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0. Introduction

Peetre [7] considered the Dirichlet problem

(0.1) P(x,D)u=f in xn>0

(0.2) - ^ - = 0. on xn = 0)0^j<r.
dxj

where P(x, D) is formally hypo-elliptic and/is infinitely differentiable inxwΞ>0.

He obtained a sufficient condition in order that every solution u of the problem

(0.1), (0.2) should be infinitely differentiable in xn^0, that is, a sufficient condi-

tion that the Dirichlet problem (0.1), (0.2) should be hypo-elliptic at the boundary

xn=0.

In this paper we shall prove the hypo-analyticity at the boundary xn=0 for

the above problem under the same condition on P(xy D). The proof relies upon

mainly the results of Friberg [2] and Schechter [8].

In § 1 we give some difinitions and state our results. In § 2 the proof of

Theorem 1.1 is given. §3 is devoted to the proof of Theorem 1.2.

The author wishes to express his hearty thanks to Professor Nagumo for

his kind encouragement and to Professors Tanabe and Kumano-go for their

valuable suggestions and remarks given to the author. The author also

expresses his gratitude to Professor Kuroda who read the original draft and

gave him some advice.

1. Difinitions and Results

1.1. Let En be the w-dimentional Euclidian space; for convenience set

x={xx,..., xn_1), y=xn and denote by (x, y) a point of En. The half spaces j>>0

and j;^>0 are denoted by En

+ and ZJ+, respectively.

Let a=(a1 , , an) be a multi-index of non-negative integers with length
1 r)

\a\=a1-\ \-an. Let Ώi=~——, ί^j^n, and set
i dXj
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Dx = (A ,..., £>„_,), Dy = DnyD = (A ...-, Dn).

We consider a hypo-elliptic differential operator of the form

(1.1)

where the coefficients aβ j are complex numbers and p=order of P(D). The
polynomial corresponding to P(Dχy Dy) is

(1.2)

where ?=(?i, ,f«-1)
1). We shall also employ the usual notation

for a multi-index a.
Let the linear differential operator P(D) with constant coefficients be a hypo-

elliptic operator. It is known that there exists a constant d^ί such that

( 1 . 3 ) Σ 1 ^ ( 5 , 7 ) 1 ( 1 + I f l

for some positive constants Kiy K2, where ξ and 77 are real and \ξ\2=z

DEFINITION 1.1. If (1. 3) holds for a hypo-elliptic operator P(D)y then
P(Z)) is called a hypo-elliptic operator of type d.

For a hypo-elliptic operator P(D) the followings are known:
( i ) An operator P(D) is elliptic if and only if it is of type d for any d}> 1.
(ii) If a hypo-elliptic operator is of type d'y then for any d^d' it is of type d.
(iii) There are constans Kly K2 such that

I £Kι\P(ξ,v)\, \ξ

(c.f. Schechter [8], Hypothesis 1.)

(iv) For each real vector ξ let τ^ξ) , , rm(ξ) be the roots of P(ξy Z)=0.
The number of rk(ξ) with positive imaginary parts is constant in the set

\ξ\^K2foτn>2. (c.f. [4])
In the case of n=2y we make the following Assumption 1.

1) In a hypo-elliptic operator the coefficients of the highest power of η is independent of
ξ. (See Hόrmander [3])
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Assumption 1. P(ξ, y) is of determined type r, l s ί r Swz. That is, the
number r of roots τh{ξ) with positive imaginary parts is constant in | ξ | 2; K2.
By rearrangement if necessary we assume that

(1.4) Im

(1.5) Im

1.2. Set

P+ = ή(r,-Th{ξ)), P_ =

for a hypo-elliptic operator P(D) of the form (1. 1). We make the following
additional assumption.

Assumption 2. Let Q(ξ, η) be any polynomial of degree <r in η.

Expand Q(ξ, v)/P(ξ, v) in partial fractions:

(1.6)
+

P(ξ, v) P4g, v) P-(ξ, v)

Then the inequality

(1.7) QJLvX
P^)\ \

dv*c

holds in \ξ\ ̂ K2 with some constant CP
This is the condition settled by Peetre [7]. The inequality (1.7) holds

whenever P{D) is an elliptic operator satisfying Assumption 1. (c.f. Peetre [7]).
Another example of a hypo-elliptic operator satisfying (1. 7) is given by

P(D) = (Dy+iA'2)(Dy-A'),

where

This operator is not quasi-elliptic.

1.3. Let CQ{EX) be the set of all complex valued functions which are
infinitely differentiable in E% and vanish at (x, y) with | x \ 2+y2 sufficiently large.
ParsevaΓs formula implies that

(1.8) \\v, El\\ = (\~\ \v(x,y)\'dxdyγ» = ([°[ \v(ξ, y)\>dξdyy>2,
Jo J |Λ|<OO J o J|ξ|<oo

2) We use the same symbol C to express different constants.
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where υ(ξ, y) is the Fourier transform of v(x, y) with respect to the variables

X1 ,*••, Xn-i

v{ξ, y) = {2πYίn-
t>x>v{x, y)dx ,

where <?, ^>=?1Λ;1H h?n-Λ-i
A polynomial R(ξ> η) is said to be weaker than P(ξ, η) if there exists a

constant C(>0) such that

\R(ξ, v)\^

for all real ξ, ??. The corresponding operator R(D) is said to be weaker than P{D).
By Schechter's result [8] we have easily the following whose proof is omitted

here.

Proposition 1.1 Let R{D) be any operator weaker than P(D). Under our
assumption on P(D), there exists a constant C such that

(1. 9) \\R(D)v, El\\£C(\\P(D)v, E%\\ + \\υ, E%\

for all v^Co(En+) satisfying the Dirichlet condition

Dj

yv(x,0) = 0,

DEFINITION 1. 2. Let Ω be a domain in En. We call u(x) a function of
the class G(d> d'; Ω) if u is a C°°-function on Ω and if for each compact set K in
Ω there exists two constants Co, C1 such that

(1. 10) \\ITmDXx,y),

or

(1. 10') \\DlD*vu{x, y),

for any σ (σΛ=0) and for any integer k (>0), where \\wy KW^ means the essential
maximum of \w\ in K. We set G(d; Ω)=G(rf, d; Ω).

Let Ω be an open set in E% . It is supposed that the boundary of Ω contains
an open set ω (Φφ) in the plane j = 0 .
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Now we can state our results.

Theorem 1.1. Let P(D) be a hypo-elliptic operator of the form (1.1) and of

type d^p, satisfying Assumptions 1 and 2. Consider the Dίrichlet problem

(1.11) P(D)u(x,y)=f(x,y) in Ω

( 1 1 2 ) 9M*>0) = 0 > / = 0 , . . . , r - l α n ω

ay
with f<=G(d, (p—m+l)d;ΩUω). Then any function u^Cp(Ω\Jω) satisfying

(1. 11), (1. 12) w a function in G(d, (p—m-\-\)d\εi\Jω).

The conclusion of Theorem 1. 1 can be extended to operators with variable

coefficients. For convenience, assume the origin (0, 0) is contained in the

(interior of) plane boundary ω. We now deal with an operator of the form

(1.13) P(x,y,Dx,Dy) = D?+ Σ aβJ(x,

where aβJ{x> y) are complex valued functions defined on ΩUco and infinitely

difϊerentiable. We add following two assumptions on P.

Assumption 3. P(x, y, Dx, Dy) has constant strength inΩUω, that is,

.', 'ΛM ^C(x,y,x',y')

for (x, y), (x\ /)GΩUω, (ξ,

Assumption 4. Set P0(D)=P(0, 0, Dxy Dy). Then P0(D) is a hypo-

elliptic operator of type dT^p of the form

and satisfies Assumptions 1 and 2.

Then we can prove the following

Theorem 1. 2. Consider the Dirichlet problem

(1.14) P(x,y,Dx,Dy)u(xyy)=f(xyy) in Ω.

(1.15) Dj

yu(x,0) = 0,0^j^r—l on ω

with f<=G(dy (p—m+l)d;ΩUω)y aβjζΞG(d, (p—m+^d ΩVω), where d^p.

Then any function ί/Eίf^ΩUωf satisfying (1. 14),

3) For the notation HP(Ω^JCU), see [5].
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(1. 15) is a function inG(d, (p—m-\-\)d\CίQ\jω^) for some sufficiently small hemi-
sphere Ωo U ωo= {(*, y) I \x\2+y2^r0, y^O}.

In the elliptic case, that is, in the case of type 1 a slight modification of the
proof of Morrey-Nirenberg [6] together with the use of the coerciveness estimate
obtained in [1] gives the following more detailed and complete theorem.

Theorem 1. 3. Let P(x, y, Dx, Dy) be a properly elliptic operator defined
in ΩUω with order 2m. Consider the Dirichlet problem (1.14), (1.15) with
/ G φ ΩUω) and with all the coefficients in G(d;ΓL{J ω) for d>ί. Then all
the solutions u of the problem (1. 14), (1. 15) are in G(d\£ϊ[Jω).

2. Proof of Theorem 1.1.

2. 1. As a special case of Hδrmander's results [4] we see that any solution
MEC^ΩUω) of the problem (1. 11), (1. 12) is infinitely differentiable up to the
boundary ω. We shall only estimate the derivatives of the solutions u up to
the boundary.

Now take ί)ECo°°(ί]Uω) satisfying the Dirichlet condition (1. 12) and regard
it as a function in CQ{EX). We consider v(ξ, y) (See (1. 8)) as a function of y>0
with a vector parameter ξ. Following Schechter [8], we let Hm{E1) denote the
completion of CQ(E1) with respect to the norm

The first step is to extend v(ξ, y) to the function in i/w(£ 1) by a method
due to Morrey-Nirenberg [6], Peetre [7] and Schechter [8].

For \ξ\^K2, set

vi(ξ> y) =
(

where the λ/, are constants chosen so that all the dreivatives Dj

yυ for
m— 1 are continuous at y=0. Here Xk depends only on m. It holds that

(rM£, y)\ = r«Ί(e, y)

for any multi-index a satisfying α w = 0 .
Next, for | ξ \ >K2, we extend v(ξ, y) by the method due to Schechter [8]

and denote the resulting function by vλ{ξ, y). Thus v^ξ, y) is defined in
I ξ I < oo and | y | < oo. We also note that it is easily verfied that

£ y)\ = ?<ζ, y) for any α, an = 0 .

According to the result of Schechter [8] there exists a constant C independent
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of v so that the following inequality holds:

(2.1) Γ [P&DJv&yWdy^cV^D^yWdy, \ξ\>K2.
J -oo Jθ

Furthermore, for any R(D) weaker than P(D), we can obtain the following
inequality

(2. 2) Γ \R(ξ, D,)v&, y)\2dy<C{\~\P{ξ, Dy)v{ζ, y)\°dy
J -oo JO

Proof of (2. 2). For \ξ\^K2 we have

k=o Jo

where Cx is an upperbound for the coefficients of P(ξ, Dy) on the set \ξ\^K2.
Thus

£\~\DMξ9y)\*ify£CΛ\~\P(ξ,Dy)v(ς,yW^
Λ=0 Jo Jθ *=0 Jo

On the other hand

Γ \R{Z,Dy)vti,y)\*dy<C3±\~ \D^(ξ, y)\'dy ,
J_oo k=0 J-oo

where C3 is an upper bound for the coefficients of R(ξ, Dy) on the set \ξ\<*K2.
Thus, from the construction of v^ξ, y) on the set |ξ\ ^K2, we have

Γ \R(£,Dy)vtf,y)
J-oo

=£C.{Γ \P(ξ, Dy)v% y)\2dyΛ- Σ Γ\D>Aξ, y)Vdy}
Jθ A=0 Jθ

Employing the well known inequality

"il\" \D>vv{S, y)\* dy<Lε\~ \D?vg, y)\>dy+C{ε)\™ \v{ξ, y)\>dy ,
k=o Jo Jo Jo

and taking £ so small that SC5^—C4, we have
Δ

Γ \R(ξ, Dy)v1(ξ,y)\ίdy^C6{Γ\P(ξ, Dy)v(ξ, y)\>dy+[°\v(ξ, y)\>dy}
J -oo JO J θ

for all υ(ξ, y)^Co(E\) and \ξ\<*K2, where C6 depends only on the coefficients
of R(ξ9 Dy) and P(f, Z),) on |f | ^K2.
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2.2. Now we prove some lemmas for later use.

Lemma 2.1 (c.f. Friberg [2]). Let P(ξ, η) be hypo-elliptic of type
Then, for any £>0, there exists a constant C=C(ε) usch that

(2. 3) hP-^+dIP-(f, v)\\ξA <εh*+dIP(ξ, η ) I Iξt

where αφO, 0<A<Π, l ^ i ^ n — 1 .

The proof is easily obtained by a simplification of that in [2].

Lemma 2. 2 L*tf P(D) fo that in Theorem 1. 1 and let d^p. Then

(2. 4) Λ*-'*'+*||P-Z),*, ̂ H ^

for any V^CQ(E\) satisfying the Dirίchlet condition (1. 12)

Proof. Using the ParsevaΓs formula and the inequalities (2. 1), (2. 2) with
/?=P or P* we have

Dy)ξ/v(ξ9 y)\2dy]dξ
J|ξ|<°° Jo

Jl£l<°° J-oo

i.i«>f j p - ( f > ^ ^ ( f , v)YdvdξSeh^"Λ JP(ξ, v)ξiHξ, v)\2dVdξ
JEn JEn

+ C(€) tfΛ I P(£, ,) Wl(f, 9 ) 12 ̂  rff+

+ C(β) W \ I Pα(f, 7?) Cl(f, ,) 12 dη dξ
JEn

J_«o|ί|<o

+ ( [Γ \P*foD,)vtf,y)
J|ξ|<oo J_oo

\ [ΓIP(f, D,)ξlV(ξ, y)\2dy\dξ+
J|ξ|<°o Jo

+ CC(ε)h*>{\ [V\P(ξ, Dy)v{ξ,y)\*dy]dξ
J|ξ|<°° Jo

[[°\*>(ξ,y)\'dy]dξ,
<oo Jo
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which proves Lemma 2. 2.

L e m m a 2.3 (c.f. Frίberg [2]). For every compact set KdEn+ and for

every h>0, there are a function ψ>=ψκ>h
 and constants Ca independent of h such

that y}r^Co(Kh)y yjr=l on K and

(2. 5) I |D*ψlI-^C Λ A- | Λ | /or every a>

where Kh= {x^En

+\ dis. (x, K)^h}.

This can be shown by Friberg's argument and the proof is omitted here.

From now on, we employ the method developed by Friberg [2] to estimate

tangential derivatives. So we introduce some notations used by Friberg in a

slightly different way: V will represent the hemisphere {(x> y)\xl-\ h^w-i+

f<R\y>0} contained in Ω, and V _r= {(*, y)\x2

1+ ~x2

n-1+y2<(R-r)\ y>0},

0<r<R. Let t be a given positive number, and let

(2. 6) {Dσ

xP«u)t = td]σl+*-wDσ

xP»u, u<=C°°(V).

We set for arbitrary /^0,

(2.7) \\(ΣζP*u)t;i+d\σ\+p-\a\, V\\

ί P tt)/, V_r\\

2. 3. The following lemma is essential in our proof of Theorem 1.1.

Lemma 2. 4 There exists a constant C such that

(2.8) ^\\(DiP
(Λu)t;l+d+p-\a\, V\\£C{\\(DgPu)t;

|Λ|φO

^\\
|Λ|φO

l+d+p, V\\+\\{Pu)t;l+p, V\\

+ H\\(Pau)l;I+p-\a\, V\\}, ,
ΛφO

for all M G C ^ Ω U C O ) satisfying the Dirichlet condition (1.12), provided that

l+d

Proof. Let K be a hemisphere {(x, y)\x\-\ \-Xn-ι+y2^r2<R\ y^O},

contained in V* (V*ΞΞ V U (V Πω^1)), and let h be so small that ί A c F .

Then we see by Lemma 2. 3 that there is a function ΛIT=ΨJS h^C^(Kh) such that

ΨΞΞI on K and I I Z ^ I L ^ C ^ - ' * 1 for any a. Thus for every « G C ° ° ( F * )

satisfying the Dirichlet condition (1. 12) the product v=ty*u belongs to Co(Kh)

and v also satisfies (1. 12). So we can apply Lemma 2. 2 to v. Since u = v on

Ky it follows that for z, l^i^n—ί,
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(2. 9) h

), Kh\\+\\D<u, Kh\\)+

+C(£)h*(\\P(ψu), Kh\\+\\ψu, Kh\\),

By using the Leibniz' formula, we investigate the terms on the right hand side

of (2. 9).
On the first term we have

PD4(ψu) =

+ P ( D ) u D i ψ + Σ P ^ u . f .
04=0 β\

Hence it follows that

tfru), Kh\\^C(\\PDiU, Kh\\+Σh-M\\PβDiU, Kh
|3ΦO

+h'1\\Pu9 Kk\\+ Σ h-v+W\\Pβu, Kh\\).

Since 0 < A ^ l , we have

+hp\\Pu, Kh\\+ ΣW'Vu, Kh\\).

Similarly for the second term, we get

hp+d\\Di(ψu), KiWf^W+^Wuy Kh\\+hp+d\\DiU, Kh\\ .

On the third term it holds that

h*\\P(ψu), κh\\^c{hp\\Pu, κh\\+ Σo^" l β |IIJ°β«, κh\\).

Finally on the fourth term, we obtain

These four estimates imply that

(2. 10) hp-w+d\\PΛDiu, K\\^e(hp+d\\PDiU, Kh\\+ Σ^~ | β l + r f | |P β Aw, Kh\\)+

+ C(£)(hp\\Pu, Kh\\+ y^hp'^\\Pβuy Kh\\\
βφO

Now the summation of (2. 10) for all αφO yields

(2. 11) ^hp-^+d\\P*DiU, KW^e^^-^WP'DtU, Kh\\ +
ΛφO O5φ0

u, Kh\\).



SOLUTIONS OF HYPO-ELLIPTIC EQUATIONS 323

Suppose that t0 is so small that to R<^d. Let h=tr, where 0<r^R and

^_A_. If /^0 and if r£R, then h^^^^ί. If, in addition, to<l,
l-\-d l-\-d

then 0<r(l-t)^R. Let K=V_r. Then Kh=V_rCl_o. We rewrite (2. 11)
in these notations and get

( 2 . 1 2 ) Σ ( y \ \ ^ W ^
flfφO CtφO

Σ ( ) r C W }
ΛφO

Multiply the above inequality by tιrι (/^0). We have

1—

)
t

lt;l+p-\a\+d,V\\—_1

Hence

tu)t, l+p-\a\+d, V\\£ Σ \\(PaDtu)t; l+p-\a\+d, V\\
*4o
Σ \\(tu)t; l+p\a\+d, V\\

On the other hand there is a constant ί:>0 such that

<ect for any positive t<t0 (to<ί),

from which
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\l+p-\*\+d( 1

\ — t
-^ect°

and

l+ρ-\a\

^ect°.

Hence it follows that

M),. l+p-\a\+d, VmC(6)ec">{\\{PDiu)t; l+p+d, V\\ +
ΛφO

+ \\(Pu)t; l+p, V\\+'Σ\\(PΛu)t;l+p-\a\, V\\} .

By taking £ small enough here, we get (2. 8).

2.4. Now we need the following notation similar to Friberg [2]:

(2.13) AQ(P*Dlu)=\\(P*D:u)t;I+d\a\+p-\a\, V\\, |σj<Π,σ,,=0,

Ai+1(P*u) = max A^Dζu), ί^ 0 ,

(2. 14) Bf(u) = max Ag(Pβu), i^O ,
βφO

and

(2. 15) \\u;d, λ;/, FHsup^Π (-^-Y" . ||D^/;/+rf|σ |, F| | , M G C M ( F ) ,

λ > 0 .

We can prove the following

Theorem 2. 1 Let P(D) and d(^p) be those in Theorem 1.1. Let V be
the same as above and /^0 a given number. Then there are positive constants c
and C such that

(2. 16) ΣI|P*κ;έ/, c\;l+p-\a\, V\\^C{\\Pu; d, λ, l+ρy V\\ +
ΛφO

ΛφO

for all z/GC°°(F*) satisfying the Dirichlet condition (1. 12).

To prove the theorem we need several lemmas as in Friberg [2].

Lemma 2.5 Let P(D) and d be those in Theorem 1.1. Then there is a
constant C > 1 such that

(2. 17) BJu)£ max { max Cs+1Ak(Pu), C'B0(u)} ,
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forj=ly 2 ,.-• and for allU<EΞC°°(V*) satisfying (1. 12), provided that 0<t^—^—..
l+d-j

Proof. We note that (2. 8) is eqiuvalent to

(2. 18) BQ{u)S max {CA^Pu), CB0(u)}

for some positive constant C. The inequality (2. 18) shows that (2. 17) is true
when /=1 and 0</<—— . Since we can replace u and the parameter / in

~l+d
(2. 17) by ^'σ !Z)> and by /+έ/|σ| respectively ( |σ | < 1 , σn=0)y we get

(2. 19) B2{u)S max {CM2(Pa), CJ?^)} .

Again by (2. 18) we obtain

(2. 20) CBλ{u)^ max { C ^ W J o C2£0(a)}

The inequalities (2. 19) and (2. 20) prove that (2. 17) is valid for;=2, provided

that 0<£fg . Proceeding in this way, we can prove (2. 17) for ally.
l~\-2d

Lemma 2.6 Let Ao be defined by (2. 13) with t=j-—p,for I fixed, and

ti^tQ. Then there are constants c<ί and Cx such that

(2.21) Cf^ lF if rf, c \;l+p\a\y V\\£ sup C^'Aj(Pωu)^

for any α, z/ C > 1 and if

Proof. Put N=\\P*u;d, \;l+p—\a\, V\\, where x==j?krd> and suppose

that t=—t-λ—. Then

\d\σ\+p-\*\

max C-*Aj(P*u)^ max

Π

max i_Y"l./r_^_
ί-i V λ

l-\-d i

-\-d i
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This proves the one half of Lemma 2. 6.

Next, by the definition of Ai(P*u) in (2. 13), it holds

(2. 23) \\(PΛDx)t; I+d j-\a\, V\\^Aj(P»u) |σ | =j\ σn = 0

for any j ^ 0. Let us put t = *-± = — ^ — . . Then (2. 23) yields
l-\-d\σ\ l-\-d i

Hence, for c(>0) determined later;
\d j+p-\Λ\ n-l / _ J_ 1\d(fi n-\ / r \ \dσf

\l+d j

Substituting λ = — ^ - and noting C~}=— g , we have

]

Put K=(-^-rί+PWn(d^+lψ. Then

ir-i _ //+rf'jVy+*+l""frY c*i V17'' _ (l+d J\*~'"' Vr M^+rf 01""
I ί J ,iίVj(o-,-+l)/ V ί, y1 " l 4 σ ( + l ) l

is finite if £ is sufficiently small. This completes the proof of the lemma.

2. 4. Proof of Theorem 2. 1. We can now complete the proof of Theorem

2. 1. Take the inequality (2. 21), devide both side by Cj and put t=—^—,
l+d-j

t^to. Then we have

C-'BJu)£ max {max C"MA(Aι), £„(")}

Therefore, it follows from Lemma 2.6 that

(2.24)
ΛφO

SCmax {||PM; d, λ; /+/», F| | , max \\P*u; l+ρ-\a\, V\\]
ΛφO

for all ί/GC M (P) satisfying (1. 12). The inequality (2.24) is equivalent to

(2. 16). Thus we have Theorem 2. 1.

2. 5. Now we can prove Theorem 1. 1. Let/(#, y) be in G(d> (p—m-\-l)
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d\ F*) (d^p). Then for any hemisphere K= {(*, y)\ \x\ 2+y2^ry y^0} c F*,
there are constants Co, Q such that \\Dζf, K\\^C0C[σι \σ\d^ for any σ(σΛ=0).
If the inequality (2. 16) is established once, then it turns out by (2. 15) that for
the above K and for a solution weC°°(F*) of the problem (1. 11), (1. 12), there
are new constants Co, C\ such that

(2.25) WDζPHi, K\\^

for any /3φO, and for any σ(σn=0).

We note 9 P ^ ^ = m!. Therefore, (2. 25) implies

(2. 26) HZEii, * | | ^ C 0 C Γ | σ | * | σ | for any σ^O (<rn=0),

for new constants Co and Q .

Next we note ^^=m\η-\-P1{ξ), where Px{ξ) is a polynomial in
9^w

ξ only. From (2. 25) it follows

(2. 27) HZ
On the other hand, again by the inequality (2. 16) and Fribreg's results (Ch. 2
in [2]) for new constants Co, C1) we obtain

Hence we have for new constants Co, CΊ,

(2. 28) I|D:Z),M, K\\£CJCΓI«rI<""' for any σ(crΛ=0).

Repeating the process m times we can obtain for new constants Co, Ct

(2. 29) \\DζDίu, K\\^C0Cr k I " n , 0 ^ ; ^ « - l , for any σ(σ.=0).

Thus we may assume that for some constants Co, C1 (^1)

(2. 30) | | f l ^ D > , K||^C,CP |σ| r f | < r |, O^ ^ w - 1 , for any σ(σ,,=0) and
for any /8, \β\<ρ.

ί/, X11 ̂  COCΓI+* I σ I rfi"iA>^-w+15rf for any σ{σn = 0) and for any &.

Now the equation P{D)u—f can be written in the form

(2.31) Z ) J * M = - Σ a
0 < / < w l

Put 1 + Σ k β , y l = 5 (>!)• Differentiating (2. 30) with respect to x-variables
and applying (2. 30), we have
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(2.32)

Again differentiating (2. 31) we have

j=m—l
\

T. MATSUZAWA

where we consider aβ ~0 when7<0. Applying (2. 32) we have

(2. 33) \\Dσ

xD™+ιuy K\\^

Repeating the procedure we can obtain by a simple induction argument on k

(2. 34) \\Dσ

xD™+

for all k, O^k^m.

Suppose now that (2. 34) holds for any k^ko^m. Since

(2. 35) β jDσ

xDxD™+kou+-

\β\<p-tn

we have by (2. 34)

(2. 36) \\

Σ (B+iy.coc[crι+cko+iχρ-m+i>+m

1 = 1



SOLUTIONS OF HYPO-ELLIPTIC EQUATIONS

I σ I d

Hence we arrive at the conclusion that there are two constants Co, Cx such that

(2. 37) \\DσJ)™+% K\\^C0C[σ\+m+*\σ\(m+k)dwp-m+1^m+k>

for any σ(<rn=0) and for any k.

We apply the Sobolev's Lemma to the inequality (2. 37) and obtain Theorem
1.1. We omit the details here. (c.f. Friberg [2], Lemma 2. 2. 2.)

3. Proof of Theorem 1. 2

3. 1 The proof can be obtained in a quite similar manner to the proof of
Theorem 1. 1 by applying the method devoloped by Friberg for the formally
partially hypo-elliptic equations (Ch. 4 in [2]).

Lemma 3.1 Let Q{D) be a linear differential operator with constant coeffi-
cients weaker than Po(D)=P(0, 0, Dxy Dy). Let p be the order of P0(D). Then
it holds

(3.1) *™+p\\D:Q;I+d\σ\+p9 V\\

--\a\9 V\\

for all w€ΞC"(F*) satisfying (1. 12), all d^\y all σ-^0 (<rn=Q), all />0, and for

all t with 0<t< *-* .
~l+d\σ\+p

The proof is omitted as it is simpler than that of Lemma 2. 4.

Now by the assumption on P(x,y, DXJ Dy) in Theorem 1. 2, P(x, y, Dxy Dy)
can be written as

(3. 2) P(x, y, DXJ Dy) = PO(DX, Dy)+ ± Cv(*, y)P,(Dx, Dy),

where P0(D) is of type d(^p=order of Po) of the form (1.1) and satisfies assump-
tions of Theorem 1. 1 and further all theP v , are weaker than P o . The coeffi-
cients Cv belong to G(d, (p—m+ί)d; Ω Uω), and

(3.3) | C V ( * , J 0 | = 0( |* | +y), when \x\+y-+0 .

Lemma 3. 2 (c.f. Lemma 2. 4) Let P(x} y, Dx, Dy) be that given in Theorem
1. 2, and £>0 a given number. Set p=order ofPQ. Then there exist a hemisphere
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Vo= {(x, y)\\x\2+y2^r0, y>0} c V and constants t0, C such that

(3.4) mBX*w+*\\lKPM I+d\σ\+p, Vo\\£

>-\β\,V,\\,

for all u^C°°(V*) satisfying the Dirichlet condition (1. 12) and for all /^O and

0<t~l+d+p'

Proof. Set

Then it follows from (3. 2) that

(3.5) A(D:POU)^A(D:PU)+

For σ, I σ | = 1 (σn = 0)

+ | |C v;0, Fol

N o w l e t / = - — ^ — , withO<ί 1 ^ί 0 , and take μ so small that CveC°°(J, /̂  0, VQ)
l+d+p

(For notation Goo(rf, /̂  0, F), see Ch. 2, in [2]). Then

so that

if to^Sμ. Since rf is always ^ 1, this shows that

as 6 tends to zero. But | |CV; 0, V^ can be made as small as we want by taking
Vo sufficiently small. (See (3. 2)). We have

(3. 6) Λ(DZCvPvu) ^ CλS max
M ^ 1
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provided that C^fΞG^d, μ; 0, V0)y t^—^— (to<£μ) and VQ is sufficiently
l+d+p

small. Now let us use Lemma 3. 1, with Q=P^ and with VQ instead of V.
Then we get

(3. 7) A(DlPu)^ C Σ Λ{DlP%u\ for any σ(σn=0).

Thus, in view of (3. 5), (3. 6) and (3. 7),

for any <τ( \σ\ < 1 , σn=0), if t= x-—, tx<.tQy and if ΐ0 and Vo are sufficiently

l+d+p
small. This means also that

max A(DζPou)<: max A(DζPύ)+C2 max Σ A(Ώσ

xP%u).

Suppose now that C2 S^—. Then 0 < 5 1 = — ^ — ^ 1 and we get

(3. 8) max A(DζP0u)^2 max A(DζPu)+ε max Σ A(Ώσ

xPlu).
kl£i kl^i k |< i β=t=o
(σ»«0) (<τ»-0) ( ^ = 0 )

Obivously, (3. 8) and (3. 4) are equivalent.

Let us define Ai(Pou) in terms of AQ{Dσ

xP%u) as in (2. 13). Then it follows
from (3. 8) (or (3.3)) that for an arbitrary S>0

(3. 9) AiiP^C^iP^+εΣ A iPΐu), for any i^O ,

under the usual conditions on u, /, ί and VQ. We can also apply Lemma 2. 5 to
Po and obtain the estimate

(3. 10) max AAPU)^ max ( max Cs+1Ak{Pou), & Σ Λ ( ^ "

fory=l, 2 ,.-, and for all t with 0 < ^ to

 m. From (3. 9), we see that (3. 10)
l+d j

can be replaced by

(3. 11) max Aj(P«0u)^C2 max (max Cs+1AJPu)CΣ A(P»]

for7=1, 2 , , and for 0<ΐ^—-—, if t0 and Vo are sufficiently small.
l+d-j
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3.2. As a simple application of Lemma 2. 6, we can prove the following.

Theorem 3.1 Let P(x, y, Dx, Dy) be given as in Theorem 1. 2 which satisfies
the prescribed condition. Then there are positive constants c< 1 and C such that

(3.12) ΣI |PStt;r f ,^;/+j>- |α | , V0\\^C{\\Pu; d, λ; I+p, Vo\\ +

ΣI
α > Φ 0

/or Λ/Z tt<=C°°(F*) satisfying the Dirichlet condition (1. 12) and for all λ > 0 , / * Ό -
vάfaί that Vo= {(x, y)\ \x\z+y2<roy y>0} is a sufficiently small hemisphere.

Similarly to the proof of Theorem 1. 1, if the inequality (3. 12) is obtained,
then from the assumption / e φ , (p—m+l)d, V*) and by (2. 15) we may as-
sume that for any solution u of (1. 14), (1. 15), there are positive constants
Co, C x ( ^ l ) such that

(3.13) \\DσMDίuy V0\\l£C0Cp\σ\W, \β\£p, σ{σn - 0) ,

WxΏ\f v
and

\\DζDk

yaβJ, V0\\^C0C[^+k(\σ\ +kY<w+*°*>, σ{σn = 0) ,

where we put po=p—m-\-\ (^1).
Now we can assume rf>l.4) Rewrite the equation P(x> y, DXJ Dy)u=f

in the form

(3.14) D?u=:- Σ aβJ(x,y)DiDίμ+f.

We differentiate (3. 14) with respect to x-variables and get

(3.15) D:D?U=-

Consider each term

in the summation. By (3. 13) we see

Now we use the following simple inequalities

4) We note that all the hypo-elliptic operators of first order and of type 1 are not of

determined type.
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(3.16) (k \k-fp-iji^k* for integers j,k,O^j

For any 6>0, there is a constant Cr=C'{by n) independent of a such that

<3 1 8 >
Thus we have

(3. 19) \\D:{aβJ

with b=d—l and

(3.20) \\DΪD«u

where N is the number of terms of P(x, yf Dx, Dy)u.
Again differentiating (3. 14) we have

u)- Σ DxDy(aβ jD*Dk

v
y=w-i j<m-i
\β\ZP-m+l \β\+J^P

+DζDyf,

where we put aβ j=0 ϊorj<0. Consider again each term of the first summation

1") = Σ ("yr-'at^JVDζDrhi, a=σ+(0', 1).

By (3. 13) and (3. 20) we have

Hence we obtain

(3. 21) \\D:D?+1U, VO\\^(

o Ci*ι + 1 ( I

Thus, using the inequalities (3. 16), (3. 17), (3. 18) and the estimates
(3. 20) (3. 21), we can repeat the procedure similar to that in the proof of
Theorem 1.1. So, the proof of Theorem 1. 2 is obtained.

We omit the proof of Theorem 1.3.
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4. Remark. In the case when m=l9 we can improve Theorem 1. 1 in
the following form.

Let P(D) be a hypo-elliptic operator of the form

P{D) = D,-

satisfying Assumptions 1 and 2. Furthermore let P(D) be a hypo-elliptic
operator of type d(*>\) in x, that is, there exists a constant C independent of
real ξ and η such that

Σ \p*(ξ,v)\(i+\ξ\y*{/d^c(\p(ξ,η)\+i).

Then any function MGC^ΩUω) satisfying (1.11), (1.12) with f(EG(d, pd;
Ω Uω) is also a function in G(d} pd\ ΩUω).

In Theorem 1. 2, the similar to the above is true.
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