

Title	Atomistic Modeling of Nucleation Kinetics of Nano-precipitates in Light Alloys
Author(s)	廖, 荷婷
Citation	大阪大学, 2024, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/98680
rights	
Note	やむを得ない事由があると学位審査研究科が承認したため、全文に代えてその内容の要約を公開しています。全文のご利用をご希望の場合は、大阪大学の博士論文についてをご参照ください。

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (LIAO Het ing)	
Title	Atomistic Modeling of Nucleation Kinetics of Nano-precipitates in Light Alloys (軽合金中のナノ析出物の核生成動力学の原子論的モデリング)
Abstract of Thesis	
<p>Predicting precipitation kinetics is critical in materials science and engineering to optimize alloy properties, improve manufacturing processes, and enhance product durability and performance. Accurate predictions enable the design of heat treatments that tailor alloy properties such as strength, hardness, and corrosion resistance, while also reducing development time and costs. These predictions support the design of advanced alloys with specialized properties to meet demanding applications. Therefore, understanding and predicting precipitation kinetics allows precise control of the microstructure, resulting in the production of high-quality, reliable alloys. Light alloys (Al and Mg alloys) are widely accepted as essential structural materials in the automotive and aeronautical industries, because of their low density, high fracture toughness and strength. The hardness of light alloys is increased through aging, in which the formation of nano-precipitates hinders plastic deformation. Therefore, understanding the formation process of nano-precipitates is crucial for tailoring the age hardening process of light alloys.</p> <p>The nucleation process of metastable nano-precipitates is controlled by time, temperature, and solute concentration. Our understanding of the complex interaction among these factors remains limited. In this work, we used a variety of atomistic simulation methods, including atomistically informed classical nucleation theory (CNT) and kinetic Monte Carlo (kMC) to study the nucleation kinetics of nano-precipitates in typical light alloys Al–Cu and Mg–Y, and to demonstrate the effects of the controlling factors on the nucleation process, e.g., evolution of nano-precipitates, nucleation rate, and incubation time.</p> <p>For Al–Cu alloys, we characterized the nucleation preference of coherent Guinier–Preston (GP) zones and semicoherent nano-precipitates in Al–Cu alloys at various temperatures and solute concentrations using the CNT along with a recently developed neural-network potential with near first-principles accuracy. Our atomistically informed CNT model revealed the overall temperature and solute-concentration dependencies of the nucleation barriers of the nano-precipitates, which determine the crossover temperatures at which the ease of formation of each precipitate alternates at the solute concentration of interest. Moreover, time-temperature-transformation (TTT) diagrams over a wide temperature range and the nose temperature at which the incubation time for GP zone formation is the shortest were obtained using the CNT. These predicted results were in good qualitative agreement with the experimental observations. Furthermore, two formation scenarios of double-layer GP (GP2) zones, considering synchronous and asynchronous attachments of solute atoms to clusters, were compared in terms of nucleation efficiency. This provides new insights into the nucleation pathways of the GP2 zone in Al–Cu alloys. Moreover, we developed a neural network kinetic Monte Carlo (NN-kMC) method for simulating the GP zone nucleation in dilute Al–Cu alloys. The use of the neural network (NN) greatly improves the efficiency of the on-the-fly kMC calculation by directly predicting the jump frequency of the vacancy-atom exchange based on the geometry surrounding the vacancy, achieving an accuracy near that of the nudged elastic band (NEB) method. We employed the NN-kMC method to quantitatively determine the incubation time of GP zones in Al–2.0 at%Cu alloys at various temperatures. The results were in good agreement with experimental observations, and the predicted incubation times are closer to the experimental values than those predicted using the CNT.</p> <p>For Mg–Y alloys, we applied the kMC approach to explore the nucleation kinetics of the β'' precipitates in the Mg–3.0 at%Y system using an “on-lattice” DFT-based interatomic potential. The time evolution of nucleation of the β'' precipitates was characterized based on the kMC results. Using these results, we predicted the existence of an optimum temperature for the formation of the β'' precipitates to be 550 K, at which the time necessary for nucleation is the shortest. Moreover, an upper temperature limit, above which the β'' precipitates cannot nucleate, was computed as 700 K. This study explains precipitate nucleation in Mg–Y alloys at an atomic level and provides the theory for obtaining an optimal age-hardening response.</p> <p>Our findings will provide a theoretical basis for developing optimal aging strategies and contribute to the understanding of nucleation of nano-precipitates in Al–Cu and Mg–Y alloys at the atomic level as well as facilitate the development of high-strength light alloys.</p>	

論文審査の結果の要旨及び担当者

氏 名 (LIAO Heting)		
論文審査担当者	(職)	氏 名
	主査 教授	尾方 成信
	副査 教授	後藤 晋
	副査 教授	垂水 龍一
	副査 教授	君塚 肇
(名古屋大学大学院工学研究科)		

論文審査の結果の要旨

自動車や航空機に用いられる軽合金（アルミニウムやマグネシウム合金）の強度は、時効処理によって合金中にナノ析出物を析出させることで制御される。これはナノ析出物が、塑性変形を妨げ、その結果、弾性変形が進行し、最大応力が上昇するためである。合金中のナノ析出物の形成動力学を理解し予測することができれば、軽合金の時効硬化プロセスを実験以前に設計することが可能となり、合金開発の時間とコストを大幅に削減することにつながるが、いまだ実現には至っていない。

本論文は、古典核生成理論（CNT）や、動的モンテカルロ（kMC）法などの原子シミュレーション法を用いて、典型的な軽合金である、Al-CuおよびMg-Y中のナノ析出物の核生成過程や核形成動力学の予測を行ったものである。具体的な内容は以下の通りである。

Al-Cu合金に対しては、古典核生成理論と第一原理に近い精度を持つニューラルネットワーク原子間ポテンシャルを用い、コヒーレントGPゾーンと半コヒーレントなナノ析出物のどちらが最初に核生成するかの核生成優位性の温度および溶質濃度依存性を明らかにしている。さらに、Al-Cu合金におけるGPゾーンの核生成過程を直接原子論的にシミュレートするために、ニューラルネットワーク・動的モンテカルロ（NN-kMC）法を独自に開発している。本手法では、ニューラルネットワークを用いて、空孔周囲の原子配置から空孔ジャンプの活性化バリアを直接予測することで、都度活性化バリアを解析する場合に比べて、kMC計算の計算効率を大幅に向上させている。この手法を用いて、さまざまな温度でのAl-2.0 at%Cu合金中のGPゾーン核生成の潜伏時間を定量的に求めることに成功している。この解析結果は実験と良好な一致を示し、古典核生成理論に基づく解析よりも、より良く実験を再現することを示している。

Mg-Y合金に対しては、密度汎関数法により構築された原子間ポテンシャルを用いて、Mg-3.0 at%Y系における β'' 析出物の核生成動力学をkMC法を用いて解析している。それにより、 β'' 析出物の形成を最短時間で達成する温度が550 Kであることを予測し、 β'' 析出物が核生成しなくなる臨界温度が700 Kであると予測している。

本研究の成果は、最適な時効戦略の開発のための理論的基盤を提供し、Al-CuおよびMg-Y合金におけるナノ析出物の核生成を原子レベルで理解することを可能とするものであり、今後の高強度軽合金の開発を促進するものである。

令和6年8月6日に審査委員会を開き、LIAO Heting氏に博士論文の内容について説明を行わせ質疑・討論および口頭試問を行った。論文の内容はこの分野の進展に寄与する十分な新規性を有していることから博士（工学）の学位論文として価値のあるものと認める。