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Introduction

The present paper is concerned with the variation of the Bergman kernel
of a bounded domain in Cn by cutting a hole that is, a relatively closed subset

such that the remaining open set is connected and non-empty. In case a hole
is small enough, we shall present an explicit formula representing the Bergman
kernel of the holed domain in terms of that of the original domain, where the
required smallness of the hole will be also determined exactly. A similar prob-
lem has been discussed in Schiffer-Spencer [32], §6.15.

Recently, much progress has been made on the study of the dependence
of the Bergman kernel on a domain which is assumed to be strictly pseudo-
convex, see Fefferman [17], [18] and the references therein; see also Greene-
Krantz [20], [21] and Bergman-Schiffer [13], Komatsu [28] for the variation
under a smooth perturbation of the boundary. Contrary to these works, our
present method is elementary and results are of general character; in partic-
ular, no smoothness of the boundary will be required.

The Bergman kernel KQ(z, w) for #, w^ Ω of a bounded domain Ω in C" is
the reproducing kernel of the space L2H(Ω) of square integrable holomorphic
functions in Ω, so that it involves, in principle, all information on ZA£f(Ω).
Hence, if a hole ω of Ω is so small that the restriction mapping R: L2H(Ω)
-» ZΛff(Ω\ω) has a dense range, then one may expect that KQ\ω(z, w) is ex-
pressed in terms of KQ( , •). This is indeed the case; in fact, we shall show
that

^Ω\ω(*> α>) = KQ(z, w) + Σ Γ (̂#, w) for #,
f» = l

where each TQ*?«(#> w) for #, zoeΩ is given by

*) The authors were partially supported by Grant-in-Aid for Scientific Research, Ministry of
Education.
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If a hole ω is too large, then this formula is no more valid. However, its right
hand side still makes sense and represents the reproducing kernel of the closure
of the range of the mapping R (Theorem 2). In particular, we obtain a re-
fined version of the monotonicity of the Bergman kernel with respect to the

domain. We shall also show that if the mapping R has a closed range, then
the right hand side of the formula above makes sense for #, w&Ω and defines
a bounded integral operator in L2H(Ω) (Theorem 3).

An application of the formula above will be given. If n^2 and a hole
ω is compact, then Hartogs' removable singularity theorem asserts that the
restriction mapping R is bijective. In this case, it is easy to see that various
regularity properties of the Bergman projector are preserved by cutting ω
from Ω. In order to illustrate it, we shall show that the so-called conditions
R and Q inherit from Ω to Ω\ω (Theorems 4 and 5). These conditions are

boundary regularity properties of C°° and Cω classes, respectively, see Subsec-
tion 1.2. That the condition jR is preserved has been already proved by Bell
[8] by a different method assuming the smoothness of the boundary 9Ω, which
we do not require, see Remark 1.2. Our proof reveals that the loss of deriva-
tives is also preserved (Theorem 4').

The proofs of Theorems 2 and 3 use only elementary Functional Analysis.
However, in order to emphasize the simplicity of the proofs of Theorems 4
and 5, we shall present a still more elementary proof of Theorems 2 and 3 in
that case by using a so-called doubly orthogonal system (Theorem 1 and its
proof). The proof of Theorem 1 will also clarify the situation concerning
Theorems 2 and 3, cf. Section 2.

The present paper is organized as follows. The main results (Theorems
1, 2 and 3) are stated in Subsection 1.1 and are proved in Section 2. We pre-
sent results on the preservation of regularity properties of the Bergman pro-
jector (Theorems 4, 5 and 4') in Subsection 1.2 and prove them in Section 3.

Both authors have had stimulating conversations on the subject of the
present paper with Kiyόmi Kataoka to whom they express their thanks.

1. Statement of results

1.1. Variation of the Bergman kernel. Suppose given a bounded domain
Ω in Cn with n^l. We denote by L2H(Ω) the totality of square integrable
holomorphic functions in Ω, which is a closed subspace of L2(Ω). The orthog-
onal projector KQ: L2(Ω)^L2#(Ω)cL2(Ω) is called the Bergman projector of
Ω. Recall that

"Ω(*, w)u(w)dV(w) for
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where dV denotes the standard volume element of Cn and the function KQ( , •)
in ΩxΩ stands for the Bergman kernel of Ω, which is the reproducing kernel of
the space L2H(ίΐ).

Suppose also given a relatively closed subset ω of Ω such that Ω\ω is
connected and non-empty. We shall call ω a hole of Ω. We are concerned
with expressing KΩ\ω( , •) in terms of KQ( , •)• Let us begin with the follow-
ing simplest case.

Theorem 1. Ifn^2 and ω^Ω, then

(1.1) K^ω(z, w) = KQ(z, w)+ Σ Γ£2(*, «0 for #, «><ΞΩ ,
01=1

where each T^(z, w) is given by

dV(ζm} ,

and the series *Σm=ιT^ω( y •) is absolutely convergent uniformly in every compact
subset of ΩxΩ. Furthermore, the right hand side of (1.1) defines a bounded
integral operator in L2H(fϊ).

Even if a hole ω of Ω is not necessarily compact, we may define T^( , •)
in ΩxΩ by setting

(1.2) Γ£>(*, w) - [(̂ Q%ω)̂ Ω( , w)] (*) for

so that ΓQ^ ,̂ w)=Ka(z, w\ where %ω stands for the characteristic function of
the set ω. Then, we have in general that:

Theorem 2. The series S«-o7$T«(*i •) is absolutely convergent uniformly
in every compact subset of (Ω\ω) X (Ω\ω) and represents the integral kernel of the

orthogonal projector of ZΛ£f(Ω\ω) onto the closure L2ίf(Ω) of ZΛfiΓ(Ω)|Q\ω. In other

words, it is the reproducing kernel of the space L2£Γ(Ω).

Let R: L2H(Ω,)->L2H(Ω\ω) denote the restriction mapping. Then, Theorem
2 asserts that the range of R is dense if and only if

for 0, w^Ω\ω. In general, the left hand side must be replaced by the re-

producing kernel of the space L2H(Ω).
If the range of R is closed, then we can say more, that is :

Theorem^ // L2fl"(Ω),ΩXω-L^(Ω), then the series ΣmΞoT^ , •) is
absolutely convergent uniformly in every compact subset of ΩxΩ and defines
a bounded integral operator in L2H(Ω).
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Observe that Theorem 1 is a special case of Theorems 2 and 3 by virtue
of Hartogs' removable singularity theorem. Conditions on the range of R
will be further discussed in Section 2.

It will be easily seen that Tg%( , )>Q in Ω in the sense that Σ/ ϊ-iϊαΰ

(zjy stk)ξ^k^Q f°r #ι> •"> ZN^Ω and ?ι, ••', SN^C> see (2.7) in the proof of
Theorem 2. Hence, Theorem 2 provides a refinement of the monotonicity

(1.3) ΛΓoU , )-*o( , )>0 m Ω\ω,

see Aronszajn [2], Theorem II in p. 355. In fact, setting

£θ\«(*ι «0 = ^Q\ω(#> «?)— Σ Γ£2(*, ^) fθΓ
«=o

we see by Theorem 2 that jK£\ω( , ) is the reproducing kernel of the orthogonal

complement of L2H(Ω) in ZΛff(Ω\ω), so that ^£\ω( , )^0 in Ω\ω, which refines
(1.3). Note that (1.3) is a generalization of the well-known monotonicity

, see Bergman [12], pp. 44-45.

1.2. Preservation of regularity properties of the Bergman projector.
Let us now assume that n^2 and that a hole ω of Ω is compact. Then, by
virtue of Theorem 1, one may easily see that various regularity properties of
the Bergman projector inherit from Ω to Ω\ω, for the series in the right
hand side of (1.1) will represent a smoothing kernel. In order to illustrate it,
we shall show that the conditions R and Q are preserved by cutting ω from Ω.
For the sake of simplicity, we shall assume that the boundary of Ω is smooth,
see Remark 1.2.

Recall that Ω is said to satisfy the condition R if KQ maps C°°(Ω) into it-
self (continuously), cf. Bell-Ligocka [11], Bell [5]; and the condition Q (or

Ql in [6]) if KQ maps CΓ(Ω) into the space Cω(Π) of real analytic functions
in Ω which extend real analytically to neighborhoods of Π, where the neighbor-

hood may depend on each function, cf. Bell [6], [7]. (In fact, KQu with u^ CiΓ(Ω)
is holomorphic near Ω under the condition Q.) Observe that the continuity
of Jf£Q in the condition R follows automatically by virtue of the closed graph
theorem. We need not consider any topology of the space Cω(Ω).

We shall prove that

Theorem 4 (Bell [8]). // Ω satisfies the condition R, so does Ω\ω.

Theorem 5. If Ω satisfies the condition Q, so does Ω\ω.

It should be mentioned that Theorem 4 has been already proved by Bell
[8]. Our proofs of Theorems 4 and 5 are based on Theorem 1 (and its proof),
and are thus very simple. Moreover, our proof of Theorem 4 involves that
the loss of derivatives is also preserved by cutting ω from Ω in the following
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sense.
By definition, the condition R is equivalent to the existence of a mapping

M: N-+N such that

(R\M) KQ: WM^((l) -> WS(Ω) is bounded for

where WS(Ω.) denotes the L2(Ω) Sobolev space of order s, and N={1, 2, •••}.
It has been known that the condition R is further equivalent to the existence
of a mapping M0: N-+N such that

OR0; MO) KQ: PPSV >(n) -> W5(ίl) is bounded for s<=N ,

where WS

0(Ω) stands for the closure of C5°(Ω) in PF5(Ω), see Barrett [3], also
Bell-Boas [9]. (Again, the boundedness of KQ in (R; M) and (jR0; M0) is not
necessary to assume by virtue of the closed graph theorem, though we shall
not use this fact.)

We shall actually show the following:

Theorem 4'. // Ω satisfies (R; M) (resp. (R^\ M0)), so does β\ω with the
same mapping M (resp. M0).

The condition R has been used successfully in the problem of extending

a given biholomorphic or proper holomorphic mapping smoothly up to the
boundary, see Ligocka [30], Bell-Ligocka [11], Bell [5], Bell-Catlin [10],
Diederich-Fornaess [16], and the references therein. Likewise, the condition
Q has appeared in the corresponding holomorphic extension problem, see Bell

[6], [7].
The proof of Theorem 4' is a prototype of that of the preservation of a

regularity property of the Bergman projector by cutting ω from Ω. It can
be easily modified to be applied to an another regularity property as in Phong-
Stein [31]. Also, Theorems 4' and 5 can be localized.

REMARK 1.1. The conditions R and Q are also related to regularity proper-
ties of the 9-Neumann problem of Kohn [24], [25] via the formula KQ

= 1 — 9*/V9, where 5* denotes the L2 adjoint of 3 and N stands for the 9-
Neumann operator acting on (0, l)-forms, see Kerzman [23]. The property (R M)
with M(s)=s is known to be satisfied if the 9-Neumann problem is subelliptic,
a fact which is implicitly involved in the proof of the hypoellipticity, see Kohn-
Nirenberg [26], Folland-Kohn [19]. The condition Q follows from the (global)
analytic-hypoellipticity of the 9-Neumann problem. For the analytic-hypo-

ellipticity, see Komatsu [27], Derridj-Tartakoff [15], Treves [34], Tartakoff [33].
The works on the hypoellipticity and the analytic-hypoellipticity of the

S-Neumann problem also involve the conclusions of Theorems 4 and 5, re-
spectively, in certain cases, where very special assumptions on both boundaries
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9ω and 9Ω must be imposed. A typical example of such assumptions is that
n^3 and that both Ω and ω are strictly pseudo-convex with C°° (resp. Cω)
boundary. See also Bell [8].

The property (.K^ M0) with M0(s)=s is known to be equivalent to the

validity of a certain duality between spaces of holomorphic functions in L2

Sobolev spaces of positive and negative order, see Komatsu [29],

REMARK 1.2. No smoothness of the boundary 8Ω will be required in
the proof of Theorem 4 if we regard the space C°°(Ω) as the intersection W°°(Ω)

= Π WS(Ω), cf. Theorem 4'. In fact, the smoothness of the boundary dΩ
is only used in order to guarantee that (jRo; M0) with an arbitrary M0 fixed
implies (/?; M) with some M. By virtue of Sobolev's lemma, the relation

W°°(Ω)— C°°(Ω) holds in the usual sense if Ω has, for instance, a Lipschitz
boundary.

On the other hand, Theorem 5 requires some regularity condition on

the boundary 9Ω. It is enough to assume that Ω has a Lipschitz boundary,
or, more generally, that Ω has the so-called cone property if the definition of
the space Cω(Ω) is modified appropriately. For the detail, see Subsection 3.3.

It should be noticed that we need not assume any regularity condition

on 3ω, for KQ\ωu with u^L2(Ω\ω) extends holomorphically to Ω by virtue of
Hartogs' removable singularity theorem.

2. Proofs of Theorems 1, 2 and 3

Proof of Theorem 1. By MonteΓs theorem, the restriction mapping

L2H(Ω) -> L2(ω) is compact. It then follows from F. Riesz' representation
theorem that there exists a compact Hermitian operator T in L2H(Ω) such
that

(2.1) (Tf, g)Q = (/, gΓ for /, g^L2H(Ω) ,

where ( , )Ω denotes the L2(Ω) scalar product with the corresponding norm
||.||Q, and similarly for ( , )ω. (In fact, T=KjCω, cf. (1.2).) Hence, T admits
a discrete spectral decomposition

T=Σ\jφj®φj with l>λ; ̂ λ; +1^0,

where {φ; }; is a complete orthonormal system of L2H(Ω) and satisfies

That is, { φ j } j is a so-called doubly orthogonal system, cf. Bergman [12].
Since n^2 and ω is a compact hole of Ω, it follows from Hartogs' re-

movable singularity theorem that the restriction mapping R: L2H(Ω)-*L2H(Ω\ω)

is bijective. Hence, {(1— λ/)~1/2φj ια\ω}j is a complete orthonormal system of
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LΉ(Ω\ω), so that

K*\ (*, «0 = Σίl-λy^φ/aOφ/ttO for *,

where the series in the right hand side is absolutely convergent uniformly in
every compact subset of ΩxΩ and defines a bounded integral operator in
L2H(Ω). Noticing that

y=0

we obtain the desired conclusion. q.e.d.

REMARK 2.1. The largest eigenvalue λ0 of T provides the maximum of

(II/IΓ/II/II 0) 2 for a11 non-zero /eL2£Γ(Ω), and the maximum is achieved by
the corresponding eigenfunction /— φ0, see (2.1). Compare it with a varia-
tional problem characterizing the Bergman kernel, that is, for #eΩ fixed,

and the maximum is achieved by g=KQ( , z)/KQ(z, #), see Bergman [12],
pp. 21-22.

REMARK 2.2. Observe that ||Γ||=-λ0<l, where ||Γ|| denotes the operator
norm of T. By Remark 2.1, we have

ω\9 f)2 for

Compare it with a fact that the restriction mapping R is bijective, see also Re-
mark 2.5.

Since ||TΊ|<1, we have a Neumann series expansion

(1-Γ)-1 = l + T+T2+ .- in LΉ(Ω),

which is an operator version of (1.1).

REMARK 2.3. In Remarks 2.1 and 2.2 above, we have used a fact that
T1 is a compact operator, which is a consequence of the assumption of Theorem
1. More can be said from a weaker assumption

(2.2)

Namely, (2.2) holds if and only if T=KQ'X,ω is of trace class. In fact, T has
the integral kernel T$ω( , •)> while

li(*, x)άV(x) = (( \Kύ*, t}\2dV(z)dV(ζ)
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Moreover, | Tg?J(x, w) \2^T£0(z, x)T$J(wt w), implying that

t 1Z£L(*, w)\2dV(z)dV(w)<(\ K0(ζ, ζ)dV(ξ)γ .
J Q x Q Jω

Hence, if (2.2) is satisfied, then T is compact and the trace Σ/=o λ/ of T is given
by the left hand side of (2.2). (Recall that Γ^O and ϊ£i( , )>0 in Ω.)
Conversely, (2.2) holds if T1 is of trace class.

Suppose that (2.2) is satisfied. Then Tgj( , ) e L2(Ω X Ω). Furthermore,

( ( I ΓfiU*, w) 12dV(z)dV(w) = Σ (λ, )2<+oo .
J J α x Q y=o

Recalling that

S T(W)O «Λ — V ^j

•*• Q.ω^) W) — 2-Λ Λ1)1—i

we also see that the operator Σ»-ι 71* is of trace class, and that its integral kernel
Σ*-ι TQ?«( I *) belongs to L2(ΩxΩ). More precisely,

H I V T^ίv\ 2-i J- Ω,ω\*>
QXQ w = ι

= Σ
QXQ "»=ι y=o \ 1 —

Compare these inequalities with Lemmas 3.1 and 3.2.

Proof of Theorem 2. Recall the definition (1.2) of Γ£2(#, w); that is, for
and ,5

(2.3) Γ£>(*. w) = [T XoC , »)] (*) = (Γ1"^-, »), Λ:^., *)f ,

where T=Kςι'X,(ύ. In order to define an integral operator T^ in L2H(Ω\ω)
with the kernel T^2('» ')> we begin with observing that the adjoint operator
Λ*: LΉ(Ω\ω)-*LΉ(Ω) of the restriction mapping R: LΉ(Ω) -» LΉ(Ω\ω) is
given by R*=K&E, where E: L2(Ω\ω)-*L2(Ω) is an extension mapping defined
by setting £κ(*)=0 for ztΞω. We set Ttf£=RTmR* for m^O. Since Λ*ίΓQXω(.,^)
=ΛΓQ( , «), it follows from (2.3) that

( , *) for

Hence, for f^L2H(Ω\ω) and

\ , ,
1 ' j - (/, n^Ω\ω( , ̂ ))Ωχω - (/,

Therefore, Γ^j has the integral kernel Γ (̂ , •).
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We next show that the series Σm~o 7α\2 converges strongly to the orthog-
onal projector

K^ω: L2H(Ω\a>) -» L^(Ω)cL2fl (Ω\ω) .

It is immediately seen from the definition that 7^\2 is a bounded non-negative
Hermitian operator and that

(2.5) Range(Γ^) cL2ff(Ω)IΩXω, Ker(Γ^

where the second relation is obtained by taking the orthogonal complements
of the both hand sides of the first one with respect to L2H(Ω\a>). By virtue of

(2.5), we may work substantially in ZAff(Ω)|Q\ω. Observe that

Then, given/, g<=L2H(Ω), we have

(T<&Rf, Rg)^ = (TΛR*Rf,

so that, for N^l,

Since O^T^l as a Hermitian operator in ZΛ£f(Ω), it follows that the sequence
{TN} N is non-increasing and bounded, so that it converges strongly. Hence,

(2.6) Σ (
m = o

Taking (2.5) into account, we obtain by using (2.6) that, for -/V^O,

Σ (T^fJΓ^^fjr^ for

Thus, the sequence {Σmΐo T&\2} N is non-decreasing and bounded, so that it
converges strongly. Therefore, by using (2.6) again,

Σ (T&f, gΓ° = (KQ^f, g)^° for /, g<ΞL2H(Cl\ω) ,
m = o

that is, Σ Γo ϊ^\2= Saw
Since Σ«=o Ta\2 converges strongly to R0\ω, it follows from (2.4) that

£ * = ' Σ T&; z** for

2where the series in the right hand side converges in L2H(Ω\ω) for #^ίΐ\ω
arbitrarily fixed. That is, KQ\ω has the integral kernel Σw-o T£?ω( , •)• Hence,

it remains only to show that ΣU=o T£?l( , •) is absolutely convergent uni-
formly in every compact subset of (Ω\ω)x(Ω\ω). In order to prove it, let us
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observe that (2.3) implies

T$2(*, w) = (Γ'̂  , «), Γ£>(., z))° ,

( ' ' " "

for m^O and #, w^Ω. In particular,

(2.8) Γ£2(*,*)^0 for *eΩ.

Furthermore, by Schwarz' inequality,

(2.9) I Γ£2(*, w) l2^ Γ£2(*, *)?£2(w, w) for *,

Hence, it suffices to dominate Σ»*=o T££(z9 z), which is carried out as follows:

Σ Γ£>(*, -2) = (

for sreΩ\ω. Noting that the sum Σ«-o7Q?2( > •) together with each term
^Q?2(*> *) is sesqui-holomorphic, that is, holomorphic and conjugate holo-
morphic in the first and the second variables, respectively, so that continuous
in (Ω\ω)X(Ω\ω), we see that the absolute convergence is uniform in every
compact subset. Therefore, the proof is complete. q.e.d.

REMARK 2.4. The strong limit of the sequence {Tm}m is zero. In fact,
since the series Σw«o ^0x2 converges strongly, it follows that

(||™*/IΓ)2 = (TStfftfy** - 0 as m - +00

for/eL2ίί(Ω\ω). Recalling that the restriction mapping R: L2H(Ω)-*L2H(Ω\ω)
is injective and bounded, we see that its adjoint operator 72* has a dense range.
Therefore, Tm->0 strongly as m-*+oo.

Consequently, given /eZΛ£Z(Ω), we have

(1-Γ)Σ T*J= Σ Tm(l-T)f = f-TN+1f-*f

as N^+oo. However, the series Σw=o Tm may not converge in general to a
bounded operator in L2H(Ω) even weakly, for if it does then the operator 1 — T
is boundedly invertible in LΉ(Ω) so that ||Γ||<1. (In fact, if ||Γ|| = 1, then
0 is a spectrum of 1 — T.) On the other hand, it is possible that ||7Ί| = 1, see
Remark 2.7, also Examples 2.1 and 2.3 below.

Proof of Theorem 3. By Banach's theorem, the restriction mapping
R: L2H(Ω) -* L2H(Ω\ω) is an injective Banach space isomorphism. Hence, there
exists a constant C>1 such that

(2.10)
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That is, (ll/HΩ/C)2^((l-Γ)/,/)Ω, so that ||Γ||^1-C-2<1.
Recalling the definition (1.2) or (2.3) of T£72( » •)> we see that the series

Σm~<>Tgl( ,z) converges to (l-Γ)'1^-, *) in LΉ(Ω) for every #6ΞΩ.
Moreover,

for /eZΛίf(Ω) and #<ΞΩ. That is, Σm~o Γ£2( > ') is the integral kernel of
the bounded operator (1 — Γ)'1 in L2H(Ω).

It remains to show that the series Σw=o ^Ω?2(*> ') ig absolutely convergent
uniformly in every compact subset of ΩxΩ. As in the proof of Theorem 2,
it suffices to dominate Σm~o Tg%(z, 2) by virtue of (2.8) and (2.9). Recalling

by (2.3) that T£>(z, z)=(TmKQ(^ z), KQ(; *))Ω, we have

Σor£2(*, z)^ Σjmr(iiΛ:Q( , *)iiΩ)2

= *Q(*, *)/(!-IIΪΊI) for z<ΞΩ .

Therefore, the desired conclusion is obtained as in the proof of Theorem 2.
q.e.d.

REMARK 2.5. In view of the proof of Theorem 3, we see that the condi-

tion L2H(Ω)\Ω\ω=L2H(Ω) is indeed equivalent to ||Γ||<1 via the inequality
(2.10). Hence, the following conditions are equivalent:

(i) ιmι<ι,
(ϋ) R: LΉ(Ω)-+LΉ(Ω\ω) has a closed range,
(iii) R is an injective Banach space isomorphism.

Also, it is elementary in Functional Analysis that (iii) holds if and only if

(iv) R*=KQE: L2H(Ω\ω) —> L2H(Ω) is surjective.

In Remark 2.4, we have observed that if (i) is violated, then the series
Σm=o Tm does not converge even weakly, though Σw=o T&\£ converges strongly
to ^Q\ω. Namely, the convergence of Σw»o Tm depends on the validity of (iv),
a fact which is reasonable in view of the relation

(?o\2/, £)ΩV" = (TmR*f, R*g)Q for /, g<=LΉ(Ω\ω).

REMARK 2.6. In Remark 2.3, we have observed that a sufficient condition

for ||Γ||<1 is given by

(2.2)

Let us add some comments on (2.2) in case 9Ω is sufficiently smooth and n^2.
It is well known that KQ(zy z) is regular around a boundary point at which
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some eigenvalue of the Levi form is negative. Hence, if ω Π 9Ω consists only

of such points, then (2.2) is valid.

On the other hand, if ω Π 9Ω contains a pseudo-convex point, then KQ(Z, z)

may grow up to infinity as % tends to that point, cf. Hϋrmander [22], Theorem

3.5.1. In this case, ω must be sufficiently small around that point in order

that (2.2) is satisfied.

REMARK 2.7. Contrary to (2.2), if a hole ω is so large that

(2.11) J£
JΩ\co

then the operator 1 — T is of trace class, cf. Remark 2.3. In particular, 1 — T

is compact and admits a discrete spectral decomposition. Then, as in the

proof of Theorem 1, we see that ||Γ|| = 1. We also have ||1 —Γ||<1, for (2.11)
implies that the measure of ω is positive.

EXAMPLE 2.1. It is possible that the restriction mapping R: L2H(£Ϊ)

-> L2H(Ω\ω) has a dense range, but is not bijective. One of the simplest

example is given by the case where Ω\ω is a ball with Ω\ω<^Ω. In this case,

polynomials are dense in ZΛff(Ω\ω), so that the range of R is dense. However,
KQ\ω( , w)&L2H(Ω) if zϋeΩ\ω is close to the boundary, so that R is not sur-
jective. Namely, the range of R is not closed, cf. Remark 2.7.

More examples will be constructed by a similar idea in view of Hϋrmander
[22], Theorem 2.3.5 and the subsequent Remark (1).

EXAMPLE 2.2. It is also possible that the range of R is closed but not
dense. A one dimensional example is given simply by setting

Ω = Δ!, ω = Sr, Ω\ω = Ar with 0<r<l ,

where Δr={^eC1; |#|<r}, so that Ar is an annulus. In this case, every ele-

ment of L2H(Ω\ω) admits a Laurent series expansion, while any term of

negative power cannot be approximated in L2H(Ω\ω) by elements of L2H(Ω).
Hence, the range of R is not dense. Observe also that ||Γ||<1, for the hole

cα is compact.
A higher dimensional example can be obtained by setting

Ω = ΔiXΩ', ω = 5rχΩ', Ω\ω = ^ r XΩ',

where Ω' is an arbitrary bounded domain in Cn~l. In this example, T is not

compact, though ||TΊ|<1.

EXAMPLE 2.3. Let us finally present an example such that the range of

R is not dense nor closed. Suppose that Ω is a unit ball in Cn with n^.2 cen-

tered at the origin and that Ω\α> is relatively compact in Ω. Then, by virtue of
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Remark 2.7, the range of R is not closed. Now if Ω\ω is of the form

n\<by \*'\<c}

with some positive constants a, b and c, then polynomials are not dense in L2H
(Ω\ω), while they are in L2H(ίΐ). Therefore, the range of R is not dense.

3. Proofs of Theorems 4 and 5

3.1. A smoothing kernel. By virtue of Theorem 1, we may consider the
function

2Q,ω(z, w) = #QVu(#, w)-KQ(z, w] = Σ T£l(z, w}

for #, 20 eΩ. Then,

Lemma 3.1. // Ω satisfies the condition R, then 3Ω>(0( , ) e C°°(Π X Π) .

Lemma 3.2. If Ω satisfies the condition Qy then 3Q>ω( , ) e Cω(Ω X Π).

If no smoothness of the boundary 9Ω is assumed, then the statement of
Lemma 3.1 should be interpreted as follows: If Ω satisfies (7?0; M0) with some
MO, then 2Q,ω( , •) belongs to IFs(ΩxΩ) for all s^N, see Remark 1.2. We
shall actually prove this statement.

By definition, the conclusion of Lemma 3.2 states that 2Q,ω( , •) extends
real analytically to a neighborhood of Ω X Ω, where some regularity condition
on the boundary 3Ω is required implicitly. (Namely, Ω must lie on only
one side of its boundary 9Ω, see Subsection 3.3.) Note that the extension is
indeed sesqui-holomorphic, that is, holomorphic and conjugate holomorphic
in the first and the second variables, respectively.

We specify a norm || ||? on W\Ω) by setting

where 9z=9/9# and 9^=9/90.

Proof of Lemma 3.1. Recall that

= KQ(z, ζ)KQ(ξ, w)dV(ζ)
ω

\ \ Ktfc, ro f] TSΰίfi,
J J ω X ω ι« = o

for z, w&Ω. Since Σw-o T^( > •) is bounded in ωXω, it suffices to show
that
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(3.1) suppΓo( ,βOII?<+oo for stΞN .
»eω

Let us prove (3.1). By the mean value property for harmonic functions, we
have

for a£=Z£, where φ^EίCo^Ω) is radially symmetric around w and satisfies

\φ lXF'=l. (This expression is due to Bell [4], cf. also Kerzman [23].) By

virtue of (Λ0; M0) for Ω, we get

(3.2) ||3^Ω(.,^)||?^CJ|φJ|&o(UI)

with some constant CΛ>0. Fixing a^Z+ arbitrarily, we want to estimate
the right hand side of (3.2) uniformly in w^ω. This can be done by choosing

φ^ to be of the form φw(z)=φ(\z—w\) with φeCΓ([0, oo)) satisfying φ(r)=0
whenever 2r^ distance (ω, 9Ω). q.e.d.

Proof of Lemma 3.2. As in the proof of Lemma 3.1, it suffices to show
that

(3.3) JΓQ( , )eΞCω(ΠXω).

In order to prove (3.3), we recall that KQ(z, vo)=K.Qφn(z) for #, w^Ω with
the same φweCiΓ(Ω) as in the proof of Lemma 3.1. By virtue of the condition
Q for Ω, we then get

(3.3)' KQ( ,zv)(ΞCω(Π) for

More precisely, for any w^Ω, there exists a domain Ω(^) in Cn such that
ΩcΩ(zί>) and that KQ( , w) extends holomorphically to Ω(w). It has been
known that (3.3)' implies (3.3) in case the boundary 3Ω is of C2-class, see,
e.g., Zorn [35]. (In Subsection 3.3, we shall prove this fact for a domain Ω
with Lipschitz boundary.) Since we assume here the smoothness of the bound-
ary 9Ω, the proof is finished. q.e.d.

3.2. Proofs of Theorems 5 and 4'. We have almost finished the proofs

of Theorems 5 and 4'. In fact,

Proof of Theorem 5. By virtue of Lemma 3.2, the kernel 2Ω,ω( , •) defines
an integral operator 3Ω\ω in L2(Ω\ω) satisfying £ZΩ\ω#eCω(Ω) for «eL2(Ω\ω).
Observe that

(3.4) KΩ\ωu = KQu+3Ω\ωu for z/eL2(Ω\ω),

where u in KΩu is regarded as an element of L2(Ω) by setting W|ω=0. If
Ω), then j^ΩweOω(Ω) so that
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obtaining the desired conclusion. q.e.d.

Proof of Theorem 4'. Suppose first that Ω satisfies (RQ; M0). By virtue
of Lemma 3.1, we still have (3.4) and

(3.5) \\3Ω\M^Cs\\u\\^ for

with some constant Cs>0. By (J?0; M0) for Ω, there exists C£>0 such that, for

Therefore, Ω\ω also satisfies (Λ0; M0).
Suppose next that Ω satisfies (Λ; M). We again have (3.4) and (3.5), so

that it suffices to show that

(3.6) ||*Q«||S^C,ΊMIS& for

with some constant Cs'>0. In order to prove (3.6), we choose and fix ^e
Co (a) satisfying f1==l near ω and set ξ2=l—ξ1. Then, ^ePΓM(I)(Ω) and
ξ2u=Q near ω. Hence, by (Λ; M) for Ω, there exists C"'>0 such that

while Hf2M||S(.)=||e2iι||^:)^CJ(f2)||ιι||ft:) with some constant Cs(?2)>0. In order
to estimate KΩ(ξιu), we observe that (3.1) remains valid with supp^) in place
of ω without changing the proof. Then,

with some positive constants Cs(?ι) and C's(ξι)9 where C^ξi) depends on the
support of ξi. Since ξλ and ξ2 are independent of u, we obtain (3.6). There-
fore, Ω\ω also satisfies (R; M). q.e.d.

3.3. A remark on Theorem 5. We have proved Theorem 5 assuming
that the boundary of Ω is of C2-class, cf. the proof of Lemma 3.2. In the
present subsection, we shall generalize this result to Ω having the so-called
cone property.

Recall that a domain Ω in RN is said to have the cone property if there exists
a finite cone C in RN such that each point #eΩ is the vertex of a finite cone
Cx in Ω congruent to C under a Euclidean motion, see Adams [1]. Here, a
finite cone C (in RN with vertex at xQ^RN) is a set of the form

C = {*0+λ(;y-*o); ytΞBi, λ>0} Γ\B2 ,

where Bλ and B2 are open balls in RN such that x0^B1 and that B2 is centered
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at XQ. It is easy to see that a bounded domain Ω in RN has the cone property
if it has a Lipschitz boundary, namely, if the boundary 9Ω is locally expressed
as a graph of a Lipschitz continuous function from jβ^"1 to R. Conversely,
a theorem of Gagliardo asserts that if a bounded domain Ω in RN has the cone
property then it is a union of a finite number of domains with Lipschitz bound-
ary, see [1],

Let Ω be a bounded domain in Cn having the cone property. We shall
show that Theorem 5 remains valid. Since the cone property does not require
Ω to lie on only one side of its boundary, the definition of the space Cω(Ω)
must be modified appropriately. We define Cω(Ω) in such a way that /^Cω(Ω)
if and only if/eCω(Ω) and there exists r>0, possibly depending on/, such
that/ admits the (real) power series expansion with radius of convergence^r
at every point of Ω. (There may be no confusion of the notation Cω(Ω),
though the space Cω(Ω) depends on Ω and not on the set Ω.) This definition
is certainly motivated by the notion of analytic continuation, as the following
example illustrates: if n=l and Ω={#eC; 1<|#|<2, #$(1, 2)}, then (a
branch of) the logarithm /(#)=log z belongs to Cω(Ω).

Under the definition of the space Cω(Ω) as above, we shall show that:

Lemma 3.2'. // a bounded domain Ω in Cn has the cone property, then
(3.3)' implies that

for any relatively compact open subset co0 of Ω.

Note that Lemma 3.2' implies the conclusion of Theorem 5 under the
assumption that Ω has the cone property, for the previous proof remains valid
except for Lemma 3.2.

Proof of Lemma 3.2'. The following argument is inspired by the paper
of Zorn [35], We begin with observing that:

Claim 1. Given a non-empty open subset U of Ω, there exists a non-empty
open subset V of U such that KΩ( , )eCω(ΩxF).

In order to prove Claim 1, we set

\} for

Then, (3.3)' implies that Ό ιtmeNSιtm—U. Let us observe that each Sl)fn is a
relatively closed subset of U. Since Ω is bounded and has the cone property,
it follows from Rellich's lemma that the inclusion mapping WΉ(Ω) -* L2H(Ω)
is compact for s<^N, where WΉ(Ω)=W(Ω)Γ\L2H(Ω) regarded as a closed
subspace of WS(Ω). Hence, as in the proof of Theorem 1, we see that there
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exists a complete orthogonal system {ψ1}}/ of WΉ(Ω) which is orthonormal in
L2H(Ω), cf. Komatsu [29]. We then get a Fourier series expansion

j&ΓQ( , w) = ΣΛ}(»)'ψιy in L?H(Ω) for α eϊ/cΩ,

and that
CO

( l l ̂ o( > 20)11?)2 — Σ I^X^O I2(ll^yll?)2

y=o

By the reproducing property for the Bergman kernel, we have

which is a continuous function of w. Therefore,

S,,m =

which is a relatively closed subset of U.
It then follows from Baire's category theorem that some Slttn includes

a non-empty open subset V of U. Namely,

Assume for a while that Ω has a Lipschitz boundary. Then, Sobolev's lemma
implies that

(3.7) max \ΘΪKQ(z9 w)\ ^C,C{s\ for (*, «;)eΩX V ,

with some positive constants C0 and CΊ independent of $ and (#, sϋ). Hence,
there exists r>0 such that ίCΩ( , w) for weF' admits the power series expan-
sion with radius of convergence ^r at every point of Ω. With V being an
arbitrary non-empty relatively compact open subset of V, the desired con-
clusion of Claim 1 follows from Generalized Hartogs' Lemma in Bochner-
Martin [14], pp. 141-142.

In case of a general domain Ω, we choose a subdomain Ω0 of Ω with
smooth boundary. Then, (3.7) holds with Ω0 in place of Ω, where CΊ may
be chosen to be independent of Ω0; we may set C1=ιw+l. Since ΩQ is ar-
bitrary, the previous argument is still valid, and the desired conclusion of Claim
1 follows from Hartogs' lemma as in the proof of Generalized Hartogs' Lemma.
So far, the cone property has been used only to guarantee the validity of
Rellich's lemma.

We next observe that:

Claim 2. IfKQ( , )G Cω(Ω X Δ:) with some poly disc Δ: in Ω, then KQ( , )
^ Oω(Ω X Δ2) for any relatively compact poly disc Δ2 in Ω with the same center
as that of Δlβ

Note that the conclusion of Lemma 3.2' follows from Claims 1 and 2 to-
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gether with a simple compactness argument. In fact, it suffices to cover ω0

by a finite number of open sets U in such a way that every point of U is the
center of a polydisc Δ2 satisfying C7cΔ2<sΩ.

In order to prove Claim 2, we reformulate it as follows:

Claim 2'. Let F be a holomorphic function in ΩxΔ0, where Δ0 is the unit
polydisc in Cn centered at the origin 0. If F^Cω(ΩlχA1) for some polydisc Δx

in C" ofpolyradius <1 centered at 0, then FeCω(ΩxΔ2) for any polydisc Δ2

of the same type as Δx.

Let us prove Claim 2'. By virtue of Gagliardo's theorem, we may assume
that Ω has a Lipschitz boundary. This assumption will be used at the final
stage of the proof. By definition, we have to show that if F has the polyradius
of convergence ^rx at every point of ΩxΔ x for some r^O, then there exists
r2>0 such that F has the polyradius of convergence 2^r2 at every point of Ω
χΔ2. We reduce the problem to that of polydiscs as follows. For each #eΩ,
we denote by Δ(#; r) the polydisc centered at z of polyradius r>0. We also
set r(z)=d(z, 9Ω), where rf( , •) stands for the distance measured with respect
to d(z, z')=max1<J<n\Zj— sή\ for *=(#!, — , zn) and *'=(*ί, — , *£). Then, F
extends holomorphically to

(Δ(* fi) X Δj) U (Δ(a r(#)) X Δ0) for each z e Ω .

Given Δ2, we choose a polydisc Δ2 centered at 0 in such a way that Δ2<^Δ2

<^Δ0. It then follows from the logarithmic convexity for the polyradii of con-
vergence of power series in a product space that F extends holomorphically to

Δ(*;r2(*))χΔ2\ where r2(*) = rfr(x)1-* ,

with some 0, 0<0<1, independent of #eΩ. We now recall the assumption
that Ω is a bounded domain with Lipschitz boundary. Then, the desired
conclusion of Claim 2 will be obtained if the family {Δ(#; r2(z))}zeQ covers Ω.
Obviously, this family covers Ω. Hence, it suffices to show that for each z'

e9Ω there exists #"eΩ such that #'eΔ(#"; r2(*")) This is possible by
virtue of the Lipschitz regularity assumption on 9Ω. In fact, %' is the vertex
of a finite cone C included in Ω, while

r2(*)/φr) = (*-!//•(#))' -> + oo as ar -> ar' .

Thus, the desired conclusion is obtained by approaching z to %' along the axis
of rotation of the cone C. Therefore, we get Claim 2' and the proof of Lemma
3.2' is complete. q.e.d.
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