion ability of the CM and CM
+ ADSC tissue sheets, a cytokines secretion assay using the Human
Cytokine Antibody Array C5 was performed at first. The cytokines
released from the CM tissue sheets and CM + ADSC tissue sheets was
shown in Fig. 4A. The results revealed that the abundance of C-X-C motif
chemokine 5 (CXCL5), GRO, CXCL1, Interleukin 6 (IL-6), IL-8, Chemo-
kine (C-C motif) ligand 8 (CCL8), CCL7, CCL5, stromal cell-derived
factor 1 (SDF-1), Angiogenin, Vascular endothelial growth factor A
(VEGF-A), Hepatocyte growth factor (HGF), Macrophage Inflammatory
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Protein-3 (MIP-3a), secreted phosphoprotein 1 (SPP-1), and Tumor
Necrosis Factor Receptor Superfamily Member (TNFRSF11) were obvi-
ously higher in the culture supernatant of CM + ADSC tissue sheets than
in that of CM tissue sheets (Fig. 4B). To further investigated the secretion
of VEGF, HGF, and basic fibroblast growth factor (bFGF), which were
related to blood vessels formation and fibrosis reduction, we performed
quantitative analysis by enzyme-linked immunosorbent assay (ELISA).
As shown in Fig. 4C-E, we can know that the concentration of VEGF,
HGF, and bFGF in the supernatant of CM + ADSC tissue sheets was
significantly higher than those in CM tissue sheets.

To further investigated the angiogenesis function of CM + ADSC
tissue sheets, an angiogenic cytokines secretion assay was performed
using Human Angiogenesis Antibody Array C1000. Fig. 5A and B
depicted that the abundance of Angiogenin, GRO, IL-6, IL-8, CCL5,
Tissue Inhibitor of Metalloproteinase (TIMP)-1, TIMP-2, VEGF-A,
Angiopoietin 1 (ANGPT1), ANGPT2, CCL7, Matrix metalloproteinase-9
(MMP-9), and urokinase-type plasminogen activator receptor (uPAR)
were significantly higher in the culture supernatant of CM + ADSC tissue
sheets than in that of CM tissue sheets (Fig. 5C). In addition, the results
of in vitro tube formation assay demonstrated that supernatant of CM +
ADSC tissue sheets remarkably enhanced angiogenesis in HUVEC cells
compared to that of CM tissue sheets (Fig. 5D). The image analysis re-
sults indicated that the mesh count and branch count of CM + ADSC
group was notably higher than those of CM group (Fig. 5E and F), and
the total length of tubes in CM + ADSC group was markedly longer than
that in CM group (Fig. 5G).
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Fig. 4. Comparison of cytokine secretion between CM and CM + ADSC tissue sheet. (A) Representative images of cytokine antibody arrays from the supernatant
of CM and CM + ADSC tissue sheet. Highlighted rectangles indicate the elevated cytokines; POS means positive control spots; NEG means negative control spots. (B)
Relative secretion of cytokines by CM and CM + ADSC tissue sheet. (C-E) Comparison of VEGF, HGF, and bFGF secretion in the supernatant of CM and CM + ADSC
tissue sheet. Results are presented as mean + SD. Statistical significance was determined using Student’s t-test. ***p < 0.001.
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From the findings above, we concluded that the CM + ADSC tissue
sheets exhibit an enhanced cytokines secretion function, particularly in

the paracrine factors related to angiogenesis.
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3.6. Transplantation of CM + ADSC tissue sheets improved cardiac

function

To further investigate the therapeutic efficacy of the CM + ADSC
tissue sheets, CM and CM + ADSC tissue sheets were transplanted into
rat models. To evaluate the cardiac function of rats, echocardiography
was performed before (week —2) and 2 weeks after (week 0) left anterior
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descending artery (LAD) ligation and at 1, 2, 3, and 4 weeks after
transplantation of the CM and CM + ADSC tissue sheets (Fig. 6A and B).
The initial left ventricular ejection fraction (LVEF), left ventricular
fractional shortening (LVFS) showed no significant differences among
the Sham group (Fig. 6C and D, green), MI group (Fig. 6C and D, red),
CM group (Fig. 6C and D, orange), and CM + ADSC group (Fig. 6C and D,
blue). The noticeable decrease in LVEF and LVFS in all ischemic model
groups (MI group, CM group, and CM + ADSC group) at week
0 confirmed the success of LAD ligation. In addition, at week 0, no
significant differences were observed in LVEF and LVFS among the
ischemic model groups (Fig. 6C and D).

As shown in Fig. 6C, the LVEF values were significantly higher in the
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CM + ADSC group than those in the CM group and MI group at week 1
(CM + ADSC 58.97 + 5.37 % versus CM 48.16 + 4.28 % [p = 0.0015]
versus MI 37.39 + 4.24 % [p = 0.0010]), week 2 (CM + ADSC 57.23 +
3.96 % versus CM 47.22 + 2.97 % [p = 0.0019] versus MI 35.08 + 6.17
% [p = 0.0010]), week 3 (CM + ADSC 55.96 + 4.19 % versus CM 44.89
+ 5.03 % [p = 0.0010] versus MI 35.37 + 4.92 % [p = 0.0010]), and
week 4 (CM + ADSC 55.97 + 3.06 % versus CM 46.68 + 6.32 % [p =
0.0064] versus MI 34.89 + 5.15 % [p = 0.0010]) after transplantation.
Similarly, the LVFS values were significantly higher in the CM + ADSC
group than those in the CM and MI groups at 1, 2, 3, and 4 weeks after
transplantation, and the trend in the LVFS values was consistent with
that of the LVEF values (Fig. 6D).cc.
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Fig. 6. CM + ADSC tissue sheets transplantation improves cardiac function. (A) The study protocol of the animal experiment and the evaluation of cardiac
function and histological analysis. (B) Representative M-mode echocardiography images of the Sham group, MI group, CM group, and CM + ADSC group at week 4.
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as mean + SD. Significance was determined using one-way ANOVA followed by Tukey’s post hoc test. *p < 0.05, **p < 0.01.
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These findings demonstrated that the CM + ADSC tissue sheets
exhibit a significant therapeutic effect on recovery of cardiac function
after myocardial infarction compared with the CM tissue sheets.

3.7. Transplantation of CM + ADSC tissue sheets inhibited hypertrophy
and promoted graft engraftment of hiPSC-CMs

To assess cardiac hypertrophy, we performed HE staining and wheat
germ agglutinin (WGA) staining of heart samples from the four groups
obtained 4 weeks post-transplantation (Fig. 7A and B). In the border
zone, the average diameter (short-axis traversing the cell nuclei) of CMs
in the MI group was significantly longer than that in Sham group,
however, the average diameter of CMs in CM + ADSC group and CM
group were remarkably shorter than that in the MI group, indicating that
the transplantation of tissue sheets inhibited CM hypertrophy (Fig. 7B
and C).

Transplantation tissue engraftment was evaluated via immunofluo-
rescent staining (Fig. 7D and E) to confirm the presence of graft reten-
tion and the angiogenesis status. To analyze the graft retention, the
hcTnT was used to label the engraftment hiPSC-CMs, cells within the
graft were marked, whereas the CMs of host showed no reactivity
(Fig. 7D). The CM + ADSC group showed a higher visible graft retention
rate compared with CM group (CM + ADSC: 4 out of 8 rats; CM: 1 out of
6 rats) (Fig. 7F). In addition, as shown in Fig. 7D, we can also observe
that hiPSC-CMs within the graft in the CM + ADSC group had a higher
density and better alignment (Fig. 7D). To investigate the angiogenesis
status within graft, von Willebrand factor (vWF) and a-smooth muscle
actin (a-SMA) were used to stain the endothelial cells and vascular
smooth muscle cells, respectively. There are more vWF-positive cells and
a-SMA-positive cells in the grafts of CM + ADSC group than that of CM
group, indicates enhanced angiogenesis in CM + ADSC group (Fig. 7E).

Based on the above findings, the application of CM + ADSC tissue
sheets transplantation inhibited cardiac hypertrophy, enhanced the
graft retention and the internal angiogenesis of the graft.

3.8. Transplantation of CM + ADSC tissue sheets decreased cardiac
fibrosis and promoted angiogenesis in host

To investigate the mechanisms underlying the improvements in
cardiac function, we examined the extent of cardiac fibrosis through
Masson’s staining and Sirius Red staining. The CM + ADSC group
showed significantly decreased fibrotic area compared to the CM group,
while the fibrotic area of CM group was remarkably decreased than that
of MI group at 4 weeks post-transplantation (Fig. 8A and B). Similar as
the trend of fibrotic area results, the CM + ADSC group exhibited
reduced infarct size than those in CM group and MI group 4 weeks after
transplantation (Fig. 8C and D).

Furthermore, the formation of new blood vessels in MI border zone of
host was evaluated by using immunofluorescence staining. Fig. S3
showed the status of blood vessels without MI in sham group. The
application of CM + ADSC tissue sheets strongly augmented the pres-
ervation or formation of neovessels, as shown by immunostaining for
VvWF, and the arteriolar response, as shown by co-immunostaining for
VWF & a-SMA (Fig. 8E and F). As shown in Fig. 8E-H, the density of
neovessels was remarkably higher in the CM 4+ ADSC group than that in
CM group and MI group. Moreover, the arteriolar density was also
significantly higher in the CM + ADSC group than CM group and MI
group. However, there is no significant differences in both neovessels
and arteriolar densities between CM group and MI group.

In summary, these findings suggested that CM + ADSC tissue sheets
exhibited a significant effect in preventing cardiac fibrosis and pro-
moting angiogenesis in the ischemic heart compared to CM tissue sheets.

4. Discussion

In this study, we developed a composite, highly functional, and well-
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organized 3D cardiac tissue sheet by co-culturing hiPSC-CMs with
hADSCs on a PLGA fiber scaffold. We found that the CM + ADSC tissue
sheets exhibited abundant ECM deposition and potent cytokine secre-
tion, especially of factors related to angiogenesis, such as angiogenin,
ANGPT1 and 2, and VEGF-A. Moreover, the alignment, protein expres-
sion, and function of hiPSC-CMs in the tissue sheets were also signifi-
cantly improved. This study is the first to report the efficacy and
therapeutic potential of hiPSC-CM/hADSC 3D composite tissue sheets in
an MI rat model. The CM + ADSC tissue sheets were transplanted onto
the epicardial surface of rat hearts. Echocardiographic data indicated a
significant improvement in cardiac function following cell sheet trans-
plantation. Furthermore, the histological results of heart samples
showed a decrease in cardiac hypertrophy and fibrotic area/infarct size,
and an increase in engraftment retention and neovascular density
(Fig. 9).

Numerous studies have highlighted the ability of iPSC-CMs to
engraft, establish a functional myocardium, and further improve the
cardiac function in diverse animal models of MI [22,32]. PLGA is a
biodegradable and biocompatible copolymer that has been used in
FDA-approved therapeutic devices including several in our previous
studies [16,18,19,24,25,33]. Our previous studies have demonstrated
that constructing and organizing hiPSC-CMs into tissue sheets using
PLGA fiber scaffold in vitro could enhance their therapeutic capabilities
after transplantation [17,19,34]. Additionally, we attempted to enhance
the function of tissue sheets and their therapeutic effects in vivo through
several methods, such as physical stimulation [20], utilization of phar-
maceutical agents [18], and stacking multiple fibers [16]. However,
despite improvements in engraft retention achieved through the above
approaches, there are still remaining issues in therapeutic efficacy
because of the limited paracrine functions of exogenous hiPSC-CMs [16,
18,20,35]. MSCs are considered a promising approach for repairing
damaged myocardium after ML, improving LV function and remodeling,
and enhancing neovascularization via various paracrine cytokines [36].
In our previous studies, we demonstrated that the construction of solid
and functional tissue sheets using PLGA fiber scaffolds and MSCs
exhibited enhanced therapeutic effects compared to the single-cell sus-
pensions [25].

This study was designed to investigate whether hADSCs can enhance
tissue organization and function in vitro, augment the retention of
transplanted tissue sheets and whether the composite 3D cardiac tissue
sheets therapy can improve the heart function recovery. In our study, the
co-cultured hiPSC-CMs and hADSCs constructed a composite 3D cardiac
tissue with superior thickness, viability, and alignment of the tissue
sheet compared with the hiPSC-CM only counterpart (Fig. 2). Further-
more, the CM + ADSC tissue sheets exhibited enhanced contractile
ability and mitochondrial function than that of CM tissue sheets (Fig. 3).
These enhancements may be related to the abundant expression of ECM
and paracrine cytokines secretion by hADSCs [26,37,38]. The paracrine
effects are considered as the primary mechanism underlying the ability
of transplanted cells to induce cardiac repair [39,40]. According to our
study, the CM + ADSC tissue sheet showed a remarkably improvement
in paracrine cytokines secretion than that of CM tissue sheet, especially
in angiogenesis-related cytokines (Figs. 4 and 5). Importantly, these
angiogenesis-related cytokines not only contributed to the vascular
formation of rat heart but also simultaneously affect the tissue sheet
itself, which could be confirmed by the evaluation of neovessels (VWF™)
and arterioles (VWF" & a-SMA™), and the angiogenesis results in tissue
sheets eventually improved the graft retention after 4 weeks trans-
plantation (Fig. 7).

Here, our fundamental and final aim was to improve the cardiac
function and alleviate the damage caused by severe MI. We used the LV
long-axis view method to evaluate the cardiac function and reduce the
errors caused by the different selections of the short-axis, and thereby
enhance the accuracy and reproducibility of LVEF and LVFS (Fig. 6).
Compared with the CM group, CM + ADSC group showed more signif-
icant increase in LVEF and LVFS, which may be related to the better
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Fig. 7. CM + ADSC tissue sheets transplantation inhibits hypertrophy and promotes graft engraftment of hiPSC-CMs. (A) Hematoxylin and eosin (H&E)
staining of Sham group, MI group, CM group, and CM + ADSC group at the papillary muscle level, respectively. Scale bar = 2 mm. (B) Wheat germ agglutinin (WGA)
staining of the myocardium in the border zone with DAPI counterstaining. Scale bar = 50 pm. (C) Quantitative analysis of MI border zone cardiomyocyte cell
diameter (short-axis) Sham group, MI group, CM group, and CM + ADSC group, respectively. (D) Immunohistochemical staining of hecTnT (green) expression in the
CM and CM + ADSC group at 4 weeks post-transplantation. Nuclei were counterstained with DAPI (blue). Scale bar = 300 pm. (E) Immunohistochemical staining of
a-SMA (green) and vWF (orange) expression in the CM and CM + ADSC group at 4 weeks post-transplantation. Nuclei were counterstained with DAPI (blue). Scale
bar = 300 pm. (F) Statistic showing the animal with visible graft retention in CM and CM + ADSC group. The results are presented as mean + SD. Significance was
determined using one-way ANOVA followed by Tukey’s post hoc test. **p < 0.01, ns means no statistical significance.
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transplantation, respectively. Scale bar = 400 pm and 100 pm, respectively. (G-H) Quantitative analysis of arteriolar (orange/green double staining cells/mm?) and
neovascular (orange staining cells/mm?) densities in border zone of MI group, CM group, and CM + ADSC group. Results are presented as mean + SD. Significance
was determined using one-way ANOVA followed by Tukey’s post hoc test. *p < 0.05, **p < 0.01, ns means no statistical significance.

organization, alignment, ECM secretion, and cytokines secretion. angiogenesis (Figs. 7 and 8).

Furthermore, the histological findings of heart tissue samples revealed

that the CM + ADSC tissue sheets have enhanced therapeutic effect in 5. Conclusion

decreasing fibrosis and attenuating hypertrophy in the ischemic border

zone, which is consistent with the findings on neovessels and arterial In conclusion, we developed a composite, highly functional and well-
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Fig. 9. Schematic diagram of the underlying mechanism of CM + ADSC tissue sheets mediated myocardial infarction therapy.

organized 3D cardiac tissue sheet using a one-step strategy. The tissue
sheets exhibited improved organization, tissue thickness, alignment,
ECM deposition, contractile properties, respiration function, cytokines
secretion, and angiogenesis ability, while maintaining high cell viability
in vitro. In the rat MI model, the CM + ADSC group demonstrated
enhanced cardiac function recovery (4 weeks after transplantation: CM
+ ADSC 55.97 + 3.06 % versus CM 46.68 + 6.32 % [p = 0.0064] versus
MI 34.89 + 5.15 % [p = 0.0010]), augmented engraftment retention,
decreased fibrosis, inhibited hypertrophy, and improved angiogenesis.
Therefore, the CM + ADSC tissue sheet holds significant potential for
treating ischemic heart disease.
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