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A B S T R A C T

Short-term progress assessments of carbon dioxide emission reductions are essential for nations to meet their
medium/long-term targets. Bottom-up building stock energy modeling (BSEM) methods can contribute to this
issue but have not been applied because of the need to represent short-term building stock dynamics in building
systems and energy conservation measures (ECMs). To fill this gap, this study developed a BSEM framework that
integrates top-down building stock decomposition, including building systems and ECMs, and bottom-up physics-
based energy demand quantification using reference building models representing building stock segments. The
framework was verified through a case study of a Japanese commercial building stock. The results indicate that
the developed model effectively captures the short-term dynamics and contributions of the technologies.
Although there are significant errors in estimating some building subsectors and end uses, the model predicts the
changes in the aggregated energy consumption with acceptable accuracy. The Japanese 2030 emission reduction
target cannot be achieved with the current technology deployment trends; however, the shortfall can be
addressed by applying additional measures. Owing to its applicability to diverse building stocks, the framework
promotes the use of BSEM for policy assessment and evidence-based policymaking for climate change mitigation.

1. Introduction

Several countries have reached a consensus on climate change
mitigation, represented by the 1.5◦C climate goal and long-term carbon
neutrality commitment [1]. Many of these countries have set medium-
term emission reduction targets for 2030 and are committed to updat-
ing their mitigation plans every 5 years [2]. Additionally, the emission
reductions achieved by them are reported annually or biennially [3,4].
Short-term progress assessment is essential to identify necessary changes
to stay on track to achieve medium/long-term reduction targets.

Econometric and other top-down methods [5] that incorporate
macro-socioeconomic data have been employed to track and report the
progress in national emission reduction (e.g., Switzerland [6], China
[7], and Japan [8]). These methods are effective in quantifying the
general reduction progress [9] but fail to specify the technologies that
deliver these reductions [10]. In addition, these methods are sensitive to
socioeconomic changes such as those caused by the COVID-19
pandemic. These limitations are particularly problematic in the build-
ing sector, where emission reductions depend on the technology

deployment and significant social changes have been reported [11].
Some countries have adopted bottom-up quantification methods to

assess the progress in reduction. For example, Japan has specified
mitigation measures that contribute to its 2030 target and has reported
the annual progress in emission reduction [12]. The Climate Change
Committee in the UK is an example of an organization that has estab-
lished specific indicators to monitor changes in the building sector and
quantify the reduction effects [13]. Nevertheless, these frameworks do
not fully capture the complexity of technology deployment and the
corresponding reduction that has been achieved because simple
modeling methods are used based on empirical data, expert judgment,
or scenarios, and it is difficult to explore alternative pathways.

In such tasks, the use of bottom-up building stock energy modeling
(BSEM) methods may offer valuable insights. However, these methods
have not been applied yet.

1.1. Related works

Bottom-up BSEM methods generally calculate the energy consump-
tion of a building stock by aggregating the product of the energy use
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intensity (EUI) per unit, typically appliances and building floor area, and
the number of units N as

∑M
m=1EUIm × Nm, where m represents the

modeled segments, i.e., end use types and building stock segments [14].
The reduction can be quantified as

∑M
m=1ΔEUIm× ΔNm, where Δ in-

dicates the changes. EUIm and ΔEUIm are modeled by scenarios, statis-
tical or machine learning methods, and physics-based or reduced-order

simulations [15,16]. For Nm and ΔNm, many studies have constructed
stock models based on the material flow analysis approach [17] (e.g.,
[18]).

Table 1 summarizes the studies that have used the bottom-up BSEM
for policy assessment, including that of commercial building stocks. The
table indicates the considered building types and modeling methods for

Nomenclature

General terms
BAT Best available technologies
BSEM Building stock energy modeling
CO2 Carbon dioxide
ECM Energy conservation measure
EUI Energy use intensity
HVAC Heating, ventilating, and air-conditioning
IDA Index decomposition analysis
LED Light-emitting diode
NDC Nationally Determined Contribution
PGWC Plan for global warming countermeasures
RBM Reference building model
TFA Total floor area

WH Water heating

Building system related terms
AHU Air handling unit
CAV Constant air volume
CO2V Air intake control based on CO2 concentration in a

conditioned space
FCU Fan coil unit
HEX Total heat exchanger in the ventilation
HP Heat pump
NaV Natural ventilation
OHU Outdoor air handling unit
VAV Variable air volume control
VRF Variable refrigerant flow
VWV Variable water volume control

Table 1
Overview of the existing building stock energy models applied for policy assessment.

Literature Type Demand-side mitigation
measures

EUI quantification ΔN ΔEUI Validation Assessment Period

Camarasa et al.
[19]

B I, W, HVAC, A, L, ECMs Physics-based +

Statistical
MFA +

CO
CO+

SE+
SB

None Long-term (2020–2050)

Eom et al. [20] B H, W, A, L Statistical CO SE None Long-term (2005–2095)
Shi et al. [21] B I, W, HVAC, E, A, L Statistical MFA CO None Long-term (2020–2050)
Wang et al. [22] B I, W, HVAC, E, A, L Statistical MFA CO None Long-term (2010–2050)
Chen et al. [23] B H, W, A, L Statistical CO SE None Long-term (2015–2100)
Zhang and Luo
[24]

C H Statistical CO SE None Long-term (2020–2060)

Broin et al. [25] B End-use (H, W, A) Statistical SE SE None Long-term (2005–2050)
Yang et al. [26] B End-use (H, E, A, L) Statistical SE SE None Long-term (2005–2050)
Zhou et al. [27] B (C) End-use (H, E, L) Statistical SE SE None Long-term (2010–2050)
Heeren et al. [29] R I, H, V, A Physics-based MFA SE+

CO

None Long-term (2005–2050)

Sandberg et al.
[30]

B I, W, HVAC, L Statistical MFA SE None Medium-term (2020–2024, 2025–2034,
2035–2050)

Foliente and Seo
[31]

C I, W, HVAC, A, L Physical-based SE SE A-E Medium-term (2006–2020)

Langevin et al.
[36]

B I, W, HVAC, A, L, ECMs Physics-based +

Statistical
CO SB None Long-term (2015–2050)

Tang et al. [37] B (C) H Statistical SE CO None Long-term (2016–2050)
Hirvonen et al.
[38]

B I, V, H, L Statistical MFA CO A-E Long-term (2020–2050)

Hu et al. [39] B I, W, HAVC Physics-based +

Statistical
MFA SE+

SB

A-E, A-EUI Short-term, 2010–2020

Nageli et al.
[40,41]

R I, HVAC Statistical CO SE+

CO

A-E, A-S, Long-term (2020–2050)

Yamaguchi et al.
[14]

C I, W, HVAC, A, L, ECMs Physics-based +

Statistical
SE SE+

SB

A-EUI Medium-term (2013–2030)

Present study C I, W, HVAC, A, L, ECMs Physics-based +

Statistical
MFA SE+

SB

A-E, D-E, D-S, D-
EE

Short-term (2013–2021), medium-term
(2021–2030)

Notations: Type: B: building sector, R: residential sector, C: commercial sector;Mitigationmeasures: I: Insulation, H: Space heating, W:Water heating, E: Equipment,
A: Appliance, L: Lighting, V: Ventilation, HVAC: Heating, Ventilation and Air-conditioning system, ECMs: other energy conservation measures; ΔN and ΔEUI: MFA:
Material flow analysis, SE: Scenarios and expert evaluation, SB: Surveys or measurements from sample buildings, CO: Cost optimization; Validation: A: Comparison
with statistics in aggregated level; D: Comparison with statistics in disaggregated level, E: Energy consumption, EUI: Energy use intensity, S: Stock composition, EE:
Energy efficiency.
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EUI and N. The most frequent application is the estimation of the
reduction potential and assessment of the feasibility of achieving long-
term reduction targets. Camarasa et al. [19] integrated models devel-
oped for 32 countries to create a carbon emission reference and decar-
bonization scenarios for 2050. This study demonstrates the usefulness of
the bottom-up BSEM to quantify the effects of technology deployment.

Eom et al. [20] presented a model for quantifying EUIm using sce-
narios to identify long-term decarbonization opportunities. Shi et al.
[21], Wang et al. [22], Chen et al. [23], and Zhang and Luo [24] con-
ducted similar scenario-based quantifications. Broin et al. [25] estab-
lished a method to represent the stock changes, energy efficiency, and
energy structures in the European Union building stock. Yang et al. [26]
developed a model that considered end use as the modeling unit and
examined scenarios involving alteration of the building floor space and
CO2 emission intensity in the Chinese building sector. Zhou et al. [27]
enhanced the resolution of scenarios by considering the technology
packages in the Chinese building sector.

Mata et al. [28] developed a physics-based model using reference
building models (RBMs), also called building archetypes, to quantify the
EUI using physics-based simulation. Heeren et al. [29] developed an
RBM-based model to consider the stock composition in terms of the
insulation performance. Sandberg et al. [30] examined the use of heat
pumps and renewable energy generation technologies in Norway.
Foliente and Seo [31] examined energy efficiency improvement in
various end uses. The use of RBMs enables the examination of the effects
of physical and technical changes in the building stock. Carnieletto et al.
[32] developed models that considered variations in the building’s
geometric characteristics. Kim et al. [33] and Yamaguchi et al. [14]
enhanced building systems and energy conservation measures (ECMs),
whereas Azar and Menassa [34] and Kim et al. [35] enhanced the
operation-related characteristics. Langevin et al. [36] developed a
method to explore the CO2 emission reduction pathways in U.S. building
stock by 2050, in which cost optimization was performed for RBMs to
select the adopted ECMs. Tang et al. [37] developed a model to identify
cost-optimal clean spaces and water heating pathways in northern
China. Hirvonen et al. [38] proposed optimal retrofit solutions that
minimized the lifecycle costs and energy consumption of Finnish
building stocks. These optimization methods are useful for long-term
policy assessment, including financial measures, but are not easy to
apply to the assessment of short-term reduction progress because it is
difficult to calibrate the model to accurately represent the baseline
development.

Only a few studies have considered the short-term dynamics of the
building stock. Hu et al. [39] evaluated the energy in building opera-
tions and the embodied energy in building construction in addition to
emissions in China. Their model tracked the annual stock changes
through building construction and demolition, considering the popula-
tion growth, urbanization rates, and per capita floor area. However, the
mitigation technologies were not analyzed in detail. Nägeli et al. [40]
proposed a synthetic building stock modeling approach for residential
buildings in Switzerland using an agent-based model with statistical
methods that accounted for stock dynamics and retrofit options. The
agent-based model was used to evaluate energy and emissions from
2000 to 2017 considering policy interventions [41]. However, no similar
study has been conducted on commercial building stocks.

Table 1 lists the mitigation measures and validation methods
employed in the listed studies. Several studies have considered insu-
lation of the building envelope and changes in the heat source of water
and space heating systems. Appliances, lighting, and ECMs are generally
minimally addressed. These mitigation measures should be compre-
hensively addressed. Furthermore, the developed models have not been
comprehensively validated. Hu et al. [39] and Yamaguchi et al. [14]
validated their models using EUI at the building level. Foliente an Seo
[31], Hirvonen et al. [38], Hu et al. [39] and Nägeli et al. [40] evaluated
their results by comparing them with the national total energy con-
sumption in specific years.

1.2. Research gap and aim

Useful BSEM methods have been established and applied to estimate
the CO2 emission reduction potential for long-term policy design.
However, the BSEM has not been applied to the assessment of the short-
term reduction progress for commercial building stock while fully
addressing the mitigation measures [10], which requires a higher level
of detail [42] to represent the building stock composition regarding
building systems and ECMs [43]. In addition, the capability of the BSEM
to produce models that represent short-term changes in building stock
energy consumption and CO2 emissions has not been clarified.

To fill the research gaps, this study aims to develop a BSEM frame-
work capable of modeling short-term building stock dynamics and
resultant reductions and to verify it through a case study on Japanese
commercial building stock by addressing the following questions: Q1)
How has the building stock changed and how much will it change by
2030, the target year for the medium-term reduction target? Q2) What
are the current reductions in energy consumption and CO2 emissions
and how much would these be reduced by the target year? Q3) If a
reduction gap exists in achieving the medium-term reduction target,
how should this gap be filled?

This study contributes to the literature in two ways. First, we
established a BSEM framework to enhance the level of detail by
considering building systems and ECMs to represent the building stock
dynamics and resultant reductions. Through comparison with the results
of a top-down econometric analysis, we also verified that the framework
can produce models for short-term changes. Second, we demonstrate the
analytical capabilities of the established BSEM framework for estimating
the contribution of mitigation measures and identifying the need for
further policy efforts. The established framework can be applied to other
regions by adjusting the input data and modeling methods. Thus, it
promotes the use of the BSEM for policy assessment and evidence-based
policymaking for climate change mitigation [44].

1.3. Structure of the paper

Section 2 describes the proposed BSEM framework. Section 3 pre-
sents the results of the case study, followed by a discussion in Section 4
and the conclusions in Section 5.

2. Methods

2.1. Proposed BSEM framework

Fig. 1 presents the proposed BSEM framework. The framework
consists of (i) a top-down building stock decomposition process
considering the annual change in building stock composition, including
building systems and ECMs, and (ii) a bottom-up physics-based energy
demand quantification process using RBMs. This framework is based on
the method developed by Yamaguchi et al. [14]. The model is in the Q4
(bottom-up white box) quadrant of the classification by Langevin et al.
[9].

The top-down decomposition begins with the total floor area (TFA)
given for the target building stock, which is process (a) in the figure. In
process (b), the TFA is categorized according to the basic building
characteristics x (e.g., the building usage, size, and construction period)
denoted as yj for the stock segment j (= 1 to J). Then, in process (c), yj is
further decomposed according to the building systems and ECMs. In this
process, the selection probabilities of the alternative k for technology i
are quantified as pi,k(xj), considering the variation due to x , where xj is
the average for the stock segment j. The TFA of the stock segment, TFAm,
is given as yj•pi,k(xj). The annual change in the building stock compo-
sition is expressed by considering the periods of construction and
renovation in x, because the change in technology adoption is trans-
ferred to the building stock composition through pi,k(x).

In the figure, the basic building characteristics x1 and x2 and

Y. Yamaguchi et al. Energy & Buildings 324 (2024) 114909 

3 



technologies A and B are considered. x2 denotes the construction period.
pi,k(x) can be modeled using scenarios, distributions given by the sample
data, and statistical and machine learning methods. pi,k(x) can be
quantified for several technologies independently and TFAm is given by
the joint probability yj • pA,kA

(
xj
)
• pB,kB

(
xj
)
, which is illustrated in the

figure. To consider various building system types and ECMs, a combi-
nation of technologies can be considered as the alternative k (e.g.,
ventilation-related ECMs [14]). To consider the dependency on the
adoption of other system alternatives, a variable representing the
adoption can be added to x in pi,k(x).

In bottom-up physics-based energy demand quantification, the RBMs
are developed for all building stock segmentsm, as shown in process (e).
In the development of the RBMs, building prototypes [32] were first
developed for each building stock segment j, which were used to develop
the RBMs by integrating the templates of the building systems and ECMs
[14]. A physics-based simulation is performed with the RBMs to quantify
the EUIm. Finally, in process (f), the total energy consumption of the
building stock is quantified as

∑M
m=1EUIm × TFAm.

It is useful to combine several building stock segments to limit the
number of RBMs in process (d). In the figure, the stock segments with
different construction periods x2 are combined into segments with the
same combination of technologies A and B. This is applicable when there
are no physical differences in the RBM between the different construc-
tion periods. In addition, TFAm of some combinations may be too small
to model their EUIm. In this case, the stock segments with TFAm smaller
than a threshold value can be combined with other similar building
stock segments [14].

The proposed framework enables the consideration of a higher level
of detail in building systems and ECMs than the conventional BSEM
methods. In most conventional methods, the building stock is classified
according to only the basic building characteristics and a typical com-
bination of the building systems and ECMs is applied. In models that
consider several system alternatives (e.g., electricity/fuel-driven HVAC
systems), the number of alternatives is generally small. In models that

use cost optimization to select technologies for adoption, optimization is
performed for the segments of the basic building characteristics, and it is
difficult to represent the short-term stock dynamics. In the proposed
framework, the number of RBMs is much larger than that of conven-
tional models [45], which facilitates the representation of the hetero-
geneity in building stock, short-term stock dynamics, and baseline
development, as demonstrated in this study.

2.2. Context of the case study

The BSEM framework was verified using a Japanese commercial
building stock to address the three questions listed in the Introduction.
The model covers the office, hotel, medical, retail, school, restaurant,
logistics, telecommunications, and amusement building stocks, equiva-
lent to 93 % of the 1850 million m2 of the TFA of commercial building
stocks in 2013 [46]. The 2030 reduction target for commercial building
stock, assigned in Japan’s Nationally Determined Contribution (NDC)
[47], is 121 MtCO2, which is 51 % of 238 MtCO2 in 2013, including
reductions from the electricity carbon intensity improvements shown in
Table A2. The Japanese Plan for Global Warming Countermeasures
(PGWC) [48] describes the plan to achieve the reduction target. Ap-
pendix A lists the mitigation measures and their contribution listed in
the PGWC. The government also estimated the reduction progress from
2013 to 2021. This study used the reductions estimated by the govern-
ment as a reference (Table A1). The potential reductions were quantified
as
∑M
m=1ΔEUIm× ΔNm, as mentioned above [49]. This result may be

inaccurate because ΔEUIm and ΔNm are modeled in a simple manner
[14]. Additionally, the contributions of specific technologies are not
specified for building energy efficiency improvement, except for lighting
and water heating, as listed in Table A1. The promotion of heat source
electrification is described in PGWC for water heating systems as the
dissemination of heat pump water heater. However, it is not explicitly
described for HVAC systems, although the proportion of electricity-
driven systems has slowly increased [14].

x

Fig. 1. Overview of the proposed BSEM framework.
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The national general energy statistics [50] summarize the final en-
ergy consumption in the commercial building sector. As the statistics
quantify the energy consumption using industrial classification, indus-
trial categories were allocated to the building subsectors, as explained in
Appendix B.

2.3. Top-down building stock decomposition process

Fig. 2 shows the procedure of the top-down building stock decom-
position process applied in this study. We considered the basic building
characteristics and the building system and ECM alternatives listed in
Table 2 for the decomposition. Table 3 lists the stock segments by
building size and business category.

The TFA of subsector, TFATotal, was first decomposed in Eq. (1) by the
basic building characteristics shown in the subscript.

TFASS,Pref ,CP|RP = TFATotal × PropSS,Pref × PropCP|RP (1)

PropSS,Pref and PropCP|RP indicate the proportions of building stock by
factors indicated in the subscript. The decomposition by basic building
characteristics allows for consideration of variations in technology
adoption across building stock segments. We considered the stock seg-
ments for the building size and business category in each subsector
(Table 3), denoted by SS, building location represented by prefecture,
Pref, and segments by building construction or system renovation pe-
riods, CP|RP, because these characteristics significantly affect technol-
ogy adoption and selection probabilities. The consideration of
construction and renovation periods is particularly important in repre-
senting annual changes in the building stock composition for technology
adoption. The decomposition also allows for consideration of EUI vari-
ations among building stock segments, which contributes to improved
model performance.

Alternative selection probabilities for lighting, insulation, combina-
tion of HVAC system types and related ECMs, COP of HVAC heat source,
and water heating system type were quantified, denoted as P_L, P_I,
P_HVAC, P_COP, and P_WH. The variation in these probabilities from the
basic building characteristics was considered in the quantification.
Then, the TFA using each combination of the technology alternatives
was quantified by Eq. (2):

TFASS,Pref ,L,I,HVAC,COP = TFASS,Pref ,CP|RP × P L× P I × P HVAC× P COP
(2)

In the bottom-up demand quantification process, we considered ten
regions listed in Table C1 by combining prefectures in each region. Thus,
the TFA of each stock segment in each region with a specific combina-
tion of building systems and ECM alternatives was quantified in Eq. (3).

TFASS,Region,L,I,HVAC,COP =
∑

Prefs in Region

TFASS,Pref ,L,I,HVAC,COP (3)

Note that P_WH was not considered in Eq (2) because we assumed
that P_WH is independent from other building systems. After combining
building stock segments with small TFA with others in step (d) in Fig. 1,
an RBM was constructed in step (e). To consider the variation in the
water heating system, a water heating system was randomly assigned to
each RBM based on P_WH to reduce the number of combinations to be
considered.

For the other four subsectors, we only considered typical system type
and ECM combinations because available sample building data for
developing statistical models of P_HVAC and P_WH was limited. Thus,
the decomposition was simplified as shown in Eqs. (4) and (5).

TFASS,Region,CP|RP = TFASS ×

(
∑

Prefs in Region
PropSS,Pref

)

× PropCP|RP (4)

Fig. 2. Procedure of the top-down building stock decomposition.
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TFASS,Region,L,I,COP = TFASS,RegionCP|RP × P L× P I × P COP (5)

The following subsections explain the details of the quantification
method of TFATotal, PropSS,Pref , PropCP|RP, and the alternative selection
probabilities.

2.3.1. Total floor area quantification
Fig. 3 shows TFATotal of the nine building subsectors. The third col-

umn of Table 3 lists the data sources used to quantify TFATotal. The
building TFA estimated by the Institute of Energy Economics, Japan
[46], was used as TFATotal of the office, hotel, medical, school, and
restaurant subsectors, as in the PGWC. For the retail building stock, the
Japanese Census for Commerce [51] containing the sales floor area of
the business categories for all prefectures was used. For the logistics
building stock, the sum of the TFA of warehousing and wholesale trade
was used. The results for warehousing were calculated, whereas that for
wholesale trade was obtained by subtracting the value for retail TFA
from the TFA of retail and wholesale in [46]. The telecommunication
building stock was quantified based on ArcGIS Geo Suite [53]. TFATotal
of the amusement subsector was unavailable. Therefore, it was quanti-
fied as the product of the average floor space of each business category
and the number of establishments given in the economic census [54].

2.3.2. Decomposition by basic building characteristics
PropSS,Pref was quantified by using the data listed in the fourth col-

umn of Table 3. The data sources are available for the segments made by
building stock segment and prefecture, whereas Esri ArcGIS data [53]

Table 2
Items used to develop building stock segment [14].

Category Segmentation item Segment

Basic building
characteristics

Building subsector Office, hotel, medical, retail, school,
restaurant, logistics,
telecommunication, and amusement
building stocks

Prefecture and
region

Classified by 47 prefectures that are
summarized into ten regions, as
shown in Table C1

Building size and
business category

For the office, hotel, and medical
building stocks, nine building sizes,
shown in Table C2 were considered.
Four sizes are considered for the
telecommunication building stock.
Twenty-six business categories were
considered for the other building
stocks: 14 for retail, 3 for school, 5 for
restaurant, 1 for logistics, and 3 for
amusement building stocks. See
Table 3 for more detail.

Construction and
renovation periods

Construction and renovation periods
quantified at yearly resolution and
summarized for the four construction
periods, namely pre-1990 s, 1990 s,
2000 s, and 2010 and beyond.

Building system and
ECM alternatives

Lighting Conventional lighting device and
light-emitting diode (LED)

Building insulation Eight segments are considered for
building insulation performance
listed in Table C5.

HVAC system Combinations between the
configurations of the heat source
system (Table C3) and the air-
conditioning system (Table C4) were
considered.

Adopted HVAC-
related ECMs

Sixteen segments in Table C5.

COP of HVAC heat
source

Four segments are considered for the
coefficient of performance (COP) of
the heat source machine of the HVAC
system (Table C6).

Water heating
system

Twelve segments listed in Table C7.

Table 3
Building stock segment according to building size and business category.

Building usage Segment Data
source of
TFATotal

Data source for
segmentation

Office Nine segments (CL1 to CL9
in Table C2)

[46] [52]

Hotel Eleven segments including
7 for business hotels (CL1
to CL7) and 4 for city or
resort hotels (CL6 to CL9)

[46] [52]

Medical Nine segments (CL1 to
CL9)

[46] [53]

Retail Fourteen business
categories were
considered: (1)
Convenience store, (2)
Housing and clothing
supermarket, (3)–(5) Food
supermarket (three
segments considering
building size: small <
1,000 m2, medium
1,000–3,000 m2, and large
≥ 3,000 m2), (6), (7)
Drugstore (two segments
considering building size:
small drugstore< 1,000m2

and super drugstore ≥
1,000 m2), (8) Home
center, (9) Specialty shop,
(10)–(12) General
merchandise store (small
< 10,000 m2, medium
10,000–30,000 m2, and
large ≥ 30,000 m2), and
(13), (14) Department
store (medium store <
30,000 m2 and large store
≥ 30,000 m2).

[51] [51]

School Primary, secondary, and
high schools

[46] [53]

Restaurant Five business categories
were considered.
Brasserie/bar: Eating and
drinking place open in the
evening until midnight.
Coffee shop/café: Drinking
place open from before
10:00 a.m. until nighttime.
Bistro/noodle shop:
Restaurants that are open
from noon to night,
including those serving
noodle-based dishes: BBQ
restaurant

Restaurants that are open
from noon to night and
have a stove in the seating
area
Other restaurants:
Restaurants open from
noon to night and using a
gas range (gas range, low
range, or Chinese range) in
the kitchen.

[46] [54]

Telecommunication Four segments: (1) Smaller
than 300 m2, (2)
300–2,000 m2, (3)
2,000–10,000 m2, and (4)
10,000 m2 or larger

[53] [53]

Logistics One category for
warehousing and
wholesaling combined

[46,53] [54]

Amusement Pachinko halls, fitness
clubs, and karaoke boxes

[54] [54]
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used for the medical, school, and telecommunications were available at
the building level and PropSS,Pref was quantified by summarizing indi-
vidual buildings data.

2.3.3. Decomposition by construction and renovation periods
To model PropCP|RP, the proportion was first quantified for the year of

construction by considering the balance between new construction and
demolition at the yearly resolution. TFAs of new construction were
given by the national statistics for new constructions [55], whereas
demolition of the constructed building stock was modeled by the sur-
vival functions represented as a Weibull distribution with the Weibull
parameters given by Omi et al. [56] (Section (3) in Fig. 2).

The yearly resolution TFA composition was updated considering the
occurrence of renovation after the construction modelled by renovation
scenarios applied to each building system. The lighting system is
generally replaced every 20 to 25 years in Japan. However, it can also be
replaced when interior design is changed, which increases the chance to
install LED lighting systems and creates variation in renewal opportu-
nities among building subsectors as the renovation cycle is shorter
among buildings designed to attract customers. We assumed that a
lighting renewal opportunity occurred once every 20 years for the office
and medical subsectors, every 25 years for the school subsector, and
every 15 years for the other subsectors after construction, so that the
estimated adoption proportion in the stock was fitted with the variation
reported in [57].

For HVAC and water heating systems, large-scale refurbishments are
generally conducted with a cycle of 20 to 40 years, whereas system
components are replaced every 15 to 20 years [58]. Due to the average
lifetime being approximately 50 years given in the Weibull parameters
in Omi et al. [56], we assumed that large-scale refurbishments were
conducted once after 25 years of construction, i.e., once in the building
lifetime. For the HVAC heat source machines, the renewal opportunity
was assumed to be 15 years.

For the modeling of P_I, P_HVAC, and P_WH, the yearly resolution
TFA composition was classified by the four construction periods to
quantify PropCP|RP, namely pre-1990 s, 1990 s, 2000 s, and 2010 and
beyond. For the modeling of P_L, P_COP, PropCP|RP was quantified at the
yearly resolution.

2.3.4. Application of technology selection probability to decompose TFA by
building system and ECM alternatives

(1) Lighting
P_L was quantified according to the voluntary statistics summarizing

the lighting fixture shipments [59,60] and applied to new construction
and renovation. Fig. 4 illustrates these proportions. As the data corre-
sponded to the period between 2008 and 2021, P_L of LED was assumed
to be 0 % before 2008 and 100 % after 2021.

(2) Building insulation
For the insulation performance of the building stock, we considered

four segments, namely, levels 1–4, combining the insulation of the

exterior walls and windows (see Table C5). P_Iwas determined based on
government reports according to the building construction period
[6162] as shown in Fig. 5. The variation was considered for the segments
according to the region (cold regions, i.e., Hokkaido and Tohoku re-
gions, or other types of regions) and three building sizes.

(3) HVAC system type and ECMs
For the heat source, air-conditioning systems, and HVAC-related

ECMs of the office, hotel, medical, retail, and school subsectors, alter-
native selection probabilities were quantified using logistic regression
models developed based on sample data considering the building size,
heating degree days (HHDs) given for 47 prefectures, population den-
sity, and construction or renovation periods as predictors. The model
development and validation are explained in Yamaguchi et al. [63]. The
construction and renovation periods were considered as four binary
variables representing the construction and renovation periods of the
pre-1990 s, 1990 s, 2000 s, and 2010 and beyond. We assumed that
renovations would not change the heat source systems from a decen-
tralized system to a centralized system, or vice versa. The adoption of
technologies from 2010 followed the deployment tendency observed
between 2010 and 2021, when the latest sample data were available.
The logistic regression models of air-conditioning systems and ECMs
also considered the distinction between centralized and decentralized
HVAC systems as a predictor. For the logistics, telecommunication, and
amusement subsectors, we considered Ele-VRF and HEX as the typical
HVAC system type and ECM combination. In the restaurant subsector,
we assumed Ele-VRF but considered various combinations of ECMs
based on the same regression model developed for the retail subsector.

For the coefficient of performance (COP) of the HVAC system heat
source, we considered four levels, Levels 1 to 4, representing the
installation periods to address the technological development efforts of
the manufacturers. Table C6 lists the average rated COP, and Fig. 6

Fig. 3. TFAs of building subsectors. Fig. 4. Proportion of lighting fixtures and adoption probability of LED. HID:
High-intensity discharge.

Fig. 5. Proportion of insulation levels in different construction periods: Large,
Middle, and Small indicate the building size range, as follows: TFA ≥ 20,000
m2, 20,000 > TFA ≥ 2,000 m2, and TFA < 2,000, respectively.
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shows P_COP. Level 3 is the average COP of new buildings in 2018, as
reported by the National Institute for Land and Infrastructure Manage-
ment [64]. Levels 1 and 2 were determined based on previous technical
reports [14]. In addition to the rated COP, improvements in the speci-
fications of the heat source machines were modeled. Level 4 was used to
estimate the technical reduction potential using the best available
technologies (see Section 2.5.2).

(4) Water heating system
The same approach as applied to the HVAC systems was applied to

quantify P_WH for of the office, hotel, medical, retail, and school sub-
sectors. The heat pump (HP) water heater was considered in the
modeling, as it was included in the sample building data used for
regression. However, the data for condensing boilers were not available
in the sample dataset. Therefore, we first obtained the proportion of
newly constructed or refurbished buildings in 2018 [65] and the
changes in the adoption ratio over time were adjusted based on the
shipment volume of condensing boilers in all gas/oil-driven boilers in
the manufacturing statistics [66]. Gas/oil-driven boiler was assumed for
the restaurant subsector, whereas water heating demand was not
considered for the logistics, telecommunication, and amusement
subsectors.

2.4. Bottom-up quantification of building energy demand

Building stock segments have been constructed based on the basic
building characteristics, building systems, and ECM alternatives. The
construction and renovation periods did not change the conditions
represented by the RBMs. Therefore, the building stock segments
differentiated by these elements were first combined. Then, those with a
TFA smaller than 100,000 m2 were combined with other stock segments
following the procedure established in [14] (see Appendix D). The
following improvement was added for the office, hotel, and medical
subsectors if a segment was larger than 200,000 m2: the segment was
divided into the number of segments calculated as the rounded down
value of TFAm/200,000 m2 to limit the TFA represented by an RBM, as
the energy demand quantification contains a stochastic process in the
occupancy schedule. After this process, 23,244 RBMs were developed
for the year 2013, excluding water heating system alternatives.

The methods in [14] were applied to develop RBMs and to perform
the physics-based simulation. Appendix E presents the specifications of
the building prototypes. The energy demand of RBMs was quantified
using EnergyPlus ver. 8.6 [67] at time intervals of 30 min. After per-
forming simulations, the estimated demand was normalized as the en-
ergy use intensity (EUI) per total floor area of the RBMs, and the energy
consumption of each building stock segment was determined as the
product between EUI and total floor area of the considered segment. For
the office, hotel, and medical subsectors, the occupancy schedule of
individual building users was stochastically generated to replicate the
on–off conditions of building facilities [35]. For the other subsectors, the
operation conditions of RBMs are given by the literature [68].

2.5. Evaluation of model estimates

2.5.1. Validation of the model
Yamaguchi et al. [14] presented a validation at the building level,

showing that the energy consumption estimated using the developed
RBMs fitted well with the distributions of the empirical data. Thus, in
this study, a comparison was performed only with the national general
energy statistics explained in Appendix B.

In addition, we validated the model by comparing the estimated
reductions achieved by the energy efficiency improvements with those
derived from the national general energy statistics [50]. Index decom-
position analysis (IDA) [69] and the additive decomposition method of
Logarithmic Mean Divisia Index I (LMDI-I) [69] were used to decompose
the national general energy consumption into the changes induced by
energy efficiency and TFA increase. Appendix F describes the decom-
position method applied to the national general energy statistics.

2.5.2. Policy assessment
For short-term policy assessment, we quantified the reduction in the

final energy consumption from the fiscal year 2013 to 2021, attributed
to the mitigation measures, and compared them with those estimated by
the government. To eliminate the effects of the differences in the
meteorological conditions and social activities on the building stock, we
prepared two sets of results. One was calculated using the stock, cal-
endar, and meteorological conditions estimated or observed in the in-
dividual years. The other was calculated with the stock for the years and
calendar and meteorological conditions in 2013. The second dataset was
used to quantify the reduction resulting from the energy efficiency
improvement. In addition, we evaluated the feasibility of achieving the
2030 medium-term target using the calendar and meteorological con-
ditions in 2013. However, this calculation did not consider the effect of
the COVID-19 pandemic, including the increase in teleworking and food
delivery services.

Additional reductions based on the available technologies were
examined to explore their reduction potential. Table 4 lists the measures
used in this study.

3. Results

3.1. Building stock composition

3.1.1. LED and insulation
Fig. 7 shows the estimated building stock composition during the

study period according to the construction period. The proportion of
building stock constructed in the 2010 and beyond increased constantly,
whereas that constructed in the pre-1990 decreased.

Fig. 6. Proportion of levels for rated COP of heat source machine.

Table 4
Additional reduction measures.

Measures Remarks

Best available technologies (BATs) Level 4 of COP in Table C6 was used for all
buildings.

Electrification of heat sources of
HVAC and water heating systems

All HVAC heat source systems were replaced
with those driven by electricity. For the
decentralized system, Ele-VRF was assumed,
whereas AirS-HP and AirS-HPS were
assumed for the centralized HVAC system
[14]. For the water-heating system, all
systems except the decentralized electric
water heater were replaced with an HP
driven system [14].

Comprehensive ECM utilization All ECMs listed in Tables C.5 were installed,
except that for insulation performance
improvement.

Insulation Level 4 of insulation conditions in Table C5
was used in all buildings.

Assessment of potential reduction All measures were applied to quantify the
potential reduction.
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Fig. 8 shows the composition of the building stock classified ac-
cording to lighting and building insulation alternatives. The use of LED
was estimated to rise to 46 % by 2021 from 8 % in 2012 in the building
stock. Fig. 8(a) shows the variation in the renovation opportunity cycles
of 15, 20, and 25 years, as explained in Section 2.3.3. With a 15-year
cycle applied to the retail and restaurant subsectors, rapid dissemina-
tion was estimated, as the adoption rate increased to approximately 60
% in 2021 and is expected to reach 97 % in 2030. In contrast, with the
25-year cycle applied to the school subsector, the adoption rate was
expected to be the smallest at 79 % in 2030.

As shown in Fig. 8(b), because of the decrease in the proportion of
buildings constructed in the 1980 s or earlier, the proportion of Level 1
without insulation decreased from 48 % in 2013 to 42 % in 2021 and 33
% in 2030. In contrast, the proportion of Level 2 increased from 26 % in
2013 to 32 % in 2021 and 41 % in 2030. The proportion of Level 3 with
wall and window insulations did not change significantly, whereas the
TFAs increased because of the TFA increase shown in Fig. 3.

3.1.2. HVAC system
Fig. 9 shows the estimated compositions of the HVAC systems. Fig. 9

(a) shows the estimated compositions of the rated COP levels of the heat
source machine. The composition changed rapidly owing to the frequent
replacement opportunities. Level 1 disappeared by 2019, whereas Level
3 increased by 30 % by 2021. In Fig. 9(b), the estimated compositions of
the heat source systems are summarized based on the system configu-
ration and the fuel type. As shown in Fig. 9(c), the proportion of the
variable refrigerant flow (VRF) system, that is, decentralized HVAC
system, has gradually increased, especially in middle-sized buildings
[14]. The proportion of electricity-driven systems in centralized HVAC
systems has increased. In the air-conditioning system shown in Fig. 9(c),
the proportion of systems using OHU has decreased significantly. Fig. 9
(d) shows that the proportion of buildings equipped with multiple ECMs
has not changed significantly because of the increase in decentralized
HVAC systems, where advanced ECMs are rarely adopted.

3.1.3. Water heating system
Fig. 10 shows the building composition by system alternatives. A

notable trend is the increased use of condensing boilers to replace
conventional boilers. The proportion of HP water heaters did not in-
crease significantly, although this was assumed in the PGWC.

3.2. Total final energy consumption of the building stock

3.2.1. Final energy consumption
Fig. 11 presents the estimated final energy consumption of electricity

and fuels in comparison with the national general energy statistics,
indicated as “Stats,” estimated by the method described in Appendix B.
The model results were estimated using the meteorological conditions
observed during individual periods. The estimated electricity con-
sumption in 2013 was smaller by 4 %, although significant differences
were observed in the data for the office, medical, and school subsectors.
The difference can be partially attributed to potential errors in the

statistics, as described in Appendix B, the error factors described below
for the fuel, and aggregation methods of the model because the distri-
bution of the building-level EUI fitted well with the observed distribu-
tion [14].

Fuel consumption was significantly underestimated, from 110 to 210
PJ/year. This may be because of the following reasons. First, the energy
statistics may include non-building-related energy consumption and
estimation errors. Second, there were leaked building subsectors and
end uses. For example, cogeneration systems were ignored in the model
and some fuel-driven end uses, such as for melting snow/ice, washing/
disinfecting in medical facilities, and end uses in each subsector (e.g.,
hot springs), were not considered. Moreover, some building sub-
segments were not considered, for example, universities were not
included in educational buildings, and fuel consumption was not
considered in the telecommunication, warehouse, and amusement sub-
sectors because sample building data were not available for the
subsectors.

Fig. 12 shows the changes in final energy consumption decomposed
into factors causing the annual changes estimated by the model.
Continuous reductions were achieved by the energy efficiency im-
provements for both electricity and fuel. However, the reduction was
compensated by an increase driven by the increased TFA. The effect of
the meteorological conditions was quantified by the difference between
the estimation results obtained using the data for the individual years
and for 2013 only (Section 2.5.2). As shown in the figure, the meteo-
rological conditions were moderate, as the energy consumption from
2014 to 2020 was smaller than that in 2013. The meteorological factor
was located in the positive field in the figure except for 2021.

It should be noted that this represents a change of 5 % order of
magnitude out of a total of 1650 PJ/year, whereas the national general
energy statistics include changes due to economic activities.1 Thus, the
data do not match completely. However, the change in the final energy
generally follows the behavior of energy consumption.

3.2.2. Energy decomposition analysis
Fig. 13 shows the decomposed results for the model and national

general energy statistics given by the method explained in Appendix F.
There was no significant difference in the TFA factor (TFAF) owing to
the increased TFA because the same TFA values were used in the model
and IDA. The reductions obtained by the energy efficiency improvement
(represented by the energy efficiency factor EEF) for both electricity and
fuels showed similar trends between the model and IDA until 2019, that
is, before the COVID-19 pandemic.

Table 5 presents the 95 % confidence intervals of the annual increase
in EEF, which is represented by γ in Eq. (F.8) in Appendix F, estimated
for electricity and fuel. As shown in the table, EEFM falls within the
interval of EEFI (2013–2019), whereas the model’s best estimate of the
EEFM was slightly higher than that of the EEFI for electricity and lower
for fuel. The linear equations considering the best estimates of the EEFM
as γ and β in Eq. (F.8) did not show statistically significant differences
from the EEFI (2013–2019) for electricity and fuel, as the linear hy-
pothesis test showed p-values of 0.258 and 0.253.

3.3. Contribution of mitigation measures

This section quantifies the contributions of the mitigation measures
and compares them with the estimation provided by the Japanese
government (see Appendix A).

3.3.1. Lighting
Fig. 14 shows the reduction caused by the dissemination of LED

Fig. 7. Building stock composition according to construction period.

1 The difference between the data for 2020 and 2021 can be attributed to the
fact that the model did not consider the changes due to the COVID-19
pandemic.
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lighting. Our model estimated the reduction in 2030 to be 20 PJ/year
greater than the planned reduction in the PGWC. However, the model
underestimated the progress until 2021 by 30 %. In the government
assessment, the unit reduction was assumed to be 343.8 MJ/year per
unit, with annual operating hours of 3,000 h. We confirmed that the
difference is mainly attributed to the difference in operating hours, as
the estimated reduction in 2030 was almost equal to that in the PGWC
when the model used 3,000 operating hours with full penetration of

LED, as assumed by the government. This result also implies that the
government overestimated the progress of reduction because its
assumed reduction per unit is smaller than that estimated by the model.

3.3.2. HVAC system
Fig. 15(a) shows the reduction for HVAC systems. The progress

achieved by 2021 was greater than the government estimates. However,
this fell short of the government’s 2030 target by 50 PJ/year. This im-
plies that the target cannot be achieved by extending the technology
adoption trend observed between 2010 and 2021 to 2030, as assumed by
the model (Section 2.3.4(3)). Fig. 15(b) shows the contributions of the
changes by 2030 based on the data for 2013.2 The largest reduction of 59
PJ/year was obtained in the system composition, which was attributed
to the decentralization and electrification trend in the HVAC system heat
source because the electricity consumption increases with a simulta-
neous decrease in fuel consumption. Note that the reduction was given
as only 20 PJ/year in the primary energy consumption. The second
largest decrease of 52 PJ/year was observed in the heat source effi-
ciency, represented by the increased energy efficiency of the heat source
machine, which originates from the efforts of the manufacturers. The

Fig. 8. (a) Estimated adoption rates of LED in building stocks with renovation opportunity cycles of 15, 20, and 25 years, and (b) those of insulation levels in the
building stocks.

Fig. 9. Composition of building stock according to HVAC system and ECMs. (a) Levels of rated COP of heat source machine; (b) proportion of heat source systems
classified as centralized (Cent) or decentralized (Decent) systems and according to the energy type of electricity (Ele) or fuel (Fuel); (c) proportion of air-conditioning
systems classified as VRF and those using CAV, VAV, and OHU; and (d) proportion of ventilation-related ECMs. See Appendix C for the classifications.

Fig. 10. Composition according to the water heating system.

2 The reduction in 2030 is larger in Fig. 15(a) than that for ALL in Fig. 15(b)
because we did not consider the TFA increase to quantify the result in Fig. 15
(b).
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contributions of the ECMs and insulation were relatively small. The
reduced internal heat gains from improved lighting and appliance effi-
ciency contributed to a reduction of 20 PJ/year.

3.3.3. Water heating
Fig. 16 shows the reduction in water heating. Both HP water heaters

and condensing boilers were underestimated when compared with the
progress assessment by the government; the deviation was larger for HP.
Fig. 16(a) shows the data for condensing boilers, whereas Fig. 16(b)
shows the reduction in 2030. In the model, the contribution of HP was
not significant because no clear increase in deployment was observed in
the sample building data used for modeling P_WH. As a result, 18 PJ fell
short of the government target for 2030. This underestimation may be

attributed to facilities not yet considered in the model, such as hot
springs and sports facilities.

Themodel estimated that the substitution from fuel-driven to electric
water heaters has been consistently progressing in the water heating
system stock. This change was estimated to deliver a reduction of 1.3 PJ/
year, as indicated by “Composition” in Fig. 16(b).

3.3.4. Aggregated reduction
Fig. 17 shows the aggregated reductions achieved by the mitigation

measures. Reductions in measures that were not considered in the model
were given from the government estimates. The model estimates in the
stacked graph were slightly larger than the government progress
assessment indicated by the black line for 2021. However, in 2030, 83
PJ/year was short of the PGWC target shown in the last bar, mainly
owing to the lack of reduction in HVAC (indicated as Building/HVAC)
and water heating systems, as shown in the previous section.3 Although
the government estimate did not include the increased energy owing to
the increased TFA, it was estimated to be 63 PJ/year in 2021, which was

Fig. 11. Estimated final energy consumption of the building stock (Model) compared with the national general energy statistics (Stats): (a) electricity and (b) fuels.

Fig. 12. Changes in the final energy consumption decomposed to those
attributed to the difference in meteorological conditions, increase in TFA, and
energy efficiency improvements in electricity and fuel usage.

Fig. 13. Decomposition results of factors reducing the final energy consump-
tion in comparison with the data for 2013. “IDA” indicates the disaggregated
result of the statistical data by IDA; “Model” indicates the result estimated by
the model. “TFAF,” “EAF,” and “EEF” represent the changes in TFA, economic
activities, and energy efficiency causing the variation in energy consumption,
respectively. See Appendix F for details.

Table 5
Confidence intervals of EEF. “EEFI” and “EEFM” represent the EEF from IDA and
model, respectively.

Electricity [PJ/year] Fuel [PJ/year]

EEFI (2013–2021) − 4.0 ± 11.0 2.2 ± 11.1
EEFI (2013–2019) 9.5 ± 5.7 16.4 ± 8.7
EEFM (2013–2021) 12.4 ± 0.8 10.8 ± 1.7

Fig. 14. Reduction in final energy for lighting.

3 Energy efficiency improvement of 40% in plug-load appliances were
assumed in the models for the office, hotel, medical, retail and school building
stocks for the period between 2013 and 2030, as in [14]. However, it was
smaller than that in the PGWC.
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equivalent to 31 % of the reduction estimated by the government for
that year, and 91 PJ/year for 2030, which is 17 % of the target for that
year. The total shortfall in 2030 was estimated to be 164 PJ/year.

In addition, the model does not consider the reduction according to
energy management, but the trends of the total energy consumption are
somewhat consistent, as shown in Fig. 12; therefore, it is necessary to
confirm the existence of reductions due to energy management.

3.3.5. CO2 emission reduction
In the PGWC and Japan’s Nationally Determined Contribution (NDC)

[47], the commercial building sector is included in “Commercial and
other sectors” with the emission of 238 MtCO2/year in 2013; the
reduction target for 2030 is 116 MtCO2/year. Fig. 18(a) shows the
estimated CO2 emissions of the building subsectors together with those
of the other sectors excluded from the model analysis. Combined with

the planned decrease in electricity carbon intensity from 0.57 kgCO2/
kWh in 2013 to 0.25 kgCO2/kWh in 2030, listed in Table A2, the CO2
emission in 2030 was estimated to be 133 MtCO2/year if the energy
consumption of the other sectors did not change. The shortage in the
2030 target was 17 MtCO2/year. The change from 2013 to 2030 was
attributed to the improvement in electricity carbon intensity (100
MtCO2/year) and energy efficiency improvements in the building stock
(17 MtCO2/year), which was compensated by the TFA increase of 10
MtCO2/year. Fig. 18(b) shows the change in the final energy con-
sumption of the target building stock. Energy efficiency improvements
decreased the total final energy consumption by 283 PJ/year, equivalent
to 19 %. The proportion of electricity slightly increased from 69 % to 71
% owing to the gradual electrification of HVAC system heat sources.

Fig. 15. Reduction in final energy for HVAC systems. (a) Total reduction and (b) components of the reduction due to the change in system composition, dissem-
ination of ECMs, improvements in insulation, and reduction in internal heat gains. The estimated system adoption probabilities in 2030 were applied to the floor
composition in 2013. ALL indicates the result with all components applied.

Fig. 16. Reduction in final energy for water heating systems. (a) Reduction for condensing boiler and (b) total reduction in 2030.

Fig. 17. Reductions aggregated for all mitigation measures.
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3.4. Additional mitigation measures

Fig. 19 shows the reduction effects of the additional mitigation
measures listed in Section 2.4.2 in terms of (a) final energy consumption
and (b) CO2 emissions. As shown in the potential case, the additional
reductions in HVAC and water heating systems were estimated to be 243
PJ/year, which is 17 % of the total final energy consumption of the stock
in 2013. This amount is greater than the total shortfall of the 2030
government target of 150 PJ/year. In terms of CO2 emissions, the
reduction potential was estimated to be 13 MtCO2/year.

Regarding the decomposition, the largest reductions (116 PJ/year
and 58 PJ/year) were obtained for electrification, assuming the heat
source electrification in HVAC and water heating systems, which
accounted for 72 % of the potential case. This reduction was larger than
that for BAT (43 PJ/year), assuming the use of the best available tech-
nologies for all heat source types of Level 4 in Table C6. The improve-
ment in building envelope insulation at Level 4 in Table C5 contributed
to a reduction of 67 PJ/year. The dissemination of the available ECMs
and reduction in the heat source capacity of HVAC systems contributed
to a reduction of approximately 30 PJ/year. It should be noted that
approximately 40 PJ/year of reduction was attributable to the HVAC
system auxiliary in the electrification case because we assumed that fuel-
driven centralized HVAC systems were replaced with air-source heat
pumps without cooling towers.

4. Discussion

4.1. Short/medium-term reduction assessment

(1) How has the building stock changed and will it change further by
2030?

In Section 3.1, LED lighting, high-efficiency HVAC heat source

machines, and condensing water heaters were estimated to be widely
adopted in the building stock. These technologies are called “granular
technologies” and can disseminate rapidly [70]. Compared with these
measures, building envelope insulation, HVAC-related ECMs, and HP
water heaters have been adopted more slowly, as a significant change in
the adoption of these technologies has not been observed, or there have
been fewer opportunities for their installation. However, there is a
notable decentralization trend in HVAC systems. The proportion of
electricity-driven HVAC systems has been increasing and is expected to
increase further by 2030. However, a clear increase in the adoption of
HP water heaters, which was expected by the government, was not
observed in the modeled building stock.

(2) How much energy demand and CO2 emission has been and will
be reduced?

Regarding the aggregated reduction discussed in Section 3.3.4, the
final energy consumption was estimated to decrease by 200 PJ/year
because of the energy efficiency improvement provided by the mitiga-
tion measures between 2013 and 2021, under the same meteorological
conditions observed in 2013. By including the mitigation measures that
were not considered in this study, the reduction was estimated to reach
252 PJ/year. However, the reduction was compensated by 63 PJ/year
owing to an increase in the TFA. The total reduction was 189 PJ/year,
which was 17 PJ/year smaller than the government estimates for 2021
(205 PJ/year).

The expected reduction by 2030 by including mitigation measures
not considered in this study is 468 PJ/year. By including these uncon-
sidered measures, the deficit in the 2030 reduction target of 541 PJ/year
was 164 PJ/year. As described in Section 3.3.2, the reduction in the
shortages for HVAC and water heating systems mainly accounted for the
aggregated shortage, together with the increased TFA. In terms of CO2
emission, it was estimated to be reduced to 133 MtCO2/year by 2030.
The energy efficiency contribution was estimated at 17 MtCO2/year

Fig. 18. (a) CO2 emission of the target commercial building stock and other sectors indicated as “Others” and (b) final energy consumption of the target build-
ing stock.

Fig. 19. Reduction obtained by the dissemination of additional mitigation measures: (a) final energy consumption and (b) CO2 emission.
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with the planned decrease in electricity carbon intensity by 2030. Note
that the effects of measures not considered in this study, such as the
dissemination of energy management systems, may deliver additional
reductions. In the government’s PGWC, the improvement in emissions
attributed to telecommunication devices and building operations is 11.6
MtCO2/year (see Appendix A). If these reductions are realized, the
shortfall of the 2030 government target would be approximately 6
MtCO2/year.

(3) How should this gap be addressed?
To overcome the shortages in meeting the 2030 targets of 164 PJ/

year and 6 MtCO2/year, the technology adoption trends must be
modified. The results in Section 3.4 showed that the heat source elec-
trification in HVAC and water heating systems has the largest potential
for reduction, followed by improvement in the building envelope insu-
lation performance, use of best heat source technologies, and use of
available ECMs. The total potential for CO2 emissions was estimated to
be 13 MtCO2/year, which is larger than the shortfall. However, the
penetration speed varies depending on the installation opportunity. The
insulation performance improvement takes the longest period to be
realized, whereas the use of the best heat source technologies is the
fastest because the lifetime of the heat source machine is generally
15–20 years and no additional system change is required. Electrification
is also a fast approach but may require changes in the layout and system
configuration to install electricity-driven systems.

4.2. BSEM framework

The case study demonstrated the analytical capabilities provided by
the framework. The top-down building stock decomposition process
enabled us to capture the state of the building stock and penetration of
mitigation measures based on the available information on technology
adoption, as shown in Section 3.1. The bottom-up physics-based energy
demand quantification process quantifies the resultant energy and CO2
emission reductions, including the short-term dynamics and baseline
development, as shown in Sections 3.2 and 3.3. This is important for
quantifying the reduction progress and avoiding overestimation. For
example, the dissemination of LED will be saturated by 2030 and this
strategy will not deliver further reductions. The BSEM framework
quantifies the contributions of technologies by considering such re-
alities. Furthermore, it contributes to identifying the policy gaps in the
mitigation effort and, if necessary, potential reductions through addi-
tional policy efforts, as demonstrated in Section 3.4. These capabilities
are useful for short-term assessments of the reduction progress and
feasibility evaluations to achieve medium-/long-term reduction targets.

The results in Section 3.2 showed that the proposed BSEM frame-
work can produce models that cover a significant part of the national
general energy consumption of commercial building stock. However,
the model significantly underestimated the fuel consumption when
compared with the national general energy statistics (Section 3.2.1).
This underestimation may be attributed to the following two reasons:
first, the national general energy statistics contain non-building-related
energy uses and a degree of error, as these data were estimated based on
a sample survey and summarized using industrial classification, which
was reorganized into the building subsectors used in this study (see
Appendix B). Second, similar to other bottom-up models, leakages exist
in the quantification of certain building subsectors and end uses. Section
3.2.2 showed that the annual increase in emission reduction for both
electricity and fuels owing to energy efficiency improvements did not
show statistically significant differences from the IDA top-down
decomposition results. Based on these facts, we conclude that our
model has acceptable accuracy for short-term assessment of reduction
progress. In addition, it considered the key building end uses as shown in
Section 3.3, which is necessary for the analysis. Therefore, the proposed
BSEM framework can produce models that can estimate the short-term
changes in the building stock energy consumption and CO2 emissions.

Although the proposed framework was examined for the Japanese

commercial building stock with which significant data is available for
model development, the BSEM framework can be applied to other
building stocks by adjusting the methods for top-down decomposition
and bottom-up quantification as it is flexible in the selection of building
stock data, basic building characteristics, technology alternatives,
modeling methods for the adoption probabilities of the mitigation
measures, design of the RBMs, and energy demand simulation using the
RBMs. In this study, popular ECMs were only considered, and several
important technologies and ECMs were excluded, e.g., solar photovol-
taics and advanced energy management for improving building opera-
tion. The consideration requires 1) the information to assume
technology dissemination, i.e. sample building data to model adoption
probabilities or materials to construct dissemination scenarios, and 2)
technical data to model the adoption effects in physics-based simulation
with RBMs. Further research is required on how model development
should be arranged according to data availability contexts so that
available ECMs are fully considered.

4.3. Limitations and future works

The issues described in the previous section requires further studies.
In addition, due to the lack of data showing actual conditions, verifi-
cation of the estimated building stock composition in building system
type and ECM was not performed. As the model was constructed based
on a large number of assumptions (e.g., renovation scenarios) and
available data, further study is required to establish a method for veri-
fying estimated building stock composition and for assessing the un-
certainty in model results as the building stock decomposition process
and the bottom-up demand quantification process to establish a meth-
odology to assess and assure model quality. Specifically, the developed
model exhibited significant leakage in the estimated energy consump-
tion. Additional studies are required to cover the leaked building sub-
sectors and end uses. The existence of leakage indicates that there may
be additional reductions and potential miscalculations of the reduction
potential as observed in the difference in HP water heaters. Another
limitation is the method of validation of national-level models. We used
the results of the top-down macroeconomic analysis, which revealed
that the model results do not have significant differences. However,
more comprehensive validation methods should be established to vali-
date the estimated total energy consumption and reduction effects pre-
dicted by the models, including the predictions for the subsectors and
end uses.

There are three possible directions for future research. First, the
BSEM framework can be extended to a national-level CO2 emission
reduction management system [44] because it can capture the state of
building stock in terms of mitigation measures and CO2 emissions, es-
timate baseline development, and explore alternative pathways. In
addition, the framework can be extended to assess the impact of policy
interventions to promote ECM adoption for better policy design. Second,
energy demand data for the whole building stock would be useful for the
planning and analysis of power generation and other energy supply
systems and contribute to detailed integrated studies between demand
and supply systems as discussed in [38] and [71]. Third, further meth-
odological development is necessary to conduct a more comprehensive
analysis of the available mitigation options, particularly for solar pho-
tovoltaics and advanced energy management. Applications of the
detailed building stock modeling method on adopted technologies and
ECMs to urban building energy modeling (UBEM) applied at urban
levels would be useful because data acquisition methods for building
systems and ECMs available for UBEM are limited [43]. However,
further study is needed to enhance the spatial resolution of modeling
and to acquire technology adoption data from available data sources like
satellite and aerial images [72,73].
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5. Conclusions

To represent the heterogeneity and short-term changes in building
stock composition in terms of building systems and ECMs, this study
established a building stock energy modeling (BSEM) framework that
integrates top-down building stock decomposition and bottom-up en-
ergy demand quantification and is designed to achieve a higher level of
detail than conventional BSEM methods. A case study on Japanese
commercial building stock demonstrated the analytical capabilities
delivered by the framework. The model quantified the state and change
in the composition of the Japanese commercial building stock, including
building systems and ECMs, the resultant reduction in energy demand
and CO2 emissions, and revealed that the stock will not achieve the 2030
reduction targets for CO2 emissions and final energy. Additional tech-
nological changes have been explored to overcome the shortages.
Although the model underestimated the fuel consumption because of
errors in the national general energy statistics and leakages in capturing
building subsectors and end uses, the change in final energy consump-
tion fits well with the observations in the national general energy sta-
tistics. This result indicates that the established BSEM framework can
produce models for commercial building stocks to represent short-term
changes in the stock composition and the resultant reductions. The
BSEM framework can be applied to other building stocks by adjusting
the top-down building stock decomposition and bottom-up energy de-
mand quantification processes. Thus, the framework promotes the use of
BSEM for policy assessment and evidence-based policymaking for

climate change mitigation.
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Appendix

Appendix A. .apanese plan to realize a CO2 emission reduction target for the commercial building sector

Table A1 presents the Japanese PGWC for commercial building stocks. The estimation method is briefly explained in Section 2.2. Table A2 lists the
CO2 emission intensity of electricity used in this study. A brief explanation of the energy efficiency policy for the commercial building stock is available
in [147475].

Table A1
Japanese plan to reducing the final energy and CO2 emission of the Japanese commercial building sector.

Category Technologies and measures to reduce CO2 emission Reduction in final energy consumption [PJ/year] CO2 emission reduction
[MtCO2/year]

Lighting Diffusion of high-efficiency lighting device (i.e., LED) 91 6.7
Water heating Diffusion of heat pump (HP) water heater and condensing boiler 25 1.4
Appliance Improvement in appliance energy efficiency 73 4.0

Improvement in the telecommunication device 57 5.2
Building energy efficiency Improvement in building energy efficiency (mainly HVAC) 185 13.6

Improvement in building operation (energy management) 88 6.4

Table A2
CO2 emission intensity of electricity [48].

Year Intensity [kgCO2 /kWh] Year Intensity [kgCO2 /kWh]

2013 0.570 2018 0.463
2014 0.552 2019 0.444
2015 0.531 2020 0.441
2016 0.516 2021 0.436
2017 0.496 2030 0.250

Appendix B. Quantification of energy consumption of building subsectors based on the national general energy statistics

To quantify the energy consumption of the building subsectors, we used the national general energy statistics [50] that quantify the energy
consumption of industries classified based on the Japan Standard Industrial Classification. As the classification did not match our building subsectors,
we mapped the industrial classifications to the building subsectors, as listed in Table B1. This study considered nine building subsectors from offices to
amusement centers. The segment “Excluded” was not considered although it is included in the commercial building sector. The segment “Others”
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comprises sectors not included in the commercial building sector.

Table B1
Industrial subsectors allocated to the building subsectors.

Building subsectors Corresponding industrial classification

Office EManagement department of manufacturing industry, G Information and communication industry (38–41), I Non-Store Retailers (61), J Finance and insurance
industry (62–67), K Real estate and goods rental industry (68–70), L Academic research, professional and technical services industry (71–74), O Educational
support industry (82), Q Combined service business (86, 87), R Other services (91–93), S Public service (excluding those classified as others) (97, 98)

Hotel M Accommodation and food service industry (75 Accommodation)
Medical P Medical and welfare services (83 Medical services, 84 Health and hygiene, 85 Social insurance, social welfare, and caregiving)
Retail I Wholesale and retail trade, specifically retail (excluding wholesale, 56–60), N Life-related services and entertainment industry (78 Laundry, barber, beauty,

and bath services (excluding baths))
School O Education and learning support industry (81 School education)
Restaurant M Accommodation and food service industry (76 Restaurants, 77 Take-out, and delivery food services)
Telecommunication G Information and communication industry (37)
Logistics H Transport and postal services (47), I Wholesale sector of wholesale and retail trade (50–55)
Amusement N Life-related services and entertainment industry (80 Entertainment industry)
Excluded N Life-related services and entertainment industry (78 Bathhouse business), 79 Other life-related services (ceremonial occasions like weddings and funerals),

excluding 80 Entertainment industry,
R Other services (94: Religion)

Others F Electricity, gas, heat supply, and waterworks industry (33–36), H Transportation and postal services (42–46, 48, 49),
R Other services (88–90), T Unclassifiable/estimated classification errors

It should be noted that the energy consumption of the building subsectors cannot be accurately estimated based on the data because the energy
consumption of each sector was estimated using sample surveys and included the energy consumption for non-building-related activities. In addition,
the energy consumption of industrial sectors may include those for different building subcategories. For example, office buildings operated by each
industry are categorized. The energy consumption of the administrative section is available only for the manufacturing industry in the energy con-
sumption statistics [76]. It was included in the office category.

Appendix C. Building system and ECM alternatives

Table C1
Categories of regions located from the North to the South.

Region Prefecture

Hokkaido Hokkaido
Tohoku Aomori, Iwate, Miyagi, Akita, Yamagata, and Fukushima
Kanto Ibaraki, Tochigi, Gunma, Saitama, Chiba, Tokyo, and Kanagawa
Hokuriku Niigata, Toyama, Ishikawa, and Fukui
Chubu Yamanashi, Nagano, Gifu, Shizuoka, and Aichi
Kansai Mie, Shiga, Kyoto, Osaka, Hyogo, Nara, and Wakayama
Chugoku Tottori, Shimane, Okayama, Hiroshima, and Yamaguchi
Shikoku Tokushima, Kagawa, Ehime, and Kōchi
Kyushu Fukuoka, Saga, Nagasaki, Kumamoto, Oita, Miyazaki, and Kagoshima
Okinawa Okinawa

Table C2
Classification by building size consistently applied for office, hotel, and medical subsectors based on [52].

Segment Range of floor area [m2] Segment Range of floor area [m2]

CL1 Smaller than 200 CL6 5,000–10,000
CL2 200–500 CL7 10,000–20,000
CL3 500–1,000 CL8 20,000–50,000
CL4 1,000–2,000 CL9 50,000 or larger
CL5 2,000–5,000 ​ ​

Table C3
Categories of heat sources of the HVAC system.

Category Heat source for cooling Heat source for heating Adoption of thermal storage

Decentralized system Ele-VRF Electricity-driven VRF Same as cooling ​
Gas-VRF Gas-driven VRF Same as cooling ​
Mix-VRF Both Ele-VRF and Gas-VRF Same as cooling ​

(continued on next page)
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Table C3 (continued )

Category Heat source for cooling Heat source for heating Adoption of thermal storage

Centralized system AirS-HP Air-source HP Same as cooling ​
AirS-HPS Air-source HP Same as cooling Adopted
E-C&G-B Electricity-driven chiller Gas boiler ​
Gas-AbCB Absorption chiller Gas boiler ​
Gas-AbCH Absorption chiller-heater Same as cooling ​
Comb-EG Electricity-driven chiller and absorption chiller-heater Absorption chiller-heater ​
WaterS-CS Electricity-driven chiller and absorption chiller-heater Absorption chiller-heater Adopted

Table C4
Categories of air-conditioning system.

Category Heating and cooling Ventilation

Decentralized system VRF VRF system Ventilation system is independently installed

Centralized system FCU FCU Same as VRF

CAV Air handling unit (AHU) with CAV control Air intake is mixed in AHU
VAV AHU with VAV control Same as CAV
CAV + FCU Same as in CAV but the perimeter zone is controlled by FCU Same as CAV
VAV + FCU Same as CAV + FCU but VAV in AHU Same as CAV
OHU + FCU FCU in both interior and perimeter zones OHU

Table C5
Categories of combinations of ECMs. A total of 512 combinations was considered by combining the four categories except the heat source COP.

Category Measures Combination

Building insulation Exterior wall insulation
No insulation: U-value 1.80 W/m2

Cold regions: U-value 0.72 W/m2 with 30 mm rigid urethane foam
Other regions: U-value 0.55 W/m2 with 20 mm rigid urethane foam
Window insulation
Single glazing: U-value 5.96 W/m2

Double glazing: U-value 3.27 W/m2

Low-e double glazing: U-value 2.46 W/m2

Level 1:
No insulation and single glazing
Level 2:
Wall insulation and single glazing
Level 3:
Wall insulation and double glazing
Level 4: Wall insulation and low-e
double glazing

Lighting Adoption of LED LED adoption or not
Ventilation-related
measures

Heat exchanger in air intake (HEX) All combinations of the three
measures

Natural ventilation using economizer (Nav)
Air-intake quantity control based on CO2 concentration in the conditioned space that minimizes the volume of air
intake, modeled using the air-intake volume per person (indicated as CO2V)

Heat-delivery-related
measures

VWV. VAV is modeled in the categories of the air-conditioning system (Table C4) VWV control was adopted

COP of heat source of
HVAC systems

Rated COP Four levels listed in Table C6

Table C6
Assumed estimated annual rated COP [W/W] [14].

Heat source Level 1 Level 2 Level 3 Level 4

Multi-function for building Cooling 2.5 3.0 3.5 3.5
Heating 3.1 3.5 4.0 4.3

Gas-driven heat pump Cooling 0.9 1.0 1.2 1.4
Heating 1.1 1.2 1.4 1.6

Air-source heat pump Cooling 2.9 3.2 3.6 3.7
Heating 3.1 3.3 3.6 3.7

Absorption chillers 1.0 1.1 1.3 1.6
Compression chillers 5.0 5.3 5.7 6.5
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Table C7
Categories of water heating system.

Category Fuel Heat source

Decentralized system WH-Dec-Ele Electricity Electric heater
WH-Dec-Gas Gas Gas conventional boiler
WH-Dec-Oil Oil Oil conventional boiler
WH-Dec-GasC Gas Gas condensing boiler
WH-Dec-OilC Oil Oil condensing boiler
WH-Dec-HP Electricity HP water heater

Centralized system WH-Cen-Ele Electricity Electric heater
WH-Cen-Gas Gas Gas conventional boiler
WH-Cen-Oil Oil Oil conventional boiler
WH-Cen-GasC Gas Gas condensing boiler
WH-Cen-OilC Oil Oil condensing boiler
WH-Cen-HP Electricity HP water heater

Appendix D. Method for reducing building stock segments

The construction and renovation periods do not change the conditions represented by the RBMs. Therefore, the building stock segments differ-
entiated by the periods were first combined. The following procedure was employed to reduce the number of building stock segments for which the
RBM was developed. The threshold value YTH used in the process was 100,000 m2.

(1) If the TFA of an HVAC heat source system for a building size and business category in a region is smaller than YTH, the TFA is redistributed
among the other categories using the proportion of the TFA of the other HVAC heat source systems with TFA larger than YTH. The TFA of each
combination of the air-conditioning system and ECMs is retained in this process.

(2) If the TFA of an air-conditioning system within a building size and business category in a region with a centralized HVAC heat source system is
smaller than YTH, the TFA is redistributed to the other air-conditioning systems using the proportion of the TFAs with the other types of air-
conditioning systems. The TFA of the ECMs with the air-conditioning system was retained during this process. The same process was con-
ducted for the decentralized HVAC systems.

(3) If there were categories with TFA smaller than YTH, the TFAs of the combinations were redistributed among those of the other ECM categories
using the proportion of TFAs with the remaining ECMs.

Appendix E. Specifications of building prototypes

The building prototypes presented in [14] were applied for the office, hotel, medical, retail, and school building stocks. For the restaurant, logistics,
telecommunications, and amusement building stocks, building prototypes were newly developed. Table E1 lists the building prototypes used in this
study. A building system model was integrated based on the system categories of the HVAC and water heating systems. The building prototypes were
designed based on the method described in [33].

Table E1
Specifications of building prototypes.

Usage Attributes CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8 CL9

Office TFA [m2] 132 349 726 1,447 3,258 7,089 13,873 31,238 190,202
Building coverage [m2] 66 116 182 289 543 1,013 1,734 2,840 6,559
Number of stores 2 3 4 5 6 7 8 11 29
Floor composition Office Office, meeting room, restaurant,

and retail shop
Hotel TFA [m2] 137 364 744 1,444 3,200 7,611 15,083 34,528 177,850

Building coverage [m2] 69 121 186 289 457 846 1,160 2,877 6,587
Number of stores 2 3 4 5 7 9 13 12 27
Floor composition Room clerk and lobby Room clerk, lobby, and restaurant Room clerk, lobby, restaurant, and banquet hall

Medical TFA [m2] 136 330 701 1,455 3,238 7,597 14,696 31,309 104,835
Building coverage [m2] 68 110 234 364 648 1,266 2,449 4,473 6,989
Number of stores 2 3 3 4 5 6 6 7 15
Floor composition Clinic, waiting room,

lobby, and inspection
office

Clinic, waiting room,
lobby, inspection office,
and bedroom

Clinic, waiting room, lobby,
inspection office, bedroom,
and operating room

Clinic, waiting room, lobby,
operating room, intensive care unit
(ICU), inspection office, and
bedroom

Retail Fourteen building prototypes were designed for each of the 14 business categories shown in Table 3. The building prototypes comprise a sales floor area and
backyard. Refrigeration facilities were considered in the business categories selling fresh food and beverages.

School Three building prototypes were designed for elementary, secondary, and high schools. These school buildings consisted of two buildings with three stories and
floor areas of (a) 3,000 m2 and (b) 1,500 m2. The buildings comprised classrooms, special classrooms, and management rooms.

Restaurant A typical building prototype with floor area of 151 m2 was designed. The floor was divided into backyard, kitchen, and seating areas.
Telecommunication Four building prototypes were designed for the four segments: (1) smaller than 300 m2, (2) 300–2,000 m2, (3) 2,000–10,000 m2, and (4) 10,000 m2 or larger.

The floor plan was divided into communication equipment rooms, offices, non-air-conditioning rooms.
Logistics A typical building prototype was designed. The floor plan was divided into warehouse and backyard.
Amusement Three typical building prototypes were designed for pachinko halls, fitness clubs, and karaoke boxes.
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Appendix F. Validation method based on top-down analysis

We validated the model by comparing the estimated results with those derived from the national general energy statistics. The comparison
included changes in energy consumption owing to energy efficiency improvements and increased TFA. IDA [77] and LMDI-I [78] was used to
decompose the national general energy consumption into the effects of different factors.

Using the IDA variant, the total energy consumption (TEC) can be decomposed based on the economic activity index (EAI) and TFA into the
following three factors: energy efficiency (EE), economic activity (EA), and TFA, as shown in Eq. (F1):

TEC =
TEC
EAI

⋅
EAI
TFA

⋅TFA = EE ⋅EA ⋅TFA (F1)

Here, we used the tertiary industry activity index [79] for the EA. In practice, the estimated TEC, TECestimate, does not exactly match the observed TEC,
TECobserve, as variations can arise owing to differences in meteorological conditions. This is referred to as the meteorological factor (MF), as shown in
Eq. (F2).

TECobserve = TECestimate+MF = EE ⋅EA ⋅TFA+MF (F2)

Hence, Eq. (F1) can be converted to Eq. (F3) as

TECestimate = TECobserve − MF = EE ⋅EA ⋅TFA, (F3)

where MF is obtained from the government estimation [80]. Then, the change in TECestimate can be disaggregated into the change due to three main
factors: A) improvement in energy efficiency (EEF), B) change in economic activities (economic activity factor EAF), and C) change in the TFA (TFAF).
Following the additive analysis, the LMDI-I model was used to quantify the three terms, as shown in Eq. (F.):

ΔTECt = TECestimate,t − TECestimate,0 = EEFt +EAFt +TFAFt , (F4)

where ΔTECt indicates the change in TEC from the year 2013, with the year t = 0. We are interested in comparing the EEF with the reduction
gained by the energy efficiency improvement estimated by our model. The process was applied to electricity and other fuel consumption, respectively.
According to the LMDI-I, the effects of individual factors is calculated using Eqs. (F5), (F6), and (F7).

EEFt =
ECt − EC0

LnECt − LnEC0
Ln
(
EEFt
EEF0

)

(F5)

EAFt =
ECt − EC0

LnECt − LnEC0
Ln
(
EAFt
EAF0

)

(F6)

TFAFt =
ECt − EC0

LnECt − LnEC0
Ln
(
TFAt
TFA0

)

(F7)

The annual trends of EEFt values from the IDA and model were then estimated using the ordinary least squares (OLS) method and the results were
compared using Eq. (F8).

EEFŷ,t = γ⋅t+ β, (F8)

where EEFŷ,t captures the evolving trend of energy efficiency, with γ quantifying the annual change, which is comparable with the model estimates.
Notably, our assessment periods included 2020 and 2021, which were affected by the COVID-19 pandemic. To mitigate the influence of several

latent factors, we conducted IDA analysis for two distinct periods: from 2013 to 2019, and from 2013 to 2021.

Data availability

Data will be made available on request.
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