

Title	On the $\Delta-\text{module}$ structures of $\tau-\text{homotopy}$ groups of X/S^<1,0>_+
Author(s)	Hosobuchi, Masami
Citation	Osaka Journal of Mathematics. 1985, 22(1), p. 157–161
Version Type	VoR
URL	https://doi.org/10.18910/9867
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Hosobuchi, M. Osaka J. Math. 22 (1985), 157–161

ON THE Λ -MODULE STRUCTURES OF τ -HOMOTOPY GROUPS OF $X \land S_{\perp}^{1,0}$

MASAMI HOSOBUCHI

(Received February 1, 1984)

Introduction. Let X be a pointed τ -complex. The stable τ -homotopy group $\pi_{p,q}^{s}(X \wedge S_{+}^{1,0})$ is the E^{1} -term of the forgetful spectral sequence associated with $\pi_{*,*}^{s}(X)$ [1], and is isomorphic to $\pi_{p+q}^{s}(X)$ additively since $S_{+}^{1,0}$ is an equivariant S-dual of itself [3]. Moreover, ρ acts as -1 on $\pi_{p,q}^{s}(X \wedge S_{+}^{1,0})$ [2]. (See [2], p. 365 for the definition of ρ). We define Λ to be the ring $\mathbf{Z}[\rho]/(1-\rho^{2})$. The purpose of this paper is to prove the following theorem on the (unstable) τ homotopy groups $\pi_{p,q}(X \wedge S_{+}^{1,0})$.

Theorem. Let $p \ge 1$ and $q \ge 2$. If $\pi_k(X \times X, X \lor X) = 0$ for each k, $q+2 \le k \le p+q+1$, then there exists an isomorphism of abelian groups

 $\phi_{p,q}: \pi_{p,q}(X \wedge S^{1,0}_+) \simeq \pi_{p+q}(X) \oplus \pi_{q+1}(X).$

Furthermore, the ρ -action on $\pi_{b,q}(X \wedge S^{1,0}_+)$ is given by

$$\rho \cdot (\alpha, \beta) = (-\alpha, \beta), \qquad p \ge 2$$

$$\rho \cdot (\alpha, \beta) = (-\alpha, \alpha + \beta), \qquad p = 1$$

where (α, β) is an element of $\pi_{p,q}(X \wedge S^{1,0}_+)$ via $\phi_{p,q}$.

See §1 for the definition of $\phi_{p,q}$.

EXAMPLE. If $p+q+2 \leq 2n$, then we have

$$\pi_{p,q}(S^{n}X \wedge S^{1,0}_{+}) \cong \pi_{p+q}(S^{n}X) \oplus \pi_{q+1}(S^{n}X),$$

since $\pi_k(S^nX \times S^nX, S^nX \vee S^nX) = 0$ for $k \leq 2n-1$.

Corollary (cf. [2], Proposition 3.6). Let $(p,q) \in \mathbb{Z} \times \mathbb{Z}$. Then $\pi_{p,q}^{s}(X \wedge S_{+}^{1,0}) \cong \pi_{p+q}^{s}(X)$ and ρ acts as -1 on $\pi_{p,q}^{s}(X \wedge S_{+}^{1,0})$.

This follows from the above theorem, since $\pi_{q+n+1}(S^{2n}X)=0$ for sufficiently large n.

Notations and elementary results in [2] are used freely.

The author would like to express his hearty thanks to Professors S. Araki

and H. Minami for their kind advice.

1. Let Y be a pointed τ -complex with involution τ . We recall first the forgetful exact sequence ([2], (10.5)),

(1)
$$\cdots \to \pi_{r-1,s+1}(Y) \xrightarrow{\psi_{r-1,s+1}} \pi_{r+s}(Y) \xrightarrow{\delta_{r,s}^*} \pi_{r,s}(Y) \xrightarrow{\lambda_{r,s}} \pi_{r-1,s}(Y) \xrightarrow{\psi_{r-1,s}} \pi_{r+s-1}(Y) \to \cdots$$

where $r \ge 1$. Moreover, by [2] Lemma 12.6, we have

(2)
$$\delta_{r,s}^* \psi_{r,s} = 1 - \rho \quad \text{(times).}$$

We denote by $\tau_*: \pi_{r+s}(Y) \to \pi_{r+s}(Y)$ the homomorphism induced by τ . Then we have

Proposition 1. $\psi_{r,s}\delta_{r,s}^*=1+(-1)^r\tau_*$.

Proof. Let $\alpha \in \pi_{r+s}(Y)$. Since $\psi_{r,s} \delta^*_{r,s}(\alpha)$ is an element of

$$\pi_{r+s}(Y) = \left[\sum^{r,s} \wedge S^{1,0}_+, Y\right]^r,$$

we obtain

$$\begin{split} \psi_{r,s} \delta^{*}_{r,s}(\alpha) \left(s_{1}, \cdots, s_{r}, t_{1}, \cdots, t_{s}, -1 \right) \\ &= \begin{cases} \alpha(s_{1}, \cdots, s_{r-1}, 2s_{r}+1, t_{1}, \cdots, t_{s}, -1), & -1 \leq s_{r} \leq 0, \\ \alpha(s_{1}, \cdots, s_{r-1}, 1-2s_{r}, t_{1}, \cdots, t_{s}, +1), & 0 \leq s_{r} \leq 1, \end{cases} \\ &= \begin{cases} \alpha(s_{1}, \cdots, s_{r-1}, 2s_{r}+1, t_{1}, \cdots, t_{s}), & -1 \leq s_{r} \leq 0, \\ \tau_{*}(\alpha) \left(-s_{1}, \cdots, -s_{r-1}, 1-2s_{r}, t_{1}, \cdots, t_{s} \right), & 0 \leq s_{r} \leq 1. \end{cases}$$

This yields the result.

Let X be a pointed τ -complex. Hereafter, we shall consider the case $Y = X \wedge S^{1,0}_+$. Let $X \vee X$ be a τ -complex with involution defined by $\tau(x, *) =$ (*, x). Since $X \wedge S^{1,0}_+$ is τ -homeomorphic to $X \vee X$ ([2], p. 370), $X \wedge S^{1,0}_+$ may be replaced by $X \vee X$ in the τ -homotopy groups. Thus we may assume that the involution on X is trivial.

As is well known, there exists an isomorphism

$$\pi_k(X \vee X) \cong \pi_k(X) \oplus \pi_k(X) \oplus \pi_{k+1}(X \times X, X \vee X) .$$

Here we forget the involution of $X \lor X$, as usual.

If $\pi_{k+1}(X \times X, X \vee X) = 0$, then we have

$$\pi_k(X \vee X) \cong \pi_k(X) \oplus \pi_k(X) .$$

By this isomorphism, we identify $\pi_k(X \vee X)$ with $\pi_k(X) \oplus \pi_k(X)$.

Let $p \ge 1$ and $q \ge 2$. In the following Lemmas 2 and 3, we assume π_{p+q+1} $(X \times X, X \lor X) = 0$.

Lemma 2. $\psi_{p,q}\delta^*_{p,q}(\alpha,\beta) = (\alpha + (-1)^p\beta, \beta + (-1)^p\alpha).$

Proof. Let $\tau_*: \pi_{p+q}(X \lor X) \to \pi_{p+q}(X \lor X)$ be the map induced by τ . Then $\tau_*(\alpha, \beta) = (\beta, \alpha)$ where $(\alpha, \beta) \in \pi_{p+q}(X \lor X) \cong \pi_{p+q}(X) \oplus \pi_{p+q}(X)$. Thus, Lemma 2 follows from Proposition 1.

Lemma 3. Let $u \in \pi_{p,q}(X \vee X)$. Then $\psi_{p,q}(u)$ is of the form $(\alpha, (-1)^p \alpha)$ with $\alpha \in \pi_{p+q}(X)$.

Proof. Put $\psi_{p,q}(u) = (\alpha, \beta)$. It is sufficient to prove $\beta = (-1)^p \alpha$. Apply $\psi_{p,q}$ to $\delta^*_{p,q}\psi_{p,q}(u) = u - \rho \cdot u$ (2). Since $\psi_{p,q} \circ \rho = -\psi_{p,q}$ ([2], (9.9)), Lemma 2 shows that

$$(\alpha + (-1)^{\mathfrak{p}}\beta, \beta + (-1)^{\mathfrak{p}}\alpha) = (\alpha, \beta) + (\alpha, \beta),$$

and so $\beta = (-1)^{p} \alpha$ as required.

Since $\pi_{0,k}(X \lor X) = 0$, it follows from (1) with $Y = X \lor X$, r = 1 and s = q, that there exists an isomorphism

$$\delta_{1,q}^*\colon \pi_{q+1}(X\vee X) \xrightarrow{\approx} \pi_{1,q}(X\vee X) .$$

Suppose that $\pi_{q+2}(X \times X, X \vee X) = 0$. We then define the homomorphism $\overline{\chi}_{p,q}: \pi_{p,q}(X \vee X) \to \pi_{q+1}(X)$ by the composition $p_2(\delta_{1,q}^*)^{-1}\chi_{2,q}\cdots\chi_{p,q}$ if $p \ge 2$, and define $\overline{\chi}_{1,q}$ by $p_2(\delta_{1,q}^*)^{-1}$, where p_2 denotes the projection to the second factor.

Moreover, suppose $\pi_{p+q+1}(X \times X, X \vee X) = 0$. Then we define the homomorphism

$$\phi_{p,q} \colon \pi_{p,q}(X \lor X) \to \pi_{p+q}(X) \oplus \pi_{q+1}(X)$$

by

$$\phi_{p,q}(u) = (p_1 \psi_{p,q}(u), \overline{X}_{p,q}(u)),$$

where p_1 denotes the projection to the first factor.

2. We shall prove the theorem by the induction on p. Let p=1. Put $(\delta_{1,q}^*)^{-1}(u) = (\alpha, \beta)$, and we obtain

$$\begin{aligned} \phi_{1,q}(u) &= (p_1\psi_{1,q}(u), \bar{X}_{1,q}(u)) & \text{by definition} \\ &= (p_1\psi_{1,q}\delta^*_{1,q}(\alpha,\beta), p_2(\alpha,\beta)) \\ &= (\alpha - \beta, \beta) & \text{by Lemma 2.} \end{aligned}$$

Therefore, $\phi_{1,q}$ is an isomorphism. When $p \ge 2$, by the induction hypothesis, we get an isomorphism

М. Ноѕовисни

$$\phi_{p-1,q}: \pi_{p-1,q}(X \vee X) \simeq \pi_{p+q-1}(X) \oplus \pi_{q+1}(X) .$$

Consider the forgetful exact sequence (1) with $Y=X \lor X$, r=p and s=q. Let $u \in \pi_{p,q}(X \lor X)$. Then $\phi_{p-1,q}(\chi_{p,q}(u))=(0, \overline{\chi}_{p,q}(u))$ since $\psi_{p-1,q}\chi_{p,q}=0$.

We assume $\phi_{p,q}(u) = (0, 0)$. Then $p_1 \psi_{p,q}(u) = 0$ and $\overline{X}_{p,q}(u) = 0$ by definition. Since $\phi_{p-1,q}$ is an isomorphism, we get $\chi_{p,q}(u) = 0$. Therefore, there exists an element $(\alpha, \beta) \in \pi_{p+q}(X \lor X)$ such that $\delta_{p,q}^*(\alpha, \beta) = u$. It follows from Lemma 2 that (α, β) is congruent to $(\alpha + (-1)^p \beta, 0) \mod \operatorname{Im} \psi_{p-1,q+1}$. Thus $\delta_{p,q}^*(\alpha + (-1)^p \beta, 0) = u$. Applying $p_1 \psi_{p,q}$ to this, we get an equality

$$\alpha + (-1)^{\mathfrak{p}}\beta = p_1 \psi_{\mathfrak{p},\mathfrak{q}}(u) = 0$$

which implies u=0. Hence $\phi_{p,q}$ is a monomorphism.

We show that $\phi_{p,q}$ is an epimorphism. Let $(\alpha, \beta) \in \pi_{p+q}(X) \oplus \pi_{q+1}(X)$. By Lemma 3, $\psi_{p-1,q}(\phi_{p-1,q})^{-1}(0,\beta) = (0,0)$. Therefore, there exists an element $v \in \pi_{p,q}(X \lor X)$ such that $\chi_{p,q}(v) = (\phi_{p-1,q})^{-1}(0,\beta)$. This implies $\overline{\chi}_{p,q}(v) = \beta$. Then we have

$$\phi_{p,q}(\delta_{p,q}^*(\alpha,0)+v-\delta_{p,q}^*(p_1\psi_{p,q}(v),0))=(\alpha,\beta)$$

as can be easily checked.

We now turn to the ρ -action on $\pi_{p,q}(X \vee X)$. Let $u \in \pi_{p,q}(X \vee X)$ and $\phi_{p,q}(u) = (\alpha, \beta)$. Then $\psi_{p,q}(u) = (\alpha, (-1)^p \alpha)$ by Lemma 3. From (2), we obtain $\delta_{p,q}^*(\alpha, (-1)^p \alpha) = u - \rho \cdot u$. Recall that $(\alpha, 0)$ is congruent to $(0, (-1)^p \alpha) \mod \operatorname{Im} \psi_{p-1,q+1}$ if $p \ge 2$. Thus $2 \cdot \delta_{p,q}^*(\alpha, 0) = u - \rho \cdot u$. Applying $\phi_{p,q}$, we obtain

$$2 \cdot (\alpha, 0) = \phi_{p,q}(u) - \phi_{p,q}(\rho \cdot u) \,.$$

This shows that $\phi_{p,q}(\rho \cdot u) = (-\alpha, \beta)$ for $p \ge 2$. Let $u \in \pi_{1,q}(X \lor X)$ and $\phi_{1,q}(u) = (\alpha, \beta)$. Then $\psi_{1,q}(u) = (\alpha, -\alpha)$ by Lemma 3. The same method gives rise to

$$\phi_{1,q}\delta_{1,q}^*(\alpha,-\alpha)=(\alpha,\beta)-\phi_{1,q}(\rho\cdot u).$$

By the definition of $\phi_{1,q}$, the left hand side coincides with $(2\alpha, -\alpha)$. Hence $\phi_{1,q}(\rho \cdot u) = (-\alpha, \alpha + \beta)$ as required. This completes the proof of the theorem stated in the introduction.

REMARK. Let $X \times X$ be a τ -space with involution defined by $\tau(x_1, x_2) = (x_2, x_1)$. Then we have an isomorphism of abelian groups

$$\xi_{p,q}: \pi_{p,q}(X \times X) \cong \pi_{p+q}(X) \quad \text{for } p \ge 1, q \ge 2.$$

The correspondence is given by $\xi_{p,q}(u) = p_1 \psi_{p,q}(u)$. Moreover, ρ acts as -1 on $\pi_{p,q}(X \times X)$.

160

References

- [1] S. Araki: Forgetful spectral sequences, Osaka J. Math. 16 (1979), 173-199.
- [2] S. Araki and M. Murayama: τ -cohomology theories, Japan. J. Math. 4 (1978), 363-416.
- [3] M. Murayama: S-duality in τ -cohomology theories, Publ. RIMS, Kyoto Univ. 16 (1980), 669–692.

Department of Mathematics Kyoto Institute of Technology Sakyo-ku, Kyoto 606 Japan