

Title	CHARACTERIZATION AND APPLICATIONS OF METHYLTHIOALKYL MALATE SYNTHASES FROM EUTREMA JAPONICUM ON THEIR ROLE FOR METHIONINE-DERIVED CHAIN-ELONGATION PROCESS
Author(s)	Medhanavyn, Dheeradhach
Citation	大阪大学, 2024, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/98646
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (MEDHANAVYN DHEERADHACH)	
Title	CHARACTERIZATION AND APPLICATIONS OF METHYLTHIOALKYL MALATE SYNTHASES FROM <i>EUTREMA JAPONICUM</i> ON THEIR ROLE FOR METHIONINE-DERIVED CHAIN-ELONGATION PROCESS (ワサビ由来メチルチオアルキルマレートシンターゼのメチオニン由来鎖伸長過程における役割の解明と応用)
<p>Abstract of Thesis</p> <p>Chapter I: General Introduction</p> <p><i>Eutrema japonicum</i> commonly known as Japanese wasabi was commercialized as food and harvested for its unique flavor and pungent smell. Recently, many reports show that not only the consumption benefit but also wasabi extracts from either leaf stem or rhizome accumulated many unique chemical components. 6-(Methylsulfinyl) hexyl isothiocyanate (6-MSITC), a derivative of glucosinolate with a six-carbon chain, is a compound found in wasabi and has various health-promoting properties. Glucosinolate biosynthesis from methionine relies on the catalytic activity of methylthioalkylmalate synthases (MAMs), crucial enzymes that generate glucosinolates with diverse chain lengths. In this investigation, the primary objective was to characterize two methylthioalkylmalate synthases, namely MAM1-1 and MAM1-2, isolated from <i>Eutrema japonicum</i>.</p> <p>Chapter II: <i>In vitro</i> characterization of <i>E. japonicum</i> MAMs</p> <p>The <i>E. japonicum</i> MAMs (EjMAMs) were expressed in an <i>E. coli</i> system, purified, and subjected to <i>in vitro</i> enzymatic activity assays. Kinetic properties, optimal pH conditions, and cofactor preferences of EjMAMs are explored, comparing them with previously documented MAMs. Surprisingly, EjMAM1-2, classified as a metallolyase family enzyme, demonstrated 20% of its maximum activity even in the absence of divalent metal cofactors or under high concentrations of EDTA. Additionally, Alphafold2 was employed to generate structural computational models of EjMAMs, followed by <i>in silico</i> analysis and mutagenesis studies to identify key residues involved in catalytic activity.</p> <p>Chapter III: <i>In vivo</i> biosynthesis of aliphatic elongation pathway using MAMs</p> <p><i>In vivo</i> biosynthesis in <i>E. coli</i> containing <i>Arabidopsis thaliana</i> branched-chain amino acid transferase 3 (AtBCAT3), isopropyl malate isomerase (AtIPMI), and isopropyl malate dehydrogenase (AtIPMDH) along with either AtMAMs or EjMAMs were investigated. The results revealed that EjMAM1-2 exhibited the highest conversion rate among the tested MAMs, converting L-methionine to 2-(2-methylthio)ethyl malate (2-(2-MT)EM). This distinctive property of EjMAM1-2, showcasing significant <i>in vitro</i> activity and superior L-methionine conversion <i>in vivo</i>, underscores its potential for isothiocyanate biosynthesis in the <i>E. coli</i> platform.</p> <p>Chapter IV: General Conclusion</p> <p>Overall, the recombination expression and purification of EjMAM and AtMAM are successfully achieved in <i>E. coli</i> expression system with an auto-induction medium, along with all elongation enzymes AtBCAT3, AtIPMI-LSU1, AtIPMI-SSU3, and AtIPMDH1. However, due to the complexity of cofactor usage and the uncertainty of the correct combination form of the heterodimeric enzyme, IPMI, <i>in vitro</i> reaction attempts were only achieved in converting 4-MTOB to 2-(2-MT)EM as a product. Surprisingly, EjMAM1-2 displays a distinguished activity by retaining 20% of activity in the absence of metal cofactor ion or in EDTA, which has never been reported before and shows drastically high V_{max} in 2-(2-MT)EM conversion. This activity poses a potential usage as a glucosinolate biosynthesis enzyme <i>in vivo</i>. <i>E. coli</i> harboring AtBCAT3 and EjMAMs, especially EjMAM1-2 show prominent conversion from L-methionine in the medium into 2-(2-MT)EM <i>in vivo</i> with EjMAM1-2 displaying the highest conversion rate.</p>	

論文審査の結果の要旨及び担当者

氏 名 (MEDHANAVYN DHEERADHACH)	
	(職) 氏 名
	主査 教授 村中 俊哉
	副査 教授 本田 孝祐
	副査 教授 青木 航
論文審査担当者	

論文審査の結果の要旨

ワサビ (*Eutrema japonicum*) の根茎や葉は、その独特的の風味と刺激的なにおいから食用として長く使われている。近年、ワサビの食用効果だけでなく、葉茎や根茎から抽出されるワサビエキスには、グルコースおよびアミノ酸の誘導体であるグルコシノレートなどの多くの特徴的な化学成分が蓄積されていることが報告されている。グルコシノレートの一つ、6-(メチルスルフィニル)ヘキシリソチオシアネート(以下、6-MSITC とする)は、さまざまな健康促進作用があり、ワサビに多く含まれている。メチオニンからのグルコシノレート生合成は、多様な鎖長のグルコシノレートを生成する重要な酵素であるメチルチオアルキルマレートシンターゼ(以下、MAM とする)の触媒活性に依存している。6-MSITC を合成生物学的手法により将来的に生産するためには、ワサビにおける MAM の機能解析が重要であった。ところが、これまでに植物ではシロイヌナズナで MAM (以下、AtMAMs とする) の分子遺伝学的解析は行われていたものの、ワサビにおける MAM については、全く知られていないかった。

このような背景のもと、学位申請者は、ワサビ由来 MAM のメチオニン由来鎖伸長過程における役割の解明と応用を取り組んでいる。まず、公開されているワサビの RNA シーケンス/トランスクリプトーム解析の情報から、ワサビには、EjMAM1-1 と EjMAM1-2 という MAM をコードすると推定される二種の酵素遺伝子が存在することを見出している。そこで学位申請者は、EjMAM1-1 と EjMAM1-2 をそれぞれ大腸菌で発現させ、精製した酵素を用いて、in vitro 酵素活性測定に供することにより、反応速度、至適 pH、金属イオン要求性を調べている。その結果、EjMAM1-2 は、メタロリニアゼファミリーの酵素に分類されているながらも、2 個の金属イオンがない場合や高濃度の EDTA 下でも、最大活性の 20% を示すを見出している。さらに、タンパク質立体構造解析ソフトウェアである Alphafold2 を用いて EjMAM の構造計算モデルを作成し、in silico 解析と部位特異的突然変異誘発実験により、触媒活性に関与する重要な残基を同定している。

学位申請者は、さらに、MAM を用いた脂肪族伸長経路の in vivo 生合成を行うことを目的として、シロイヌナズナ分岐鎖アミノ酸転移酵素 3(以下、AtBCAT3 とする)、リンゴ酸イソプロピルソメラーゼ(以下、AtIPMI とする)、リンゴ酸イソプロピルデヒドロゲナーゼ(以下、AtIPMDH とする)と AtMAM または EjMAM を含む大腸菌を用いた in vivo 生合成を検討している。その結果、EjMAM1-2 は L-メチオニンを 2-(2-メチルチオ)リンゴ酸エチル(以下、2-(2-MT)EM とする)に変換し、試験した MAM の中で最も高い変換率を示している。EjMAM1-2 のこの特徴的な特性は、in vitro で顕著な活性を示し、in vivo で優れた L-メチオニン変換を示すことから、大腸菌プラットフォームにおけるイソチオシアネート生合成の可能性を強調するものであると考察している。

以上のように、本論文では、ワサビの有用グルコシノレートである 6-MSITC の生合成に重要と考えられる MAM をコードする 2 種類の MAM (EjMAM1-1 と EjMAM1-2) の酵素学的な解析を行い、そのうちの一つである EjMAM1-2 は金属補酵

素イオンの非存在下または EDTA 中で 20%の活性を保持するという、これまでに報告されたことのない卓越した活性を示し、2-(2-MT)EM 変換において飛躍的に高い V_{max} を示している。さらに、大腸菌にシロイヌナズナあるいはワサビのグルコシノレート生合成遺伝子を、複数導入するという生物工学的アプローチにより有用グルコシノレートの中間体 2-(2-MT)EM が産生することを見出し、今後の有用グルコシノレートの合成生物的手法による生産に向けた課題についても考察している。よって、本論文は、博士論文として価値あるものと認める。