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A B S T R A C T

While two-dimensional (2D) reed oscillation modes of single-reed woodwind instruments have been reported in
previous studies, little is known about their effects on airflow and sound generation. In this study, we conducted
aeroacoustic simulations of a clarinet mouthpiece and resonator coupled with one-dimensional (1D) and 2D reed
deformation models and investigated the changes in flow and sound generation due to the 2D reed vibration. The
1D and 2D reeds were modeled using 1D beam and thin plate theories, respectively, whereas the three-
dimensional airflow was simulated by solving the compressible Navier–Stokes equations. The self-sustained
oscillations of the 2D reed model mainly exhibited a flexural mode at the fundamental frequency, which is
consistent with previous observations. Complex torsional modes were observed only at higher harmonic fre-
quencies. A comparison between the 1D and 2D reed models demonstrated that the 2D reed opened later at the
side face of the mouthpiece than the 1D reed owing to the torsional mode, which changed the time variation of
the flow rate into the mouthpiece and the far-field sound in the high-frequency range. These results suggest the
importance of the torsional deformation characteristics of reeds on the timbre of single-reed instruments.

1. Introduction

The single-reed woodwind instrument produces sound by blowing
air through a gap between a reed and mouthpiece. When the sound is
produced in the instrument, the reed oscillates with fluctuations of
airflow and pressure at the mouthpiece, and the acoustic resonance in-
side the instrument also affects the reed oscillation. The instrument
player controls the mouth pressure and lip forces to modify the reed
oscillation, and these relationships have been investigated using artifi-
cial blowing machines that mimic players’ mouth conditions, e.g., [1-5].

Among the fluid-structure-acoustic interactions in the instrument,
the reed structure has been described as a multimode vibrating system
[6], and its oscillation characteristics have been examined in previous
studies. Two-dimensional (2D) vibration modes of the reed were
observed under acoustic excitation, and the relationships between the
musical quality of the reed and the flexural and torsional modes were
discussed [7]. In addition, using the observed vibration modes, the
mechanical parameters of the clarinet reeds were estimated using

numerical simulations [8].
Meanwhile, 2D reed modes were observed under self-sustained

oscillation conditions using an artificial blower [9-10], and the reed
displacement consisted mostly of the first flexural mode, which largely
differed from the acoustically excited free vibration modes of [7].
Ukshini and Dirckx [10] indicated that a single-point measurement of
the reed tip can provide a good indication of the 2D vibration amplitude.

In addition to mechanical experiments, numerical flow simulations
have been applied to various clarinet-like geometries to further inves-
tigate the relationship between the players’ conditions and the physical
phenomena inside the instrument, e.g., [11-16]. In most fluid–structure
interaction simulations, the reed oscillation is modeled by the
one-dimensional (1D) dynamic Euler–Bernoulli beam theory [17].
Hence, the 2D torsional oscillation modes were neglected in previous
flow simulations. Although vibration simulations of a two-dimensional
reed model have been conducted under forced oscillation [18-19], to
the best of author’s knowledge, there has been no attempt to implement
the 2D reed oscillation model to a three-dimensional airflow simulation.
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As it has been demonstrated that the 2D oscillation characteristics of
reeds are changed in higher frequency ranges by the individual reed [7]
and mouthpiece geometry [10], the influence on the three-dimensional
airflow and its sound generation in the instrument caused by the change
of the 1D beam model to the 2D plate model in the numerical simulation
is of great interest.

Therefore, in this study, we conducted aeroacoustic simulations of a
single-reed instrument coupled with 1D and 2D reed deformation
models to clarify the effects of two-dimensional reed oscillation on
airflow and sound generation. A mechanical experiment using an arti-
ficial blower was conducted, and the computational accuracy of the
reed-opening waveforms and generated sounds was evaluated. Subse-
quently, the reed displacement, airflow, and sound generation in the 2D
reed model were compared with those in the 1D reed model. This
comparison between the 1D and 2D reed models enables us to purely
observe the effects of torsional modes of reed deformation that are
difficult to control in the experimental setup.

2. Materials and methods

2.1. Numerical simulation

The target musical instrument is a clarinet mouthpiece (4C, Yamaha,
Hamamatsu, Japan) connected to a simple resonator called Saxonett
(JRS700, Jupiter, Taipei, Taiwan). We simulated an artificial plastic
reed (B♭clarinet traditional, hardness M, Forestone, Osaka, Japan) used
in the experiment (see section II. B). The resonator has a recorder-like
straight cylinder with an inner diameter of 13.3 mm, and all the tone
holes were covered. The total length from the mouthpiece tip to the
resonator outlet is 307 mm, and the resulting tone becomes C4
(approximately 262 Hz). A pressure chamber with dimensions of 70 ×

40 × 43 mm3 was put at the front of the mouthpiece, as depicted in

Fig. 1, to simulate the artificial blower used in the experiment. An inflow
region with a constant pressure pin = 5.5 kPa and velocity with a flow
rate of 157 cm3/s was set in the chamber. In this study, the axis x is set in
the longitudinal direction of the instrument; y denoted the vertical axis;
and the axis z is directed to the spanwise direction of the reed. The origin
of the coordinate system was set at the center of the mouthpiece tip.

The simulation methods for airflow and sound generation are the
same as those used in our previous study [16]. The airflow and pressure
are calculated by solving the three-dimensional compressible Navier–-
Stokes equations using the finite-difference method. The spatial de-
rivatives are discretized using the sixth-order accuracy compact scheme
[20], whereas time integration is realized using the third-order accuracy
Runge–Kutta method. The higher-order schemes enabled the capture of
small acoustic pressure fluctuations in large aerodynamic pressures. The
moving boundary of the reed part in the structured grids is expressed
using the volume penalization (VP) method [21], which is one of the
immersed boundary methods. The penalization term, V, is added to
right-hand side of the Navier-Stokes equations as,

Qt + (E − Eυ)x + (F − Fυ)y + (G − Gυ)z = V, (1)
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where, Q is the vector of the conservative variables, E, F, and G are
inviscid flux vectors, Eυ, Fυ, and Gυ are viscous flux vectors. The porosity
of a porous medium ϕ is determined as ϕ = 0.25 so that the sound wave
can be reflected almost completely (reflectivity: 99 %). The mask
function χ is calculated as a function proportional to the distance d be-
tween the surface of the moving wall and the closest grid next to it,
divided by grid size Δy. A large eddy simulation (LES) was employed
using a 10th-order accuracy spatial filter [22] as an implicit turbulence
model.

For the 1D reed model, the deformation of the reed structure is
described using 1D dynamic beam theory:
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(4)

where ρ is the density of the reed, b is the reed width, h(x) is the reed
thickness, w(x, t) is a reed displacement, γ is the damping coefficient, E is
the Young’s modulus, and η is the viscoelastic constant. I(x) is the second
moment of area and is calculated as I(x) = bh(x)3

/12. The external
forces per unit length F(x, t) consist of the fluid, contact, and lip forces,
in the same manner as in [17]. The fluid force per unit length was
calculated by integrating the acoustic pressure on the reed surface along
the z-axis.

When the reed is deformed in 2D, the deformation of a thin isotropic
plate with variable thickness in the x-direction can be described as fol-
lows [23]:
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= F(x, z, t),
(5)

Fig. 1. Instrument geometry for numerical simulation. (a) Center plane of the
instrument; (b) close-up view of the mouthpiece; (c) bottom view of the reed
and mouthpiece.
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where D(x) is calculated as

D(x) =
Eh(x)3

12(1 − ν2)
, (6)

with a Poisson’s ratio ν. F(x, z, t) is the external forces per unit area and is
equivalent to the pressure. The external forces of the 2D reed also consist
of fluid, contact, and lip forces. Both the 1D and 2D reed deformations
are calculated using the finite-difference method. The spatial derivatives
are calculated with the 2nd-order accuracy central difference scheme,
whereas the time integration is performed using the implicit θ-scheme
[17].

The material constants used in the 1D and 2D models are listed in
Table 1. The reed density, Young’s modulus, and Poisson’s ratio were
determined based on the material used for the plastic reeds in the
experiment [24-25]. Although the reed material consists of poly-
propylene and cellulose fibers, the fibers are quite short, and we
confirmed that there is no difference in Young’s moduli in the orthog-
onal directions. Hence, the material anisotropy (e.g., the change in
Young’s modulus in the x- and z-directions) was not considered. The
viscoelastic constant η for the 2D model was set to zero. The deformable
part of the reed (L × b = 34 × 13 mm2) was divided into 20 grids along
the x-axis in 1D, whereas the 2D reed model was calculated using 24 × 9
grids in the x-z plane, as shown in Fig. 2. The dependence of grid reso-
lutions of the reed models was checked by reducing the grid sizes, and
we confirmed the reed displacement waveforms were almost identical
with the finer grids. As the boundary conditions, the reed is clamped at
one end (x = L) and free at the other end (x = 0). For the 2D reed, the
reed’s side edges (z = − 6.5 and 6.5) are set to free, and the corner was
treated as reported in [19,26].

The contact model was adopted from the penalty method of [17].
While the contact force was considered at all grid points in the 1D
model, the contact force in the 2D model was considered only for reed
edges where the reed contacted the mouthpiece edges, as depicted in
Fig. 2. A contact force was applied to the edges of the 2D reed model
when the reed reached the position of the mouthpiece face, whereas the
middle of the reed plate was concave inward to the mouthpiece. The
reed thickness was set in the same way as in [16] using the following
polynomial equation:

h(x) = − 1.27 × 10− 6x4 + 8.00 × 10− 5x3 − 5.99 × 10− 4x2 + 3.15

× 10− 2x+ 0.095.
(7)

The thickness variation in the z-axis of the 2D reed model were not
considered to purely compare the changes between the 1D and 2D
models. Moreover, the rounding of the two corner tips of the actual reed
was neglected because the 1D model could not consider it.

The lip force per unit length or unit area Flip is modeled as a linear
function:

Flip =

⎧
⎨

⎩

Klip

(
w − ylip

)
, x ∈

[
xlip − Llip, xlip + Llip

]
, z ∈ [− b/2, b/2]

0, otherwise
,

(8)

where Klip is the lip stiffness; 2Llip is the lip length; and ylip and xlip are

the vertical and spanwise positions of the lip, respectively. The lip force
is uniform along the z-direction in the 2D model. The lip position and lip
length were kept constant to ylip = – 7.7 mm, xlip= 11.5 mm, and 2Llip =

5.0 mm in the 1D and 2D models. The lip stiffness was set to Klip = 1.7 ×

105 N/m2 in the 1D model to Klip = 6.6 × 106 N/m3 in the 2D model to
reproduce the lip force measured in the mechanical experiment (0.4 N).
Additional lip damping, which is often implemented by increasing γ only
at the lip part [15,17,18] was not considered in this simulation because
there was little change in the reed deformation waveforms during the
preliminary simulations (see Appendix A).

For the fluid and acoustic simulations, the structured computational
grids with an approximate total number of 172 million were con-
structed. The minimum grid size around the reed tip was set to 0.025
mm. The grid size around the sound sampling point was 7.85 mm,
indicating that the simulation captured acoustic waves of up to around 6
kHz with eight points per wavelength. The dependency of grid resolu-
tion was checked by utilizing a finer grid, where the grid resolution near
the instrument was twice as fine as the present values, and the acoustic
results were almost identical [14]. The time step of the time integration
was set to 2.68 × 10− 8 s in both fluid and structural simulations. This
value was chosen to resolve the sound propagation of compressible flow
in the computational grids. At each time step, the fluid forces on the reed
models were calculated from the acoustic pressure, and the reed velocity
and displacement were predicted using Eq. (4) and (5). The predicted
velocity and displacement of the reed were imposed on the fluid simu-
lation to calculate the flow field in the next time step. The mouth
pressure was fixed to pin = 5.5 kPa, which is a typical value for clarinet
players [4]. The flow and sound in the initial three cycles of the reed
oscillation were simulated without the lip force to obtain a stable
self-sustained oscillation. The far-field sound pressure was sampled at
100 mm from the resonator outlet after obtaining a stable oscillation
(after the initial six oscillation cycles). The flow simulation was con-
ducted under ideal gas with a room temperature of the experiment (24.6
◦C).

2.2. Experimental setups

Mechanical experiments were conducted using an artificial blower to
confirm the computational accuracy of the 1D and 2D reed models. The
artificial blower shown in Fig. 3 was used to produce sound in the in-
strument with a mouth pressure of pin = 5.5 kPa. The artificial blower
had an inner volume of 90 cm3, and air was supplied from a compressor
(SLP-15, Anest-Iwata, Japan) through a flow meter (PFM750, SMC,
Japan) and pressure valve (Model 10,213, Fairchild, NC, USA). The

Table 1
Material constants for reed deformation simulation.

1D reed 2D reed

Reed density ρ (kg/m3) 1140 [24] 1140 [24]
Young’s modulus E (GPa) 5.5 [24] 5.5 [24]
Poisson ratio ν (-) – 0.3 [25]
Damping coefficient γ (1/s) 4000 4000
Viscoelastic constant η (s) 0.6 × 10–6 0

Fig. 2. Positions of 2D reed plate model where contact force of the mouthpiece
is applied. The dotted lines indicate the bottom view of the mouthpiece, and the
gray bar shows the lip position.
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pressure inside the blower was measured using a pressure sensor
(Model8510B-5, Endevco, NC, USA). The artificial plastic reed (B♭
Clarinet Traditional, Strength M, Forestone, Japan) was set on the
mouthpiece with a ligature. The lip force was added by pushing an
artificial lip made of a urethane resin (6 × 3 × 14 mm3; H0–3K, EXSEAL
Co., Ltd., Japan) with a teeth-like plastic blade (thickness of 1 mm) at
11.5 mm from the mouthpiece tip, as shown in Fig. 3(b). The tooth
height was adjusted using an X-Y stage, and the force was measured
using a load cell (LMU-50, IMADA Co., Ltd., Japan) set between the
stage and teeth.

During the measurement, the flow valve and lip height were adjusted
to maintain the pressure inside of the artificial blower, and stable os-
cillations were obtained under the lip forces of 0.40 N and volume flow
rates of 157 cm3/s. The reed-opening waveforms were measured by
recording tip movement using a high-speed camera (FASTCAM mini
AX200, Photron, Japan) at 6400 fps. The effect of the frame rates on the
measurement accuracy is validated in Appendix B. The sound pressure
was recorded using a microphone (MI-1271; Onosokki, Japan) at 100
mm from the resonator outlet with a sampling frequency of 51,200 Hz.
The room temperature was 24.6 ± 0.2 ◦C during the experiment.

3. Results

3.1. Comparison with the experiment

The reed-tip opening waveforms of the 1D and 2D models and the
experiment are shown in Fig. 4. The reed opening hr is defined as the
distance between the mouthpiece and the reed face, and 0 indicates
complete closure. The time t = 0 is set at the timing of reed closure. The
displacements for the 2D model and experiment were measured at the
center of the reed in the z-direction (z = 0). The time was normalized by
the period of one cycle, which occurred at 258.7, 262.6 and 266.7 Hz for
the 1D and 2D models and the experiment, respectively. The waveforms
of 1D and 2D models showed an opening phase at t/T = 0.5 and a
maximum opening of 0.7 mm, whereas the opening phase and maximum
opening of the experiment were approximately t/T = 0.6 and 0.5 mm,
respectively. At this time, the lip forces in the experiment and simula-
tions were 0.4 N.

The sound pressures measured at 100 mm from the resonator outlet
in the simulations and experiments are shown in Fig. 5. The overall
waveforms of the sound pressure in the simulations were consistent with

those in the experiment. These results indicate that although the reed tip
waveform was overestimated by both 1D and 2D reed models, aero-
acoustic simulations coupled with the reed deformation models can
reproduce the physical phenomena inside the instrument and are
capable of capturing acoustic characteristics. Although the reed tip
waveforms of the 1D and 2D reed models were similar under the same
lip force, the detailed pressure waveforms were slightly different. The
causes of these differences between the 1D and 2D models are discussed
in the following sections.

3.2. Reed deformations

The reed openings in the middle of the reed at x = 6.7 mm for the 1D
and 2D models are compared in Fig. 6. For the 1D model, the middle of
the reed started opening at t/T = 0.43 and reached the maximum
opening of 0.30 mm. The waveforms were similar to those of the tip
opening (Fig. 4). For the 2D model, both the center (z= 0) and edge (z=
6.6 mm) of the reed had an opening of approximately 0.23 mm and only
the center was concaved inward by 0.19 mm during the closed phase.
Because the center of the reed was concaved, although the displacement
of the center started to increase at t/T = 0.43, the reed opening at the
edge was at t/T = 0.50 and was later than that in the 1D model. In
addition, the maximum opening of the 2D model was 0.07 mm smaller
than that of the 1D model.

The displacement magnitudes at the fundamental frequency f0 and

Fig. 3. Experimental setups. (a) Overall experimental equipment; (b) close-up view of the mouthpiece.

Fig. 4. Reed tip opening hr of 1D and 2D reed models in simulations and
mechanical experiment measured with the high-speed camera.
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its harmonics f1–f9 for the 2D reed model were calculated using the
discretized Fourier Transform (DFT) at each grid and are plotted in
Fig. 7. For clarity, the magnitude of each color bar was chosen differ-
ently because the magnitudes strongly decreased for higher harmonics.
The displacements at the fundamental frequency mostly contained the
flexural mode in the same manner as in the previous measurements [10],
and the displacements at f0 were four times as large as those of the first
harmonic f1 which contained the torsional modes. At the second har-
monic f2, large magnitudes appeared at the reed’s side tips, which was
also the torsional mode. Complex displacement patterns were observed
only in the higher-frequency harmonics, such as f4, f6, and f8, and their
magnitudes were much smaller than the displacements of the funda-
mental frequency.

The time variation of pressure distributions on the reed for one cycle
is shown in Fig. 8. The pressure values are calculated as the difference
between the lower and upper surfaces of the reed. The pressure distri-
butions on the reed surface were almost uniform at t/T = 0.3 when the
reed was closed. Once the reed started open, the tip of the reed had
stronger pressure than the middle probably because large velocity of
airflow passed on the upper reed surface. It should be noted that there
were no complex patterns like the torsional modes of the reed in the
pressure distributions. This suggests that the torsional modes were
mainly caused by the reed material’s oscillation modes and the contact
with the edges of the mouthpiece.

3.3. Comparison of flow and sound

The far-field sound spectra calculated for the 1D and 2D reed simu-
lations are shown in Fig. 9(a). Supplemental audio files of these simu-
lations are attached for the reader’s information [27]. Overall, the
fundamental and odd-number harmonic amplitudes were larger in the
low-frequency range (f/f0 < 5), suggesting the typical acoustic charac-
teristics of clarinets [28]. The amplitudes of the harmonics decreased

with increasing frequency, and large differences between the 1D and 2D
models were observed for f/f0 = 9–10. Moreover, the amplitudes of
odd-number harmonics above f/f0 = 13 in the 1D model were larger
than those in the 2D model. Consequently, the spectral centroids of the
sounds calculated up to f/f0 = 25 for the 1D and 2D reeds were 646 and
521 Hz, respectively. The differences in sound pressure levels (SPLs)
between the 1D and 2D models are plotted in Fig. 9(b). The maximum
difference reached over 17 dB at f/f0 = 9, and these changes in the
supplemental audio were recognizable on the authors’ audio devices.

The pressure and volume flow rate at the cross-section inside the
mouthpiece, x = 40 mm, are plotted in Fig. 10. The pressure was
sampled at the center of the y-z cross-section inside the mouthpiece. The
pressure of the 1D model was smaller at 0.11 < t/T < 0.27 and larger at
0.63 < t/T < 0.81 compared with the pressure of the 2D model. As a
result, increases and decreases of the flow rate into the mouthpiece in
the 2D model were slightly delayed from the 1D model: a slope at t/T =

0.39 was shifted to 0.40 and a slope at t/T = 0.84 was shifted to 0.85. In
addition, a small peak of flow rate waveform appeared at t/T= 0.47 only
in the 1D model. These differences in the flow rate were caused by the
delay in the reed opening at the middle (x = 6.7 mm), as observed in
Fig. 6. When the reed was closed, the pressure bounced back from the
resonator, causing a reverse flow from the resonator to the mouthpiece.
The timing of the beginning of the reverse flow was the same for the 1D
and 2D models (t/T = 0.43). However, because the 1D reed started
opening earlier, as shown in Fig. 6, the flow rate in the 1D model
increased earlier than that in the 2D model (t/T = 0.47). In contrast,
although the center of the 2D reed started opening at the same time as
that in the 1D model, the side edges of the reed (x = 6.7 mm) did not
open simultaneously, and the peaks of the flow rate and pressure
appeared later than those in the 1D model. The flow rate waveforms
immediately after closing (t/T = 0.07) also differed between the 1D and
2D models, presumably because of the rebounding at the reed center due
to sudden reed closure (see t/T = 0.1 in Fig. 6), which was also observed
by [9].

To explore the cause of the far-field sound differences, the magnitude
of the sound sources at the mouthpiece was estimated by calculating
time derivatives of the flow rate ∂U/∂t in the same way as [16]. The time
variation of ∂U/∂t for one cycle is plotted in Fig. 11. After the reed
closure at t/T = 0, small fluctuations of ∂U/∂t appeared up until t/T =

0.35 in the closed phase for both cases. A significant difference was
observed at t/T = 0.45, where the peak width t/T = 0.39–0.48 of the 1D
model was increased to t/T = 0.40–0.53 in the 2D model.

The magnitudes of ∂U/∂t at the fundamental frequency f0 and its
harmonics were calculated by DFT and are plotted in Fig. 12. While the
discrepancies between the 1D and 2D models were less than approxi-
mately 7 dB from f/f0 = 1 to 8, the discrepancy significantly increased to
15 dB at f/f0 = 9 and 18 dB at f/f0 = 10. This result shows the same
tendency as the far-field sound pressure levels shown in Fig. 9, indi-
cating that the decrease in sound amplitudes from f/f0 = 9 to 10 due to
the 2D reed oscillation was caused by changes in the time variation of
the flow rate inside the mouthpiece. The magnitudes of ∂U/∂t of the 1D
model at the higher harmonics (f/f0 = 13 to 19) were larger than those of
the 2D model, which were also consistent with the far-field sound
characteristics.

4. Discussion

The displacement distributions of the 2D reed model demonstrated
that the 2D reed oscillations mainly comprised the first flexural mode,
which is same as the previous measurements [10]. This result supports
the agreement in sound amplitudes between the simulation of the 1D
reed model and the experiment in a previous study in the lower fre-
quency range [16]. In the 2D reed model, the center of the reed was
concaved inward by approximately 0.19 mm, and torsional modes
appeared at higher frequencies. These changes in the displacement from
1D to 2D altered the waveform of the flow rate in the mouthpiece and

Fig. 5. Sound pressure waveforms measured at 100 mm from the resonator
outlet in simulations and experiment.

Fig. 6. Reed opening hr at the middle of the reed x = 6.7 mm of the 1D and 2D
reed models.
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Fig. 7. Displacement magnitudes at fundamental frequency f0 and its harmonics f1 to f9 for 2D reed model. Axes x and z were normalized by the total length L = 34
mm and width b = 13 mm of the reed.

Fig. 8. Time variation of pressure distribution on the reed in one cycle. Axes x and z were normalized by the total length L = 34 mm and width b = 13 mm of
the reed.
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influenced the timbre, mainly at higher frequencies over the 8th har-
monic. The harmonic of f/f0 = 10 corresponds to the duration of t/T =

0.1, and this indicates that the difference in the peak widths of ∂U /∂t at
t/T = 0.45 (i.e., at the timing of the initial reed opening phase) had a
significant effect on the far-field sound at around f/f0 = 10. In other
words, the later opening of the 2D reeds at the side of the mouthpiece
resulted in smaller sound amplitudes at f/f0 = 9–10 compared to the 1D
reed model. In addition, the decrease of the sound amplitudes above f/f0

= 13 in the 2D model was probably due to the difference in
high-frequency fluctuations of ∂U/∂t at the closed phase (0 < t/T <

0.35), which were also induced by the torsional modes. It should be
noted that a rapid decrease in the SPL at f/f0 = 9 in the 2D model was not
observed in the experiment, suggesting that the 2D model may have
overestimated the torsional mode of reed deformation.

One limitation of this study is that variations in plate thickness in the
z-direction were not considered in the 2D reed model. The 2D model
assumed a constant reed thickness in the z-direction for comparison with
the 1D model, whereas the actual reed was slightly thicker at the center.
Although there was no material anisotropy in the experimental reed
because a plastic reed was used in the artificial blower, the differences in
lateral thickness might have affected the reed deformation as well as the
flow rate from the side faces of the mouthpiece. The shapes of the two
corner tips, which are rounded in the experiment, also probably affect
the vibration characteristics. Improvements in these factors may further
increase the accuracy of the far-field sound for the 2D reed model.

Nevertheless, the current simulation demonstrated that 2D reed
deformation affects the airflow and sound generation in the clarinet
mouthpiece in the high-frequency range, and the proposed methodology
enabled the observation of detailed changes in the flow and sound owing
to the reed deformation characteristics. Through the comparison be-
tween the 1D and 2D reed models under the almost same tip opening
waveforms, we found that the difference of side openings between the
reed and mouthpiece due to the 2D torsional modes affects the hearable
sound characteristics.

Because the effects of anisotropy in actual reeds are known to differ
depending on the individual reed [7], these changes in the 2D oscillatory
characteristics should also be modeled with plate theory by changing the
Young’s modulus and Poisson’s ratio in each axis, as in [19]. Our next

Fig. 9. Spectra of sounds sampled at 100 mm from the resonator for 1D and 2D
reed models. (a) Original spectral amplitudes; (b) difference of the amplitudes
at the fundamental and its harmonics between 1D and 2D models.

Fig. 10. Pressure (a) and volume flow rate (b) waveforms at x = 40 mm inside
the mouthpiece for one cycle. Pressure was sampled at the center of the y-z
mouthpiece cross-section.

Fig. 11. Time derivative of volume flow rate ∂U/∂t at x = 40 mm inside the
mouthpiece for one cycle.

Fig. 12. Magnitudes of time derivatives of flow rates ∂U/∂t at fundamental
frequency and its harmonics.
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step will be to model the material anisotropy and individual charac-
teristics of reeds to investigate changes in the timbre of the single-reed
instrument.

5. Conclusion

In this study, the effects of 2D reed oscillations on airflow and sound
generation in a single-reed instrument were investigated using aero-
acoustic simulations coupled with 1D and 2D reed deformation models.
The 2D reed model in the self-sustained oscillation deformed mainly in
the flexural mode, which was consistent with previous experimental
observations. The torsional modes were observed only at higher har-
monics. A comparison between the 1D and 2D reed models demon-
strated that the 2D reed opened later at the side face of the mouthpiece
than the 1D reed, owing to the torsional mode, and the flow rate passing
through the mouthpiece was affected, resulting in a significant decrease
in the far-field sound amplitudes at f/f0 = 9–10. In addition, the
torsional modes of the 2D reed at higher frequencies decreased the
sound amplitude above f/f0 = 13, which led to a decrease in the spectral
centroid. These results demonstrate the importance of the high-
frequency torsional deformation characteristics of reeds on the timbre
of single-reed instruments. Moreover, the results suggest the necessity
for modeling the material anisotropy and individual characteristics of
reeds in future work, which will contribute to the improvement of the
assessment for the playability of reed materials and mouthpiece
geometry.
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Appendix A. Effects of lip damping

The effects of lip damping in the numerical setup were investigated using the 2D reed model. The reed-tip opening waveforms under different lip-
damping conditions are shown in Fig. A1. By increasing the damping γ only at the lip part slightly decreased the maximum lip opening from 0.49 to
0.46 mm. Other than that, no significant changes were observed in the waveforms, oscillation frequencies, or opening phases.

Fig. A1. Reed tip opening simulated with 2D reed model under different lip damping.

Appendix B. frame rates of high-speed camera

To confirm the measurement accuracy of the reed tip displacement using high-speed camera recordings, we compared the tip displacements
measured at 6400 and 30,000 fps in Fig. B1. Although slight differences (below hr/hmax = 0.1) were observed during the opening and closing phases,
the maximum opening timing and overall reed tip waveforms at 6400 fps were consistent with the higher frame rate.
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Fig. B1. Reed tip opening measured by high-speed camera with 6400 and 30,000 fps. Tip opening is normalized by the maximum reed opening hmax.

Data availability

The data supporting the findings of this study are available from the
corresponding author upon reasonable request.
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