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Introduction

The present paper is concerned with the variation of the Bergman kernel
of a bounded domain in C”" by cutting a hole that is, a relatively closed subset
such that the remaining open set is connected and non-empty. In case a hole
is small enough, we shall present an explicit formula representing the Bergman
kernel of the holed domain in terms of that of the original domain, where the
required smallness of the hole will be also determined exactly. A similar prob-
lem has been discussed in Schiffer-Spencer [32], §6.15.

Recently, much progress has been made on the study of the dependence
of the Bergman kernel on a2 domain which is assumed to be strictly pseudo-
convex, see Fefferman [17], [18] and the references therein; see also Greene-
Krantz [20], [21] and Bergman-Schiffer [13], Komatsu [28] for the variation
under a smooth perturbation of the boundary. Contrary to these works, our
present method is elementary and results are of general character; in partic-
ular, no smoothness of the boundary will be required.

The Bergman kernel Kg(z, w) for 2, w=Q of a bounded domain Q in C” is
the reproducing kernel of the space L’H(Q) of square integrable holomorphic
functions in Q, so that it involves, in principle, all information on L*H(Q).
Hence, if a hole & of Q is so small that the restriction mapping R: L*H(Q)
— L’H(Q\w) has a dense range, then one may expect that Kg\ (2, w) is ex-
pressed in terms of Kg(+, +). This is indeed the case; in fact, we shall show
that

Kou( ) = Koz, )+ 33 Tz, @) for 2, we\o,

where each T$)(2, w) for 2, wEQ is given by

*) The authors were partially supported by Grant-in-Aid for Scientific Research, Ministry of
Education.
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If a hole  is too large, then this formula is no more valid. However, its right
hand side still makes sense and represents the reproducing kernel of the closure
of the range of the mapping R (Theorem 2). In particular, we obtain a re-
fined version of the monotonicity of the Bergman kernel with respect to the
domain. We shall also show that if the mapping R has a closed range, then
the right hand side of the formula above makes sense for 2, w=Q and defines
a bounded integral operator in L2H(Q) (Theorem 3).

An application of the formula above will be given. If =2 and a hole
o is compact, then Hartogs’ removable singularity theorem asserts that the
restriction mapping R is bijective. In this case, it is easy to see that various
regularity properties of the Bergman projector are preserved by cutting o
from Q. In order to illustrate it, we shall show that the so-called conditions
R and QO inherit from Q to O\ (Theorems 4 and 5). These conditions are
boundary regularity properties of C* and C® classes, respectively, see Subsec-
tion 1.2. That the condition R is preserved has been already proved by Bell
[8] by a different method assuming the smoothness of the boundary 8Q, which
we do not require, see Remark 1.2. Our proof reveals that the loss of deriva-
tives is also preserved (Theorem 4’).

The proofs of Theorems 2 and 3 use only elementary Functional Analysis.
However, in order to emphasize the simplicity of the proofs of Theorems 4
and 5, we shall present a still more elementary proof of Theorems 2 and 3 in
that case by using a so-called doubly orthogonal system (Theorem 1 and its
proof). The proof of Theorem 1 will also clarify the situation concerning
Theorems 2 and 3, cf. Section 2.

The present paper is organized as follows. The main results (Theorems
1, 2 and 3) are stated in Subsection 1.1 and are proved in Section 2. We pre-
sent results on the preservation of regularity properties of the Bergman pro-
jector (Theorems 4, 5 and 4’) in Subsection 1.2 and prove them in Section 3.

Both authors have had stimulating conversations on the subject of the
present paper with Kiyomi Kataoka to whom they express their thanks.

1. Statement of results

1.1, Variation of the Bergman kernel. Suppose given a bounded domain
Q in C" with n=1. We denote by L*H(Q) the totality of square integrable
holomorphic functions in Q, which is a closed subspace of L*(Q2). The orthog-
onal projector Kg: L¥(Q)— L’ H(Q)C L*Q) is called the Bergman projector of
Q. Recall that

Kot (2) — SQKQ(z, wyu(w)dV(w)  for ucL¥(Q),
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where dV denotes the standard volume element of C” and the function Kg(-, *)
in QX Q stands for the Bergman kernel of Q, which is the reproducing kernel of
the space L*H(Q).

Suppose also given a relatively closed subset w of Q such that Q\w is
connected and non-empty. We shall call w a hole of Q. We are concerned
with expressing Kq\,(+, *) in terms of Kg(-, <). Let us begin with the follow-
ing simplest case.

Theorem 1. If n=2 and w€Q, then
(L) Kou(s ) = Ka(z, 0)+ 3 Tz w)  for 2, weq,

where each T{")(2, w) is given by
[ Kale, LKt £) - Kaltw, ©)aV(E) - dV(Ew),

and the series 3321 TE™(+, +) is absolutely convergent uniformly in every compact
subset of QX Q. Furthermore, the right hand side of (1.1) defines a bounded
integral operator in L*H(S).

Even if a hole w of Q is not necessarily compact, we may define T§")(+, *)
in QX Q by setting

(12)  TEs, w) = [(KaX)"Ko(-, w)] (z)  for m20,

so that T, (2, w)=Kq(z, w), where X,, stands for the characteristic function of
the set . Then, we have in general that:

Theorem 2. The series Spu=0TS")(+, +) is absolutely convergent uniformly
in every compact subset of (Q\w)X(Q\w) and represents the integral kernel of the

orthogonal projector of L*’H(Q\w) onto the closure L*H(Q)) of L*H(Q)q\,. In other
words, it is the reproducing kernel of the space L*H(Q).

Let R: L?H(Q)— L?H(Q\w) denote the restriction mapping. Then, Theorem
2 asserts that the range of R is dense if and only if
Ka(z, w) = Ka(z, ©)+ 33 T, ©) = 33 T4, w)
for 2, weQ\w. In general, the left hand side must be replaced by the re-
producing kernel of the space L?}I\(Ez).

If the range of R is closed, then we can say more, that is:

Theorem 3. If L*H(Q)q,=L*H(SY), then the series 3uZoTE0(+, ) is
absolutely convergent uniformly in every compact subset of QXQ and defines
a bounded integral operator in L*H(Q)).
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Observe that Theorem 1 is a special case of Theorems 2 and 3 by virtue
of Hartogs’ removable singularity theorem. Conditions on the range of R
will be further discussed in Section 2.

It will be easily seen that T§"(+, +)>0 in Q in the sense that 33};5., 7§
(2 z,,)g,.é,,go for 2z, «+, 2y€Q and &, -+, EyEC, see (2.7) in the proof of
Theorem 2. Hence, Theorem 2 provides a refinement of the monotonicity

(1.3)  Kaw(* *)—Kg(+, )>0  in Qo,
see Aronszajn [2], Theorem II in p. 355. In fact, setting
Rz w) = Kow(®, w)— S T8z w)  for 5, we\o,
we see by Theorem 2 that K& (-, -) is the reproducing kernel of the orthogonal

complement of LH(Q) in L*H(Q\w), so that KZ,(+, +)>0 in Q\w, which refines
(1.3). Note that (1.3) is a generalization of the well-known monotonicity
Ka\.(2, 2)=Kq(?, 2) for z&Q\w, see Bergman [12], pp. 44-45.

1.2. Preservation of regularity properties of the Bergman projector.
Let us now assume that #=2 and that a hole & of Q is compact. Then, by
virtue of Theorem 1, one may easily see that various regularity properties of
the Bergman projector inherit from Q to Q\w, for the series in the right
hand side of (1.1) will represent a smoothing kernel. In order to illustrate it,
we shall show that the conditions R and Q are preserved by cutting & from Q.
For the sake of simplicity, we shall assume that the boundary of Q is smooth,
see Remark 1.2.

Recall that Q is said to satisfy the condition R if Ko maps C=(Q) into it-
self (continuously), cf. Bell-Ligocka [11], Bell [5]; and the condition Q (or
Q1 in [6]) if Kq maps C5(Q2) into the space C®(Q2) of real analytic functions
in Q which extend real analytically to neighborhoods of &), where the neighbor-
hood may depend on each function, cf. Bell [6], [7]. (In fact, Kqu with u= C7(Q)
is holomorphic near Q) under the condition Q.) Observe that the continuity
of Kg in the condition R follows automatically by virtue of the closed graph
theorem. We need not consider any topology of the space C*(8).

We shall prove that

Theorem 4 (Bell [8]). If Q satisfies the condition R, so does Q\w.
Theorem 5. If Q satisfies the condition Q, so does Q\e.

It should be mentioned that Theorem 4 has been already proved by Bell
[8]. Our proofs of Theorems 4 and 5 are based on Theorem 1 (and its proof),
and are thus very simple. Moreover, our proof of Theorem 4 involves that
the loss of derivatives is also preserved by cutting « from Q in the following
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sense.
By definition, the condition R is equivalent to the existence of a mapping
M: N—N such that

(R; M) Kg: WH(Q) — W¥(Q) is bounded for sEN,

where W*(Q) denotes the L*(Q) Sobolev space of order s, and N={1, 2, ---}.
It has been known that the condition R is further equivalent to the existence
of a mapping M,: N— N such that

(Ry; My) Kg: WH@(Q) — W*(Q) is bounded for sEN,

where W§(Q) stands for the closure of C7(Q) in W*(Q), see Barrett [3], also
Bell-Boas [9]. (Again, the boundedness of Kg in (R; M) and (R,; M,) is not
necessary to assume by virtue of the closed graph theorem, though we shall
not use this fact.)

We shall actually show the following:

Theorem 4'. If Q satisfies (R; M) (resp. (Ry; M,)), so does Q\w with the
same mapping M (resp. M,).

The condition R has been used successfully in the problem of extending
a given biholomorphic or proper holomorphic mapping smoothly up to the
boundary, see Ligocka [30], Bell-Ligocka [11], Bell [5], Bell-Catlin [10],
Diederich-Fornaess [16], and the references therein. Likewise, the condition
QO has appeared in the corresponding holomorphic extension problem, see Bell
(61, [7]-

The proof of Theorem 4’ is a prototype of that of the preservation of a
regularity property of the Bergman projector by cutting o from Q. It can
be easily modified to be applied to an another regularity property as in Phong-
Stein [31]. Also, Theorems 4’ and 5 can be localized.

ReMark 1.1.  The conditions R and Q are also related to regularity proper-
ties of the 9-Neumann problem of Kohn [24], [25] via the formula Kg
=1—0*N03, where 0* denotes the L? adjoint of 0 and N stands for the 0-
Neumann operator acting on (0, 1)-forms, see Kerzman [23]. The property (R; M)
with M(s)=s is known to be satisfied if the 9-Neumann problem is subelliptic,
a fact which is implicitly involved in the proof of the hypoellipticity, see Kohn-
Nirenberg [26], Folland-Kohn [19]. The condition Q follows from the (global)
analytic-hypoellipticity of the 9-Neumann problem. For the analytic-hypo-
ellipticity, see Komatsu [27], Derridj-Tartakoff [15], Treves [34], Tartakoff [33].

The works on the hypoellipticity and the analytic-hypoellipticity of the
9-Neumann problem also involve the conclusions of Theorems 4 and 5, re-
spectively, in certain cases, where very special assumptions on both boundaries
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0w and 9Q must be imposed. A typical example of such assumptions is that
n=3 and that both Q and w are strictly pseudo-convex with C= (resp. C®)
boundary. See also Bell [8].

The property (R,; M,) with My(s)=s is known to be equivalent to the
validity of a certain duality between spaces of holomorphic functions in L?
Sobolev spaces of positive and negative order, see Komatsu [29].

ReMARK 1.2. No smoothness of the boundary 0Q will be required in
the proof of Theorem 4 if we regard the space C~(Q) as the intersection W*=(Q)
=NWQ), cf. Theorem 4’. In fact, the smoothness of the boundary 8Q
is only used in order to guarantee that (R,; M,) with an arbitrary M, fixed
implies (R; M) with some M. By virtue of Sobolev’s lemma, the relation
W=(Q)=C=(Q2) holds in the usual sense if Q has, for instance, a Lipschitz
boundary.

On the other hand, Theorem 5 requires some regularity condition on
the boundary 8Q. It is enough to assume that ) has a Lipschitz boundary,
or, more generally, that Q has the so-called cone property if the definition of
the space C*(Q) is modified appropriately. For the detail, see Subsection 3.3.

It should be noticed that we need not assume any regularity condition
on 9w, for Ko\ u with ucL*(Q\w) extends holomorphically to Q by virtue of
Hartogs’ removable singularity theorem.

2. Proofs of Theorems 1, 2 and 3

Proof of Theorem 1. By Montel’s theorem, the restriction mapping
L*H(Q) — L*w) is compact. It then follows from F. Riesz’ representation
theorem that there exists a compact Hermitian operator T in L?*H(Q) such
that

21)  (Tf,8)° = (f8)" for f,ge’H(Q),

where (-, )@ denotes the L*Q) scalar product with the corresponding norm
[|+]®, and similarly for (-, )®. (In fact, T=KgX,, cf. (1.2).) Hence, T' admits
a discrete spectral decomposition

ng)\,]¢]®(£] With 1>7\,j£7\.,+12
where {¢,}; is a complete orthonormal system of L?H(Q) and satisfies
(b5 1) =N585, A= (Il

That is, {¢,}; is a so-called doubly orthogonal system, cf. Bergman [12].

Since n=2 and o is a compact hole of Q, it follows from Hartogs’ re-
movable singularity theorem that the restriction mapping R: L?H(Q) — L?H(Q\w)
is bijective. Hence, {(1—\;) ¢;ia\}; is a complete orthonormal system of
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L’H(Q\w), so that
Kau(s ) = 3 (1-1)¢,(:),®)  for = weq,

where the setries in the right hand side is absolutely convergent uniformly in
every compact subset of QX Q and defines a bounded integral operator in
L’H(Q). Noticing that

TE(=, w) = % )" () pj(w)
we obtain the desired conclusion. q.e.d.

RemMARK 2.1. The largest eigenvalue A, of T provides the maximum of
(IfN°/1A1B)? for all non-zero feL?H(Q), and the maximum is achieved by
the corresponding eigenfunction f=d¢,, see (2.1). Compare it with a varia-
tional problem characterizing the Bergman kernel, that is, for z=Q fixed,

Ko(2, z) = max{(|g()|/llgl®)*; 0+g€L’H(Q)} ,

and the maximum is achieved by g=Kj(-, 2)/Kq(2, 2), see Bergman [12],
pp. 21-22.

ReMARK 2.2. Observe that ||T'|[=x,<1, where [|T|| denotes the operator
norm of 7. By Remark 2.1, we have

A=NT A=A for fEL’H(Q).

Compare it with a fact that the restriction mapping R is bijective, see also Re-
mark 2.5.

Since ||T'||<1, we have a Neumann series expansion
1-7)'=14+T4+T"+ --- in L’H(Q),
which is an operator version of (1.1).

RemaArRk 2.3. In Remarks 2.1 and 2.2 above, we have used a fact that
T is a compact operator, which is a consequence of the assumption of Theorem
1. More can be said from a weaker assumption

2.2) SmKn(c, OV (L) <+ oo .

Namely, (2.2) holds if and only if T=KgX,, is of trace class. In fact, T has
the integral kernel T¢,(+, *), while

S T8z, )V (z) = SSQ |Ka(z, £) 12dV(2)dV(£)

= [ Kot v
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Moreover, |T&(2, w) |?< T&u(2, 2) TS (w, w), implying that
[, 1780 o) V@ ave)=(| Ko, HaVE) -

Hence, if (2.2) is satisfied, then T is compact and the trace 33,2 »; of T is given
by the left hand side of (2.2). (Recall that 7720 and T§)(-, +)>0 in Q.)
Conversely, (2.2) holds if T is of trace class.

Suppose that (2.2) is satisfied. Then TG,(+, <)€L QX Q). Furthermore,

(1,1 T8 warEave) = 5 (f<+oo.
Recalling that

3 T8, ) = 33

we also see that the operator 33,Z; T™ is of trace class, and that its integral kernel
Sz TEW(, +) belongs to L¥(Qx Q). More precisely,

ST (m) A o
SQ 31 TEm V(R = 337 <o,

=0 1 — ;

[, 12 1626, w PavEave) = 5 (24 <t

oxa m=1 —N\j

Compare these inequalities with Lemmas 3.1 and 3.2.

Proof of Theorem 2. Recall the definition (1.2) of T§")(2, w); that is, for
m=0 and 2, wEQ,
(2.3) T&(=, w) = [T"Ka(+, w)] (2) = (T"Kq(+, w), Ko+, )%,

where T=KgX,. In order to define an integral operator 7§ in L*H(Q\w)
with the kernel T{")(+, ), we begin with observing that the adjoint operator
R*: P’H(O\w)— L’H(Q) of the restriction mapping R: L’H(Q)— L’ H(Q\w) is
given by R*=K_E, where E: L}(Q\w)— L*(Q) is an extension mapping defined
by setting Eu(2)=0 for z&w. We set T{{o=RT"R* for m=0. Since R*K g, (-, %)
=Kg(+, 2), it follows from (2.3) that

TEK a\o(*y &) = RTE™(+, 2) for zeQ\w.
Hence, for f€ L*H(Q\w) and zEQ\w,
Tf() = (TS S, Kaw(+, 2)"
= (fs T&Kawu(+, )M = (f, TS+, 2))°%.

Therefore, T{T) has the integral kernel 7§%)(, +).

(24)
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We next show that the series 3),20 T converges strongly to the orthog-
onal projector

Ro.: PH(Q\w) - PH(Q)C PH(Q\w) .

It is immediately seen from the definition that T'{%) is a bounded non-negative
Hermitian operator and that

(25)  Range(TS)CLH(Q) o, Ker(TS) > (PHQ))*

where the second relation is obtained by taking the orthogonal complements
of the both hand sides of the first one with respect to L*H(Q\w). By virtue of
(2.5), we may work substantially in L?H(Q)q\,. Observe that

R*R = KgXq\, = 1-T.
Then, given f, g€ L*H(Q), we have
(TSIRF, Rg)™ = (T"R*Rf, )°\ = (I"f—T"'f, g)**,
so that, for N =1,
(F, 7"~ 3(TSURF, Rgp*™
= (TVf, §°* = (T"—T""f, 9)°.

Since 0<T'=<1 as a Hermitian operator in L?H(Q), it follows that the sequence
{T"} y is non-increasing and bounded, so that it converges strongly. Hence,

(26) 3 (TSRS, RYP" = (F, 9" = (RaRf, RY®".
Taking (2.5) into account, we obtain by using (2.6) that, for N =0,
2. (T8 NP =(Rau f, /)P for fEL’H(Q\w).

Thus, the sequence {33,Y¥, T{™} v is non-decreasing and bounded, so that it
converges strongly. Therefore, by using (2.6) again,

2( TS, 8% = (Kawf, )% for f,geL’H(Q\o),

that iS, 2»1:-0 Tﬂ\m'— ~Q\w' _
Since 31,20 T converges strongly to Kg,,, it follows from (2.4) that

Rouf@) = (f, STLA, )P for feZH(O\a),

where the series in the right hand side converges in L’H(Q\w) for z€Q\w
arbitrarily fixed. That is, K\, has the integral kernel 31,20 7§")(+, ). Hence,
it remains only to show that 3,2, T§"(¢, «) is absolutely convergent uni-
formly in every compact subset of (Q\w)X(Q\w). In order to prove it, let us
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observe that (2.3) implies

Tg.ﬁ)(z, w) = (Tc(zm«)v(°’ w)r T:(zma)»(') z))g ’

@D pamene, w) = (T, w), TG )°,

for m=0 and 2, w=Q. In particular,

(2.8) T§(=, 2)=0  for 2€Q.

Furthermore, by Schwarz’ inequality,

29 T8z w) P’ Tz, 2)TE(w, w)  for z, weQ.

Hence, it suffices to dominate 33,= 7¢™)(2, 2), which is carried out as follows:

go Té’.”&(z, z) = (KQ wKQ\w(. , z), Kn\‘,,(', z))°\""
= (IIKaw(+, AP = Ka\u(2, 2)

for 20Q\w. Noting that the sum 33,2,7¢")(+, +) together with each term
TE(+, +) is sesqui-holomorphic, that is, holomorphic and conjugate holo-
morphic in the first and the second variables, respectively, so that continuous
in (Q\w)X(Q\w), we see that the absolute convergence is uniform in every
compact subset. Therefore, the proof is complete. q.e.d.

ReMaARk 2.4. The strong limit of the sequence {7™}, is zero. In fact,
since the series 3,20 T8 converges strongly, it follows that

UIT"R*fIY = (T&2f, )" > O as m — o0

for f e L’H(Q\w). Recalling that the restriction mapping R: L*H(Q)—L*H(Q\w)
is injective and bounded, we see that its adjoint operator R* has a dense range.
Therefore, T™— 0 strongly as m —+ oo,

Consequently, given f& L2H(Q), we have

A-1)5 17 = 5 T" (1~ T)f = F~ T ]

as N—-+oco. However, the series 3),%, 7" may not converge in general to a
bounded operator in LH({)) even weakly, for if it does then the operator 1—T'
is boundedly invertible in L*H(Q) so that ||T||<1. (In fact, if ||T||=1, then
0 is a spectrum of 1—7.) On the other hand, it is possible that ||T||=1, see
Remark 2.7, also Examples 2.1 and 2.3 below.

Proof of Theorem 3. By Banach’s theorem, the restriction mapping
R: I’H(Q)— L’H(Q\w) is an injective Banach space isomorphism. Hence, there
exists a constant C>1 such that

(2.10)  |IfIP=CIfIN  for fEL’H(Q).
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That is, (|| fI[?/C)*<=((1—T)f, f)°, so that [|T||<1—-C*<]1.

Recalling the definition (1.2) or (2.3) of T&")(+, +), we see that the series
Stz TE™(+, 2) converges to (1—T)7'Kg(, 2) in L*H(Q) for every zEQ.
Moreover,

(f, 2, T8 2)° = A=1)"f()

for fEL’H(Q) and z€Q. That is, 3.2 T§(+, ) is the integral kernel of
the bounded operator (1— 7)™ in L*H(Q).

It remains to show that the series 33,20 7§%(+, *) is absolutely convergent
uniformly in every compact subset of QX Q. As in the proof of Theorem 2,
it suffices to dominate 33,2 T§"(2, 2) by virtue of (2.8) and (2.9). Recalling
by (2.3) that T§")(2, 2)=(T"Kq(+, 2), Kq(+, 2))2, we have

3 T8z, 5= S ITIMIK (-, 2P
= Kq(z, 2)/(1-[T]) for z€Q.

Therefore, the desired conclusion is obtained as in the proof of Theorem 2.
q.e.d.

RemaRrk 2.5. In view of the proof of Theorem 3, we see that the condi-
tion L*H(Q)o,=L*H(Q) is indeed equivalent to ||T||<1 via the inequality

(2.10). Hence, the following conditions are equivalent:

@ TI<1,
(i) R: L*H(Q)— L*H(Q\w) has a closed range,
(iii) R is an injective Banach space isomorphism.
Also, it is elementary in Functional Analysis that (iii) holds if and only if
(iv) R*¥*=KgE: I’ H(Q\w)— L’H(Q) is surjective.

In Remark 2.4, we have observed that if (i) is violated, then the series
Simzo T™ does not converge even weakly, though 33,20 T§% converges strongly

to Kg\,- Namely, the convergence of 31,2, 7™ depends on the validity of (iv),
a fact which is reasonable in view of the relation

(T&af, &% = (T"R*f, R*g)*  for f, g€ ’H(O\w).

ReEMARK 2.6. In Remark 2.3, we have observed that a sufficient condition
for ||T||<1 is given by

22) | Kot Have)<+eo.

Let us add some comments on (2.2) in case 00 is sufficiently smooth and n=>2.
It is well known that Kg(2, 2) is regular around a boundary point at which
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some eigenvalue of the Levi form is negative. Hence, if ®N0Q consists only
of such points, then (2.2) is valid.

On the other hand, if @N8Q contains a pseudo-convex point, then Kq(2, 2)
may grow up to infinity as z tends to that point, cf. Hérmander [22], Theorem
3.5.1. In this case, » must be sufficiently small around that point in order
that (2.2) is satisfied.

ReEMARK 2.7. Contrary to (2.2), if a hole o is so large that

@1y | Kot gavg)<+oo,

then the operator 1—1T is of trace class, cf. Remark 2.3. In particular, 1—-T
is compact and admits a discrete spectral decomposition. Then, as in the
proof of Theorem 1, we see that ||T||=1. We also have ||1—T||<1, for (2.11)
implies that the measure of  is positive.

ExampLE 2.1. It is possible that the restriction mapping R: L*H(Q)
— L’H(Q\w) has a dense range, but is not bijective. One of the simplest
example is given by the case where Q\w is a ball with O\w<=Q. In this case,
polynomials are dense in L?H(Q\w), so that the range of R is dense. However,
Kao(+, w)&L’H(Q) if weQ\w is close to the boundary, so that R is not sur-
jective. Namely, the range of R is not closed, cf. Remark 2.7.

More examples will be constructed by a similar idea in view of Hérmander
[22], Theorem 2.3.5 and the subsequent Remark (1).

ExampLE 2.2. It is also possible that the range of R is closed but not
dense. A one dimensional example is given simply by setting

Q=A, 0=5, Qw=4, with 0<r<1,

where A,= {2 C"; |2|<r}, so that 4, is an annulus. In this case, every ele-
ment of L’H(Q\w) admits a Laurent series expansion, while any term of
negative power cannot be approximated in L’H(Q\w) by elements of L?H(Q).
Hence, the range of R is not dense. Observe also that ||T||<1, for the hole
w is compact.

A higher dimensional example can be obtained by setting

Q=AXQ, 0o =548X0', QO\o=A4,xXQ",

where Q' is an arbitrary bounded domain in €*~'. In this example, T is not
compact, though ||T||<1.

ExampLE 2.3. Let us finally present an example such that the range of
R is not dense nor closed. Suppose that Q is a unit ball in C” with n=2 cen-
tered at the origin and that Q\w is relatively compact in Q. Then, by virtue of
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Remark 2.7, the range of R is not closed. Now if Q\w is of the form
Qo = {(z', 2,)€C* X C"; a< |2,| <b, |2'|<c}

with some positive constants 4, b and ¢, then polynomials are not dense in L2H
(Q\w), while they are in L?H(Q). Therefore, the range of R is not dense.

3. Proofs of Theorems 4 and 5
3.1. A smoothing kernel. By virtue of Theorem 1, we may consider the
function
Tau(®, w) = Kau(s, w)—Ka(z, ©) = 3 T4, w)
for 2, weQ. Then,
Lemma 3.1. If Q satisfies the condition R, then Ig ,(+, <)=C=(Q2x D).
Lemma 3.2. If Q satisfies the condition Q, then Ig (¢, «)EC(QAX Q).

If no smoothness of the boundary 9Q is assumed, then the statement of
Lemma 3.1 should be interpreted as follows: If Q satisfies (Ry; M,) with some
M, then Gg (¢, +) belongs to W' QX Q) for all s&€N, see Remark 1.2. We
shall actually prove this statement.

By definition, the conclusion of Lemma 3.2 states that Jg ,(+, *) extends
real analytically to a neighborhood of QX Q), where some regularity condition
on the boundary 0Q is required implicitly. (Namely, Q must lie on only
one side of its boundary 0Q, see Subsection 3.3.) Note that the extension is
indeed sesqui-holomorphic, that is, holomorphic and conjugate holomorphic
in the first and the second variables, respectively.

We specify a norm [|+||2 on W*(Q) by setting

it = ([ = [0%08u(a) "V ),

s
where 8,=8/0z and 9;=0/0z.
Proof of Lemma 3.1. Recall that
Doz, w) = 3 TEA(z, )
— [ Kale, DKalt, V()
+{{ Kl ) 3 TEUE Kol ©)aV(E)AV(E)

for 2, weQ. Since 3,2 T§")(+, ) is bounded in wXw, it suffices to show
that
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(3.1) sup [|Ka(s, w)||8<+o0  for sEN.

Let us prove (3.1). By the mean value property for harmonic functions, we
have

0K ali, ) = | 07K a(s, Ddu(EIV(E) = 0K abu(s)

for acZ}, where ¢,=C5(Q) is radially symmetric around w and satisfies
qude=1. (This expression is due to Bell [4], cf. also Kerzman [23].) By
virtue of (R,; M,) for Q, we get

(32) ”a‘:Kg('; w)“géctvo“d)w”?lo(lal)

with some constant C,>0. Fixing a€Z} arbitrarily, we want to estimate
the right hand side of (3.2) uniformly in wEw. This can be done by choosing
¢, to be of the form ¢,(2)=¢(|z—w]|) with ¢ =CF([0, o0)) satisfying ¢(r)=0
whenever 2r =distance (o, 0Q). q.e.d.

Proof of Lemma 3.2. As in the proof of Lemma 3.1, it suffices to show
that

(3.3)  Kg(-, -)EC* QX 0).

In order to prove (3.3), we recall that Kg(2, w)=Kgp,(2) for 2, wEQ with
the same ¢, C7(Q) as in the proof of Lemma 3.1. By virtue of the condition
O for Q, we then get

(3.3) K-, w)eC*@) for weQ.

More precisely, for any weQ, there exists a domain Q(w) in C" such that
OcQ(w) and that Kg(+, w) extends holomorphically to Q(w). It has been
known that (3.3)" implies (3.3) in case the boundary 9Q is of C’-class, see,
e.g., Zorn [35]. (In Subsection 3.3, we shall prove this fact for a domain Q
with Lipschitz boundary.) Since we assume here the smoothness of the bound-
ary 09, the proof is finished. q.e.d.

3.2. Proofs of Theorems 5 and 4’. We have almost finished the proofs
of Theorems 5 and 4’. In fact,

Proof of Theorem 5. By virtue of Lemma 3.2, the kernel 9 ,(+, +) defines
an integral operator g, in L*(Q\w) satisfying Jg u=C*(Q) for u€ L(Q\w).
Observe that

(3 .4‘) KQ\m == .Kgu“}— gn\wu for uELZ(Q\CO) )

where u in Kgou is regarded as an element of L*(Q) by setting #,=0. If
ueC7(Q\w)CCr(Q), then Koue C°(Q) so that
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Ko ue0°(Q)CC(Q\w),
obtaining the desired conclusion. q.ed.

Proof of Theorem 4'. Suppose first that Q satisfies (Ry; M,). By virtue
of Lemma 3.1, we still have (3.4) and

3:5) Dol =Cllulld”  for ueL(Q\o)

with some constant C;>0. By (R,; M,) for Q, there exists C{>0 such that, for
ueCr(Q\o)CCF(Q),

1K gul$* < 1K qul|§ < Cillul|fyr = CllullF -

Therefore, Q\w also satisfies (Ry; M,).
Suppose next that Q satisfies (R; M). We again have (3.4) and (3.5), so
that it suffices to show that

(3.6)  |IKaul|®*<CY|lul|2s  for ueWHO(Q\w)

with some constant C4'>0. In order to prove (3.6), we choose and fix £,&
C7(Q) satisfying &,=1 near » and set £,=1—&,. Then, Eus W9 (Q) and
£u=0 near o. Hence, by (R; M) for Q, there exists C{’/>0 such that

1K a(E)|[3\ < 1K a(E) 18 = 3 [1Elikcs)

while ||Eu|5sy=|Eu| |50 < C.(&,)||ul|5k% with some constant C,(£,)>0. In order
to estimate Kg(£,%), we observe that (3.1) remains valid with supp(,) in place
of » without changing the proof. Then,

IKa(E) I\ < C(EIIEwlI§ S CiE) e[

with some positive constants C,(&,) and Ci{(£,), where Cy(&,) depends on the
support of £,. Since & and &, are independent of #, we obtain (3.6). There-
fore, Q\w also satisfies (R; M). q.e.d.

3.3. A remark on Theorem 5. We have proved Theorem 5 assuming
that the boundary of Q is of C%-class, cf. the proof of Lemma 3.2. In the
present subsection, we shall generalize this result to Q having the so-called
cone property.

Recall that a domain Q in RY is said to have the cone property if there exists
a finite cone C in R" such that each point x=Q is the vertex of a finite cone
C, in Q congruent to C under a Euclidean motion, see Adams [1]. Here, a
finite cone C (in RY with vertex at x, € R") is a set of the form

C = {x+Ny—x); YEB,, A>0} N B,,

where B, and B, are open balls in R" such that x,& B, and that B, is centered
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at x,. It is easy to see that a bounded domain Q in R¥ has the cone property
if it has a Lipschitz boundary, namely, if the boundary 8Q is locally expressed
as a graph of a Lipschitz continuous function from R¥' to R. Conversely,
a theorem of Gagliardo asserts that if a bounded domain Q in R¥ has the cone
property then it is a union of a finite number of domains with Lipschitz bound-
ary, see [1].

Let Q be a bounded domain in C” having the cone property. We shall
show that Theorem 5 remains valid. Since the cone property does not require
Q to lie on only one side of its boundary, the definition of the space C*({Q)
must be modified appropriately. We define C“(Q2) in such a way that f € C*°(Q)
if and only if f€C®(Q) and there exists 7>0, possibly depending on f, such
that f admits the (real) power series expansion with radius of convergence=r
at every point of Q. (There may be no confusion of the notation C®(0Q2),
though the space C“(Q2) depends on Q and not on the set ).) This definition
is certainly motivated by the notion of analytic continuation, as the following
example illustrates: if #=1 and Q={2&C; 1<|z| <2, z<(1, 2)}, then (a
branch of) the logarithm f(z)=Ilog 2 belongs to C*(Q2).

Under the definition of the space C“(f2) as above, we shall show that:

Lemma 3.2'. If a bounded domain Q in C" has the cone property, then
(3.3)" émplies that

KQ(‘, ‘)ECN(QX(L)())
for any relatively compact open subset w, of Q.

Note that Lemma 3.2’ implies the conclusion of Theorem 5 under the
assumption that Q has the cone property, for the previous proof remains valid
except for Lemma 3.2.

Proof of Lemma 3.2’. The following argument is inspired by the paper
of Zorn [35]. We begin with observing that:

Claim 1. Given a non-empty open subset U of Q, there exists a non-empty
open subset V of U such that Ky(+, +)€C*(QX V).

In order to prove Claim 1, we set
Sy w= N{weU; |Ka(+, w)||e<Im’sl}  for |, mEN.
s=1

Then, (3.3)" implies that U ,enS;»=U. Let us observe that each S, , is a
relatively closed subset of U. Since Q is bounded and has the cone property,
it follows from Rellich’s lemma that the inclusion mapping W°'H(Q) — L*H(Q)
is compact for s&N, where W'H(Q)=W*(Q)N L*H(Q) regarded as a closed
subspace of W*(Q). Hence, as in the proof of Theorem 1, we see that there
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exists a complete orthogonal system {yrj}; of W*H(Q) which is orthonormal in
L’H(Q), cf. Komatsu [29]. We then get a Fourier series expansion

Ko+, w) = ,il awyps in IPH(Q) for weUcQ,
and that
(IKa(-, w2 = 33 laj(en) IXI3II2Y

By the reproducing property for the Bergman kernel, we have
aj(w) = (Ka(+, 0), ¥$)° = ¥i(®),

which is a continuous function of w. Therefore,
Siw= 0, D0 U 33 1¥3() (WD < m'sly

which is a relatively closed suktset of U.
It then follows from Baire’s category theorem that some .S;, includes
a non-empty open subset V' of U. Namely,

[|Ka(+, w)|I$<Im's! forweV’.

Assume for a while that Q has a Lipschitz boundary. Then, Sobolev’s lemma
implies that

3.7) {r}ax |07K o(2, w)| <C,Cis! for (2, w)eQxV’,
®| <

with some positive constants C, and C, independent of s and (2, w). Hence,
there exists >0 such that Ky(-, w) for w1V’ admits the power series expan-
sion with radius of convergence =7 at every point of Q. With V being an
arbitrary non-empty relatively compact open subset of V', the desired con-
clusion of Claim 1 follows from Generalized Hartogs’ Lemma in Bochner-
Martin [14], pp. 141-142.

In case of a general domain Q, we choose a subdomain , of Q with
smooth boundary. Then, (3.7) holds with Q, in place of Q, where C, may
be chosen to be independent of Q,; we may set C;=m+1. Since , is ar-
bitrary, the previous argument is still valid, and the desired conclusion of Claim
1 follows from Hartogs’ lemma as in the proof of Generalized Hartogs’ Lemma.
So far, the cone property has been used only to guarantee the validity of
Rellich’s lemma.

We next observe that:

Claim 2. If Kg(+, -)EC®(Q X A)) with some polydisc A, in Q, then Kg(-, -
eC°(Q X Ay) for any relatively compact polydisc A, in Q with the same center
as that of A,.

Note that the conclusion of Lemma 3.2’ follows from Claims 1 and 2 to-
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gether with a simple compactness argument. In fact, it suffices to cover e,
by a finite number of open sets U in such a way that every point of U is the
center of a polydisc A, satisfying U C A,&Q).

In order to prove Claim 2, we reformulate it as follows:

Claim 2'. Let F be a holomorphic function in QX A,, where A, is the unit
polydisc in C" centered at the origin 0. If FEC®(QXA,) for some polydisc A,
in C" of polyradius <1 centered at 0, then FEC*(Q X A,) for any polydisc A,
of the same type as A,.

Let us prove Claim 2’. By virtue of Gagliardo’s theorem, we may assume
that Q has a Lipschitz boundary. This assumption will be used at the final
stage of the proof. By definition, we have to show that if F has the polyradius
of convergence =r; at every point of QX A, for some r,>>0, then there exists
7,>0 such that F has the polyradius of convergence =7, at every point of Q
X A, We reduce the problem to that of polydiscs as follows. For each z€Q,
we denote by A(z; 7) the polydisc centered at 2 of polyradius »>>0. We also
set 7(2)=d(z, 0Q), where d(-, +) stands for the distance measured with respect
to d(z, 2')=max,¢;c,|2;—2}| for 2=(z,, :*+, 2,) and 2'=(21, :**, 25). Then, F
extends holomorphically to

(A(z; ) X AU (A(=; 7(2)) X 4,)  for each z€Q.

Given A, we choose a polydisc Aj; centered at 0 in such a way that A,c=A}
&A,. It then follows from the logarithmic convexity for the polyradii of con-
vergence of power series in a product space that F extends holomorphically to

A(z; 7)(2)) X A}, where 7,(2) = rér(z)'"°,

with some 6, 0<<f<1, independent of 2=Q. We now recall the assumption
that Q is a bounded domain with Lipschitz boundary. Then, the desired
conclusion of Claim 2 will be obtained if the family {A(2; 7,(2))}.ea covers Q.
Obviously, this family covers Q. Hence, it suffices to show that for each 2’
€0Q there exists 2”7 such that 2'€A(2”; r(2”’)). This is possible by
virtue of the Lipschitz regularity assumption on 8. In fact, 2’ is the vertex
of a finite cone C included in Q, while

r(2)[r(2) = (r/r(2))? = 400 as z— 2.

Thus, the desired conclusion is obtained by approaching = to 2’ along the axis
of rotation of the cone C. Therefore, we get Claim 2’ and the proof of Lemma
3.2" is complete. q.e.d.
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