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A B S T R A C T

Machine learning interatomic potentials (MLIPs) for 𝛼-iron and carbon binary system have been constructed
aiming for understanding the mechanical behavior of Fe–C steel and carbides. The MLIPs were trained using
an extensive reference database produced by spin polarized density functional theory (DFT) calculations. The
MLIPs reach the DFT accuracies in many important properties which are frequently engaged in Fe and Fe–
C studies, including kinetics and thermodynamics of C in 𝛼-Fe with vacancy, grain boundary, and screw
dislocation, and basic properties of cementite and cementite–ferrite interfaces. In conjunction with these MLIPs,
the impact of C atoms on the mobility of screw dislocation at finite temperature, and the C-decorated core
configuration of screw dislocation were investigated, and a uniaxial tensile test on a model with multiple types
of defects was conducted.
1. Introduction

Steels remain to be arguably the most common structural materials
in the world as human civilization advances from the Iron Age to
the ongoing Silicon Age. The overwhelming dominance of steels stems
partly from the fact that there is endless variety of microstructures
and properties that can be generated by solid-state transformation and
processing. Our knowledge of its microstructure evolution and structure
performance relationship, nevertheless, is still far from complete. As
coal or other fossil fuels are widely used to heat the iron ore in tra-
ditional steelmaking processes, carbon (C) is almost always present in
steels, either as intentional alloying element or as unwanted impurity.
In fact, the addition of mere carbon to iron is sufficient to form a steel.
A small concentration of carbon, e.g. 0.1–0.2 weight per cent, has a
great strengthening effect on iron [1].

To fundamentally understand the role played by C atoms in steel,
it is important to characterize its thermodynamics and kinetics at
the atomistic level [2]. Density Functional Theory (DFT) calculations
are generally capable of yielding reliable results, yet still encounter
challenges in handling large systems or long-time molecular dynamics
simulations, despite remarkable progress in computational capabilities
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E-mail addresses: fanshun.meng@tsme.me.es.osaka-u.ac.jp (F.-S. Meng), ogata@me.es.osaka-u.ac.jp (S. Ogata).

achieved over recent decades. Empirical interatomic potentials (EIPs)
can significantly reduce computational costs, enabling the simulation
of extensive systems over prolonged periods, albeit with a trade-off
in precision. Numerous interatomic potentials with diverse formalisms
pertaining to the Fe–C system have been developed [2–4], significantly
advancing our comprehension of the influence of carbon on iron [5].
These empirical interatomic potentials were constructed through the
amalgamation or hybridization of existing disparate interaction terms
and refitting part of parameters. Some of the limitations of the base
potential were inherited by the new potential. For instance, correctly
representing the energy landscape of screw dislocation remains a chal-
lenge for all Fe-related empirical potentials [6]. The limitations of EIPs
are attributed to their rigid formalisms.

Recently, several types of machine learning interatomic potentials
(MLIPs) have been proposed for various materials utilizing diverse
structure descriptors, such as but not limited to Behler–Parrinello neu-
ral network potential (BNNP) [7,8], Gaussian approximation potential
(GAP) [9], Spectral neighbor analysis potential (SNAP) [10], Deep
potential (DP) [11], and Graph neural network potential (GNNP) [12],
etc.. For the performance and computational cost assessment of differ-
ent MLIPs, please refer to Refs. [13–15]. Given that the primary target
https://doi.org/10.1016/j.actamat.2024.120408
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of this work is on topics related to the plasticity of structural materials,
requiring the use of a sizable model, computational speed emerges as
the paramount factor for the development of potentials. We developed
two MLIPs under frameworks of BNNP and DP for 𝛼-Fe and C binary
ystem based on a comprehensive database produced by spin-polarized
FT calculations. The constructed MLIPs exhibit excellent DFT com-
atibility on 𝛼-Fe, Fe3C, ferrite–cementite interfaces, and interactions
f C with pure and defective 𝛼-Fe, such as vacancies, grain boundaries
GBs), and screw dislocations. In conjunction with these MLIPs, the
mpact of C atoms on the mobility of screw dislocations at finite tem-
erature, and the C-decorated core configuration of screw dislocation,
ere investigated, and a tensile test for a model with various types
f defects, including vacancies, interstitial atoms, GB, cementite, and
errite/cementite interfaces, was conducted. These demonstrations can
e considered as evidence for the good transferability of these MLIPs.
or these two MLIPs, the BNNP presents better overall accuracy than
he DP, while the DP provides an advantage over BNNP in scenarios
equiring the computation of atomic stress.

. Construction of MLIPs

Utilizing the spin-polarized DFT calculations, 32 002 configurations,
quivalent to 2.78 × 106 atomic environments, were prepared in the
atabase (see Table.S1 in the supplementary materials [16]). These
onfigurations were distributed randomly into a training data set (90%)
nd a testing data set (10%). Both energy and atomic force were
onsidered in the training processes while the virial tensor was not.

For the BNNP framework [7], to parameterize the local atomic envi-
onments (LAEs) of the configurations in reference database, radial and
ngular atom centered symmetry functions (ACSFs) [17] was adopted.
he radial symmetry function is defined as [17]
rad
𝑖 =

∑

𝑗𝑒
−𝜂(𝑅𝑖𝑗−𝑅𝑠)2𝑓𝑐 (𝑅𝑖𝑗 ), (1)

here 𝑅𝑖𝑗 is the atomic distance between atom 𝑗 and the central atom
. The angular symmetry functions is given by [17]
ang−w
𝑖 = 21−𝜉

∑

𝑗
∑

𝑘≠𝑗 (1 + 𝜆 cos 𝜃𝑖𝑗𝑘)𝜉𝑒
−𝜂(𝑅𝑖𝑗+𝑅𝑖𝑘)2𝑓𝑐 (𝑅𝑖𝑗 )𝑓𝑐 (𝑅𝑖𝑘), (2)

nd,

ang−n
𝑖 = 21−𝜉

∑

𝑗
∑

𝑘≠𝑗 (1+𝜆 cos 𝜃𝑖𝑗𝑘)
𝜉𝑒−𝜂(𝑅

2
𝑖𝑗+𝑅

2
𝑖𝑘+𝑅

2
𝑗𝑘)𝑓𝑐 (𝑅𝑖𝑗 )𝑓𝑐 (𝑅𝑖𝑘)𝑓𝑐 (𝑅𝑗𝑘),

(3)

here 𝜃𝑖𝑗𝑘 is the angle enclosed by the vectors of 𝑅𝑖𝑗 and 𝑅𝑖𝑘 of two
eighboring atoms 𝑗 and 𝑘, respectively. Both types of ACSF have a
ommon function 𝑓𝑐 called the cutoff function, which is defined as
ollows:

𝑐 (𝑅𝑖𝑗 ) =

⎧

⎪

⎨

⎪

⎩

tanh3
[

1 − 𝑅𝑖𝑗
𝑅𝑐

]

if 𝑅𝑖𝑗 ≤ 𝑅𝑐

0.0 if 𝑅𝑖𝑗 > 𝑅𝑐 ,
(4)

The parameters of 𝜂, 𝑅𝑠, 𝜉, and 𝜆 in equations Eqs. (1)–(3) can be
determined by the strategy reported in Ref. [18]. Each element has 16
radial and 60 (48 𝐺ang−w

𝑖 +12 𝐺ang−n
𝑖 ) angular ACSFs. The cutoff radii for

radial and angular ACSFs of Fe atoms are specified as 6.5 and 6.0 Å,
respectively. For C atoms, they are set at 5.5 and 5.0 Å, respectively.
The hidden layer was set to be 2 layers, each of which has 15 neurons.

For the DP framework [19], a hybrid descriptor with two-body em-
bedding full-information (𝑠𝑒_𝑒2_𝑎) and three-body embedding DeepPot-
SE (𝑠𝑒_𝑒3) was employed. We used (32, 64, 128) neurons for two-body
embedding networks, (8, 16, 32) neurons for three-body embedding
networks, and (256, 256, 256, 1) neurons for fitting networks. The
hyperbolic tangent function was selected as the activation function.
Atoms of Fe and C shared the same cutoff radius (𝑟𝑐) of 6.5 and 5.6 Å for
the descriptors of 𝑠𝑒_𝑒2_𝑎 and 𝑠𝑒_𝑒3, respectively, and the same smooth
cutoff parameter (𝑟 ) of 0.5 Å.
𝑐𝑠

2 
All DFT calculations were performed using Vienna Ab-initio Sim-
ulation Package (VASP) [20]. The BNNP was trained using a neural
network potential package (n2p2) [21] and the DP was constructed
with the help of the DeePMD-kit package (Version 2.2.3) [19]. The
potentials validation and application were carried out by Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) [22,23].
Simulation visualization and atomistic figures plot are completed with
the help of OVITO [24]. PHONOPY code [25] was used to calculate
the phonon dispersion curves, the code of Atomsk [26] was employed
to build screw dislocation models. Detailed information on database
(Table. S1 [16]), the DFT calculations used for preparing the database
as well as conducting molecular statics simulations in the validation
section is available in the supplementary materials (Table. S2) [16].

3. Results: Validation of 𝐌𝐋𝐈𝐏𝐬

3.1. Overall accuracy of MLIPs

Overall accuracy of the MLIPs was estimated using root mean
squared errors (RMSEs) of energy (𝐸) and force (𝐹 ) which definition
can be found elsewhere [27,28]. The training and testing data sets have
RMSE(𝐸)s of 3.58 and 3.57 meV/atom, and RMSE(𝐹 )s of 83.0 and 83.2
meV/Å, respectively, for BNNP. Those are 4.71 and 5.87 meV/atom
and 92.5 and 91.2 meV/Å, respectively, for DP. The values of these
RMSEs are in the typical range of machine learning based interatomic
potentials [29,30]. Comparison of DFT and BNNP produced energies
and forces of the structures in the training and testing data sets are
displayed in Fig. 1(a)–(b), those comparison of DP are presented in
Fig. 1(c) and Figs. 1(d)–(f), respectively. All points for energy and force
of training and testing datasets are distributed along the line with a
slope of 1, indicating that the trained data can be well reproduced
and no overfitting occurred. Several concerned properties are further
checked in the following subsections.

3.2. MLIPs Performance for 𝛼-iron

The BNNP and DP performance for basic properties of 𝛼-iron, in-
cluding lattice constant, elastic constants, defects formation energies,
and low index surface energies, are tabulated in Table 1. And thermal
expansion curve and 𝛾-surfaces of (110) and (112) planes are presented
in supplementary materials (Figs. S1–S2) [16]. All of them show similar
performance as our previous Fe–H BNNP [31] and well agree with DFT
results [32–42].

Phonon dispersion curves of 𝛼-iron with equilibrium lattice condi-
tion are presented in Fig. 2(a). It is clear that both BNNP and DP can
well reproduce the DFT [45] and experimental results [47].

For an iron-related interatomic potential, the accurate descrip-
tion of the screw dislocation core configuration and its energetics is
paramount [45,51]. A supercell with dimensions of 22[112̄]×38[11̄0]×
1/2[111] was employed, periodic boundary condition was applied in
the [111] direction only. A 1/2[111] screw dislocation was introduced
according to the anisotropic elasticity theory of dislocation [26]. Three
distinct core configurations, including easy core (EC), hard core (HC),
and split core (SC) were created separately, the differential displace-
ment maps (DDmaps) of each core were presented in the supplementary
materials (Fig. S3) [16]. To map the 2-dimensional Peierls energy land-
scape, additional configurations among these core configurations were
generated using the interpolation method. Subsequently, the atomic
positions of the model were relaxed, excluding the atoms located more
than 70 Å from the dislocation core. 𝑧 coordinates of the atoms in the
core were fixed to maintain the core configuration. The 2-Dimensional
Peierls energy landscape predicted by BNNP is displayed in Fig. 2(b)
(See Fig. S3 in the supplementary materials [16] that predicted by DP).
It is clear that there is only one hump between neighboring easy cores,
and the whole shape matches the reported DFT results [52]. Taking
the energy of the dislocation with EC as reference, the energies of
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Fig. 1. Comparisons of BNNP and DFT (a) energies, (b) forces of the configurations in the training and testing datasets. The comparison of DP and DFT (c) energies, (d)–(f) forces.
The line with a slope of 1 indicates a perfect training.

Fig. 2. MLIPs performance for 𝛼-iron, (a) Phonon dispersion curve, (b) 2-Dimensional Peierls energy of screw dislocation. (c) Misorientation-energy relationship for the symmetric
tilt grain boundaries with a tilt axis of ⟨110⟩, (d) Twist angle-energy relationship for the twist grain boundaries with termination of (110). Available reported DFT [42,45] and
experimental [47] results for phonon dispersion curves and DFT results for GB formation energy [48–50] are also shown.
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Table 1
Properties of 𝛼-Fe produced by BNNP and DP. Results are compared to DFT (from this work and reported literature) and other machine learning
interatomic potentials of iron. The subscripts of 𝑖NN for the bi-vacancy is the 𝑖th nearest neighbor, and those of tri-vacancy are identified by
means of Beeler notation [43]. The subscripts of [111] and Tet for quad-vacancy are vacancies arranged along [111] crystal direction or in
tetrahedral configuration. For the self interstitial atoms, T and O stand for the interstitial Fe atom following the tetrahedral and octahedral
occupation, and [001], [110], and [111] are the dumbbells formed along those crystal directions.

BNNP DP DFT
(This work)

DFT
(In literature)

Fe–H-BNNP [31] Fe–H-DP [44] ANN [45] GAP [42]

Lattice Constant (Å)
𝑎0 2.828 2.831 2.830 2.834[42] 2.830 2.834 2.836 2.834

Elastic constants (GPa)
𝐶11 270 268 297 297[42] 296 280 277 285.9
𝐶12 135 134 151 151[42] 147 128 156 154.3
𝐶44 92 97 105 109[42] 96 104 104 103.8

Vacancies energy (eV)
𝐸f

1V 2.183 2.216 2.223 2.22[42] 2.203 2.327 2.287 2.26
𝐸f

2V−1NN 4.217 4.303 4.236 4.24[42] 4.184 4.542 4.071 4.41
𝐸f

2V−2NN 4.119 4.214 4.201 4.20[42] 4.183 4.322 3.813 4.30
𝐸f

2V−3NN 4.367 4.388 – 4.45[42] 4.445 4.597 4.581 4.55
𝐸f

2V−4NN 4.283 4.409 – – 4.374 4.598 4.385 4.48
𝐸f

2V−5NN 4.369 4.431 – – 4.378 4.649 4.307 4.47
𝐸f

3V−112 5.848 6.053 – 5.82[38] 5.867 6.234 – 6.19
𝐸f

3V−226 6.083 6.203 – 6.13[38] 6.146 6.318 – 6.38
𝐸f

3V−223 6.231 6.442 – 6.70[38] 6.155 6.249 – 6.35
𝐸f

3V−115 6.243 6.398 – 6.15[38] 6.152 6.684 – 6.47
𝐸f

3V−113 6.211 6.369 – 6.14[38] 6.185 6.664 – 6.59
𝐸f

3V−333 6.560 6.645 – – 6.665 6.820 – 6.85
𝐸f

4V−[111] 8.274 8.494 8.182 – 8.114 8.823 – –
𝐸f

4V−Tet 7.238 7.557 7.254 7.51[46] 7.278 8.026 – –

Self-interstitial energy (eV)
𝐸f

i−T 4.431 4.617 4.466 4.79[42] 4.448 4.688 4.871 4.75
𝐸f

i−O 5.258 5.191 5.279 5.58[42] 5.322 5.166 5.703 5.53
𝐸f

i−[110] 4.026 4.186 4.023 4.37[42] 4.037 4.200 4.350 4.21
𝐸f

i−[111] 4.723 4.556 4.579 5.13[42] 4.744 4.611 5.023 4.90
𝐸f

i−[001] 5.146 5.042 5.146 5.48[42] 5.062 5.038 5.603 5.47

Surface energy (J∕m2)
𝛾(001) 2.479 2.487 2.488 2.543[42] 2.479 2.501 2.538 2.547
𝛾(110) 2.426 2.433 2.449 2.495[42] 2.436 2.461 2.474 2.499
𝛾(111) 2.667 2.692 2.691 2.752[42] 2.695 2.686 2.719 2.756
𝛾(112) 2.590 2.592 2.575 2.629[42] 2.586 2.601 2.623 2.612
C
𝐸
e
e

e
t
d

dislocation with HC, middle point (MP), and SC are 38.5, 36.7, and
110.9 eV/𝑏 (𝑏: Burgers vector length, 𝑏 =

√

3∕2 × 𝑎0) respectively.
Those obtained by DP are 51.0, 35.4, and 82.3 meV/b, respectively.
These results show good agreement with DFT results of 57.9, 49.2,
and 110.3 meV/𝑏 [53], 39.3, 37.9, and 108 meV/𝑏 [54], and result
of 47.4, 38.3, and 82.3 meV/𝑏 obtained by our previously developed
Fe–H BNNP [31]. Employing a 40𝑏 length screw dislocation model and
CI-NEB method [55], kink-pair nucleation enthalpy predicted by BNNP
is 0.72 eV and DP is 0.71 eV, which is consistent with the results of
the DFT-based line tension model of 0.73 eV [54], 0.86 eV [56], 0.91
eV [57], and the result of 0.7 eV (Fe–H BNNP [31]). Note that only the
aforementioned configurations of EC, MP, HC and SC are included in
the training data set.

Formation energy versus tilt and twist angles for ⟨110⟩ tilt symmet-
ric grain boundaries (GBs) and (110) twist GBs at 𝑇 = 0 K are displayed
in Figs. 2(c)–(d), respectively. Computational scheme of GB energy has
been described in detail elsewhere [58,59]. It is not surprising that
the BNNP and DP can effectively capture both seen and unseen data
regarding tilt GBs [48–50], similar to our prior BNNP for Fe–H binary
system [31]. The BNNP and DP also can accurately capture both seen
and unseen data regarding twist GBs even in the absence of specific
data in the database. Performance of the BNNP and DP for other GBs
are presented in supplementary materials (Fig. S4) [16].

3.3. MLIPs Performance for carbon in perfect and defective 𝛼-iron

.3.1. Interaction of carbon with perfect 𝛼-iron
Solution energy (𝐸s) of C atom in perfect 𝛼-iron at 𝑇 = 0 K was

studied employing a 4×4×4 BCC (𝛼-iron) supercell, and the calculations
4 
were conducted in the following manner.

𝐸s = 𝐸FeC − 𝐸BCC
Fe − 𝜇C, (5)

where 𝐸FeC and 𝐸BCC
Fe stand for energies of the perfect 𝛼-iron supercell

with and without C atom, and 𝜇C indicates the chemical potential of
atom in the state of diamond. With the help of BNNP (resp. DP),
s of C atom at T- and O-site are 0.682 (0.789) and 1.563 (1.567)
V/C-atom, respectively, align well with DFT findings of 0.65 and 1.74
V/C-atom [59].

The solubility of carbon atoms at 𝑇 = 0 K in response to volumetric
ngineering strain is also subjected to testing, which is not included in
he database. The BNNP predicted that the C solution energy gradually
ecreases from 1.627 eV/C-atom at the strain of −5.88% to 0.069

eV/C-atom at +6.12% which revealed that the local carbon concen-
tration could be significantly influenced by local volume expansion
or compression. The solution energy is formed by the distortion in
the Fe lattice and the bonding of C to surrounding Fe atoms, namely
mechanical (𝐸Mech

s ) and chemical (𝐸Chem
s ) contributions, which can be

found following Ref. [60].

𝐸Mech
s = 𝐸f rz

Fe − 𝐸BCC
Fe , (6)

and,

𝐸Chem
s = 𝐸FeC − 𝐸f rz

Fe − 𝜇C, (7)

where 𝐸FeC and 𝐸f rz
Fe indicate energies of relaxed C-soluted Fe and the

frozen Fe lattice which is derived from the relaxed C-soluted Fe with
the removal of the C atom, respectively.

As tabulated in Table 2, both mechanical and chemical contribu-
tions exhibit the same response to volumetric strain as that of the



F.-S. Meng et al. Acta Materialia 281 (2024) 120408 
Table 2
Solution energy of C atom at the O-site under volumetric strains. Results of BNNP, DP and DFT are listed, and units are all in eV/C-atom.

Volumetric strain(%) 𝐸s 𝐸Mech
s 𝐸Chem

s

BNNP DP DFT BNNP DP DFT BNNP DP DFT

−5.88 1.627 1.743 1.577 1.374 1.414 1.394 0.253 0.328 0.183
−2.97 1.120 1.215 1.143 1.207 1.257 1.229 −0.087 −0.041 −0.086
0.00 0.682 0.789 0.741 1.053 1.091 1.079 −0.371 −0.303 −0.338
3.03 0.332 0.456 0.375 0.922 0.942 0.949 −0.590 −0.487 −0.575
6.12 0.069 0.208 0.029 0.812 0.816 0.814 −0.743 −0.608 −0.785
Table 3
Trapping energy and configuration of C atoms at monovacancy. The black, red, and
blue balls indicate the Fe, C, and the monovacancy. The energy of the conf. of 2-𝑎 was
used to compute 𝐸3C

trap. Units are all in eV/C-atom.

𝑚 Conf. BNNP DP DFT

1 −0.713 −0.790 −0.676

2-𝑎 −1.050 −1.213 −1.064

2-𝑏 −1.102 −1.156 −1.042

3 −0.385 −0.503 −0.300

4-𝑎 0.232 0.218 0.440

4-𝑏 1.566 1.824 2.039

total solution energy. These properties were also examined by DP. All
results predicted by BNNP and DP are quantitatively in line with those
obtained by DFT calculations (see Table 2).

The diffusion of a C atom in 𝛼-iron takes place between neighboring
O-sites, passing through a T-site. The diffusion energy barrier predicted
by BNNP (resp.DP) is 0.88 (0.78) eV, which is in accordance with DFT
results of 0.86 [61], 0.87 [62] eV. Note that above properties have been
included in the training database.

3.3.2. Interaction of Carbon with monovacancy in 𝛼-iron
The configuration and trapping energy of various number of C

atoms in a monovacancy at 𝑇 = 0 K were tested using a 4× 4× 4 𝛼-iron
supercell with one vacancy (127 Fe atoms). The trapping energy for a
C atom in a monovacancy, already trapping (𝑚−1) C atoms from a site
with lower trapping energy, can be computed by:

𝐸𝑚C
trap = (𝐸𝑚C − 𝐸(𝑚−1)C) − (𝐸O

FeC − 𝐸BCC
Fe ), (8)

where 𝐸𝑚C and 𝐸(𝑚−1)C stand for the energy of the monovacancy model
(127 Fe atoms) with 𝑚 and (𝑚−1)C atoms in the vacancy, respectively,
and 𝐸O

FeC and 𝐸BCC
Fe indicate the energy of a perfect 4 × 4 × 4 𝛼-iron

supercell with and without a C atom occupying an O-site, respectively.
A negative value means energetically acceptance at 𝑇 = 0 K. We
conducted additional DFT calculations, and the trapping energies are
presented in Table 3, alongside those obtained from MLIPs.

The BNNP and DP predict that a monovacancy can accommodate
no more than three C atoms, which quantitatively agrees with DFT
calculations. For the configuration point, two C atoms within a monova-
cancy do not show a preference for either a neighboring configuration
or the other one (see Confs. of 2-𝑎 and 2-𝑏 in Table 3). Furthermore,
when considering four C atoms within the vacancy, the planar config-
uration (Conf.4-𝑎) is energetically favored compared to the tetrahedral
configuration (Conf. 4-𝑏). These configurations are all consistent with
the results obtained from DFT calculations [63–65].

3.3.3. Interaction of Carbon with GBs in 𝛼-iron
We take 𝛴5(310)[001] symmetric tilt GB (short for 𝛴5 GB) as ex-

ample to illustrate the BNNP and DP performance. The 𝛴5 GB model
and C solution sites are depicted in Fig. 3. Taking the iron and carbon
in BCC and diamond structure, respectively, as the energy reference,
5 
Fig. 3. Atomic structure of 𝛴5(310)[001] symmetric tilt GB. Big balls, colored in dark
yellow and dark gray, represent the Fe atoms located at GB and those with a bcc
lattice, respectively. Small red balls stand for C atoms. 𝑎-𝑑 denotes the 4 potential C
interstitial sites at the GB plane. 𝑎0 is the lattice constant of 𝛼-iron. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

the GB formation energy at 𝑇 = 0 K computed by BNNP reduced from
1.558 J∕m2 for the C-free GB to 0.568 J∕m2 for the 4C-segregated-
GB, representing an approximate 60% reduction. The GB was notably
stabilized by the presence of C atoms, as evidenced by the rapid
reduction in GB formation energy. The formation energy reduction is
quantitatively agree with DFT results [58,59] (see Table 4). Following
the method mentioned in Section 3.3.1, C solution energy was further
split into two components, revealing the solution energy is primarily
determined by the chemical contribution (see Table 4). This result is in
line with that of available DFT calculations [59]. DP shows the same
results as BNNP for the considered GB properties, See Table 4.

3.3.4. Interaction of Carbon with screw dislocation in 𝛼-iron
C atom at or in proximity to a screw dislocation can trigger the

reconstruction of the core configuration [66,68], presenting a challenge
for empirical potentials in accurately capturing this phenomenon [5,
66,69,70]. As shown in Fig. 4(a), a dislocation dipole with easy core
configuration was inserted into a 135-atom supercell, whose vectors are
defined by the following expressions [6,71]: �⃗� = 5�⃗�0, 𝑦 = 2.5�⃗�0+4.5𝑦0,
𝑧 = 𝑧0, where �⃗�0 = 𝑎0[

√

6, 0, 0] along [1̄1̄2], 𝑦0 = 𝑎0[0,
√

2, 0] along
[11̄0], and 𝑧0 = 𝑎0[0, 0,

√

3∕2] along [111], respectively. We initially
placed a carbon atom at an O-site near the screw dislocation core.
Subsequently, structure relaxation was conducted, leading to the sys-
tem undergoing spontaneous reorganization and transitioning towards
a hard-core configuration (also called prism configure) with the carbon
atom at the center, as illustrated in the subfigures in the upper panel
of Fig. 4(b). The BNNP and DP predict that reconstruction can occur
when the separation of C atoms is up to 4𝑏 in the direction along
the dislocation line (𝑙C−C = 4𝑏), and the reconstructed hard core is
slightly distorted for 𝑙C−C = 5𝑏 and 6𝑏, as presented in the lower panel
of Fig. 4(b). DDmaps for C separations of 𝑙C−C = 4𝑏, 5𝑏, and 6𝑏 are
provided in the Supplementary materials (Fig. S5) [16].

The C–dislocation interaction energy per C atom, is defined as
the energy difference between the situations where the C atom is
in or infinitely separated from the dislocation core [66]. With this
definition, negative energies indicate attraction. The carbon-dislocation
interaction energy is −0.56 eV for a dipole dislocation model with a
1𝑏 separation between trapped C atoms in the screw dislocation core
(𝑙 = 1𝑏). Upon increasing the separation between neighboring C
C−C
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Table 4
GB energy of C-free and C solution energy of C-decorated 𝛴5(310)[001] GB, reported DFT results are also listed. The model and C occupied sites are shown in Fig. 3.

𝐸GB (J∕m2) 𝐸𝑠 (eV/C-atom) 𝐸Chem
𝑠 (eV/C-atom) 𝐸Mech

𝑠 (eV/C-atom)

BNNP DP DFT [58] DFT [59] BNNP DP DFT [59] BNNP DP DFT [59] BNNP DP DFT [59]

C-free 1.558 1.497 1.55 1.60 – – – – – – – – –
C@site(a) 1.232 1.200 1.25 1.28 −1.032 −0.942 −1.03 −1.081 −0.976 −1.08 0.049 0.034 0.05
C@site(ac) 0.879 0.893 0.90 0.95 −1.114 −0.971 −1.04 −1.148 −0.994 – 0.034 0.024 –
C@site(abc) 0.711 0.719 0.73 0.81 −0.528 −0.548 −0.45 −0.586 −0.584 – 0.058 0.036 –
C@site(abcd) 0.568 0.578 0.58 0.68 −0.453 −0.448 −0.39 −0.515 −0.480 – 0.062 0.032 –
ig. 4. MLIPs performance for the interaction of C with screw dislocation. (a) Unit cell and periodicity vectors within quadrupole arrangement (135 atoms). (b) C induced
ore configuration reconstruction, (c) Interaction energy of C with screw dislocation. (d) Kink-pair atomic configurations of C separation of 1𝑏 and 2𝑏 (upper panel) and atomic
onfiguration variation for kink-pair nucleation for 𝑙C−C = 2𝑏 (lower panel). (e) Energy variation during the migration of the positive and negative kinks in cases of 𝑙C−C = 1𝑏 and
𝑏. (f) Energy variation for kink-pair nucleation in the case of 𝑙C−C = 2𝑏. The corresponding DFT results in (c), (e) and (f) [66,67] are also presented. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
a
g

toms, the interaction energy first decreases rapidly to -0.91 eV for
C−C = 2𝑏, and then increase gradually to -0.79 eV for 𝑙C−C = 6𝑏. The
nteraction energies predicted by BNNP, DP and calculated by DFT [66]
 C

6 
re depicted in Fig. 4(c). A notable agreement can be observed, sug-
esting that the BNNP and DP can accurately depict the interaction of
atoms with dislocation.
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Carbon diffusion is of great importance for steels and for the actual
C distribution in the alloy. While migration barriers for C can be as
high as 0.9 eV in bcc lattice (see Section 3.3.1), it can be much lower
at defects, such as the barrier could be 0.2 eV around dislocation
core from an EAM estimation [72]. As well known, it is difficult to
correctly capture the core reconstruction induced by C using EAM
potential [5,72], thus, it is meaningful to revisit the solution energy of C
around a reconstructed core induced by C and diffusion energy barriers
for several interesting paths using high accuracy MLIPs. The dislocation
model used in Section 3.2 with a dislocation length of 2𝑏 was adopted. A
3-fold low solution energy region around the core can be found, which
meets the experimental observed Cottrell atmosphere around disloca-
tion [73] (please also refer Section 4.2). Diffusion barriers, obtained by
NEB method, could be low to ∼0.3 eV, confirms the existence of the so-
called ‘‘high-mobility zone’’ around the core of dislocation [72] in the
model used. These results are presented in the supplementary materials
(Fig. S6) [16]. It would be very valuable to study the C diffusivity in the
Cottrell atmosphere based on the C distribution obtained in Section 4.2.

Recently, Ventelon 𝑒𝑡.𝑎𝑙. [67] investigated the effect of C decora-
tion on the mobility of screw dislocation in 𝛼-iron using extensive
DFT calculations. The atomic structures of C induced configuration
reconstructed screw dislocation with a kink-pair was firstly reported
for 𝛼-iron [67]. We utilized a dislocation dipole model, as shown in
Fig. 4(a), featuring a dislocation length of 8𝑏 with 𝑙C−C = 1𝑏 and
2𝑏, to assess the transferability of the MLIPs in the description of the
C-decorated kinks. In contrast to the kinks with mirror symmetry ob-
served in pure 𝛼-iron (see Fig. S7 in the supplementary materials [16]),
two nonequivalent kinks were formed on the screw dislocation for the
two C separations, named as K+ and K− respectively, as shown in
the upper panel of Fig. 4(d). In the case of 𝑙C−C = 1𝑏 (1b-K±), the
atomic configuration of 1b-K− reveals two C atoms occupying distorted
octahedral sites, slightly differing from the DFT calculations that only
one C atom has an octahedral-like coordination [67], and other C
atoms all occupy the center of reconstructed hard core configuration.
The kinks configuration for 𝑙C−C = 2𝑏 (2b-K±, see the upper panel of
Fig. 4(d)) predicted by BNNP and DP are all C atoms at the center of
the prism, which matches those obtained by DFT calculations [67].

We utilized a dipole model (Fig. 4(a)) with a dislocation length of
40𝑏 and kinks distance of 20𝑏 to determine the migration energies for
the four types of kink (1b-K±, 2b-K±). The migration energy barrier of
1b-K+ and 1b-K− kinks predicted by BNNP are 0.43 and 1.45 eV, and
those of 2b-K+ and 2b-K− are 0.95 and 1.10 eV, respectively. All four
of these barriers exhibit good agreement with DFT results of 0.58, 1.52,
0.92, and 1.01 eV [67]. The similar results can be produced by DP, as
plotted in Fig. 4(e). The migration of the kink involves the diffusion of
C atoms near the kink.

The energy barrier for the nucleation of a kink-pair was also tested
in the case of a C distance of 2𝑏 (𝑙C−C = 2𝑏) in a dipole model with
a dislocation length of 4𝑏 and a kink separation of 2𝑏. The atomic
configurations and energy evaluation are presented in the lower panel
of Fig. 4(d) and Fig. 4(f), respectively. The nucleation energy predicted
by BNNP is 1.34 eV, in line with the DFT result of 1.19 eV. Additionally,
the kink nucleation process also includes the diffusion of the C atom in
the vicinity of the kink. Both atomic configuration of C-decorated kinks
and energy obtained by DP are similar as those predicted by BNNP, as
presented in Figs. 4(d)–(f).

3.4. MLIPs Performance for cementite and cementite–ferrite interface

Considering that cementite (Fe3C) is the primary form of iron
carbide in steel, it is essential to verify the performance of the MLIPs for
the Fe3C–𝛼-Fe system. There are 16 atoms in a Fe3C unit cell, including
4 C atoms and 12 Fe atoms. In accordance with Fe3C space group of
𝑃𝑛𝑚𝑎, C atoms occupy the same Wykoff position of 4𝑐 while Fe atoms
could occupy the Wyckoff positions of 4c or 8d. We named Fe atoms as

Fe1 and Fe2 for their occupation of 4𝑐 or 8𝑑, respectively (See the inner

7 
panel of Fig. 5(b)). The lattice and elastic constants of Fe3C produced
by MLIPs show good agreement with those of DFT calculations and
reported experimental results [74–76], See data for 𝜃-Fe3C in Table 5.
Using a Fe3C unit cell with the equilibrium lattice constant, the phonon
dispersion curves along high symmetry path produced by BNNP and DP
are shown in Fig. 5(a), which aligns with our DFT result and the DFT
result reported in the literature [75].

The formation energy of various point defects in Fe3C at 𝑇 = 0 K
has been anticipated through the utilization of a 2 × 2 × 2 supercell.
The formation energy of each defect was computed as follows:

𝐸𝑓 = 𝐸FemCn
− 𝐸FepCq

− (𝑚 − 𝑝)𝜇Fe − (𝑛 − 𝑞)𝜇C, (9)

where, the 𝐸FemCn
and 𝐸FepCq

indicate the energy of supercell with and
without defects (𝑝 ∶ 𝑞 = 3 ∶ 1). 𝜇Fe is the chemical potential of Fe
in BCC lattice. The introduction of a vacancy was accomplished by
deleting a designated atom, three such kinds of defect were tested,
namely Fe1-vac, Fe2-vac, and C-vac. The defect of antisite was realized
by switching the type of the atom at the site, for instance, C–Fe1-anti
stands for a Fe atom at a site of Fe1 switched to C, two other cases of
this type of defect were tested and they are C–Fe2-anti and Fe–C-anti.
The results produced by BNNP, DP and reported DFT [77] are plotted
in Fig. 5(b), a good agreement is distinctly evident.

To facilitate a direct comparison with DFT results, two (110) sur-
faces with different terminals that adhered to the stoichiometry of
cementite were chosen and shown in Fig. 5(c). The surface energy
produced by BNNP (resp. DP) is 2.251 (2.273) and 2.529 (2.506)
J∕m2 for Sur-I and Sur-II, respectively, agree with those obtained by
DFT calculations of 2.214 and 2.513 J∕m2. The interface of these two
surfaces with ferrite was also examined, and the atomic structures are
illustrated in Fig. 5(d). The interface energy of Int-I and Int-II produced
by BNNP (resp. DP) are 0.608 (0.619) and 1.755 (1.763) J∕m2, again,
well aligns with our DFT results of 0.571 and 1.609 J∕m2, and reported
DFT results of 0.449 and 1.765 J∕m2[78]. The significant distortion
observed in the ferrite region in Int-II is indicative of its high interface
energy.

Regarding the low energy cementite–ferrite interface (Int-I), we
conducted additional examinations to assess the energy response to
the relative sliding of the two phases. The result predicted by BNNP is
displayed in Fig. 5(e). We observed a low energy barrier of 0.022 eV∕Å2

when the two halves relatively glide along Fe[111]∕Fe3C[010] direction,
which is lower than that in pure 𝛼-iron gliding along the same direc-
tion in the same iron orientation, measured a value of 0.074 eV∕Å2

(see Fig. S2 in the supplementary materials [16]). This suggests that
the motion of the ferrite part along a trench situated between two
rows of carbon atoms in cementite part is approximately three times
more facile compared to its occurrence in pure iron. Additional DFT
calculations as what we did using BNNP for the Int-I have been carried
out and the point by point comparison with the results obtained by
BNNP are illustrated in Fig. 5(f), providing quantitative confirmation
of the conclusions derived from the BNNP predictions. Almost the same
results can be obtained using the DP, as plotted in the point by point
comparison figure (Fig. 5(f)).

3.5. MLIPs Performance for Carbides and the importance of the similarity

Beyond the examined cementite mentioned above, there are also
other metastable iron carbide phases such as Fe4C, Fe5C2, Fe2C, FeC,
and Fe7C3 etc., with various space groups. Performance of two MLIPs
in estimating the lattice constant and elastic constants of 14 carbides
has been investigated, and the results are summarized in the Table 5,
which is provided alongside the DFT results.

One can observe remarkable accuracy in the description of 𝜔-Fe3C,
as even the small elastic constants (𝐶15, 𝐶25, 𝐶35 and 𝐶46) are precisely
captured. The MLIPs also exhibit the superb capability to accurately
describe the carbide of 𝑜-Fe7C3 (𝑃𝑏𝑐𝑎), not only under pressure free

condition but also in systems subjected to an external pressure of 150
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Fig. 5. MLIPs performance for cementite and ferrite–cementite interface. (a) phonon dispersion curves of cementite, (b) formation energy of point defects in cementite. (c) Two
(110) surface configurations of cementite, (d) atomic configuration of two ferrite–cementite interfaces, (e) Energy responds to the relative gliding of the two phase in the interface
of int-I in (d) obtained by BNNP. A comparison of the results obtained by DFT, DP, and BNNP is presented in (f). The subscript of 𝑓 and 𝑐 in (c)–(d) represent the coordinate
system for ferrite and cementite, respectively. The big gray balls and small red balls in (b)–(d) stand for Fe and C atoms, respectively. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
GPa, although none data regarding these carbides are prepared. These
14 carbides can be classified into four types based on the local atomic
environment associated with Fe–C bonding, which is summarized in Ta-
ble 6. Plenty of atomic structures regarding the strained and unstrained
cementite were included in the database, therefore, the BNNP and DP
presented high transferability for the carbides in type-I. As addressed
in Section 3.3.1, the BNNP and DP can correctly describe a single C
atom occupying an O-site in iron with and without deformation, this
can explain the good transferability of BNNP and DP for the carbides
8 
in type-II. A few structures of carbides in type-III and type-IV were
included in the database, as tested in Sections 3.3.1 and 3.3.2, and those
structures are in strain-free state, leading to challenges in achieving
good transferability of MLIPs for these carbides. Note that, for the
unseen structures of FeC with ZnS, CsCl and NaCl lattice, BNNP exhibits
better performance than that of DP in this work. Considering the BNNP
and DP performance across these 14 carbides, it can be inferred that
the structural similarity between the seen and unseen structures is a
significant determinant of the transferability of MLIPs .
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Table 5
Lattice constant and elastic constants of carbides obtained by BNNP, DP, and DFT calculations.

Carbides Space Group Method Lattice constant (Å) Elastic constants (GPa)

𝑎 𝑏 𝑐 𝐶11 𝐶22 𝐶33 𝐶12 𝐶13 𝐶23 𝐶44 𝐶55 𝐶66

𝜃-Fe3C 𝑃𝑛𝑚𝑎 BNNP 5.020 6.737 4.469 365 341 310 172 153 177 14 122 115
DP 5.028 6.688 4.498 354 357 315 187 145 186 24 139 134
DFT [75] 5.04 6.72 4.48 388 345 322 156 164 162 15 134 134
EXP [76] 5.08 6.73 4.51 – – – – – – – – –

𝜀-Fe3C 𝑃 6322 BNNP 4.659 4.659 4.331 335 335 367 191 193 193 86 86 72
DP 4.641 4.641 4.295 309 309 276 147 136 136 76 76 81
DFT [79] 4.630 4.630 4.304 325 325 339 144 134 134 121 121 91

𝜔-Fe3C 𝑃 2∕𝑀 BNNP 4.263 4.267 2.756 343 370 336 197 142 127 40 11 94
DP 4.242 4.201 2.785 231 290 229 138 64 83 71 −9 66
DFT 4.227 4.221 2.739 317 364 347 161 126 119 37 −1 105
DFT [80] 4.227 4.227 2.738 – – – – – – – – –

𝐶16 𝐶26 𝐶36 𝐶45

6 −27 11 −22
−9 −28 −9 −62
−8 −32 8 −35
– – – –

𝜂-Fe2C 𝑃𝑛𝑛𝑚 BNNP 2.815 4.328 4.666 340 391 360 173 170 230 125 92 94
DP 2.879 4.225 4.621 491 509 496 307 293 382 139 92 84
DFT [81] 2.835 4.271 4.722 378 340 323 158 136 189 136 97 110

Fe2C 𝑃𝑏𝑐𝑚 BNNP 4.455 4.943 4.881 293 575 382 256 241 235 106 29 140
DP 4.471 4.977 4.910 428 543 469 258 281 256 106 35 129
DFT [82] 4.515 4.928 4.915 359 537 401 159 149 103 112 12 140

𝜒-Fe5C2 𝐶2∕2 BNNP 11.552 4.505 4.947 364 344 404 210 189 194 126 110 38
DP 11.550 4.542 4.975 417 399 431 232 214 226 137 114 48
DFT [82] 11.570 4.573 5.061 349 341 410 288 151 164 139 132 35

𝐶15 𝐶25 𝐶35 𝐶46

−3 23 −2 −8
6 16 2 −6
−11 22 −1 −12

o-Fe7C3 𝑃𝑛𝑚𝑎 BNNP 4.475 6.855 11.795 374 446 440 211 238 276 101 77 31
DP 4.489 6.927 11.828 389 441 437 222 252 257 93 85 40
DFT [79] 4.501 6.833 11.697 397 419 432 162 157 171 138 116 86

h-Fe7C3 𝑃 63𝑚𝑐 BNNP 6.852 6.852 4.421 450 450 377 252 223 223 83 83 98
DP 6.886 6.886 4.444 395 395 364 220 209 209 82 82 87
DFT [79] 6.808 6.808 4.470 458 458 370 175 180 180 126 126 141

o-Fe7C3 𝑃𝑏𝑐𝑎 BNNP 4.475 11.855 13.639 371 454 454 215 232 265 90 69 44
DP 4.491 11.954 13.701 386 440 443 232 246 254 74 79 48
DFT 4.495 11.811 13.547 378 417 425 181 190 190 124 95 75
EXP [83] 4.5202 11.9747 13.7572 – – – – – – – – –

o-Fe7C3 𝑃𝑏𝑐𝑎 BNNP 3.945 10.676 12.242 1170 1171 1154 707 698 658 271 213 181
(150 GPa) DP 4.042 10.998 12.641 1546 1642 1574 1356 1355 1316 138 88 72

DFT 3.947 10.817 12.468 974 1135 1139 628 643 626 264 169 128
DFT [84] – – – 931 1073 1116 600 599 585 266 169 135
EXP [83] 3.9526 10.742 12.482 – – – – – – – –

Fe23C6 𝐹𝑚3̄𝑚 BNNP 10.470 – – 287 – – 169 – – 92 – –
DP 10.398 – – 281 281 281 131 131 131 96 96 100
DFT [79] 10.443 – – 309 – – 122 – – 104 – –

FeC 𝑃 4̄3𝑚 BNNP 4.276 – – 388 – – 385 – – 2 – –
(ZnS) DP 4.344 – – 614 669 739 326 232 229 143 146 149

DFT 4.257 – – 354 – – 210 – – 67 – –
FeC 𝑃 4̄3𝑚 BNNP 2.509 – – 550 – – 230 – – 54 – –

(CsCl) DP 2.486 – – 1630 1620 1649 1040 1011 1020 75 71 78
DFT 2.454 – – 825 – – 148 – – −30 – –

FeC 𝐹𝑚3̄𝑚 BNNP 4.052 – – 771 – – 320 – – 100 – –
(NaCl) DP 3.976 – – 1172 – – 937 – – 233 – –

DFT 3.992 – – 609 – – 212 – – 84 – –
Fe4C 𝑃 4̄3𝑚 BNNP 3.849 – – 122 – – 192 – – −121 – –

DP 3.839 – – 80 – – 96 – – −245 – –
DFT [85] 3.89 – – 146 – – 189 – – 80 – –
3.6. Computational cost assessment of potentials of BNNP, DP, EAM and
MEAM

Fig. 6 illustrates the comparison of computation costs among the
BNNP, DP, EAM [5], and MEAM [86] potentials, tested on Cray CS-
Storm 500GT of the MASAMUNE-IMR super computer at Tohoku Uni-
versity [87]. Each node used in the study was equipped with two Intel
Xeon Gold 6150 CPUs, for a total of 36 cores, and 10 NVIDIA Tesla
V100 GPUs serving as accelerators.

For a BCC iron model with size of 27 × 27 × 27, and a C atom

was placed at an O-site in each 3 × 3 × 3 BCC unit. Totally, the model

9 
contains 39,366 Fe atoms and 729 C atoms. It is 27.38 μs/atom/step

for the BNNP using 2CPUs (36 cores), while it is 12.71 μs/atom/step

for the DP using 1CPUs and 5GPUs in a node. The computational

speed can be further enhanced if more GPUs are available, the speed

is 6.77 μs/atom/step for the DP using 2CPUs and 10GPUs in a node.

It is worth noting that DP exhibits computational speeds only 1 order

slower compared to MEAM potential and 2 orders slower compared to

EAM potential.
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Table 6
Carbides are classified according to local atomic environment associated with Fe-C
bonding, big gray and small red balls stand for the Fe and C atoms, respectively.

Type Bonding manner Carbide typical unit Remark

I Cementite
𝜀-Fe3C, 𝜒-Fe5C2,
ℎ-Fe7C3, Fe2C,
𝑜-Fe7C3(𝑃𝑛𝑚𝑎),
𝑜-Fe7C3(𝑃𝑏𝑐𝑎)

II Octahedral
bonding

𝜔-Fe3C, 𝜂-Fe2C,
NaCl-FeC, Fe23C6

III Tetrahedral
bonding

ZnS-FeC, Fe4C

IV C replace a Fe
atom in BCC-Fe unit

CsCl-FeC

Fig. 6. Computational cost assessment of potentials of BNNP, DP, EAM [5] and
MEAM [86].

4. Atomistic simulations on 𝜶-Fe–C systems

4.1. Carbon effects on the motion of screw dislocation

Ensuring the constructed MLIPs precisely capture the motion of
screw dislocations and accurately depict the impact of carbon on the
mobility of these dislocations at finite temperatures is vital for under-
standing the carbon-induced strengthening of 𝛼-iron through MLIPs.
To tackle this essential aspect, we carried out molecular dynamics
shear deformation tests on 𝛼-iron crystal having a screw dislocation,
examining the behavior of the screw dislocations in environments both
with and without carbon introduction.

Fig. 7(a) shows the dislocation model used in simulations, which
is 83.47, 48.19, and 59.01 Å (= 24𝑏) in the 𝑥 = [121], 𝑦 = [1̄01], and
𝑧 = [11̄1] directions, respectively. Periodic boundaries are taken along
[121] and [11̄1] directions. A 1/2<111> screw dislocation is introduced
at the center of the simulation cell, utilizing the displacement field
derived from the anisotropic elasticity theory of dislocation, and the
model contained a total of 20,736 Fe atoms. A shift of 𝑏/2 is added in
the 𝑧-direction to the periodic boundary conditions across the 𝑥 surfaces
to stabilize the single screw dislocation [88,89]. Two C concentrations
of 0.5 at% and 1.0 at% were considered for the C-introduced case, and
those C atoms were introduced through random deposition method.

To drive the screw dislocation gliding on the (1̄01) plane along the
[121] direction, dynamical simulations were performed under constant
strain rate realized by exerting a constant velocity in +𝑧 and −𝑧
directions on the top and bottom slabs with 7 Å thickness as shown
in Fig. 7(a), respectively. Two reflection walls [91] were respectively
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set below the top slab and above the bottom slab to keep the C atoms
staying in the region. All simulations were conducted on constant
temperature of 300 K by Nosé Hoover thermostat with a time step
of 0.5 fs. The applied engineering shear strain rate is 1×108 s−1. The
results obtained using BNNP were presented in Figs. 7 and 8, and those
obtained by DP are provided in the supplementary materials (Figs.
S8–S9) [16].

In the C-free screw dislocation model, as shown in Fig. 7(b), the
dislocation possesses an easy core configuration at the strain-free state,
and with the increase in shear strain, a kink-pair is nucleated at a strain
level of 0.999%, then, the kinks propagate along the dislocation line
in the {110} plane until the entire dislocation reaches the neighboring
Peierls valley at the strain of 1.012%. The migration of the dislocations
follows the theory of the kink mechanism [92]. The stress increases
almost linearly with the rise in shear strain, reaching a maximum of
approximately 0.8 GPa at the strain of 1%. Subsequently, the shear
stress fluctuates around 0.75 GPa (see the upper panel of Fig. 8(a)).

For the C-introduced models, the nucleation of the kink-pair occurs
in a segment either with C atoms positioned in front of the dislocation
(arrows of A, B in Fig. 7(c) and D in Fig. 7(d)) or devoid of C atoms
(arrow C in Fig. 7(c)), then, the kink-pair expands until it meets C atoms
which act as obstacles resulting in the pinning effects on the migration
of kinks (see the dotted line encircled part in snapshots with the strain
of 1.386%–1.526% in Fig. 7(c) and 0.356%–2.391% in Fig. 7(d)). The
maximum of the stress is higher than that of the C-free model. It is
about 1.1 GPa at the strain of 1.5% for the model with 0.5 at.% C,
and it is 1.75 GPa at 2.4% for the 1.0 at.% C model, respectively (see
the upper panel of Fig. 8(a)), which demonstrates the locking effects
of C on dislocation motion. The carbon locking effect is remarkably
strong, and the dislocation becomes unlocked only after the remaining
segments have migrated a distance equivalent to about two Peierls
valleys, which can be observed by the position of dislocation, marked
by double-headed arrows in Fig. 7(b)–(d), during the simulation. As
the results, a serration of stress is observed, which is more significant
in the case of higher C concentration. The C atoms in a cylindrical
region centered at the dislocation with radius of

√

3𝑎0 ≈ 4.0 Å and
length of 24𝑏 was collected and the linear C concentration (𝜆C) was
computed following 𝜆C = 𝑛C

𝐿Dis
, where 𝑛C and 𝐿Dis is the number of C

atoms in the region and the length of the dislocation, respectively. The
C concentration evolution over strain was plotted in the lower panel of
Fig. 8(a), which is synchronized with the stress serration demonstrating
the carbon locking effect.

The carbon locking effect can be further elucidated by examining
the displacement of the dislocation along its gliding direction 𝑥 against
the shear strain, which is plotted in the upper panel of Fig. 8(b). The
jump distance after unlocking is longer than the C-free case, and the
incubation time required for the jump is roughly proportional to the
jump distance, thus dislocation exhibits jerky motion [93]. The distance
between neighboring Peierls valleys in {110} planes is 𝛥 =

√

6
3 𝑎0 ≈

2.3 Å. In the strain rate and temperature, the longest observed jump is
5𝛥 in the model with 0.5 at.% C and 10𝛥 in the model with 1.0 at.% C.

One can observe the core configuration transition from an easy core
to a hard core resulting from the interaction between the dislocation
and the C atoms nearby. Such transition is commonly observed at
both strain-free (atoms encircled by rectangles with solid green line in
Fig. 7(c)-0.00% and (d)-0.00%) and strained states ((c)-1.526% and (d)-
1.842% in Fig. 7). Importantly, following the passage of the dislocation,
the C atoms revert to an octahedral coordination with Fe atoms, and no
cementite trace is found after passing dislocation. The evolution of local
atomic configurations around a C atom, transitioning from octahedral
to prism and back to octahedral, is shown in the magnified subfigures
enclosed by solid red lines in Figs. 7(c) and (d). The strong interaction
between the dislocation and C atoms also results in the occurrence
of local cross slip, as shown in the snapshots with strains of 0.085%
to 0.356% in Fig. 7(d). The local cross slip occurrences during the
simulation can be directly recognized through the displacement of the
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Fig. 7. Model used for simulations and the simulation results obtained using BNNP. (a) Screw dislocation model employed in simulations. The directions of 𝑥, 𝑦, and 𝑧 please see
the main text. Yellow and cyan balls indicates the Fe atoms in the slabs of top and bottom. Green line in 𝑧 direction stands for dislocation which is analyzed by the DXA tool
implemented in the OVITO code [90]. (b)–(d) Local atoms around the dislocation for the first dislocation migration for the models with C concentrations of 0.0 at.%, 0.5 at.%, and
1.0 at.%, respectively. Small red balls stand for C atoms, and big colored balls stand for Fe atoms in different atomic planes. Several specific atomic configurations are encircled
and magnified in (c) and (d) (see the main text). (b)–(d) share the same coordinate system and their shear strain (%) are also printed. The solid double-headed arrow in (b)–(d)
denotes the position of dislocation in the corresponding snapshot, while dotted double-headed arrow signifies the location where the dislocation has swept. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
screw dislocation in the 𝑦 direction, as plotted in the lower panel of
Fig. 8(b). A higher carbon concentration results in a more frequent
occurrence of dislocation cross-slip. The entire structural evolution in
these three simulations is depicted in movies provided in the Sup-
plementary materials (Movies.S1–S3, those obtained by DP please see
Movies. S4–S6) [16].

4.2. Core configuration of a screw dislocation with C decoration

To accurately delineate the locking effects of carbon atoms on screw
dislocations, the core configuration of a screw dislocation in the pres-
ence of carbon atoms at finite temperatures is a particularly significant
factor in this scenario, a phenomenon that remains unexplored. Rather
than randomly assigning the location of C atoms in the model, as
demonstrated in Section 4.1, it can also be determined based on the
carbon chemical potential at a given temperature and concentration.
Using the screw dislocation model employed in Section 4.1, and the
grand canonical Monte Carlo (GCMC) combined with MD simulations
(the MD/GCMC hybrid method), C atoms can be inserted in and ex-
tracted from the supercell, and then the Fe-C system may approach
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an equilibrium state. The C-decorated core configuration of the screw
dislocation and also the Cottrell atmosphere around were studied.

To estimate the C concentration in 𝛼-iron, a series of MD/GCMC
simulations on NVT (MD) and 𝜇VT (GCMC) ensembles at 900 K were
conducted, and the relationship between the chemical potential (𝜇C)
and C concentration in 𝛼-iron (𝐶bulk) at the temperature based on
BNNP was obtained and plotted in Fig. 9. In the simulation for screw
dislocation, the 𝜇C was set to be −9.15 eV to match the low carbon
steel with the 𝐶bulk of ∼0.3 at.% at the temperature (900K). 25 GCMC
trials were conducted in each 5 MD steps with a time step of 0.5 fs on
NVT+𝜇VT ensembles.

C concentration in the model (𝐶model) against the MD steps is
presented in Fig. 10(a). It was increased as the MD/GCMC undergoing,
and the increase slowed down after the MD step of 1 × 106 indicating
the equilibrium state is reached. The C concentration of the system
reaches 0.39 ± 0.03 at.% within the conducted MD steps. Number of
C atoms trapped in the dislocation core is now defined as 𝑛Ccore

. Its
average linear concentration, 𝜆Ccore

=
𝑛Ccore
𝐿Dis

, shows the similar behavior
as the C concentration in the whole model. After 1×106 MD steps, 𝜆Ccore
almost reached a constant value of 0.48 ± 0.03 C-atom/𝑏, matching
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Fig. 8. Simulation results obtained using BNNP. (a) The shear stress (𝜏𝑦𝑧) responses to the shear strain of models with different C concentrations(upper panel) and the linear C
concentration (𝜆C) nearby the screw dislocation(lower panel). (b) Displacement of the dislocation in x- and y-direction.
Fig. 9. The relationship between C chemical potential and concentration in 𝛼-iron at
the temperature of 900 K, obtained by BNNP. The results of DP please refer to the
supplementary materials (Fig. S10) [16].

that obtained by a thermodynamical model parameterized on DFT
calculations (0.1 at.%C) [94]. The extracted C-decorated dislocation
core configuration is illustrated in the middle panel of Fig. 10(b), in
which the positions of Fe atoms were averaged over 2.0×105 MD steps,
while the locations of C atoms were recorded every 1000 MD steps
throughout the final 2.0 × 106 MD steps. It is clear that the dislocation
core is completely transferred to the hard core configuration, and
the trapped C atoms stay inside the prism units. To quantitatively
describe the probability of occurrence of C atoms in the reconstructed
dislocation core, the residential density (𝜌r) of C atoms within bins,
each with the same cross-sectional area as the prism of the hard core
configuration and a length of 0.5 Å along the dislocation line, was
computed following 𝜌r = 𝑛b

𝑛s
, where 𝑛b and 𝑛s represent the count of

the occurrences of C atoms in each bin and the number of snapshots,
respectively. The result is shown in the bottom panel of Fig. 10(b). C
atoms can be trapped by any prism unit and they exhibit a preference
for separating 2𝑏 along the dislocation line, which meets the energetic
predication at 0 K (See Fig. 4(c)).
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A snapshot of the model at a MD step of 2.6 × 106 is displayed
in the upper panel of Fig. 10(b). As guided by the dotted blue lines,
one can observe a three-fold distribution pattern of the C Cottrell
atmosphere around the screw dislocation. To confirm this anisotropic
radial distribution, the residential density of C atoms in the model
was computed following the same manner as that for C atoms in the
dislocation core. The C residential density projected onto XY plane is
displayed in Fig. 10(d). The C three-fold distribution matches the lobe-
shaped regions of the Cottrell atmosphere, spaced 120 degrees apart
around screw dislocations, as observed in atom probe experiments on
lath martensite steel (0.85 at%C) [73] and other theoretical predic-
tions [95,96], also agree with the distribution of low solution energy of
C around the dislocation core at 0 K (see Fig. S6 in the supplementary
materials [16]).

The C concentration in neighborhood of dislocation core was further
studied. A cylindrical region along the dislocation line and centered at
the geometric center of the hard core with radius of 3.6 Å (about one
more atomic layer out of the core) and length of 24𝑏 was considered, as
indicated by a red circle in Fig. 10(b). The numbers of enclosed C and
Fe atoms were 𝑛Cnb and 𝑛Fenb (= 288 for the model used in this work),
which were collected through out the simulation. The C concentration
(𝐶nb =

𝑛Cnb
𝑛Fenb

) versus the MD steps is presented in Fig. 10(c). During the
final 7.5×106 GCMC samplings, 𝐶nb reaches 6.0 ± 0.6 at.%, close to the
theoretical prediction of 6–7 at.% [95], higher than another theoretical
prediction based on EAM potential of 10 ± 1 at.% [96], and lower than
the experimental finding of 8 ± 2 at.% obtained by energy-compensated
position-sensitive atom probe analysis. We attribute this difference to
the high temperature and low background C concentration (0.3 at.% in
simulation and 0.85 at.% in experiment). We also suspect the sampling
times might be not enough, as shown in Fig. 10(a) and (c), although the
C equilibrium state has been reached for the dislocation core and the
whole model, it has not yet been reached for the region surrounding the
core. A simulation with large model is required for the estimation of the
size of the Cottrell atmosphere around dislocation (extend to 70 ± 10 Å
from the dislocation reported in experiment [73]). The same simulation
based on DP was also conducted and similar results are presented in the
supplemental materials (Figs. S11–S12) [16].

The 900 K chosen in simulation is rather high, approaching the
Curie temperature for Fe and hence in the BCC paramagnetic region,
and probably far from interest for applications. The computational
cost is high for the MD/GCMC hybrid method study of Fe-C sys-
tem employing MLIPs at the room temperature which is currently
unaffordable.
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Fig. 10. (a) C concentration in the model(𝐶model) and C linear concentration in the core of the dislocation𝜆Ccore
versus the MD steps throughout the simulation. (b) A snapshot of

the model at the MD step of 2.6×106 (upper), the C-decorated core configuration (middle) by showing the averaged Fe atoms position and C atoms history position with an interval
of 1000 MD steps over the final 2.0 million MD steps in each prism unit. The residential density (𝜌r ) of C atom along the dislocation line is displayed in the bottom panel. Dark
gray and red balls stand for Fe and C atoms, respectively. C atoms inside the core of screw dislocation are defined as Ccore. (c) Concentration of C atoms at the dislocation nearby
(𝐶nb). (d) The residential density of C in model projected onto XY plane, a 3-fold C distribution can be observed. The results obtained by DP are presented in the supplemental
materials (Figs. S11–S12) [16]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
4.3. Crack propagation along a grain boundary with Cementite in 𝛼-iron
containing various types of defects

Experimental observations reveal that cementite precipitation at
martensite grain boundaries exhibits a disk-shaped morphology, pri-
marily extending along the martensite grain boundary plane [97]. To
highlight the robustness of the MLIPs, a tensile test has been conducted
on a model with notch at both sides along 𝛴5(310)[001] symmetric
tilt GB, and with cementite in 𝛼-iron crystal containing multiple types
of defects, as illustrated in Fig. 11(a). The model dimensions in the 𝑥,
𝑦, and 𝑧 directions are 19.84, 197.15 and 108.54 Å, respectively. The
periodic boundary condition was employed in the 𝑥 and 𝑧 directions.
The surfaces were created by enlarging the size of the model in the 𝑦
direction, and the cracks were introduced by removing 9 atom planes
along the GB. The initial crack length was set to ∼32 Å. Fe atoms at
the center of the model were replaced by cementite (Fe3C) to build the
arbitrary Fe∕Fe3C interface. Point defects of vacancies and interstitial
were generated by randomly deleting and inserting atoms during a
MD NVT simulation at 𝑇 = 300 K. The densities of Fe vacancy and
interstitial Fe atom were both set to 0.05 at.%, and the density of
interstitial C atom was set to 0.25 at.%. The model for tensile test,
which comprises a total of 36,355 atoms, is depicted in Fig. 11(b).
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Temperature and time step were set to 300 K and 0.5 fs, respectively.
The model was firstly thermalized at 300 K for 10 ps on the NPT
ensemble with a null pressure condition in the 𝑥 and 𝑧 directions and
with fixed length condition in the 𝑦 direction. The uniaxial tensile test
was conducted in 𝑧 direction with a constant engineering strain rate of
1.0 × 109 s−1 by controlling model dimension in the 𝑧 direction. Note
that the zero pressure condition in the 𝑥 direction was maintained while
that in the 𝑧 direction was canceled during the tensile test. The typical
results of the tensile test using BNNP are shown in Fig. 12.

The tensile test even for such complicated model with defects
of crack, GB, interstitial C and Fe atoms, and carbide, was success-
fully concluded, snapshots during the simulation were displayed in
Fig. 12(a). We observed that the model showed elastic behavior in
the low strain state (< 7.5%). With the progressive increase in strain,
crack started to open (7.5%–10.0%), and propagating along the GB2
until reaching the cementite core (17.5%–20.0%). Despite clear crack
opening can be seen at the strain of 10%, the cementite seems to be
stable and no void and cracking around the cementite were seen even
a little shape change of the cementite was found.

In Fig. 12(a), we also illustrated the diffusion of a Fe-IA (Interstitial
Atom), represented by an enlarged subfigure adjacent to each snapshot.
In Fig. 12(b), the dislocation emission and motion were depicted. At
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Fig. 11. (a) The model with multiple defects employed in the tensile test using BNNP. The subscripts 𝑢 and 𝑙 adopted in the axes represent the upper grain and lower grain,
respectively, while 𝑐 denotes cementite. The large dark gray and small red balls indicate Fe and C atoms. (b) The Fe atoms with 𝑏𝑐𝑐 lattice in model are set to be invisible using
OVITO package [90]. Consequently, the defects in the model are presented and categorized. Vac, IA, IA-Cluster indicate the defects of vacancy, interstitial atom, and cluster of
IA, respectively. CT1 and CT2 indicate the crack tips on the right and left sides, respectively, and y+ and y− stand for their propagation directions.
the strain of 9.76%, a dislocation emitted from the crack tip in GB1,
with the Burgers vector of 1

2 ⟨111⟩, moved on a {110} plane in the
⟨111⟩ direction, and eventually impinge on the GB2 in the model. At
the strain of 11.05%, a dislocation emitted from the distorted GB2, and
also conducted a motion on a {110} plane in ⟨111⟩ direction, and finally
impinge on the surface in the model. The dislocation motion direction
projected to the {001} plane is the ⟨110⟩ direction.

Traction–separation (T–S) curve is associated with the peak stress
required to overcome the cohesive strength and the maximum in-
teraction range for traction and is often used to quantitatively de-
scribe brittle fracture [99]. With the help of BNNP, DP, and DFT,
the separation-stress curves of C-free and C-segregated 𝛴5(310)[001]
symmetric tilt GBs were calculated by taking the derivative of the
separation-energy curve, which is obtained by rigidly separating a GB
model following the designed paths. The results indicated that MLIPs
can properly describe this kind of simulations. The detailed information
can be found in the supplementary materials (see Fig. S13) [16].

To demonstrate the structure−property relationships, we performed
stress intensity factor analysis for the two crack tips in the simulation
from DP. For a two-dimensional model, such as the model used in this
simulation, the model-I stress intensity factor of (𝐾I) can be obtained
based on the Irwin’s method [100,101]:

𝐾I = lim
𝑟→0

𝜎
√

2𝜋𝑟, (10)

where 𝑟 is the distance measured from the crack tip in the crack
propagation direction, and 𝜎 is the opening stress normal to the crack
surface which can be determined by the atomic stress [102,103] in
tensile test (𝑟 = 𝑦, 𝜎 = 𝜎zz in this simulation). The average values of
𝑦 and 𝜎𝑧𝑧 were used to fit 𝐾I, considering the GB and carbon atom
influence, as shown in the upper panel of Fig. 13, the simulation
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results are also included in this figure. For detailed information on the
averaging method, please refer to our previous work [44].

The values of the stress intensity factor 𝐾I for both crack tips, CT1
and CT2, increase with rising tensile strain. The observed difference in
𝐾I between CT1 and CT2 is attributed to variations in the crack tip
shapes at the atomic scale. Another potential factor might be the small
size of the model, which results in a scattered distribution of data points
used for 𝐾I fitting. The 𝐾IC is the value of 𝐾I before the first event
occurring. It is 0.784 MPa m1∕2 for CT1 where Fe bonds break occurring
at the strain of 0.059. The CT1 propagated along the ⟨110⟩ direction
in a {110} plane from the strain of 0.085, and 𝐾I was decreased at
strain of 0.093 due to crack propagation induced stress release. The
bonding breaking of CT2 took place at the strain of 0.069 with 𝐾IC
of 0.721 MPa m1∕2. After that, CT2 propagated along the original GB
plane, the 𝐾I was increased and maintained at a high value of 0.85
MPa m1∕2 due to the presence of carbon atoms near the crack front.
The mechanism of this kind of crack asymmetrical propagation could
be found elsewhere [104,105]. Local atomic configurations before and
after events occurring are shown in Fig. 13. Conducting fracture simula-
tion and analysis using linear elastic fracture mechanics (LEFM) [106]
could offer a more direct and comprehensive understanding of carbon’s
effects on the toughness of various systems, such as crack propagation
along planes [107] or along GBs [108]. This may be an avenue for
future research

The simulation encompasses a range of phenomena, such as crack
propagation, diffusion of point defects, dislocation nucleation from
crack tips and at the cementite−𝛼-iron interface, interactions between
dislocations and point defects, grain gliding, GB migration, dislocation
impingement on cementite and GB, as well as interactions between
the crack tip and cementite (see Fig. 12, and Movie. S7 in the sup-
plementary materials [16]). The capability of the MLIPs is effectively
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Fig. 12. Simulation results obtained using BNNP. (a) Snapshots during the tensile test using BNNP. A case of Fe-SIA diffusion is depicted. The black dots in each subfigure are Fe
atoms and played as the position reference. (b) Dislocation emission from crack tip (upper panel) and GB (lower panel) during the tensile test. The atoms are colored according
to the Voronoi volume (Å

3
/atom) obtained using the Voronoi analysis implemented in the OVITO package [98]. Big and small balls stand for Fe and C atoms, respectively. The

engineering tensile strain (𝛾) of each snapshot is also printed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
demonstrated through the simulation of such a complex system. These
interatomic potentials can serve as reliable tools for understanding of
diverse topics related to the C and 𝛼-Fe binary system.

5. Discussion

5.1. Limitations of MLIPs and improvement

Although the reported MLIPs show high accuracy and good trans-
ferability in several important scenarios of Fe–C system, limitations are
also accompanying. It is challenging to describe configurations with
unseen LAEs. Encountering extrapolation in simulations using MLIPs
is dangerous, the simulation trajectory might deviate to somewhere,
and results in unphysical phenomena. This is a general challenge for
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all types of MILPs, which can be fixed by accordingly enriching LEAs
of database. In certain cases, combining the Ziegler–Biersack–Littmark
screened nuclear repulsion term [109] is helpful, as it can push atoms
that are too close to separate, helping the system return to the correct
trajectory.

In comparison to the efficiencies of BNNP and DP for the Fe–H
binary system [31,44], DP for Fe–C does not exhibit a 40-fold increase
in speed than BNNP. We could explain this issue from two aspects:
first, the current BNNP model employed a short cutoff radius of the
angular ACSFs for Fe, which significantly increased its computational
efficiency [Fe-(FeC)BNNP: 6.0 Å v.s. Fe-(FeH)BNNP: 6.5 Å]. Second, the
size of the neural network for three-body embedding (𝑠𝑒_𝑒3) in the
current DP model is relatively large [Fe-(FeC)DP: (8, 16, 32) v.s. Fe-
(FeH) : (10, 20)], resulting in a substantial increase in computational
DP
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Fig. 13. Stress field near crack tips and the intensity factor response to the crack propagation from the simulation using DP. The atoms are colored according the atomic stress
(in GPa) in tensile direction. 𝛾 is the engineering tensile strain. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
cost of DP. As the result, the reported DP seems not efficient enough.
The motivation behind training the DP model lies in the scenario of
atomic stress calculation, which is challenging for the BNNP currently.
With the assistance of the shared database, we anticipate that utilizing
a smaller embedding neural network will improve the efficiency of the
DP model while maintaining accuracy.

The main task of the training of MLIPs is to find the relationship
between the atomic structure and its energy. The database of Fe–C
binary system we shared could be used to train new MLIPs under
various machine learning frameworks, such as GAP, SNAP, Atomic
cluster expansion (ACE) [110], Moment tensor potentials (MTP) [111],
etc. Actually, the database of Fe–H binary system we shared in our
previous work [31] has been adopted by other scientists to train new
models [15]. Thus, based on this shared database, it is possible to
obtain an MLIP that is more efficient and accurate than the reported
MLIPs, especially for the scenarios considering fewer properties.

5.2. Influence of high strain rate on conclusion obtained from simulations

The strain rates of 108 ∼ 109 s−1 used in simulations are signifi-
cantly high comparing to those in experiment of 10−3 s−1 [112] or
even lower [113]. This disparity primarily arises from the inherent
differences between the timescales in simulations and in laboratory
experiments. The high strain rate is anticipated to influence the out-
comes derived from the simulations. The simulation in Sections 4.1
and 4.3 did not fully capture carbon diffusion due to the limitations
of the MD timescale and low diffusivity of C at room temperature
(approximately 15 nm over 24 h at 293 K [73]). According to Orowan’s
equation, the average dislocation velocity (vdis) is proportional to the
mobile dislocation density (𝜌dis) and the applied deformation rate (�̇�),
assuming a constant dislocation density over the observation timescale.
The relationship is expressed as follows:

vdis =
�̇�

𝜌dis𝑏
, (11)

where 𝑏 is the magnitude of the Burger’s vector. If the strain rate
were sufficiently low, the gliding speed of dislocations would decrease.
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Consequently, more carbon atoms could catch up with and be trapped
by the moving dislocations, resulting in stronger strengthening effects
than those observed in this simulation. Therefore, while the current
simulation settings may underestimate the strengthening effect, it does
not affect the overall conclusions drawn from the simulation.

5.3. Dislocation core reconstruction

Combining Sections 4.1 and 4.2, the C and screw dislocation inter-
action could be described as follows: the solid solution C atoms and
the carbon-free dislocations are in mutual chasing. The motion speed
of dislocations is likely faster than that of C atoms considering their
respective energy barriers (kink pair nucleation energy: ∼0.7 eV, car-
bon diffusion in a bcc lattice: ∼0.9 eV). Upon entering their interaction
region, the dislocation and C atoms attract and combine, leading to the
reconstruction of the dislocation core. This event was observed at the
onset of the MD+GCMC simulation in Section 4.2 (not presented). As
a result, the dislocation is anchored by C atom at the location of their
encounter. Subsequently, more C atoms will be captured by dislocation
and the Cottrell atmosphere was formed around the dislocation, and
dislocations become immobile. The C-anchored dislocation could adjust
its configuration to a low energy state of straight shape by the diffusion
of C atoms. The straight screw dislocation is considered as the signature
of C and is frequently observed in experiments [114].

Under shear strain driving, kink pair nucleation starts from a site in
the dislocation where nearby carbon atoms are present in its gliding
direction. In other words, if carbon atoms diffuse to a site near the
carbon-decorated dislocation, this might also trigger kink pair nucle-
ation. The presence of the Cottrell atmosphere around the dislocation
significantly increases this likelihood. New simulations were conducted
for a dislocation model with Cottrell atmosphere to demonstrate the
atomic evolution during the dislocation unpinning process. The final
snapshot of the simulation in Section 4.2 was used as the initial
state [115]. The unpinning stress was 3.04 GPa (3.74%) at 300 K, much
higher than that obtained in Section 4.1 due to more C atoms in the core
of the dislocation resulting in a stronger pinning effect. Unfortunately,
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the C diffusion was not observed during the dislocation unpinning, even
at the elevated simulation temperature of 673 K (the corresponding
unpinning stress is 2.17 GPa at 3.31%). This result could be attributed
to the high shear strain rate and the short physical time of the simula-
tion. Despite this, the gliding of the carbon-decorated dislocation still
presents the Peierls mechanism as predicted by experiments [113]. The
simulation vividly presents the evolution of the atomic structure during
dislocation unpinning from the Cottrell atmosphere.

In contrast to the carbon-free dislocation, the energy barrier for
kink migration is no longer negligible, because kink can be impeded
by pre-existing carbon atoms (see Fig. 7(d)). Simulations in this work
support the strengthening mechanism proposed by Ventelon et al. [67]
that the glide of the dislocation is governed by the formation and
migration of kinks, both related to the diffusion of C atoms. As the
carbon-anchored segment is always the final part of the dislocation to
glide away under shear driving, highlighting the primary contribution
of the reconstructed core to the strengthening effects [67]. Lower
unpinning stress could be expected if C diffusion occurs, accelerated
MD methods [116] might be helpful in this scenario, which is out of
the scope of this work.

6. Conclusion

In this work, we constructed machine learning interatomic po-
tentials (MLIPs), including Behler–Parrinello neural network potential
(BNNP) and deep potential (DP), for the 𝛼-Fe–C binary system based
on a comprehensive database obtained by extensive spin-polarized DFT
calculations. In the validation part, we systematically tested the MLIPs
performance for the systems of pure 𝛼-iron, interaction of C atoms
with perfect and defective 𝛼-iron, properties of cementite and ferrite–
cementite interfaces, and various carbides. The test results provide
us with evidence of the high accuracy and good transferability of
our MLIPs, such as the prediction of the screw dislocation core con-
figuration reconstruction induced by C atoms, which is difficult for
EIPs.

The impact of C atoms on the mobility of screw dislocation at 300K
as investigated through MD simulations in conjunction with MLIPs.
he reconstruction of the hard-core configuration introduced by the
djacent C atoms was presented in both the strained and unstrained
odels. The reconstructed hard core unit cannot be maintained and

he C atom will revert to the octahedral bonding manner after the dis-
ocation has passed. The critical stress of the screw dislocation gliding
n the C-introduced model is higher than that in the C-free model,
evealing the C locking effect on the mobility of screw dislocation.
he reconstructed hard-core shows primary contribution to the locking
ffect. The dislocation motion behavior is changed from the steady
otion in the C-free model to the jerky motion in the C-introduced
odels.

With the help of the MLIPs, the C-decorated core configuration
f screw dislocation was studied using MD/GCMC hybrid method at
00 K. With the C decoration, the dislocation core undergoes a trans-
ormation into a hard-core configuration. C atoms are located inside
he core and prefer a separation of 2𝑏 along the dislocation. The

distribution of C atoms around the dislocation exhibits a three-fold
pattern, aligning with the experimental observations of the Cottrell
atmosphere. The nucleation of kinks can occur spontaneously at the
temperature, influenced by the location of C atoms in the vicinity of
the dislocation.

Finally, we showcase the capabilities of the MLIPs by conduct-
ing a tensile test on a model containing multiple types of defects,
including vacancies, interstitial atoms, surface, edges, GB, cementite,
ferrite/cementite interfaces, cracks, and dislocations. During the tensile
test, the crack tips showed a asymmetry propagation behavior, accom-
panying phenomena of diffusion of point defects, dislocation nucleation
from crack tips and at the ferrite/cementite interface, interactions
between dislocations and point defects, grain gliding, GB migration,
17 
dislocation impingement on cementite and GB, as well as interactions
between the crack tip and cementite.

The BNNP and DP developed for the 𝛼-Fe–C binary system possess
individual advantages. Specifically, the BNNP demonstrates better ac-
curacy than the DP, while the DP provides an advantage over BNNP in
scenarios requiring the computation of atomic stress. Our validation
and demonstration suggest that these potentials can be utilized in
simulations for the C and 𝛼-Fe systems involving various types of
defects. These MLIPs can also generate the parameters required for
multiscale simulations, such as kinetic Monte Carlo technic [72,117],
or for analytical models [67]. We hope that the new MLIPs will soon
provide fundamental insights into the atomic-scale deformation and
fracture mechanisms of carbon steel.
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