
Title Efficient Computation for Sparse Estimation
Problems

Author(s) 新村, 亮介

Citation 大阪大学, 2024, 博士論文

Version Type VoR

URL https://doi.org/10.18910/98623

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Efficient Computation for Sparse Estimation
Problems

Ryosuke Shimmura

MAY 2024

Efficient Computation for Sparse Estimation
Problems

A dissertation submitted to
THE GRADUATE SCHOOL OF ENGINEERING SCIENCE

OSAKA UNIVERSITY
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN ENGINEERING

By

Ryosuke Shimmura

MAY 2024

Abstract

This thesis discusses efficient solutions for convex optimization problems in sparse
estimation. Sparse estimation is a method that allows for simultaneous parame-
ter estimation and variable selection by adding a regularization term to the loss
function. It is widely used in various fields, including machine learning and a
signal processing. The least absolute shrinkage and selection operator (lasso) is
one of the most famous sparse estimation method. It involves a convex objective
function, which allows for efficient solution finding through coordinate descent
methods. However, for complex problems like convex clustering, there are no
efficient solution methods, often resulting in significant computation time.

In sparse estimation, such as fused lasso and convex clustering, we apply ei-
ther the alternating direction method of multipliers (ADMM) or the proximal gra-
dient method to solve the problem. It takes time to include matrix division in
the former case, while an efficient method such as FISTA(fast iterative shrinkage-
thresholding algorithm) has been developed in the latter case. In the first part
(Chapter 3), We propose a general method for converting the ADMM to the prox-
imal gradient method, assuming that the derivative of the loss function is Lipschitz
continuous. Then, we apply it to sparse estimation problems, such as sparse con-
vex clustering and trend filtering, and we show by numerical experiments that we
can obtain a significant improvement in terms of efficiency.

In the second part (Chapter 4), under the assumption that the loss function is
strongly convex, we propose Newton and quasi-Newton methods that utilize prox-
imal gradient steps. The quasi-Newton method can avoid the computation of the
Hessian matrix, leading to improved efficiency. Furthermore, we prove that both
proposed methods converge rapidly to the solution. These methods are particu-
larly efficient for problems with L1 regularization or group regularization, as they
perform variable selection in each update. Through numerical experiments, we
show that these methods efficiently obtain solutions for sparse estimation prob-
lems.

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Overview . 2

2 Background 3
2.1 Convex function and its subdifferential 3
2.2 Sparse estimation . 3

2.2.1 Lasso . 4
2.2.2 Group lasso . 4

2.3 Proximal gradient method . 4
2.4 Proximal Newton method . 6
2.5 ADMM and its generalization 7
2.6 Alternating minimization algorithm 8
2.7 Iterative methods and convergence rates 8

3 Converting ADMM to the proximal gradient method 11
3.1 Introduction . 11
3.2 Related work . 12
3.3 The proposed method . 13
3.4 Application to sparse convex clustering 16

3.4.1 Application of the proposed method 18
3.4.2 Experiments . 19

3.5 Application to trend filtering . 21
3.5.1 Application of the proposed method 22
3.5.2 Experiments . 23

3.6 Summary . 23

4 Newton-type methods with proximal gradient step 25
4.1 Introduction . 25
4.2 Optimality conditions and linear Newton approximations 27

4.2.1 Optimality conditions 27

i

4.2.2 Linear Newton approximations 27
4.2.3 LNA of the proximal map 30

L1-norm . 30
L2-norm . 30

4.3 Related work . 31
4.4 Linear Newton method . 32

4.4.1 Procedure . 33
4.4.2 L1 regularization . 34
4.4.3 Convergence . 34

4.5 Hybrid linear quasi-Newton method 35
4.5.1 Procedure . 35
4.5.2 Efficiency . 36
4.5.3 Convergence . 38

4.6 Numerical experiments . 39
4.6.1 Group logistic regression 39

4.7 Summary . 44

5 Conclusions and future work 46

Appendix 48

A The setting of the proximal gradient parameter η 48
A.1 Sparse convex clustering . 48
A.2 Trend filtering . 49

B Proof of thorems 50
B.1 Proof of Proposition 3 . 50
B.2 Proof of Theorem 4 . 51
B.3 Proof of Theorem 5 . 52

List of Publications 54

Acknowledgements 55

References 56

ii

List of Figures

2.1 L1-norm . 5
2.2 L2-norm . 5

3.1 The changes in computation time due to γ1 20
3.2 The changes in computational time due to γ2 20
3.3 The changes in computational time due to the number n of variables 21
3.4 The changes in computational time due to the number p of data . . 21
3.5 Trend filtering with order k = 1 22
3.6 Trend filtering with order k = 2 22
3.7 The changes in computational time due to γ when k = 1 24
3.8 The changes in computational time due to γ when k = 2 24

4.1 Changes in F1(x
(k)) due to the computation time. (λ = 1) 41

4.2 Changes in F1(x
(k)) due to the computation time. (large λ) 41

4.3 Change in computation time for the cod-RNA dataset. (λ = 0.08) 43
4.4 Change in computation time for the cod-RNA dataset. (λ = 0.28) 43
4.5 Change in computation time for the ijcnn1 dataset. (λ = 0.08) . . 44
4.6 Change in computation time for the ijcnn1 dataset. (λ = 0.12) . . 44

iii

List of Tables

2.1 Classification of optimization methods 10

4.1 Computation time and Iterations for random data(λ = 1) 40
4.2 Computation time and iterations for random data(λ is large) 41
4.3 Computation time and Iterations for cod-RNA dataset(λ = 0.08) . 42
4.4 Computation time and iterations for cod-RNA dataset(λ = 0.28) . 42
4.5 Computation time and iterations for ijcnn dataset(λ = 0.08) 43
4.6 Computation time and iterations for ijcnn dataset(λ = 0.12) 44

iv

Chapter 1

Introduction

1.1 Introduction
Statistical and machine learning techniques are widely used in various fields such
as chemistry, engineering, and business for analyzing large datasets and extracting
meaningful insights. A common problem in these fields is identifying more im-
portant variables for predictors, enabling more accurate predictions and better un-
derstanding of underlying relationships. With the advent of digitalization leading
to large-scale, high-dimensional data, efficiently identifying important variables
becomes necessary, and sparse modeling is employed.

In sparse modeling, the L0-norm, i.e., the number of non-zero elements, is a
measure of sparsity. The Akaike Information Criterion (AIC)[1] and the Bayesian
Information Criterion (BIC)[2] are nortable examples of methods employing the
L0-norm. However, as the L0-norm is not a convex function, brute force search is
the only way to minimize these criteria, requiring estimation for 2n combinations
of n variables, which is inefficient.

This thesis focuses on the efficiency of sparse estimation, exemplified by
least absolute shrinkage and selection operator (lasso)[3], which performs L1-
regularization in linear regression. The use of the L1-norm for regularization re-
sults in a convex optimization problem, making lasso popular because efficient
procedures exist for finding solutions. Lasso extensions include logistic regres-
sion, Poisson regression, Cox regression, etc.[4]. Further, methods like group
lasso[5], fused lasso[6], joint graphical lasso[7], and convex clustering[8, 9, 10]
replace the regularization term with structured regularization. All these exten-
sions are formulated as convex optimization problems, allowing efficient solution
finding and model selection by estimating insignificant parameters as zero.

In Chapter 3, we propose converting the alternating direction method of mul-
tipliers (ADMM) into the proximal gradient method. While ADMM is more gen-

1

erally applicable than the proximal gradient method, it often requires inefficient
inverse matrix calculations. In contrast, the proximal gradient method are sim-
pler to implement and have a narrower application range. This chapter shows
that ADMM procedures can generally be converted into proximal gradient meth-
ods, allowing for the application of acceleration techniques like the fast iterative
shrinkage-thresholding algorithm (FISTA)[11] for efficient solution finding.

In Chapter 4, we propose Newton and quasi-Newton method using proxi-
mal gradient steps. While the proximal Newton method are commonly used
for rapid convergence, the coordinate descent method[12] efficiently updates L1-
regularization problems. However, for issues like group regularization, partial
problems must be solved using proximal gradient methods, not fully leveraging
the speed of convergence. The proposed method, capitalizing on the sparsity of
the solution, allows for computational savings and is efficient for problems like
group lasso.

1.2 Overview
The rest of this thesis is organized as follows. Chapter 2 introduces theories of
convex optimization and existing methods such as the proximal gradient method.
Then, Chapter 3 proposes a general method for converting the ADMM proce-
dures into the proximal gradient method, applying them to real sparse estimation
problems like sparse convex clustering and trend filtering, confirming the speed
of obtaining solutions. Chapter 4 proposes Newton-type methods that can omit
the computation of components estimated as zero, applying it to group logistic
regression and confirming rapid solution finding. Finally, Chapter 5 summarizes
the proposed methods and points out future research directions.

2

Chapter 2

Background

2.1 Convex function and its subdifferential
In this section, we provide background information to understand the results in
the subsequent sections. We say that a function f : Rn → R is convex if

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) (2.1)

for any x, y ∈ Rn and 0 ≤ λ ≤ 1. In particular, we say that the convex function f
is closed if {x ∈ Rn|f(x) ≤ α} is a closed set for each α ∈ R. Moreover, we say
that f is µ-strongly convex if

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)− µ

2
λ(1− λ)∥x− y∥22 (2.2)

for any x, y ∈ Rn and 0 ≤ λ ≤ 1. When f is twice differentiable, f is µ-strongly
convex if and only if ∇2f(x)− µI is positive semidefinite for any x ∈ Rn [13].

For a convex function f : Rn → R, we define the subdifferential of f at
x0 ∈ Rn by the set of z ∈ Rn such that

f(x) ≥ f(x0) + ⟨z, x− x0⟩ (2.3)

for any x ∈ Rn and denote it as ∂f(x0). For example, the subdifferential of
f(x) = |x|, x ∈ R at x = 0 is the set of z such that |x|≥ zx, x ∈ R, and we write
∂f(0) = {z ∈ R | |z|≤ 1}.

2.2 Sparse estimation
Sparse estimation is used in signal processing and machine learning, and it allows
for the identification of a small number of essential variables from a large set. This

3

approach is particularly useful when the number of observed variables exceeds the
sample size, a situation that is often challenging in traditional statistics. Sparse
estimation is frequently employed in high-dimensional data analysis.

2.2.1 Lasso
Lasso is one of the well-known models for sparse estimation, involving the ad-
dition of a regularization term to the model’s loss function. In the case of linear
regression, lasso solves the following problem:

min
β∈Rn

1

2m
∥y −Xβ∥22+γ∥β∥1 (2.4)

Here, X ∈ Rm×n is the data matrix, y ∈ Rm is the target variable, and γ > 0 is
the regularization parameter. By adding the L1-norm, the coefficient vector β is
shrunk towards zero. In particular, as the regularization parameter increases, more
elements of the estimated β become zero. The graph of ∥β∥1 in two dimensions is
shown in Figure 2.1. The L1-norm is non-differentiable when each component is
zero and has sharp corners, making it prone to shrinking towards zero. Therefore,
using lasso can result in sparse solutions. Additionally, the problem (2.4) can be
efficiently solved using the coordinate descent method [12].

2.2.2 Group lasso
In the field of life sciences, it is known that groups of genes may share the same
biological functions. In cases where several variables are pre-assigned into groups
and one wishes to collectively select or discard these groups, group lasso is used.
Group lasso is formulated as follows:

min
β∈Rn

1

2m
∥y −Xβ∥22+γ

J∑
j=1

∥βIj∥2 (2.5)

Here, Ij are index sets such that Ij ∩ Ik = ∅ (j ̸= k). The L2-norm is non-
differentiable only when all components of β are zero, as illustrated in Figure
2.2. Therefore, β is shrunk such that all components within a group become zero
simultaneously, allowing for group-wise variable selection.

2.3 Proximal gradient method
The proximal gradient method finds the minimum solution of an objective func-
tion expressed by the sum of convex functions f, g : Rn → R such that f is

4

Figure 2.1: L1-norm Figure 2.2: L2-norm

differentiable and g, which is not necessarily differentiable. We define the func-
tions

Qη(x, y) := f(y) + ⟨x− y,∇f(y)⟩+ 1

2η
∥x− y∥22+g(x) (2.6)

pη(y) := argmin
x

Qη(x, y) (2.7)

for η > 0, and generate the sequence {xk} via

xk+1 ← pη(xk) (2.8)

from the initial value x0 until convergence to obtain the solution. If we define the
proximal map w.r.t. g : Rn → R by

proxg(y) = argmin
x

{
g(x) +

1

2
∥y − x∥22

}
(2.9)

then (2.7) can be expressed by

pη(y) = argmin
x

Qη(x, y)

= argmin
x

{
⟨x− y,∇f(y)⟩+ 1

2η
∥x− y∥22+g(x)

}
= argmin

x

{
g(x) +

1

2η
∥x− y − η∇f(y)∥22

}
= proxηh(y − η∇f(y)) (2.10)

In each iteration, the proximal gradient seeks x that minimizes the sum of the
quadratic approximation of g(x) around xk and h(x). The ISTA (iterative shrinkage-
thresholding algorithm) procedure obtains O(k−1) accuracy for the number of up-
dates k [11]. We may replace ISTA by the faster procedure below: using the

5

sequence {αk} such that α0 = 1, αk+1 =
1+
√

1+4α2
t

2
, generates {xk} and {yk} via

the equations

xk = pη(yk)

yk+1 = xk +
αk − 1

αk+1

(xk − xk−1)

from the initial value y1 = x0 until convergence to obtain the solution. Note that
the quantity αk−1

αk+1
is zero when k = 1, increases with k, and converges to one

as k → ∞. It behaves similarly to ISTA when k is small, and accelerates the
updates when k increases to gain efficiency. The FISTA (fast iterative shrinkage-
thresholding algorithm) procedure obtains O(k−2) accuracy for the number of
updates k [11]. This paper mainly uses the FISTA.

Even if it is updated using the formulas given by ISTA and FISTA, they do
not necessarily converge to x, which minimizes the objective function unless we
choose an appropriate parameter η. In the following, we assume that ∇f is Lip-
schitz continuous, which means that there exists Lf > 0 such that for arbitrary
x, y,

∥∇f(x)−∇f(y)∥2≤ Lf∥x− y∥2. (2.11)

It is known that ISTA and FISTA converge to x that minimizes F (x) if we choose
η > 0 as 0 < η ≤ 1

Lf
[11].

2.4 Proximal Newton method
The proximal gradient method finds the minimum solution of an objective func-
tion expressed by the sum of convex functions f, g : Rn → R such that f is twice
differentiable and g, which is not necessarily differentiable. In each iteration k,
the proximal Newton method approximates f(x) as

f (k)(x) := f(x(k)) + ⟨x− x(k),∇f(x(k))⟩+ 1

2

(
x− x(k)

)T ∇2f(x(k))
(
x− x(k)

)
(2.12)

and generates the sequence {x(k)} via

x̃(k) = argmin
x∈Rn

f (k)(x) + g(x) (2.13)

x(k+1) = x(k) + ηk(x̃
(k) − x(k)), 0 < ηk ≤ 1 (2.14)

from the initial value x(0) until convergence to obtain the solution. In this thesis,
we consider only the case where ηk = 1. If g(x) = λ∥x∥1 (λ ≥ 0), subproblem

6

(2.13) is equivalent to the lasso problem [3], and x can be updated efficiently via
the coordinate descent method.

However, if g(x) = λ
∑J

j=1∥xIj∥2 where Ij (j = 1, . . . , J) are index sets,
the subproblem (2.13) is equivalent to a group lasso problem [5], which is solved
by using the proximal gradient method; hence, the high convergence speed of the
proximal Newton method cannot be realized.

2.5 ADMM and its generalization

Let A ∈ Rp×n, B ∈ Rp×m, c ∈ Rp, and f, g : Rn → R, h : Rm → R be convex.
We consider the convex optimization

min
x,y

f(x) + g(x) + h(y) (2.15)

subject to Ax+By = c .

When we apply the ADMM, for the convex optimization formulated as in (2.15),
we define the augmented Lagrangian

Lν(x, y, λ) = f(x) + g(x) + h(y) + ⟨λ,Ax+By − c⟩+ ν

2
∥Ax+By − c∥22

(2.16)

for ν > 0, and repeatedly update via the equations

x(k+1) = argmin
x

Lν(x, y
(k), λ(k))

y(k+1) = argmin
y

Lν(x
(k+1), y, λ(k))

λ(k+1) = λ(k) + ν(Ax(k+1) +By(k+1) − c)

from the initial values y(0) and λ(0) until convergence to obtain the solution.
An extension of the ADMM method modifies the update formula with positive

semidefinite matrices Q ⪰ O, P ⪰ O as follows:

x(k+1) = argmin
x∈Rn

{
Lν(x, y

(k), λ(k)) +
1

2
(x− x(k))TQ(x− x(k))

}
,

y(k+1) = argmin
y∈Rm

{
Lν(x

(k+1), y, λ(k)) +
1

2
(y − y(k))TP (y − y(k))

}
,

λ(k+1) = λ(k) + ν(Ax(k+1) +By(k+1) − c).

The advantage of this extension is that, by using η1 ≥ νλmax(A
TA), η2 ≥ νλmax(B

TB)
and setting Q = η1I − νATA ⪰ O, P = η2I − νBTB ⪰ O, the updates for x, y

7

become diagonalized, resulting in

x(k+1) = argmin
x∈Rn

{
f(x) + g(x)

+
η1
2

∥∥∥∥x− (
x(k) − ν

η1
AT (Ax(k) +By(k) − c+ λ(k)/ν)

)∥∥∥∥2

2

}
,

y(k+1) = argmin
y∈Rm

{
h(y)

+
η2
2

∥∥∥∥y − (
y(k) − ν

η2
BT (Ax(k+1) +By(k) − c+ λ(k)/ν)

)∥∥∥∥2

2

}
.

This makes it unnecessary to consider the diagonal components of the quadratic
forms, simplifying the solution of many problems. Particularly, the methods for
updating x, y as in the above equations are referred to as the Alternating Proximal
Gradient Method (APGM)[14].

2.6 Alternating minimization algorithm
The Alternating Minimization Algorithm (AMA) [15] assumes that either f or g
is strongly convex and slightly modifies the x-update in ADMM. Specifically, the
update for x involves setting a positive optimization parameter to 0. The algorithm
is repeated as follows:

x(k+1) = argmin
x∈Rn

{
L0(x, y

(k), λ(k))
}
,

y(k+1) = argmin
y∈Rm

{
Lν(x

(k+1), y, λ(k))
}
,

λ(k+1) = λ(k) + ν(Ax(k+1) +By(k+1) − c).

Although it is necessary for either f or g to be strongly convex, AMA has the
potential to solve problems faster than ADMM. In fact, for convex clustering, it
can solve significantly faster than ADMM[16]. This method is equivalent to the
proximal gradient method for the dual problem, so if ν is too large, it may not
converge, necessitating appropriate optimization parameter settings.

2.7 Iterative methods and convergence rates
Many optimization algorithms for sparse estimation problems are expressed as
iterative methods. Here, an iterative method involves generating a sequence con-

8

verging to the optimal solution by updating from an initial value x(0) to x(0), . . . , x(k).
It is necessary to choose a method for selecting the initial value x(0) and for updat-
ing the sequence so that the generated sequence {x(k)} converges to the optimal
solution as quickly as possible. In this thesis, we define measures for evaluating
the convergence speed as follow:

Definition 1. Let {x(k)} ⊂ Rn converge to x∗, and let x(k) ̸= x∗ for all k. Then
we say that x(k) converges to x∗

1. linearly if

lim sup
k→∞

∥x(k+1) − x∗∥2
∥x(k) − x∗∥2

< 1 (2.17)

2. superlinearly if

lim
k→∞

∥x(k+1) − x∗∥2
∥x(k) − x∗∥2

= 0 (2.18)

3. quadratically if

lim sup
k→∞

∥x(k+1) − x∗∥2
∥x(k) − x∗∥22

<∞ (2.19)

If {x(k)} converges to x∗ linearly, then there exists constants C > 0, r ∈ (0, 1)
such that

∥x(k) − x∗∥2< Crk

For superlinear convergence, there exists a sequence {r(k)} with r(k) ↘ 0 as
k →∞ such that

∥x(k) − x∗∥2< C

k∏
j=1

r(j)

Furthermore, for quadratic convergence, there exists constants C > 0, r ∈ (0, 1)
such that

∥x(k) − x∗∥2< Cr2
k

Thus, it is evident that quadratic convergence is faster than linear convergence.
The optimization algorithms used in sparse estimation vary in convergence

speed depending on the problem setting, but can be broadly classified into first-
order methods, which converge linearly, and second-order methods, which con-
verge superlinearly or quadratically, as shown in Table 2.1. The characteristic of
first-order methods is that they have a low computational cost per iteration and

9

can solve some problems quickly. However, they require many iterations due to
slow convergence towards the solution, and their speed greatly varies depending
on the optimization parameters. On the other hand, second-order methods have
a high computational cost per iteration, but converge quickly, allowing for high-
precision solutions with fewer iterations. This doctoral thesis discusses first-order
methods in Chapter 3 and second-order methods in Chapter 4.

Table 2.1: Classification of optimization methods

First-Order Methods Second-Order Methods

Proximal Gradient Method Proximal Newton Method
Coordinate Descent Method Proximal Quasi-Newton Method
ADMM Interior Point Method
Chapter 3 Chapter 4

10

Chapter 3

Converting ADMM to the proximal
gradient method

3.1 Introduction
In this chapter, we focus on the efficiency of sparse estimation procedures. In
particular, we are motivated by the following observation. Two main approaches
to finding the solution of lasso are the proximal gradient method and ADMM
(alternating direction method of multipliers)[17, 18]. For detailed descriptions
of the two procedures. We wonder why some procedures, such as fused lasso
and graphical lasso, use ADMM, while others, such as group lasso and convex
clustering, use the proximal gradient method. It seems that the proximal gradient
method is more efficient than ADMM because efficient modifications such as the
fast iterative shrinkage-thresholding algorithm (FISTA)[11] can be easily used for
the former whereas inverse matrix computation is inevitable for the latter. The
main contribution of this chapter is the following claim:

The sparse estimation procedure that is realized by ADMM can
be transformed to a sparse estimation procedure that is realized
by the proximal gradient method as long as its Lipschitz constant
exists.

This implies that sparse estimation will be improved if the proximal gradient-
based procedure with a Lipschitz constant is more efficient than the ADMM-based
procedure.

The Lipschitz condition is satisfied by adding a regularization term such as the
L1, L2-norm to the loss function of linear regression, such as Lasso, Sparse group
lasso, Sparse convex clustering, and trend filtering. The Lipschitz condition is
also satisfied by adding a regularization term to the loss function of logistic loss
or cox regression, which is used when the target variable is binary or multilevel.

11

The remainder of this chapter is organized as follows. Section 3.2 presents
work that is related to the results in this chapter. Section 3.3 derives a general
method for converting a problem that is solved by ADMM to a problem that is
solved by the proximal gradient method. Sections 3.4 and 3.5 apply it to sparse
convex clustering[19] and trend filtering[20] to evaluate its performance. Finally,
Section 3.6 summarizes the results of this chapter.

3.2 Related work
The optimization problem that is considered in this chapter is

min
x

f(x) + g(x) + h(Ax) . (3.1)

for convex f, g : Rn → R, h : Rm → R and A ∈ Rm×n, where f is differentiable,
∇f is Lipschitz continuous with parameter Lf > 0, and h is a closed convex
function. For example, in sparse convex clustering[19], f is the loss function, and
g, h are regularization terms (constraints). The dual problem for (3.1) is

min
y∈Rm

(f + g)∗(−ATy) + h∗(y) , (3.2)

where (f + g)∗, h∗ are the conjugate functions of f + g, h.
For optimization problems such as (3.1), sparse estimation often uses the prox-

imal gradient method when, for example, h ≡ 0, and ADMM otherwise. Al-
though the implementation of ADMM is simple and it can be applied to various
problems, it is often computationally expensive. For example, we often need to
compute the inverse matrix to solve the optimization problem. To simplify the
computation, there are generalized ADMM [14, 21] which apply the proximal
gradient method to ADMM. Nevertheless, the convergence becomes slow when n
is large.

In addition, we may use the alternating minimization algorithm (AMA)[15,
22], which slightly modifies the ADMM steps. We can regard it as an application
of the proximal gradient method to the dual problem (3.2). However, this requires
either f or g to be strongly convex and have narrow applicability. In addition,
when row m of A is large, it becomes a proximal gradient method with many
dimensions, and convergence becomes slow.

In this chapter, we apply the proximal gradient method to method of multiplier
[23] to convert the ADMM problem to a proximal gradient method problem and
solve it. Since the proposed method applies the proximal gradient method to the
main problem, it can solve the problem quickly when, for example, m is large.

12

3.3 The proposed method
(3.1) is equivalent to the following:

min
x,y

f(x) + g(x) + h(y) (3.3)

subject to Ax = y .

If we apply ADMM, then the augmented Lagrangian (2.16) for (3.3) is

Lν(x, y, λ) = f(x) + g(x) + h(y) + ⟨λ,Ax− y⟩+ ν

2
∥Ax− y∥22 (3.4)

for ν > 0.
In the proposed method, we update x, y simultaneously via the

(x(k+1), y(k+1)) = argmin
x,y
{Lν(k)(x, y, λ

(k))} (3.5)

λ(k+1) = λ(k) + (Ax(k+1) − y(k+1))

from the initial value λ(0). Although, in general, changing the value ν for each
k may improve the performance, we set ν to be constant to proceed with the
derivation, making the notation simple.

To update via (3.5), we consider the minimization of

ϕ(x) : = min
y
Lν(x, y, λ

(k))

= f(x) + g(x) + min
y
{h(y) + ⟨λ(k), Ax− y⟩+ ν

2
∥Ax− y∥22}

w.r.t. y.

Theorem 1. If we define ϕ1(x) := f(x)+miny{h(y)+ ⟨λ(k), Ax− y⟩+ ν
2
∥Ax−

y∥22}, then ϕ1 is differentiable and we have

∇ϕ1(x) = ∇f(x) + AT (proxνh∗(νAx+ λ(k))). (3.6)

Proof. we define the function ψ(x) obtained by removing f(x), g(x) from ϕ(x):

ψ(x) : = min
y
{h(y) + ⟨λ(k), Ax− y⟩+ ν

2
∥Ax− y∥22}

= min
y
{h(y) + ν

2
∥y∥22−⟨y, νAx+ λ(k)⟩}+ ⟨λ(k), Ax⟩+ ν

2
∥Ax∥22 (3.7)

= −max
y
{⟨y, νAx+ λ(k)⟩ − h(y)− ν

2
∥y∥22}+ ⟨λ(k), Ax⟩+

ν

2
∥Ax∥22

= −r∗(νAx+ λ(k)) + ⟨λ(k), Ax⟩+ ν

2
∥Ax∥22 , (3.8)

13

where r(u) := h(u) + ν
2
∥u∥22 and r∗(v) := supu{⟨u, v⟩− r(u)}. Because the first

term of (3.7) can be written as

min
y
{h(y) + ν

2
∥y − (Ax+

λ(k)

ν
)∥22−

ν

2
∥Ax+ λ(k)

ν
∥22} ,

the quantity h(y) + ⟨λ(k), Ax− y⟩+ ν
2
∥Ax− y∥22 is minimized when

y∗(x) = proxν−1h(Ax+ ν−1λ(k)) (3.9)

where proxν−1h(·) is the proximal map defined in (2.9). Then, we notice the
following lemma:

Lemma 1 ([24] Theorem 26.3). Assume that s : Rm → R is closed and strongly
convex. Then, conjugate function s∗ is differentiable and∇s∗(v) = argmax

u∈Rm

{⟨u, v⟩−

s(u)} for v ∈ Rm.

From Lemma1, we have

∇r∗(v) = argmax
u
{⟨u, v⟩ − r(u)} = argmax

u
{⟨u, v⟩ − h(u)− ν

2
∥u∥22}

= argmin
u
{1
2
∥u∥22+

1

ν
h(u)− ⟨v

ν
, u⟩}

= argmin
u
{1
2
∥u− v

ν
∥22+

1

ν
h(u)}

= proxh/ν(
v

ν
) . (3.10)

If we substitute v = νAx+ λ(k) into (3.10), we have

∇r∗(νAx+ λ(k)) = νATproxh/ν(Ax+ ν−1λ(k)) . (3.11)

Moreover, we notice another lemma:

Lemma 2 ([25]). If the function s : Rm → R is convex, then for any z ∈ Rm and
γ > 0, we have

proxγs(z) + γproxs∗/γ(γ
−1z) = z

.

From Lemma 2, (3.8), and (3.11), we have

∇ϕ1(x) = ∇f(x) + ATλ(k) + νATAx− νATproxh/ν(Ax+ ν−1λ(k))

= ∇f(x) + AT (proxνh∗(νAx+ λ(k))) .

14

Since ϕ(x) = f(x) + g(x) + ψ(x) = ϕ1(x) + g(x) can be expressed by the
sum of differentiable ϕ1(x) and nondifferentiable g(x), the minimization can be
solved via the proximal gradient: update each time via

x(l+1) = proxηg(x
(l) − η∇ϕ1(x

(l))) (3.12)

(see Section 2.3), where parameter η > 0 is η ≤ 1
L

for L > 0 such that

∥∇ϕ1(x1)−∇ϕ1(x2)∥2≤ L∥x1 − x2∥2

Then, convergence is guaranteed.

Lemma 3. If the function h : Rm → R is convex, then

∥proxh(x)− proxh(y)∥2≤ ∥x− y∥2 for ∀x, y ∈ Rm .

Proof. Let u := proxh(x), v := proxh(y). Then, because u minimizes h(u) +
1
2
∥x − u∥22, if we subdifferentiate it by u and equate it to be zero, there exists
s ∈ ∂h(u) such that s + u − x = 0. Similarly, we have t := y − v is in ∂h(v).
Because the convexity of h means ⟨u− v, s− t⟩ ≥ 0, we have

∥x− y∥22 = ∥u+ s− (v + t)∥22
= ∥u− v∥22+2⟨u− v, s− t⟩+ ∥s− t∥22≥ ∥u− v∥22 .

Theorem 2. If ∇f is Lipschitz continuous with parameter Lf , then for any
x1, x2 ∈ Rn, we have

∥∇ϕ1(x1)−∇ϕ1(x2)∥2≤ (Lf + νλmax(A
TA))∥x1 − x2∥2. (3.13)

Proof. From Lemma 3, for x1, x2 ∈ Rn, we have

∥AT (proxνh∗(νAx1 + λ(k)))− AT (proxνh∗(νAx2 + λ(k)))∥2
≤

√
λmax(ATA)× ∥proxνh∗(νAx1 + λ(k))− proxνh∗(νAx2 + λ(k))∥2

≤
√
λmax(ATA)× ∥νAx1 + λ(k) − (νAx2 + λ(k))∥2

≤ νλmax(A
TA)∥x1 − x2∥2. (3.14)

Thus, when∇f is Lipschitz continuous with parameter Lf , we have

∥∇ϕ1(x1)−∇ϕ1(x2)∥2≤ (Lf + νλmax(A
TA))∥x1 − x2∥2, (3.15)

15

Algorithm 1 (FISTA for minϕ(x))
Input :z(0), output :z(∞)

1. Initialize u(1) = z(0), η ∈ (0, 1), α1 = 1.

For j = 1, 2, . . .

2. (Update z)
z(j) = proxηg(u

(j) − η∇ϕ1(u
(j)))

3. (Update α and u)

αj+1 =
1 +

√
1 + 4α2

j

2

u(j+1) = zj +
αj − 1

αj+1

(zj − zj−1)

4. Repeat Steps 2-3 until convergence to obtain z = z(∞).

In Theorem 2, the proximal gradient converges for η := 1/(Lf+νλmax(A
TA)).

Hence, it is possible to solve (3.5) efficiently when∇f is Lipschitz continuous.
The procedure (3.12) is not as efficient as FISTA [11]. We show the modifica-

tion to FISTA in Algorithm 1.
Similarly, if we put z = ν−1λ(k) + Ax, γ = ν−1 in Lemma 2, from (3.9), we

obtain

λ(k) + ν(Ax− y∗(x)) = proxνh∗(νAx+ λ(k)) . (3.16)

Thus, the update of λ is

λ(k+1) = proxνh∗(λ(k) + νAx(k+1)) (3.17)

and we do not have to update the value of y because it is not required to update
x, λ.

We show the actual procedure in Algorithm 2.

3.4 Application to sparse convex clustering
Let X1·, X2·, . . . , Xn· ∈ Rp be the n observations w.r.t. p variables. Let Ui· and uj
be the row and column vectors of a matrix U ∈ Rn×p.

16

Algorithm 2 (Proposed Method for solveing (3.3))
Input: x(1), λ(1), output: x(∞), λ(∞)

1. Initialize ν > 0.

For k = 1, 2, . . .

2. (Update x)

Give x(k) as input to Algorithm 1 and take as output the value x(k+1).

3. (Update λ)
λ(k+1) = proxνh∗(λ(k) + νAx(k+1))

4. Repeat Steps 2-3 until convergence to obtain x = x(∞) and λ = λ(∞).

The optimization of sparse convex clustering [19] is formulated as follows:

min
U

1

2

n∑
i=1

∥Xi· − Ui·∥22+γ1
∑

(i,j)∈E

w(i,j)∥Ui· − Uj·∥2+γ2
p∑

j=1

rj∥uj∥2 , (3.18)

where γ1, γ2 ≥ 0 are the regularized parameters, w(i,j) and rj ≥ 0 are nonnegative
constants (weights), and E = {(i, j);wij > 0, 1 ≤ i < j ≤ n}.

The objective function is the sum of the convex clustering’s objective function
and the group lasso regularization term. Since all the elements associated with
uj are expected to become zeros simultaneously when γ2 is large, sparse convex
clustering can choose relevant variables for clustering.

To apply the proposed method, we rewrite (3.18) as follows.

min
U

1

2

n∑
i=1

∥Xi· − Ui·∥22+γ1
∑

(i,j)∈E

w(i,j)∥v(i,j)∥2+γ2
p∑

j=1

rj∥uj∥2 (3.19)

subject to Ui· − Uj· − v(i,j) = 0 ((i, j) ∈ E)

We note that the optimization with the constraints above is equivalent to the min-
imization of the augmented Lagrangian below:

Lν(U, V,Λ) =
1

2

n∑
i=1

∥Xi· − Ui·∥22+γ1
∑

(i,j)∈E

w(i,j)∥v(i,j)∥2+γ2
p∑

j=1

rj∥uj∥2

+
∑

(i,j)∈E

⟨λ(i,j), v(i,j) − Ui· + Uj·⟩+
ν

2

∑
(i,j)∈E

∥v(i,j) − Ui· + Uj·∥22

17

3.4.1 Application of the proposed method
In the following, we define AE by AEU = (ui,k − uj,k)(i,j)∈E,k=1,...,p, and denote
⟨B,C⟩ = trace(BTC) for matrix B,C. If we define

f(U) : =
1

2

n∑
i=1

∥Xi· − Ui·∥22=
1

2
∥X − U∥2F (3.20)

g(U) : = γ2

p∑
j=1

rj∥uj∥2 (3.21)

h(V) : = γ1
∑

(i,j)∈E

w(i,j)∥v(i,j)∥2 , (3.22)

then we have

Lν(U, V,Λ) = f(U) + g(U) + h(V) + ⟨Λ, V − AEU⟩+
ν

2
∥V − AEU∥2F ,

(3.23)

and can apply the proposed method.
Then, we consider the proximal gradient map of h∗. If we define r(x) :=

C∥x∥2, then we have

r∗(y) =

{
0 if ∥y∥2≤ C

∞ otherwise
, (3.24)

which means that for Z = (z(i,j),k)(i,j)∈E,k=1,...,p, we have

h∗(Z) =

{
0 if ∥z(i,j)∥2≤ γ1w(i,j) for ∀(i, j) ∈ E
∞ otherwise

. (3.25)

Hence, if we map PC(Z) ontoC = {Z ∈ RE×p; ∥z(i,j)∥2≤ γ1w(i,j) for (i, j) ∈
E} of Z, we have

proxνh∗(Λ(k) + νAEU
(k+1)) = PC(Λ

(k) + νAEU
(k+1)) .

Finally, we consider the constant L such that ∥∇Uϕ1(U1) − ∇Uϕ1(U2)∥F≤
L∥U1 − U2∥F . From Lemma 3, we have

∥AT
E (proxνh∗(Λ + νAEU1)− proxνh∗(Λ + νAEU2))∥F

≤
√
λmax(AT

EAE)× ∥proxνh∗(Λ + νAEU1)− proxνh∗(Λ + νAEU2)∥F

≤
√
λmax(AT

EAE)× ∥Λ + νAEU1 − Λ− νAEU2∥F
≤ νλmax(A

T
EAE)∥U1 − U2∥F . (3.26)

18

Since∇Uf(U) = U −X , we have

∥∇Uϕ1(U1)−∇Uϕ1(U2)∥F
≤ ∥∇Uf(U1)−∇Uf(U2)∥F+∥AT

E (proxνh∗(Λ + νAEU1)− proxνh∗(Λ + νAEU2))∥F
≤ ∥U1 − U2∥F+νλmax(A

T
EAE)∥U1 − U2∥F , (3.27)

which means that the Lipshitz constant of ∇Uϕ1(U) is upperbounded by 1 +
νλmax(A

T
EAE). For the derivation of λmax(A

T
EAE) and the setting of parameter

η, see Appendix A.1.

3.4.2 Experiments

We constructed all the programs via Rcpp1. The AMA is an alternative to the
ADMM such that the first step x(k+1) = argminxLν(x, y

(k), λ(k)) is replaced by
x(k+1) = argminxL0(x, y

(k), λ(k)) in Section 2.2. While the differences between
the two algorithms appear to be minor, complexity analysis and numerical exper-
iments show AMA to be significantly more efficient [16].

In all experiments, parameter of proposed method is η = 1
1+νk maxi Gii

in Ap-
pendix A.1 and ν1 = 1, νk+1 = 1.1νk.Furthermore, the number of features that
affect the clusters was set to ptrue = 20.

The data were set to n = 1, 000 and p = 500, and 250 data points were gen-
erated independently from each of the Gaussian distributions with four different
means. As parameters, wij used ϕ = 0.5

p
, k = 5, and vi was set to 1. Figure 3.1

shows the change in calculation time when we fix γ2 = 10 and change γ1. In Fig-
ure 1, we can see that the computation time of AMA changes significantly when
γ1 changes. In particular, the AMA takes up to 230 seconds when γ1 is larger
than 5, i.e., when the size of each cluster is large. However, the computation time
of the proposed method is stable even when γ1 changes. Furthermore, the max-
imum computation time is only about 10 seconds for all γ1, indicating that the
computation time can be reduced.

Figure 3.2 shows the change in the calculation time when we fix γ1 = 10 and
change γ2 for the same data. We can see that when we change γ2, the calculation
time of AMA changes greatly depending on the value of γ2, similar to the γ1 case.
In particular, the AMA takes a long time when γ2 is small, i.e., when the result has
few zeros and is not sparse, and the maximum time is about 350 seconds. When
γ2 is large and the solution is sparse, AMA takes less time to compute. In the
proposed method, the fluctuation of the calculation time due to γ2 is small, and
the calculation time is shorter than that of AMA for all γ1.

1The source code used in the experiments is available at https://github.com/Theveni/S
CC˙TF.

19

https://github.com/Theveni/SCC_TF
https://github.com/Theveni/SCC_TF

0

50

100

150

200

0.0 2.5 5.0 7.5 10.0
γ1

tim
e[

s]
AMA
Proposed

Figure 3.1: The changes in computation
time due to γ1

0

100

200

300

0.0 2.5 5.0 7.5 10.0
γ2

tim
e[

s]

AMA
Proposed

Figure 3.2: The changes in computa-
tional time due to γ2

Moreover, we show in Figure 3.3 comparison of computation times for propothd
method, generalized ADMM, AMA when we fix p = 500, γ1 = 10, γ2 = 10 and
change the number n of data. AMA-FISTA is the calculation time when FISTA is
applied to AMA. The data are generated by n

5
from a Gaussian distribution with

five different means. In Figure 3.3, both AMA and AMA-FISTA show a large
increase in computation time with respect to the increase in sample size, and the
computation time is larger when the sample size is large than the other methods.
The generalized ADMM takes the longest computation time when the sample size
is small, but when the sample size becomes large, it can solve the problem more
efficiently than AMA and AMA-FISTA. It can be seen that the proposed method
has the smallest increase in computation time with increasing sample size, and the
computation time is the shortest for all sample sizes.

Furthermore, we show in Figure 3.4 comparison of computation times for
propothd method, generalized ADMM, AMA when we fix n = 500, γ1 = 5, γ2 =
5 and change the number p of variables. The data were generated by 100 each from
a Gaussian distribution with five different means. Both AMA and AMA-FISTA
have long computation times when the feature dimension is small, but they have
the shortest computation time when the feature dimension is large and the solution
is sparse. On the other hand, generalized ADMM has a short computation time
when the feature dimension is small, but when the feature dimension is large, the
computation time is larger than the other methods. The proposed method has the
shortest computation time when the feature dimension is small, and the computa-
tion time is almost the same as that of AMA even when the feature dimension is
large and sparse, indicating that it can solve the problem efficiently in all cases.

20

1

10

100

1000

100 1000
sample size

tim
e[

s]

AMA
AMA-FISTA
genADMM
proposed

Figure 3.3: The changes in computa-
tional time due to the number n of vari-
ables

1

10

100

100 1000
feature dimension

tim
e[

s]

AMA
AMA-FISTA
genADMM
proposed

Figure 3.4: The changes in computa-
tional time due to the number p of data

3.5 Application to trend filtering
The trend filtering optimization problem is formulated as

min
x∈Rn

1

2
∥y − x∥22+γ∥D(k+1)x∥1 (3.28)

for an integer k ≥ 0 and the observed data y = (y1, . . . , yn)
T ∈ Rn, where γ ≥ 0

is the tuning parameter and D(k+1) is the difference matrix of the order k+1 such
that

D(1) =

−1 1 0

−1 1
.

0 −1 1

for k = 0, and

D(k+1) = D(1)D(k) .

In Figures 3.5 and 3.6, we show an example applied to sin θ(0 ≤ θ ≤ 2π)
when k = 1 and k = 2. The points are the observation data, and the solid lines
are obtained by smoothing via trend filtering. We observe that the output becomes
smoother as the degree k increases.

21

0 2π

-1
0

1

Position

Tr
en

d
fil

te
ri

ng
es

tim
at

e

Figure 3.5: Trend filtering with order
k = 1

0 2π

-1
0

1

Position

Tr
en

d
fil

te
ri

ng
es

tim
at

e
Figure 3.6: Trend filtering with order
k = 2

3.5.1 Application of the proposed method
To apply the proposed method, we rewrite (3.28) as follows.

min
x,z

1

2
∥y − x∥22+γ∥z∥1 (3.29)

subject to D(k+1)x = z

The augmented Lagrangian becomes

Lν(x, y, λ) =
1

2
∥y − x∥22+γ∥z∥1+⟨λ, z −D(k+1)x⟩+ ν

2
∥z −D(k+1)x∥22 .

If we define

f(x) : =
1

2
∥y − x∥22 (3.30)

g(x) : = 0 (3.31)
h(z) : = γ∥z∥1 , (3.32)

then we have

Lν(x, z, λ) = f(x) + g(x) + h(z) + ⟨λ, z −D(k+1)x⟩+ ν

2
∥z −D(k+1)x∥22 .

(3.33)

22

For this case, we have proxηg(x−η∇ϕ1(x)) = x−η∇ϕ1(x) due to g(x) = 0, and
the update of (3.5) is the standard gradient method rather than the proximal gradi-
ent. The upper bound of the Lipshitz constant in∇ϕ1(x) is 1+νλmax((D

(k+1))TD(k+1)),
which can be derived from a similar discussion in Section 3.4. For the evaluation
of λmax((D

(k+1))TD(k+1)) and setting of parameter η > 0, see Appendix A.2.

3.5.2 Experiments
We constructed all the programs via Rcpp . Because the purpose of this chapter
is to establish the theory of transformation from the ADMM to the proximal gra-
dient we do not relate comparison with an ADMM procedure proposed in [26]
that improves performance, considering an efficient computation of the difference
matrix.

In all experiments, parameter of proposed method is η = 1
1+νk4k+1 in Appendix

A.2 and ν1 = 1, νk+1 = 1.1νk.
We generate n = 1, 000 data by adding noise to sin θ, as shown in Figures 3.5,

3.6. Figure 3.7, 3.8 shows the change in calculation time when the value of γ is
changed with respect to k = 1, 2. For k = 1, the computation time increases as
γ increases for both ADMM and the proposed method. The computation time of
the proposed method is shorter than that of ADMM for all γ, and for large γ, i.e.,
the computation time is about 1

4
in the sparse case where D(k)β of the solution β

has many 0.
In the case of k = 2, as in the case of k = 1, the computation time of both

methods increases as γ increases. When γ is small, the ADMM and the proposed
method have similar computation times, but when γ is large, the computation time
is 1

3
. The results show that the proposed method is more efficient than ADMM in

both cases of k = 1, k = 2.

3.6 Summary
In this chapter, we proposed a general method to convert the solution of the opti-
mization problem by ADMM to the solution using the proximal gradient method.
In addition, numerical experiments showed that it can be applied to sparse esti-
mation problems such as sparse convex clustering and trend filtering, resulting in
significant efficiency improvements.In particular, for both sparse convex cluster-
ing and trend filtering, the proposed method is much more efficient than existing
methods such as ADMM when the regularization parameter is large such that the
results are sparse. This suggests that the proposed method can perform efficient
computation by making good use of the sparsity that the result becomes zero.

In applying the proposed method, it is premised that a Lipschtz constant or an

23

0

3

6

9

12

1 100 10000
γ

tim
e[

s]

ADMM
Proposed

Figure 3.7: The changes in computa-
tional time due to γ when k = 1

0

5

10

15

1e+011e+031e+051e+07
γ

tim
e[

s]

ADMM
Proposed

Figure 3.8: The changes in computa-
tional time due to γ when k = 2

upper bound is obtained. This method is expected to apply not only to existing
sparse estimation problems but also to many problems of adding two regulariza-
tion terms to the loss function. In that case, the problem of finding an efficient
solution is reduced to the problem of finding the Lipschtz coefficient.

In this study, we focus on sparse estimation and its surrounding problems,
however, it is necessary to actively apply it to optimization problems in general
and further clarify its effectiveness.

24

Chapter 4

Newton-type methods with proximal
gradient step

4.1 Introduction
In this chapter, we propose a new method to efficiently solve convex optimiza-
tion problems encountered in statistics and machine learning, particularly those
involving sparse estimation. We consider optimization problems of the form:

min
x∈Rn

f(x) + g(x) (4.1)

for convex f : Rn → R, g : Rn → R ∪ {+∞}, where f is a loss function that
is twice differentiable and µ-strongly convex (µ > 0) and g is a regularization
term that is closed convex. We define the strong convexity in Section 2.1. Most
sparse estimation problems can be formulated as (4.1). For example, for λ > 0,
f(x) = ∥Ax − b∥22 and g(x) = λ∥x∥1 in lasso [3] and g(x) = λ

∑J
j=1∥xIj∥2

where Ij, j = 1, . . . , J are the index sets in group lasso [5], where ∥·∥2 and ∥·∥1
are the L2-norm and L1-norm, respectively. To solve this problem efficiently, we
propose methods to find a fixed point of the proximal gradient method, which can
be used more broadly than in sparse estimation.

The proximal gradient and proximal Newton methods are commonly used to
solve similar optimization problems, but they have limitations. The proximal gra-
dient method can perform each update quickly, but it converges slowly and re-
quires many updates. On the other hand, the proximal Newton method converges
rapidly, but the computational cost of each update becomes high. Moreover, there
are some issues with the efficiency of the proximal Newton method, mainly when
applied to group sparsity problems.

In recent research, a method to find fixed points of the proximal gradient
method has been discussed in [27]. The semismooth Newton method can be used

25

to solve this problem, and is algorithmically equivalent to the approach proposed
in [28, 29, 30]. In addition, stochastic methods have been suggested as an al-
ternative [31, 32]. However, both methods require the Lipschitz constant for the
first derivative of the loss function (∇f), and no reports have been made on their
convergence when this constant is unknown or absent. In this study, we prove
the convergence of the semismooth Newton method when the Lipschitz condition
of ∇f is eliminated and extend the theory. Recently, a similar method has been
proposed using the semismooth Newton method to find a fixed point of ADMM,
which can efficiently obtain high-precision solutions [33, 34].

To overcome these limitations, we propose new methods that find the fixed
point of the proximal gradient method efficiently, even when the Lipschitz con-
stant is unknown. We also extend the theory to prove the convergence of the
semismooth Newton method under such conditions. Additionally, we introduce
a new quasi-Newton method that approximates only the second derivative of the
loss function to avoid computing the Hessian matrix and improve efficiency.

The main contributions of this study are: (1) conducting a more detailed anal-
ysis of the semismooth Newton method under the assumption of strong convexity,
(2) proposing a new quasi-Newton method that avoids computing the Hessian
matrix and establishing its superlinear convergence, and (3) demonstrating the
efficiency of the proposed methods in solving convex optimization problems en-
countered in statistics and machine learning through numerical experiments.

In general, our proposed methods offer a more efficient and effective way to
solve convex optimization problems encountered in sparse estimation. Especially
in sparse estimation techniques such as L1 regularization and group regulariza-
tion, our proposed method can efficiently find solutions by performing variable
selection using the proximal gradient method with each update.

The remainder of this chapter is organized as follows. In Section 4.2, we
provide background knowledge to understand this chapter. Section 4.3 presents
works that are related to the results in this chapter. Section 4.4 presents the semis-
mooth Newton method and proves its local convergence. Section 4.5 presents the
new quasi-Newton method and proves its local convergence. In Section 4.6, we
empirically evaluate the performance of the proposed methods. Finally, Section
4.7 summarizes the results of this chapter.

26

4.2 Optimality conditions and linear Newton approx-
imations

4.2.1 Optimality conditions
Proposition 1 ([13]). Suppose that f : Rn → R is a differentiable convex function
and g : Rn → R ∪ {+∞} is a closed convex function. Then, the following are
equivalent for all ν > 0:

x∗ ∈ argmin
x∈Rn

f(x) + g(x) (4.2)

0 ∈ ∇f(x∗) + ∂g(x∗) (4.3)
x∗ = proxνg(x

∗ − ν∇f(x∗)) (4.4)

We define the function Fν : Rn → Rn for ν > 0 as

Fν(x) := x− proxνg(x− ν∇f(x)). (4.5)

From Proposition 1, x such that Fν(x) = 0 minimizes (4.1). Therefore, by solving
the nonlinear equation Fν(x) = 0, we can find x that minimizes (4.1). In this
chapter, we consider Newton and quasi-Newton methods that solve Fν(x) = 0 for
all ν > 0. In addition, considering the updating equation of the proximal gradient
method

x(k+1) = proxνg(x
(k) − ν∇f(x(k))), (4.6)

Fν can be interpreted as the difference Fν(x
(k)) = x(k) − x(k+1) in the proximal

gradient method.

4.2.2 Linear Newton approximations

Definition 2. If A(x) is a subset of Rn×n for each x ∈ Rn, then A is called
a set-valued function, and we write A : Rn ⇒ Rn×n. A set-valued function
A : Rn ⇒ Rn×n is upper-semicontinuous at x ∈ Rn if for any ϵ > 0, there exists
δ > 0 such that for all y ∈ Rn,

∥x− y∥2< δ ⇒ A(y) ⊂ A(x) + B(O, ϵ), (4.7)

where O is a matrix with all elements zero, B(B, δ) := {A ∈ Rn×n | ∥A − B∥<
δ}, and ∥·∥ denotes the operator norm.

27

We will apply the Newton method using the derivative with respect to Fν

defined in (4.5), but, in general, proxνg is not differentiable. However, proxνg
is Lipschitz continuous with parameter 1, which means that ∀x ∈ Rn,∀y ∈
Rn, ∥proxνg(x) − proxνg(y)∥2≤ ∥x − y∥2. Thus, we define a B-subdifferential,
which generalizes the derivative for Lipschitz continuous functions, as follows.

Definition 3. Let F : Rn → Rn be Lipschitz continuous. The B-subdifferential of
F at x ∈ Rn is

∂BF (x) =
{
V ∈ Rn×n | ∃{x(k)} ⊂ DF , such that x

(k) → x, ∇F (x(k))→ V
}
,

(4.8)

whereDF is the subset of Rn for whichF is differentiable, i.e., the B-subdifferential
is the set of V such that there exists a sequence {x(k)} that satisfies the follow-
ing three conditions: 1. F is differentiable for all x(k), 2. x(k) → x, and 3.
∇F (x(k))→ V .

If F : Rn → Rn is Lipschitz continuous, then ∂BF (x) is a compact and non-
empty subset of Rn×n, and the set-valued function ∂BF is upper-semicontinuous
at every x ∈ Rn [35, proposition 2.2]. If F is differentiable at x, then ∂BF (x) =
{∇F (x)}. In particular, if f : Rn → R is twice differentiable at x, then ∂B (∇f(x)) =
{∇2f(x)}. In this chapter, we approximate Fν defined in (4.5) using ∂Bproxνg,
which is the B-subdifferential of proxνg. Thus, it is important to approximate Fν ,
for which we define the following linear Newton approximation.

Definition 4 ([36], Definition 7.5.13). Let F : Rn → Rn be continuous. We say
that a set-valued function A : Rn ⇒ Rn×n is a linear Newton approximation
(LNA) of F at x ∈ Rn if A has compact images and is upper-semicontinuous at x
and

∥F (x)− F (y)− A(x− y)∥2= o(∥x− y∥2) as y → x. (4.9)

for y ∈ Rn and any A ∈ A(y). If instead

∥F (x)− F (y)− A(x− y)∥2= O(∥x− y∥22) as y → x (4.10)

for y ∈ Rn and anyA ∈ A(y), then we say thatA : Rn ⇒ Rn×n is a strong linear
Newton approximation (strong LNA) of F at x ∈ Rn.

If F has an LNA, then there exists a matrix A that can approximate F (y) −
F (x). For example, if F (x) = x and A(x) = {I} for any x, then

∥x− y − I(x− y)∥2= 0

28

for any x, y ∈ Rn and A is a strong LNA of F (x) = x for every x ∈ Rn.
In general, if f : Rn → R is twice differentiable at x ∈ Rn, then by using
∇2f : Rn → Rn×n, which is the Hessian of f , and setting B(x) = {∇2f(x)} for
any x ∈ Rn, we find that B is an LNA of∇f for every x and

∥∇f(x)−∇f(y)−∇2f(y)(x− y)∥2= o(∥x− y∥2) as y → x

holds. In particular, if ∇2f is Lipschitz continuous, i.e., there exists Lf > 0 such
that ∥∇2f(x) − ∇2f(y)∥≤ Lf∥x − y∥2 for any x, y ∈ Rn, then B is a strong
LNA of ∇f for every x. Here, since I and ∇2f are continuous functions on Rn,
it is apparent that both A and B are upper semicontinuous. However, if F is not
differentiable, we need to determine whether ∂BF is an LNA of F . In this chapter,
we construct an LNA of proxνg using ∂Bproxνg.

An LNA has properties similar to those of ordinary derivatives, and the linear-
ity and chain rule can be expressed as follows.

Lemma 4 ([36], Corollaly 7.5.18). Suppose that set-valued functions A : Rn ⇒
Rn×n,B : Rn ⇒ Rn×n are (strong) LNAs of F : Rn → Rn and G : Rn → Rn,
respectively, at x ∈ Rn. Then,

(A+ B)(y) := {A+B | A ∈ A(y), B ∈ B(y)}

is a (strong) LNA of F +G at x.

Lemma 5 ([36], Theorem 7.5.17). Suppose that the set-valued function B : Rn ⇒
Rn×n is a (strong) LNA of G : Rn → Rn at x ∈ Rn and that A : Rn ⇒ Rn×n is a
(strong) LNA of F : Rn → Rn at G(x). Then,

(AB)(y) := {AB | A ∈ A(G(y)), B ∈ B(y)}

is a (strong) LNA of F ◦G at x, where F ◦G is the composition of the mappings
F ◦G(x) = F (G(x)).

From Lemmas 4 and 5, as in ordinary differential calculus, when the function
for which an LNA is to be obtained is expressed as a sum of multiple functions
or their composite map, it is sufficient to consider an LNA of each function. For
example, we suppose the set-valued functions A,B : Rn ⇒ Rn×n are (strong)
LNAs of F,G : Rn → Rn at x ∈ Rn and that C : Rn ⇒ Rn×n is a (strong) LNA
of H : Rn → Rn at F (x) +G(x). Then,

C(A+ B)(y) := {C(A+B) | C ∈ C(F (y) +G(y)), A ∈ A(y), B ∈ B(y)}

is a (strong) LNA of H ◦ (F +G) at x.

29

4.2.3 LNA of the proximal map

L1-norm

If g(x) = ∥x∥1, the i-th component of proxνg is

proxνg(x)i =

(
1− ν

|xi|

)
+

xi, (4.11)

where (s)+ = max{0, s} for s ∈ R. (4.11) is differentiable at any |xi|≠ ν,
and its derivative is 0 for |xi|< ν and 1 for |xi|> ν. For the case of |xi|= ν,
if x(k)i → xi, |x(k)i |↓ ν as k → ∞, then ∇proxνg(x(k))i,i → 1. In contrast, if
x
(k)
i → xi, |x(k)i |↑ ν as k → ∞, then ∇proxνg(x(k))i → 0. Thus, ∂Bproxνg(x)

becomes the set of diagonal matrices for any x ∈ Rn, and its (i, i)-th component
is

∂Bproxνg(x)i,i =

{0} |xi|< ν

{1} |xi|> ν

{0, 1} |xi|= ν

. (4.12)

L2-norm

If g(x) = ∥x∥2, proxνg is

proxνg(x) =

(
1− ν

∥x∥2

)
+

x. (4.13)

(4.13) is differentiable at any ∥x∥2 ̸= ν, and its derivative is O for ∥x∥2< ν and
ν

∥x∥2 (
xxT

∥x∥22
− I) + I for ∥x∥2> ν. For the case of ∥x∥2= ν, if x(k) → x, ∥x(k)∥2↓ ν

as k → ∞, then ∇proxνg(x(k)) → ν
∥x∥2 (

xxT

∥x∥22
− I) + I . In contrast, if x(k) →

x, ∥x(k)∥2↑ ν as k →∞, then ∇proxνg(x(k))→ O. Thus, ∂Bproxνg(x) is the set
of symmetric matrices for any x ∈ Rn, and

∂Bproxνg(x) =

{O} ∥x∥2< ν{

ν
∥x∥2 (

xxT

∥x∥22
− I) + I

}
∥x∥2> ν{

O, xxT

∥x∥22

}
∥x∥2= ν

. (4.14)

Lemma 6 ([37], Lemma 2.1). (4.12) and (4.14) are strong LNAs of proxν∥·∥1 and
proxν∥·∥2 , respectively, for any x ∈ Rn.

From Lemma 6, if g is either theL1-norm or theL2-norm, then the B-subdifferential
is a strong LNA of proxνg. Furthermore, if proxνg(x)i is 0, i.e. xi is inactive, then
the corresponding component of ∂Bproxνg is 0.

30

4.3 Related work
The basic idea of our proposed method is to find the fixed points of Fν using the
semismooth Newton method. The semismooth Newton method has been studied
for a long time, and theoretical results [38, 39, 40] are well established. Addition-
ally, there has been recent interest in considering the ADMM recursive relation as
fixed point iteration and solving it using the semismooth Newton method [34, 33].

In recent research, a method to find the fixed points of the proximal gradient
method using the semismooth Newton method has been proposed [27], and it has
been extended to stochastic optimization [31, 32]. However, in the paper [27], the
condition that f is µ-strongly convex is not required, but an assumption regarding
the optimization parameter ν, specifically ν ≤ 2L−1

f for Fν , is necessary. In fact,
Proposition 2.3 (1) in [27] proves that when ∇f is β-cocoercive, then 0 < ν ≤
2L−1

f ensures that Fν is a monotone operator. They leverage this monotonicity
to prove global convergence and construct algorithms. Note that when ∇f is β-
cocoercive,∇f is Lipschitz continuous with a parameter of β−1.

Furthermore, a method to solve optimization problem (4.1) by minimizing the
forward-backward-envelope function:

ϕν(x) = min
y∈Rn
{f(x) + ⟨∇f(x), y − x⟩+ g(u) +

1

2ν
∥y − x∥22}

has been proposed in [28, 29, 30]. As ∇ϕν(x) = (I − ν∇2f(x))Fν(x)/ν, when
I − ν∇2f(x) is nonsingular, this method essentially solves Fν(x) = 0 using the
semismooth Newton method. However, the drawback of this method is that when
ν > L−1

f , ϕν may not be lower bounded, and furthermore, the assumption ν < L−1
f

is required because I − ν∇2f(x) needs to be nonsingular for optimality. Note
that although Algorithm 1 in [30] adaptsively updates ν, the condition ν < L−1

f

remains essential for the proof of optimality.
In this chapter, we consider solving Fν(x) = 0 using the semismooth Newton

method. We add the condition that f is µ-strongly convex, but we aim to provide
a theoretical extension by removing the conditions related to the optimization pa-
rameter ν that were present in existing research. Additionally, we propose a new
quasi-Newton method that avoids the computation of the Hessian matrix. This al-
lows for solving the problem efficiently even when the dimension of the variables
n is large. While the condition of µ-strong convexity is quite stringent, it can be
mitigated by adding a ridge penalty term ∥·∥22 to the objective function. Further-
more, our method efficiently handles group lasso, which was previously compu-
tationally inefficient with the widely used proximal Newton method in packages
like glmnet.

31

4.4 Linear Newton method

Here, we consider the linear Newton method for solving Fν(x) = 0 for any ν > 0.
According to Proposition 1, x such that Fν(x) = 0 minimizes (4.1). First, we
consider an LNA of Fν to execute the linear Newton method. From Lemmas 4
and 5, since the LNA is linear and satisfies the chain rule, we define the set-valued
function ∂Fν : Rn ⇒ Rn×n as

∂Fν(x) =
{
I − V (I − ν∇2f(x)) | V ∈ ∂Bproxνg(x− ν∇f(x))

}
, (4.15)

which is an LNA of Fν(x) = x− proxνg(x− ν∇f(x)). We show that (4.15) is a
(strong) LNA of Fν as follows.

Proposition 2. Let x ∈ Rn. If ∂Bproxνg is an LNA of proxνg at x− ν∇f(x), then
∂Fν is an LNA of Fν at x. Furthermore, if ∂Bproxνg is a strong LNA of proxνg at
x − ν∇f(x) and ∇2f is Lipschitz continuous, then ∂Fν is a strong LNA of Fν at
x.

Proof. A : Rn ∋ y 7→ {I} is an LNA of F : Rn ∋ y 7→ y ∈ Rn at x ∈ Rn. Since
∇f is differentiable, B : Rn ∋ y 7→ {−ν∇2f(y)} is an LNA of G : Rn ∋ y 7→
−ν∇f(y) ∈ Rn at x. Thus, from Lemma 4, A+ B = {I − ν∇2f} is an LNA of

F +G : Rn ∋ y 7→ y − ν∇f(y) ∈ Rn

at x. By assumption, C : Rn ∋ y 7→ ∂Bproxνg(y) is an LNA of H : Rn ∋ y 7→
proxνg(y) at x − ν∇f(x). From Lemma 5, if we define the set-valued function
∂Pν : Rn ⇒ Rn×n as

∂Pν(x) := C(A+ B)(x) =
{
V (I − ν∇2f(x) | V ∈ ∂Bproxνg(x− ν∇f(x))

}
,

then ∂Pν is an LNA of H ◦ (F +G) : Rn ∋ y 7→ proxνg(y− ν∇f(y)) ∈ Rn at x.
Furthermore, applying Lemma 4, we find that ∂Fν is an LNA of Fν , which proves
the first claim. If ∇2f is Lipschitz continuous, then B is a strong LNA of G at x,
so we conclude that ∂Fν is a strong LNA of Fν at x.

From Proposition 2, if ∂Bproxνg is a (strong) LNA of proxνg, since g is L1

regularization or group regularization, then ∂Fν is an LNA of Fν and can ap-
proximate Fν . Thus, we conclude that ∂Bproxνg is an LNA of proxνg, which is
important for the discussion below. Next, we consider the linear Newton method
based on ∂Fν .

32

4.4.1 Procedure
From Proposition 2, which states that ∂Fν is an LNA of Fν , we can approximate
Fν using ∂Fν . Specifically, we approximate

Fν(x) ≈ F (k)
ν (x) := Fν(x

(k)) + U (k)(x− x(k)), U (k) ∈ ∂Fν(x
(k)) (4.16)

for k = 0, 1, 2, . . . with the initial value x(0) ∈ Rn, and we update x(k+1) such
that F (k)

ν (x(k+1)) = 0. We present the procedure of the linear Newton method in
Algorithm 3.

Algorithm 3 Linear Newton method
Input: x(0)
Output: x(k)

1: Initialization :ν > 0, k ← 0
2: while not converged do
3: Select V (k) ∈ ∂Bproxνg(x(k) − ν∇f(x(k)))
4: (Obtaining d)

d(k) ← −
(
I − V (k)

(
I − ν∇2f(x(k))

))−1
Fν(x

(k)). (4.17)

5: x(k+1) ← x(k) + d(k)

6: k ← k + 1
7: end while

In this chapter, we prove the following proposition, namely, Proposition 3, to
guarantee that the inverse matrix of I − V (k)

(
I − ν∇2f(x(k))

)
always exists and

that the update of 4.17 is always possible. The proof is presented in detail in the
appendix.

Proposition 3. Suppose that f : Rn → R and g : Rn → R ∪ {+∞} are µ-
strongly convex and closed convex, respectively. Then, I − V (I − ν∇2f(x)) is
a nonsingular matrix for any x ∈ Rn, ν > 0 or V ∈ ∂Bproxνg(x − ν∇f(x)),
and all eigenvalues are positive real numbers that are greater than or equal to
min{νµ, 1}.

It was shown in [27] that if ν ≤ 2L−1
f , then all the eigenvalues of I −

V (I − ν∇2f(x)) are nonnegative real numbers, but it was not shown whether
they are nonsingular or singular. The proposition 3 shows that for general ν > 0,
I − V (I − ν∇2f(x)) is always nonsingular for any x ∈ Rn if f is µ-strongly
convex. Thus, since any element of ∂Fν(x

(k)) is nonsingular for each iteration
k, there exists d(k) such that (4.17) is satisfied and the update of Algorithm 3 is
always possible.

33

4.4.2 L1 regularization

Based on (4.12), we define the diagonal matrix V (k) ∈ ∂Bproxνg(x(k)−ν∇f(x(k)))
as

V
(k)
i,i =

{
0, |x(k)i − ν∇f(x(k))|≤ νλ

1, |x(k)i − ν∇f(x(k))|> νλ
(4.18)

and obtain I − V (k)
(
I − ν∇2f(x(k)

)
∈ ∂Fν(x

(k)). We define the index sets
I(k),O(k) as

I(k) = {i|V (k)
ii = 1}

O(k) = {i|V (k)
ii = 0}.

Then, we can express the matrix as

I − V (k)(I − ν∇2f(x(k))) =

(
ν∇2f(x(k))I(k),I(k) ν∇2f(x(k))I(k),O(k)

O I

)
,

(4.19)

where ∇2f(x(k))I(k),I(k) and ∇2f(x(k))I(k),O(k) are the elements of the matrix in
(I(k), I(k)) and (I(k),O(k)), respectively. Therefore, we can update efficiently
by eliminating the calculation for the components i such that V (k)

i,i = 0, i.e.,
proxνg(x

(k) − ν∇f(x(k))) = 0.

4.4.3 Convergence
We consider the convergence properties of Algorithm 3.

Theorem 3. Suppose ∂Fν is an LNA of Fν at the optimal solution x∗ and that
all elements of ∂Fν(x) are nonsingular for any x ∈ Rn. Then, the sequence
{x(k)}∞k=1 generated by Algorithm 3 converges locally superlinearly to x∗ such
that Fν(x

∗) = 0. Moreover, if ∂Fν is a strong LNA of Fν at the optimal solu-
tion x∗, then the sequence {x(k)}∞i=1 generated by Algorithm 3 converges locally
quadratically to x∗.

Proof. By assumption, since ∂Fν is a (strong) LNA of Fν at the optimal solution
x∗ and A is a nonsingular matrix for any x ∈ Rn and A ∈ ∂Fν(x), the proof of
this theorem follows from Theorem 2.11 in reference [41] and Theorem 7.5.15 in
reference [36].

34

From Proposition 3, if f is µ-strongly convex, all elements of ∂Fν(x) are
nonsingular for any x ∈ Rn. Thus, in the cases of L1 regularization, group reg-
ularization, etc., local quadratic convergence is achieved when updating with Al-
gorithm 3 due to Theorem 3. Here, Theorem 3 suggests that the parameter ν of
Fν is arbitrary as long as ν > 0. Therefore, Theorem 3 verifies the convergence
of Algorithm 3 in the general case without requiring ν ≤ 2L−1

f , as in [27], thus
extending the previous results.

4.5 Hybrid linear quasi-Newton method
Algorithm 3 becomes less efficient, especially in dealing with high-dimensional
variables, due to the time-consuming nature of computing ∇2f . Thus, we con-
sider approximating ∂Fν(x

(k)) in each iteration k. In this chapter, we consider an
approximation of∇2f(x(k)) to make the computation of ∂Fν(x

(k)) feasible while
maintaining the advantage of the linear Newton method in that the calculation can
be omitted when x equals 0. Specifically, we define a new set-valued function
∂̂(k)Fν : Rn ⇒ Rn×n as

∂̂(k)Fν(x
(k)) =

{
I − V (I − νB(k)) | V ∈ ∂Bproxνg(x(k) − ν∇f(x(k)))

}
By using an approximation matrix B(k) at each iteration and by approximating Fν

as in (4.16).

4.5.1 Procedure

The approximation ∂̂(k)Fν(x
(k)) successfully approximates Fν if B(k) accurately

represents ∇2f(x(k)) in each iteration. We start the process with an initial value
B(0) ∈ Rn×n and update B(k) to satisfy the following secant condition:

B(k+1)
(
x(k+1) − x(k)

)
= ∇f(x(k+1))−∇f(x(k)). (4.20)

Various update strategies can satisfy this condition, including the Broyden method;
however, we employ the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. This
update ensures that if f is µ-strongly convex and B(0) is a positive definite sym-
metric matrix, then B(k) > O holds. Thus, similar to Proposition 3, it can be
shown that all elements of ∂̂(k)Fν(x

(k)) are nonsingular for all k. Algorithm 4
outlines the hybrid linear quasi-Newton method procedure.

[27] proposed a method that uses the L-BFGS approach, which approximates
∂Fν by using the L-BFGS method. The matrix updated with the L-BFGS method
becomes symmetric, but ∂Fν is generally not symmetric. Therefore, this approx-
imation might not be accurate. Additionally, [27] does not provide proof of con-
vergence speed and requires the condition ν ≤ 2L−1

f . We have proven that our

35

quasi-Newton method achieves superlinear convergence, which is a significant
advancement.

Algorithm 4 Hybrid linear quasi-Newton method
Input: x(0)
Output: x(k)

1: Initialization : ν > 0, B(0) ∈ Rn×n, k ← 0
2: while not converged do
3: Select V (k) ∈ ∂Bproxνg(x(k) − ν∇f(x(k)))
4: (Obtaining d)

d(k) ← −
(
I − V (k)

(
I − νB(k)

))−1
Fν(x

(k)). (4.21)

5: x(k+1) ← x(k) + d(k)

6: y(k) = ∇f(x(k+1))−∇f(x(k))
7: (Updating B)

B(k+1) ← B(k) − B(k)d(k)(d(k))TB(k)

(d(k))TB(k)d(k)
+
y(k)(y(k))T

(y(k))Td(k)
. (4.22)

8: k ← k + 1
9: end while

4.5.2 Efficiency
In both Algorithms 3 and 4, solving (4.17) and (4.21) requires computing the
inverse of an n × n matrix, which itself requires O(n3) computations. For large
n, this approach is highly inefficient. Therefore, we consider a more efficient
approach to find the search direction d(k) that satisfies the linear equation(

I − V (k)
(
I − νB(k)

))
d(k) = −Fν(x

(k)). (4.23)

Among the standard Newton methods, the Newton-CG method is widely used;
this method combines the conjugate gradient (CG) method to efficiently solve
linear equations. However, the CG method is applicable only to linear equations
when the matrix is symmetric. In this case,

I − V (k)
(
I − νB(k)

)
is generally not symmetric, so the conjugate gradient method cannot be used.
Thus, by using the generalized conjugate residual (GCR) method, we find d(k)

36

such that∥∥Fν(x
(k)) +

(
I − V (k)

(
I − νB(k)

))
d(k)

∥∥
2
≤ ϵ(k)∥Fν(x

(k))∥2, (4.24)

Here, ϵ(k) > 0, such as ϵ(k) = 1
k+1

, is the tolerance defined by the user. The search
direction d(k) is obtained by executing the GCR method until the approximation
error is acceptable. Specifically, we can express step 4 of Algorithm 4 as follows.

1. I−V (k)(I−νB(k)) ∈ ∂̂(k)Fν(x
(k)) for V (k) ∈ ∂Bproxνg(x(k)−ν∇f(x(k)))

is chosen; then, the search direction d(k) ∈ Rn that satisfies 4.24 is found
by using the GCR method.

We specify the GCR method for finding x such thatAx = b forA ∈ Rn×n, b ∈
Rn in Algorithm 5.

Algorithm 5 Generalized conjugate residual method for solving Ax = b

Input: x(0)
Output: x(k)

1: Initialization : k ← 0
2: r(0) ← b− Ax(0)
3: p(0) ← r(0)

4: while not converged do
5: α(k) ← ⟨Ap(k),r(k)⟩

⟨Ap(k),Ap(k)⟩
6: x(k+1) ← x(k) + α(k)p(k)

7: r(k+1) ← r(k) − α(k)Ap(k)

8: for i = 0, . . . , k do
9: βi,k ← − ⟨Ap(i),Ar(k+1)⟩

⟨Ap(i),Ap(i)⟩
10: end for
11: p(k+1) ← r(k+1) +

∑k
i=1 βi,kAp

(i)

12: k ← k + 1
13: end while

If the GCR method can find d(k) that satisfies (4.24) in a finite number of
steps O(1), it can be updated by multiplying a matrix and a vector only, and the
GCR method can update by using only computations O(n2). We can obtain d(k)

in fewer updates, which is more efficient than the O(n3) computations needed to
calculate the inverse matrix. Furthermore, it is well known that the convergence
of the GCR method tends to be slow when the matrixA is ill conditioned. In many
cases, preconditioning is used to address this issue. However, in scenarios such as
L1 regularization and group regularization, where the components of theO(k) row
corresponding to inactive variables, as in Equation (4.19), are the identity matrix

37

I , applying the GCR method effectively reduces working with a |I(k)|×|I(k)|ma-
trix where I(k) is the index set of active variables in iteration k. Consequently,
it can be computed efficiently. When a linear system is ill conditioned, the op-
timization problem we aim to solve also becomes ill conditioned. Consequently,
because the inverse of the strong convexity parameter µ of the function f is in-
volved, the convergence of proximal gradient methods, proximal Newton methods
and even the proposed method can be slow. Therefore, even if we preprocess and
speed up the generalized conjugate residual (GCR) method, the overall algorithm
may not experience a substantial increase in speed. Moreover, in this case, the ill-
conditioning can be mitigated by using a ridge penalty, so we have not considered
it in this instance.

4.5.3 Convergence
We consider the convergence properties of Algorithm 4. If ∂Bproxνg is an LNA
of proxνg, then we can show local linear convergence as follows. In this chapter,
we prove the following theorem in the same way as in [40] (see Appendix B.2 for
the proof).

Theorem 4. Suppose that ∂Bproxνg is an LNA of proxνg at x∗− ν∇f(x∗). There
exist ϵ > 0 and ∆ > 0 such that if ∥x(0)−x∗∥2< ϵ and ∥B(k)−∇2f(x(k))∥< ∆ for
any k = 1, 2, . . ., then the sequence generated by Algorithm 4 converges locally
linearly to x∗.

From Theorem 4, if B(k) sufficiently approximates ∇2f(x(k)) and the initial
value x(0) is sufficiently close to the optimal value x∗, then Algorithm 4 exhibits
first-order convergence.

Moreover, we can show that Algorithm 4 leads to faster than linear conver-
gence, in addition to the condition with respect to ∇2f . In this chapter, we prove
the following theorem.

Theorem 5. Suppose that ∂Bproxνg is an LNA of proxνg at x∗−ν∇f(x∗),∇2f is
Lipschitz continuous, and the sequence {x(k)} generated by Algorithm 4 satisfies
x(k) ̸= x∗ for any k and limk→∞ x(k) = x∗. Then, {x(k)} superlinearly converges
to x∗ if B(k) satisfies

lim
k→∞

∥(B(k) −∇2f(x∗))(x(k+1) − x(k))∥2
∥x(k+1) − x(k)∥2

= 0. (4.25)

The condition (4.25) is similar to the condition for superlinear convergence of
the standard quasi-Newton method. The BFGS formula (4.22) used in this study
satisfies (4.25); therefore, {x(k)} generated by Algorithm 4 converges superlin-
early.

38

4.6 Numerical experiments
In this section, we evaluate the performance of the linear Newton and the hybrid
linear quasi-Newton methods in sparse estimation problems by comparing them
with the proximal gradient and proximal Newton methods. All the programs are
implemented by using Rcpp, and all the tests are performed in R Studio on a
Windows machine with Ryzen 9 3900X @ 3.8 GHz and 64 GB of memory.

4.6.1 Group logistic regression
Let (yi, xi) ∈ {−1, 1}×Rn, i = 1, . . . ,m, wherem is the number of observations.
The group logistic regression optimization is formulated as follows:

min
β0∈R,β∈Rn

1

m

m∑
i=1

log(1 + exp{−yi(β0 + xTi β)}) + λ
J∑

j=1

∥βIj∥2, (4.26)

where λ is a regularization parameter and Ij, j = 1, . . . , J are the index sets that
belong to the j-th group such that Ij ∩ Ik = ∅ (j ̸= k).

Our initial experiment focused on a single-group scenario:

min
β0∈R,β∈Rn

1

m

m∑
i=1

log(1 + exp{−yi(β0 + xTi β)}) + λ∥β∥2. (4.27)

While single-group group lasso is not commonly used in practice, this experi-
ment is to examine both worst-case (all features active) and best-case (all features
inactive) scenarios for our proposed methods. Moreover, in multigroup cases,
V becomes a block diagonal matrix. Consequently, since the single-group case
becomes less efficient, the proposed method serves as one benchmark for compar-
ison. We choose

V =

{
O, ∥x∥2≤ ν
ν

∥x∥2 (
xxT

∥x∥22
− I) + I, ∥x∥2> ν

as V ∈ ∂Bproxνg(x). Figures 4.1 and 4.2 compare the proximal gradient (PG) and
proximal Newton (PN) methods with the proposed linear Newton (LN), hybrid
linear quasi-Newton (HLQN), and hybrid linear quasi-Newton + GCR (HLQN-
GCR) methods. Furthermore, for each experiment, the PG method was updated
10,000 times, the PN method continued until the change in iterations became mi-
nor, and the LN, HLQN and HLQN-GCR methods were updated until the norm
||F1(β

(k)
0 , β(k))||2 was reduced to below 10−12. In both figures, the vertical and

horizontal axes correspond to the value of ∥F1(β
(k)
0 , β(k))∥2 and the computation

time, respectively, which indicate the convergence of the algorithms.

39

We generated random data with features n = 2000 and sample sizesm = 4000

and set the initial values β(0)
0 = 0, β(0) = 0, B(0) = ∇2f((β

(0)
0 , β(0))). Further-

more, B(k) was updated by using the BFGS formula (4.22) and ϵ(k) = 0.001.
Figure 4.1 shows the graph when λ is small (λ = 1), where all features are
active. The LN, HLQN, and HLQN-GCR methods rapidly converge, and the
LN method achieves a highly accurate solution. Although quadratically conver-
gent, the PN method converges more slowly due to its reliance on the slower-
converging PG method; the convergence of the proximal gradient method is slow
and stops halfway. Moreover, the GCR method enhances the speed of the quasi-
Newton method, surpassing the HLQN. Further detailed numerical data for the
case of λ = 1 are presented in Table 4.1. Table 4.1 shows the conditions when
∥F1(β

(k)
0 , β(k))∥2 is less than 10−3, as well as the final number of iterations, the

computation time, and the value of ∥F1(β
(k)
0 , β(k))∥2.

Table 4.1: Computation time and Iterations for random data(λ = 1)

method ∥F1∥2≤ 10−3 last

iter time[s] ∥F1∥2 iter time[s] ∥F1∥2
PG 6299 26.49 1.000× 10−3 10000 42.74 7.686× 10−4

PN 4 48.65 2.347× 10−4 6 52.74 6.918× 10−5

LN 5 20.90 1.286× 10−4 7 29.30 9.902× 10−15

HQLN 9 23.11 4.333× 10−4 33 80.17 8.108× 10−13

HQLN-GCR 9 11.53 4.333× 10−4 33 36.90 8.108× 10−13

Figure 4.2 shows the graph when λ is large, where all features are inactive.
Here, our proposed methods converge more rapidly due to sparsity, with HLQN-
GCR being the fastest. For large λ, the convergence of the proximal Newton
method is slower than that for the small λ case, and the convergence of the proxi-
mal gradient method stops in the middle of the convergence process. Additionally,
the specific numerical data at the time of convergence are shown in Table 4.2. It
is evident from the fact that most of the estimated values converge to zero that the
proposed methods converge in a small number of iterations.

We present the results of applying our proposed method to real-world data.
The datasets used are cod-RNA [42] and ijcnn1 [43], obtained from the LIBSVM
website1, with sample sizes of m = 59935 and 49990, respectively. To introduce
a group structure into the data, second-order polynomial features were generated
from the original features [44, 45]. The dimensions of the generated features are
n = 140 and 1155, respectively, with J = 28 and 231. In this case, as the loss

1https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/

40

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Table 4.2: Computation time and iterations for random data(λ is large)

method ∥F1∥2≤ 10−3 last

iter time[s] ∥F1∥2 iter time[s] ∥F1∥2
PG - - - 10000 44.38 1.900× 10−3

PN 1 12.75 4.832× 10−4 3 23.98 1.369× 10−4

LN 1 4.22 3.600× 10−8 2 8.41 1.162× 10−16

HQLN 1 4.22 3.600× 10−8 2 6.59 8.641× 10−13

HQLN-GCR 1 2.84 3.600× 10−8 2 3.81 8.641× 10−13

1e-11

1e-07

1e-03

1e+01

0 20 40 60 80
time[s]

∥F
1
(β

(k
)

0
,β

(k
))
∥ 2

PG
PN
LN
HLQN
HLQN-GCR

Figure 4.1: Changes in F1(x
(k)) due to

the computation time. (λ = 1)

1e-13

1e-09

1e-05

0 10 20 30 40
time[s]

∥F
1
(β

(k
)

0
,β

(k
))
∥ 2

HLQN
HLQN-GCR
LN
PG
PN

Figure 4.2: Changes in F1(x
(k)) due to

the computation time. (large λ)

function in (4.27) is not strongly convex, we add ridge regularization, resulting in
the following optimization:

min
β0∈R,β∈Rn

1

m

m∑
i=1

log(1 + exp{−yi(β0 + xTi β)}) +
ϵ

2
∥β∥22+λ

J∑
j=1

∥βIj∥2 (4.28)

In this experiment, the ridge parameter was set to ϵ = 0.05, and similar to
the random data case, B(0) = ∇2f((β

(0)
0 , β(0))) was used as the initial matrix

and updated by using the BFGS formula. For each experiment, the PG method
was updated 10,000 times, the PN method continued until the change in iterations
became minor, and the LN, HLQN, and HLQN-GCR methods were updated until
the norm ∥F1(β

(k)
0 , β(k))∥2 was reduced below 10−10.

41

Figures 4.3 and 4.4 show the computation times when applied to the cod-RNA
dataset. The initial values β(0)

0 and β(0) were set to −0.55 and 0, respectively,
and −0.55 was obtained as the optimal β0 when β = 0. Figure 4.3 and Table
4.3 represent the case in which λ = 0.08, the number of active groups is 9, and
the dimension of the nonzero β is 45. Like for random data, the proposed LN,
HLQN, and HLQN-GCR methods demonstrate fast convergence. However, the
PN method shows slower convergence.

Table 4.3: Computation time and Iterations for cod-RNA dataset(λ = 0.08)

method ∥F1∥2≤ 10−3 last

iter time[s] ∥F1∥2 iter time[s] ∥F1∥2
PG - - - 10000 61.78 8.301× 10−3

PN 3 0.52 3.588× 10−4 10 1.24 3.766× 10−8

LN 4 0.67 5.758× 10−6 6 1.02 9.585× 10−16

HQLN 5 0.24 6.451× 10−4 12 0.30 3.833× 10−11

HQLN-GCR 5 0.21 5.762× 10−4 12 0.26 4.519× 10−11

Figure 4.4 and Table 4.4 show the results for the case with λ = 0.28, where
the number of active groups is 1 and the nonzero dimension of β is 5. The quasi-
Newton methods, HLQN and HLQN-GCR, converge rapidly and exhibit efficient
performance. Although the proximal Newton method performs better than when
λ is small, it stops converging midway. The LN method is slow at first, but even-
tually, the LN method rapidly converges. When n is small, there is not much
difference between HLQN and HLQN-GCR.

Table 4.4: Computation time and iterations for cod-RNA dataset(λ = 0.28)

method ∥F1∥2≤ 10−3 last

iter time[s] ∥F1∥2 iter time[s] ∥F1∥2
PG 2253 13.86 9.995× 10−4 10000 61.17 1.243× 10−7

PN 1 0.18 1.161× 10−4 4 0.69 4.5878× 10−8

LN 3 0.51 2.444× 10−6 4 0.68 7.722× 10−12

HQLN 3 0.19 5.737× 10−6 5 0.20 2.112× 10−11

HQLN-GCR 4 0.19 2.178× 10−5 7 0.21 1.966× 10−12

Figures 4.5 and 4.6 represent the computation times for the cod-RNA dataset.
Furthermore, specific numerical data at the time of convergence are presented in
Tables 4.5 and 4.6. The initial values were determined like those of the cod-RNA

42

1e-12

1e-08

1e-04

1e+00

0 1 2 3 4 5
time[s]

∥F
1
(β

(k
)

0
,β

(k
))
∥ 2

HLQN
HLQN-GCR
LN
PG
PN

Figure 4.3: Change in computation time
for the cod-RNA dataset. (λ = 0.08)

1e-12

1e-08

1e-04

0 1 2 3 4 5
time[s]

∥F
1
(β

(k
)

0
,β

(k
))
∥ 2

HLQN
HLQN-GCR
LN
PG
PN

Figure 4.4: Change in computation time
for the cod-RNA dataset. (λ = 0.28)

case, with β(0)
0 = −1.1 and β(0) = 0. On the one hand, Figure 4.5 represents the

case in which λ = 0.08, where the number of active groups is 49 and the nonzero
dimension of β is 245. On the other hand, Figure 4.6 shows the results for the
case with λ = 0.12, where the number of active groups is 5 and the nonzero di-
mension of β is 25. In both cases, the proposed HLQN and HLQN-GCR methods
efficiently converge to the solutions, while LN, due to higher update costs, takes
longer to approach optimality. As a result, the LN method cannot fully leverage
its fast convergence, leading to a long computational time. The PG method is
initially fast, but it eventually converges slowly. When n is large, HLQN-GCR
requires more iterations than does HLQN, but due to its efficient updating, the
computation time is shorter.

Table 4.5: Computation time and iterations for ijcnn dataset(λ = 0.08)

method ∥F1∥2≤ 10−3 last

iter time[s] ∥F1∥2 iter time[s] ∥F1∥2
PG - - - 10000 340.81 1.698× 10−3

PN 5 40.46 6.604× 10−4 26 209.15 1.203× 10−7

LN 9 75.25 9.874× 10−7 10 83.67 3.770× 10−12

HQLN 10 12.90 3.328× 10−4 20 17.94 5.443× 10−11

HQLN-GCR 11 10.48 3.492× 10−4 22 13.07 5.665× 10−11

43

Table 4.6: Computation time and iterations for ijcnn dataset(λ = 0.12)

method ∥F1∥2≤ 10−3 last

iter time[s] ∥F1∥2 iter time[s] ∥F1∥2
PG - - - 10000 344.06 1.727× 10−2

PN 6 48.44 6.535× 10−4 16 129.27 1.390× 10−7

LN 12 100.59 1.283× 10−6 13 108.98 9.196× 10−12

HQLN 9 12.56 2.535× 10−4 17 16.68 8.810× 10−12

HQLN-GCR 11 10.67 3.326× 10−4 19 12.56 1.012× 10−11

1e-12

1e-08

1e-04

1e+00

0 25 50 75 100
time[s]

∥F
1
(β

(k
)

0
,β

(k
))
∥ 2

HLQN
HLQN-GCR
LN
PG
PN

Figure 4.5: Change in computation time
for the ijcnn1 dataset. (λ = 0.08)

1e-12

1e-08

1e-04

1e+00

0 50 100
time[s]

∥F
1
(β

(k
)

0
,β

(k
))
∥ 2

HLQN
HLQN-GCR
LN
PG
PN

Figure 4.6: Change in computation time
for the ijcnn1 dataset. (λ = 0.12)

4.7 Summary
In Chapter4, we tackled the optimization problem in sparse estimation, particu-
larly focusing on scenarios where the loss function is strongly convex. We ex-
tended the semismooth Newton method, as proposed by [27], to a more general
setting with ν > 0. Our findings not only demonstrate the convergence of this
method but also provide robust theoretical guarantees for its applicability, even in
cases where the Lipschitz constant of ∇f is unknown. A significant contribution
of this chapter is the development of the HLQN method, an innovative approach
to approximate the second derivative ∇2f . We theoretically established that the
HLQN method is consistently updatable and achieves rapid convergence. This
method is particularly beneficial when computing ∇2f is computationally chal-

44

lenging, such as in high-dimensional data scenarios. Our numerical experiments
substantiate the computational efficiency of this method in applications such as
group logistic regression. Although we assumed µ-strong convexity for f , we
showed that this restriction can be relaxed, for example, by incorporating a ridge
penalty, as shown in our numerical experiments (Section 4.6).

45

Chapter 5

Conclusions and future work

In Chapter 3, we presented a novel approach that converts ADMM to the prox-
imal gradient method. The method was successfully applied to sparse estima-
tion problems such as sparse convex clustering and trend filtering, demonstrating
significant efficiency enhancements. Particularly for these two applications, our
proposed method outperforms existing techniques like ADMM, especially when
dealing with large regularization parameters that lead to sparsity in the results.
This suggests that our method leverages sparsity effectively, resulting in more ef-
ficient computations that yield zero results. To apply our method effectively, it is
essential to obtain a Lipschitz constant or an upper bound. We anticipate that this
approach can extend beyond existing sparse estimation problems and be applied
to various scenarios involving the addition of two regularization terms to the loss
function. In such cases, the challenge of finding an efficient solution simplifies to
determining the Lipschitz coefficient.

While our research primarily focuses on sparse estimation and related prob-
lems, we encourage the active exploration of its applicability to a wider range
of optimization problems. Further investigation is needed to fully uncover and
quantify its effectiveness in general optimization contexts.

In Chapter 4, we address the optimization problem in sparse estimation, par-
ticularly focusing on scenarios where the loss function is strongly convex. We
extended the semismooth Newton method, as proposed by [27], to a more general
setting with ν > 0. Our findings not only demonstrate the convergence of this
method but also provide robust theoretical guarantees for its applicability, even
in cases where the Lipschitz constant ∇f is unknown. A significant contribution
of this chapter is the development of the HLQN method, an innovative approach
to approximate the second derivative ∇2f . We theoretically established that the
HLQN method is consistently updatable and achieves rapid convergence. This
method is particularly beneficial in situations where computing ∇2f is computa-
tionally challenging, such as in high-dimensional data scenarios. Our numerical

46

experiments substantiate the computational efficiency of this method in applica-
tions such as group logistic regression. Although we assumed µ-strong convexity
for f , we showed that this restriction can be relaxed, for example, by incorporat-
ing a ridge penalty, as shown in our numerical experiments (Section 4.6). Further-
more, if∇f is Lipschitz continuous with parameter Lf , f ∗ becomes L−1

f -strongly
convex, where f ∗ is the conjugate function of f . Thus, considering the dual prob-
lem, our approach may be applicable to a wide range of problems. Our primary
focus in this chapter was on group regularization. However, we acknowledge that
not exploring preconditioning for the GCR method is a limitation, particularly for
scenarios with many active variables or different regularization techniques, such
as the fused lasso method. In future studies, the potential of our proposed methods
under more general assumptions and in diverse regularization contexts should be
investigated. Additionally, further research is warranted to explore global conver-
gence properties by using strategies such as line search to broaden the applicability
of our methods, especially in situations where the proximity of initial values to the
optimal solution is uncertain.

47

Appendix A

The setting of the proximal gradient
parameter η

A.1 Sparse convex clustering

Let AE = (a(i,j),k)(i,j)∈E,k=1...n ∈ RE×n. Then, we have

a(i,j),k =

1 if k = i

−1 if k = j

0 otherwise

, (A.1)

and the (i, j) element of G for AT
EAE =: G ∈ Rn×n can be written as

Gij =

−1 if (i, j) ∈ E∑n

k ̸=i|Gik| if i = j

0 otherwise

. (A.2)

Then, we notice the following lemma:

Lemma 7 (Gershgorin). Assume we have symmetric matrix A ∈ Rn×n.

λmax(A) ≤ max
i=1,...,n

(aii +
n∑

j ̸=i

|aij|) (A.3)

From Lemma 7 because of

λmax(A
T
EAE) ≤ 2 max

i=1,...,n
Gii (A.4)

it is appropriate to set η > 0 as

η =
1

1 + 2νmaxi=1,...,nGii

. (A.5)

48

A.2 Trend filtering

For k ≥ 0, D(k+1) ∈ R(n−k)×n can be written as

D(k+1) =
(−1)k+1

k+1C0 (−1)k+2
k+1C1 · · · k+1Ck+1 0

(−1)k+1
k+1C0 (−1)k+2

k+1C1 · · · k+1Ck+1

.
0 (−1)k+1

k+1C0 (−1)k+2
k+1C1 · · · k+1Ck+1

 ,

i.e., the (i, j) element of D(k+1) is

D
(k+1)
ij =

{
(−1)k+1+j−i

k+1Cj−i if 0 ≤ j − i ≤ k + 1

0 otherwise
. (A.6)

Thus, from Lemma 7, we have

λmax

(
(D(k+1))TD(k+1)

)
≤ max

i=1,...,n

n∑
j=1

|
(
(D(k+1))TD(k+1)

)
ij
|

= max
i=1,...,n

|
n∑

j=1

n∑
s=1

DsiDsj|

≤ max
i=1,...,n

n∑
j=1

n∑
s=1

|DsiDsj|

≤
k+1∑
j=0

k+1∑
s=0

k+1Cj × k+1Cs

= (
k+1∑
j=0

k+1Cj)
2 = 4k+1 , (A.7)

and it is appropriate to set η > 0 as

η =
1

1 + ν4k+1
.

49

Appendix B

Proof of thorems

B.1 Proof of Proposition 3

Lemma 8. Suppose A,B ∈ Rn×n are symmetric and A is positive semidef-
inite. Then, any eigenvalue λ of AB satisfies min{∥A∥λmin(B), 0} ≤ λ ≤
max{∥A∥λmax(B), 0}, where λmin(B) and λmax(B) are the minimum and maxi-
mum eigenvalues, respectively, of B.

Proof. Since the eigenvalues of AB are equivalent to the eigenvalues of BA, we
consider the eigenvalues of BA. We let λ ∈ R, x ∈ Rn such that BAx = λx and
x ̸= 0. By multiplying xTA from the left, we obtain

xTABAx = λxTAx.

If xTAx = 0, then λ = 0 since Ax = 0. Next, we consider the xTAx > 0
case. Since A is a symmetric positive semidefinite matrix, there exists A

1
2 , and we

obtain

xTABAx

xTAx
= λ

xTA
1
2A

1
2BA

1
2A

1
2x

xTA
1
2A

1
2x

= λ. (B.1)

We can rewrite (B.1) as
yTA

1
2BA

1
2y

yTy
= λ,

where y = A
1
2x ̸= 0. Thus, since 0 < ∥A 1

2y∥2≤ ∥A∥
1
2∥y∥2, we can obtain

min{∥A∥λmin(B), 0} ≤ yTA
1
2BA

1
2y

yTy
≤ max{∥A∥λmax(B), 0}.

50

Therefore, if xTAx > 0, then min{∥A∥λmin(B), 0} ≤ λ ≤ ∥A∥max{∥A∥λmax(B), 0}.
Using also the result when xTAx = 0, Lemma 8 holds.

Theorem 6 ([30], Theorem 3.2). Suppose g : Rn → (−∞,+∞] is a closed
convex function. Every V ∈ ∂Bproxνg(x) is a symmetric positive semidefinite
matrix that satisfies ∥V ∥≤ 1 for all x ∈ Rn.

Proof of Proposition 3. By assumption, since λmin(∇2f(x)) ≥ µ for any x ∈ Rn,

λmax(I − ν∇2f(x)) ≤ 1− νµ.

Since every V ∈ ∂Bproxνg(x) is a symmetric positive semidefinite matrix that
satisfies ∥V ∥≤ 1 for all x ∈ Rn by Theorem 6, from Lemma 8,

λmax

(
V
(
I − ν∇2f(x)

))
≤ max{1− νµ, 0}.

Thus, every eigenvalue of I − V (I − ν∇2f(x)) is a real number that is greater
than or equal to min{νµ, 1}, and I − V (I − ν∇2f(x)) is a nonsingular matrix.

B.2 Proof of Theorem 4

Lemma 9 ([46], Lemma 2.3.2). LetA,C ∈ Rn×n and assume thatA is invertible,
with ∥A−1∥≤ α. If ∥A− C∥≤ β and βα < 1, then C is also invertible, and

∥C−1∥≤ α

(1− αβ)

Proof of Theorem 4. Let

V (k) ∈ ∂Bproxνg(x(k) − ν∇f(x(k))),
U (k) : = I − V (k)

(
I − ν∇2f(x(k))

)
∈ ∂Fν(x

(k)),

W (k) : = I − V (k)
(
I − νB(k)

)
∈ ∂̂(k)Fν(x

(k)).

From Proposition 3, every eigenvalue of U (k) is a real number that is greater than
or equal to ξ := min{νµ, 1}, and∥∥∥(U (k)

)−1
∥∥∥ ≤ √n

ξ
.

Let ∆ = ξ
5ν

√
n

. Since ∂Fν is the LNA of Fν at x∗, there exists ϵ > 0 such that

∥Fν(x)− Fν(x
∗)− U(x− x∗)∥2≤ ν∆∥x− x∗∥2

51

for any x ∈ B(x∗, ϵ) := {y | ∥x∗ − y∥2< ϵ}, U ∈ ∂Fν(x). Since W (k) − U (k) =
νV (k)

(
B(k) −∇2f(x(k))

)
and ∥B(k)−∇2f(x(k))∥< ∆, we obtain ∥W (k)−U (k)∥≤

ν∆. By Lemma 9, W (k) is invertible and∥∥∥(W (k)
)−1

∥∥∥ ≤ √
n/ξ

1−
√
n/ξ × ν∆

=
5

4

√
n

ξ
.

Thus, if ∥x(k) − x∗∥2< ϵ, then we have

∥x(k+1) − x∗∥2 = ∥x(k) − (W (k))−1Fν(x
(k))− x∗∥2

≤ ∥(W (k))−1∥∥Fν(x
(k))− Fν(x

∗)−W (k)(x(k) − x∗)∥2
≤ ∥(W (k))−1∥[∥Fν(x

(k))− Fν(x
∗)− U (k)(x(k) − x∗)∥2

+ ∥W (k) − U (k)∥∥x(k) − x∗∥2]

≤ 5

4

√
n

ξ
(2ν∆∥x(k) − x∗∥2)

=
1

2
∥x(k) − x∗∥2

Therefore, there exists ϵ,∆ such that the sequence generated by Algorithm 4 lo-
cally linearly converges to x∗.

B.3 Proof of Theorem 5

Proof. Let V (k) ∈ ∂Bproxνg(x(k)−ν∇f(x(k))), U (k) := I−V (k)
(
I − ν∇2f(x(k))

)
∈

∂Fν(x
(k)) and W (k) := I − V (k)

(
I − νB(k)

)
∈ ∂̂(k)Fν(x

(k)). We let e(k) =

x(k) − x∗, s(k) = x(k+1) − x(k). We note that s(k) = e(k+1) − e(k) and {e(k)}
and {s(k)} converge to 0 since {x(k)} converges to x∗. From the update rule of
Algorithm 4, we have

Fν(x
∗) =

[
Fν(x

(k)) +W (k)s(k)
]
+
[(
U (k) −W (k)

)
s(k)

]
−

[
Fν(x

(k))− Fν(x
∗)− U (k)e(k)

]
− U (k)e(k+1)

=
[(
U (k) −W (k)

)
s(k)

]
−
[
Fν(x

(k))− Fν(x
∗)− U (k)e(k)

]
− U (k)e(k+1).

Since Fν(x
∗) = 0 and U (k) is a nonsingular matrix,

U (k)e(k+1) =
[(
U (k) −W (k)

)
s(k)

]
−
[
Fν(x

(k))− Fν(x
∗)− U (k)e(k)

]
e(k+1) =

(
U (k)

)−1 [(
U (k) −W (k)

)
s(k)

]
−
(
U (k)

)−1 [
Fν(x

(k))− Fν(x
∗)− U (k)e(k)

]
.

52

By assumption, since ∥(W (k) − U (k))s(k)∥2= ∥νV (k)(∇2f(x(k)) − B(k))s(k)∥2
and ∥∇2f(x∗) − ∇2f(x(k))∥→ 0 for k → ∞, we have ∥(W (k) − U (k))s(k)∥2=
o(∥s(k)∥2). Therefore,

∥e(k+1)∥2= o(∥s(k)∥2) + o(∥e(k)∥2) = o(∥e(k+1)∥2) + o(∥e(k)∥2).

Thus, we obtain ∥e(k+1)∥2= o(∥e(k)∥2), and since e(k) = x(k) − x∗, the sequence
{x(k)} generated by Algorithm 4 superlinearly converges to x∗.

53

List of Publications

[1] Shimmura, R., Suzuki, J. (2022). Converting ADMM to a proximal gradi-
ent for efficient sparse estimation. Japanese Journal of Statistics and Data
Science, 5.2: 725-745.

[2] Shimmura, R., Suzuki, J. (2024) Newton-Type Methods with the Proximal
Gradient Step for Sparse Estimation. In Operations Research Forum (Vol. 5,
No. 2, p. 27). Cham: Springer International Publishing.

[3] Shimmura, R., Suzuki, J. (2023). Estimation of a Simple Structure in a Mul-
tidimensional IRT Model Using Structure Regularization. Entropy, 26(1),
44.

[4] Chen, J., Shimmura, R., Suzuki, J. (2021). Efficient proximal gradient algo-
rithms for joint graphical lasso. Entropy, 23(12), 1623.

54

Acknowledgements
First, I would like to express my deepest gratitude to Prof. Joe Suzuki, my thesis
supervisor, for their unwavering support and guidance throughout this journey.
Your expertise and insights have been invaluable in shaping both my work and
my professional growth.

Additionally, I am deeply grateful to my family for their constant love and en-
couragement, and for believing in my abilities. Your support has been the source
of my strength. The bond we share as a family and the emotional support in my
academic pursuits are of immeasurable value to me. Without you, I would not be
where I am today.

55

References

[1] Hirotugu Akaike. A new look at the statistical model identification. IEEE
transactions on automatic control, 19(6):716–723, 1974.

[2] Gideon Schwarz. Estimating the dimension of a model. The annals of statis-
tics, pages 461–464, 1978.

[3] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological), 58(1):267–288,
1996.

[4] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learn-
ing with sparsity: the lasso and generalizations. CRC press, 2015.

[5] Ming Yuan and Yi Lin. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology), 68(1):49–67, 2006.

[6] Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith
Knight. Sparsity and smoothness via the fused lasso. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 67(1):91–108, 2005.

[7] Patrick Danaher, Pei Wang, and Daniela M Witten. The joint graphical lasso
for inverse covariance estimation across multiple classes. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 76(2):373–397,
2014.

[8] Kristiaan Pelckmans, Joseph De Brabanter, Johan AK Suykens, and Bart
De Moor. Convex clustering shrinkage. In PASCAL workshop on statistics
and optimization of clustering workshop, 2005.

[9] Toby Dylan Hocking, Armand Joulin, Francis Bach, and Jean-Philippe Vert.
Clusterpath an algorithm for clustering using convex fusion penalties. In
28th international conference on machine learning, page 1, 2011.

56

[10] Fredrik Lindsten, Henrik Ohlsson, and Lennart Ljung. Clustering using sum-
of-norms regularization: With application to particle filter output computa-
tion. In 2011 IEEE Statistical Signal Processing Workshop (SSP), pages
201–204. IEEE, 2011.

[11] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding al-
gorithm for linear inverse problems. SIAM journal on imaging sciences,
2(1):183–202, 2009.

[12] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths
for generalized linear models via coordinate descent. Journal of statistical
software, 33(1):1, 2010.

[13] Heinz H Bauschke and Patrick L Combettes. Convex analysis and monotone
operator theory in Hilbert spaces. Springer, 2011.

[14] Shiqian Ma. Alternating proximal gradient method for convex minimization.
Journal of Scientific Computing, 68(2):546–572, 2016.

[15] Paul Tseng. Applications of a splitting algorithm to decomposition in convex
programming and variational inequalities. SIAM Journal on Control and
Optimization, 29(1):119–138, 1991.

[16] Eric C Chi and Kenneth Lange. Splitting methods for convex clustering.
Journal of Computational and Graphical Statistics, 24(4):994–1013, 2015.

[17] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Now
Publishers Inc, 2011.

[18] Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of
nonlinear variational problems via finite element approximation. Computers
& mathematics with applications, 2(1):17–40, 1976.

[19] Binhuan Wang, Yilong Zhang, Will Wei Sun, and Yixin Fang. Sparse convex
clustering. Journal of Computational and Graphical Statistics, 27(2):393–
403, 2018.

[20] Seung-Jean Kim, Kwangmoo Koh, Stephen Boyd, and Dimitry Gorinevsky.
ℓ1 trend filtering. SIAM review, 51(2):339–360, 2009.

[21] Wei Deng and Wotao Yin. On the global and linear convergence of the
generalized alternating direction method of multipliers. Journal of Scientific
Computing, 66(3):889–916, 2016.

57

[22] Damek Davis and Wotao Yin. A three-operator splitting scheme and its
optimization applications. Set-valued and variational analysis, 25(4):829–
858, 2017.

[23] R Tyrrell Rockafellar. Augmented lagrangians and applications of the prox-
imal point algorithm in convex programming. Mathematics of operations
research, 1(2):97–116, 1976.

[24] R Tyrrell Rockafellar. Convex analysis, volume 36. Princeton university
press, 1970.

[25] Jean Jacques Moreau. Proximité et dualité dans un espace hilbertien. Bul-
letin de la Société Mathématique de France, 93:273–299, 1965.

[26] Aaditya Ramdas and Ryan J Tibshirani. Fast and flexible admm algo-
rithms for trend filtering. Journal of Computational and Graphical Statistics,
25(3):839–858, 2016.

[27] Xiantao Xiao, Yongfeng Li, Zaiwen Wen, and Liwei Zhang. A regularized
semismooth Newton method with projection steps for composite convex pro-
grams. Journal of Scientific Computing, 76(1):364–389, 2018.

[28] Panagiotis Patrinos and Alberto Bemporad. Proximal Newton methods for
convex composite optimization. In 52nd IEEE Conference on Decision and
Control, pages 2358–2363. IEEE, 2013.

[29] Panagiotis Patrinos, Lorenzo Stella, and Alberto Bemporad. Forward-
backward truncated Newton methods for convex composite optimization.
arXiv preprint arXiv:1402.6655, 2014.

[30] Lorenzo Stella, Andreas Themelis, and Panagiotis Patrinos. Forward–
backward quasi-Newton methods for nonsmooth optimization problems.
Computational Optimization and Applications, 67(3):443–487, 2017.

[31] Andre Milzarek, Xiantao Xiao, Shicong Cen, Zaiwen Wen, and Michael
Ulbrich. A stochastic semismooth newton method for nonsmooth nonconvex
optimization. SIAM Journal on Optimization, 29(4):2916–2948, 2019.

[32] Minghan Yang, Andre Milzarek, Zaiwen Wen, and Tong Zhang. A stochas-
tic extra-step quasi-newton method for nonsmooth nonconvex optimization.
Mathematical Programming, pages 1–47, 2021.

[33] Yongfeng Li, Zaiwen Wen, Chao Yang, and Ya xiang Yuan. A semi-smooth
newton method for semidefinite programs and its applications in electronic

58

structure calculations. SIAM Journal on Scientific Computing, 40(6):A4131–
A4157, 2018.

[34] Alnur Ali, Eric Wong, and J Zico Kolter. A semismooth Newton method for
fast, generic convex programming. In International Conference on Machine
Learning, pages 70–79. PMLR, 2017.

[35] Michael Ulbrich. Semismooth Newton methods for variational inequalities
and constrained optimization problems in function spaces. SIAM, 2011.

[36] Francisco Facchinei and Jong Shi Pang. Finite-dimensional variational in-
equalities and complementarity problems. Springer, 2003.

[37] Yangjing Zhang, Ning Zhang, Defeng Sun, and Kim Chuan Toh. An efficient
Hessian based algorithm for solving large-scale sparse group lasso problems.
Mathematical Programming, 179:223–263, 2020.

[38] Liqun Qi and Jie Sun. A nonsmooth version of newton’s method. Mathe-
matical programming, 58(1-3):353–367, 1993.

[39] Francisco Facchinei, Andreas Fischer, and Christian Kanzow. Inexact new-
ton methods for semismooth equations with applications to variational in-
equality problems. Nonlinear Optimization and Applications, pages 125–
139, 1996.

[40] Defeng Sun and Jiye Han. Newton and quasi-Newton methods for a class of
nonsmooth equations and related problems. SIAM Journal on Optimization,
7(2):463–480, 1997.

[41] Michael Hintermüller. Semismooth Newton methods and applications. De-
partment of Mathematics, Humboldt-University of Berlin, 2010.

[42] Andrew V Uzilov, Joshua M Keegan, and David H Mathews. Detection of
non-coding RNAs on the basis of predicted secondary structure formation
free energy change. BMC bioinformatics, 7(1):1–30, 2006.

[43] Danil Prokhorov. Ijcnn 2001 neural network competition. Slide presentation
in IJCNN, 1(97):38, 2001.

[44] Volker Roth and Bernd Fischer. The group-lasso for generalized linear mod-
els: uniqueness of solutions and efficient algorithms. In Proceedings of the
25th international conference on Machine learning, pages 848–855, 2008.

59

[45] Paul Pavlidis, Jason Weston, Jinsong Cai, and William Noble Grundy. Gene
functional classification from heterogeneous data. In Proceedings of the fifth
annual international conference on Computational biology, pages 249–255,
2001.

[46] James M Ortega and Werner C Rheinboldt. Iterative solution of nonlinear
equations in several variables. SIAM, 2000.

60

	Introduction
	Introduction
	Overview

	Background
	Convex function and its subdifferential
	Sparse estimation
	Lasso
	Group lasso

	Proximal gradient method
	Proximal Newton method
	ADMM and its generalization
	Alternating minimization algorithm
	Iterative methods and convergence rates

	Converting ADMM to the proximal gradient method
	Introduction
	Related work
	The proposed method
	Application to sparse convex clustering
	Application of the proposed method
	Experiments

	Application to trend filtering
	Application of the proposed method
	Experiments

	Summary

	Newton-type methods with proximal gradient step
	Introduction
	Optimality conditions and linear Newton approximations
	Optimality conditions
	Linear Newton approximations
	LNA of the proximal map
	L_1-norm
	L_2-norm

	Related work
	Linear Newton method
	Procedure
	L_1 regularization
	Convergence

	Hybrid linear quasi-Newton method
	Procedure
	Efficiency
	Convergence

	Numerical experiments
	Group logistic regression

	Summary

	Conclusions and future work
	Appendix
	The setting of the proximal gradient parameter
	Sparse convex clustering
	Trend filtering

	Proof of thorems
	Proof of Proposition 3
	Proof of Theorem 4
	Proof of Theorem 5

	List of Publications
	Acknowledgements
	References

