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Abstract

Quantum computing o↵ers new possibilities in quantum chemistry for calculat-
ing the electronic structure of a molecule. Quantum computers, which utilize
quantum mechanical principles for their computations, are generally considered
to be better suited for this task than classical hardware. On the other hand,
quantum computers are severely limited by their number of qubits and the
number of operations they can perform. This limits the number of degrees of
freedom (i.e., orbitals) that can be considered in an electronic structure cal-
culation for a molecule on a quantum computer. For the foreseeable future,
quantum computers alone are unlikely to be able to handle problems involving
molecules of realistic size. Practical problems in quantum chemistry require
quantum-classical hybrid algorithms that combine a quantum computer with a
classical computer.

In this thesis, we address the issue of the limitation of orbital numbers for
calculating the electronic structure of a molecule using quantum computing in
di↵erent ways. One way we e↵ectively increase the number of orbitals that
can be considered is by using a divide-and-conquer method. One particular
algorithm that uses this method is the so-called deep Variational Quantum
Eigensolver (deep VQE). It is well-known that this kind of method misses some
correlation energies when recombining the divided systems. We examined mul-
tiple methods to recombine the divided systems and compared them regarding
accuracy and computational requirements. Using our newly proposed strate-
gies, the deep VQE algorithm can significantly reduce the number of qubits
required to calculate the electronic structure of a molecule. We were even able
to showcase this advantage by calculating the ground state energy of retinal, a
molecule that plays an important role in the human retina.

Our second approach involves compensating for degrees of freedom that can-
not be handled by the quantum computer using classical post-processing tech-
niques. A common strategy is to reduce the computational cost of an electronic
structure calculation of a molecule by using the active space approximation. In
the active space approximation method, only a molecule’s most relevant orbitals
and electrons are considered for the calculation. However, such an approach can
produce inaccurate results due to the missing electron correlation from ignored
orbitals and electrons. We improved the active space approximation using a
post-process correction method. We calculate the active space accurately on a
quantum computer and take into account the missing electron correlation in a
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follow-up tailored coupled cluster calculation on a classical computer. We show
that we successfully reintroduce the missing electron correlation on multiple,
di↵erent molecules and use it to predict the activation energy of a chemical
reaction.

The third approach we explore involves developing an ansatz (wave function
representation) that can be used interchangeably between quantum and classical
computers. Coupled Cluster (CC) theory is a highly e↵ective framework in com-
putational chemistry to calculate electronic structures. The CC method is not
variational, and it can fail to predict the electronic structures of molecules with
strongly correlated electrons. A variational variant of the CC methods (VCC)
prevents this failure. However, on a classical computer, VCC requires an expo-
nential computational cost, making it virtually impossible for most molecules
to calculate. We propose a method for applying an approximated version of the
VCC that scales polynomials in system size on a quantum computer and allows
us to represent an approximation of the VCC wave function. The parameters
can be optimized in a quantum-classical hybrid approach. The relationship be-
tween VCC and CC allows for a classical approximation of the VCC parameters,
resulting in fast convergence on the quantum computer and, in addition, the ef-
ficient extraction of information about the quantum state. We show that the
approximated version of the VCC on the quantum computer produces results
that are in good agreement with the conventional VCC algorithm.

We show three di↵erent approaches to using quantum-classical hybrid algo-
rithms with a resource-limited quantum computer for accurate quantum chem-
istry calculations. Our research related to the combination of quantum and
classical computing allows us to improve the divide-and-conquer method and
the active space approximation. Such a combination also allows us to develop
an approximative VCC method that scales exponentially better than conven-
tional VCC.
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Abbreviations

HF Hartree-Fock
CC Coupled Cluster
CCSD Coupled Cluster with Single Double excitations
CCSD(T) Coupled Cluster with Single Double,

and a perturbative Triple excitations
VCC Variational Coupled Cluster
VCCSD Variational Coupled Cluster with Single Double excitations
Cd-VCC Chebyshev expansion of VCC with degree d
HCd-VCC Hermitian-part Chebyshev approximation of VCC

with degree d
UCC Unitary Coupled Cluster
UCCSD Unitary Coupled Cluster with Single Double excitations
MR-AQCC Multi-Reference Averaged Quadratic Coupled-Cluster
CI Configuration Interaction
FCI Full Configuration Interaction
CASCI Complete Active Space Configuration Interaction
CASSCF Complete Active Space Self-Consistent Field
GTO Gaussian-Type Orbital
STO Slater-Type Orbital
RDMs Reduced Density Matrices
NISQ Noisy Intermediate-Scale Quantum
FTQC Fault-Tolerant Quantum Computing
VQE Variational Quantum Eigensolver
QPE Quantum Phase Estimation
CBT Computational Basis Tomography
QSVT Quantum Singular Value Transformation
ITE Imaginary Time Evolution
TCC Tailored Coupled Cluster
PECs Potential Energy Curves
QC-CBT-TCC Quantum Classical Computational Basis

Tomography Tailored Coupled Cluster Method
IQR Inter-Quartile Range
JW Jordan-Wigner transformation
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Chapter 1

Introduction

1.1 Motivation for Quantum Chemistry with
Quantum Computing

It has become clear that the achievements of humankind are founded on limited
resources and are unsustainable for a growing human population. It is foresee-
able that we will face multiple challenges in the near future. The climate and
the energy crises or antibiotic-resistant bacteria are just the tip of the melt-
ing iceberg. Progress in quantum chemistry is desirable as it can be a part of
finding solutions to these problems. Being able to make accurate predictions
about the chemical properties of molecules would fundamentally change our
development cycles and support the progress toward a sustainable interaction
with the environment. At the heart of this task is the requirement to solve
the Schrödinger equation, which describes the behavior of a quantum system.
However, the Schrödinger equation is a partial di↵erential equation for which
there exists today no analytical method to solve. Numerical solutions with high
accuracy are often not possible on classical computers since the computational
cost even exceeds the capability of today’s supercomputers. There is a remark-
able e↵ort from academia and industry to make quantum computing a helpful
tool to support these numerical calculations.

Richard Feynman [1] proposed in 1982 that quantum computers have a dis-
tinct advantage in simulating quantum systems. Using a quantum device to
represent a quantum system, it is more natural to simulate quantum e↵ects
than on its classical counterpart. A quantum computer only requires a polyno-
mial growing number of qubits to represent a quantum state in comparison to
the exponential growing memory requirement on a classical computer.

This favorable scaling on the system size gives quantum algorithms an advan-
tage for certain problems over today’s algorithms on classical hardware. Exam-
ples of such highly e�cient algorithms are the Shor algorithm [2, 3], which fac-
torizes large integers or the Harrow-Hassidim-Loyd algorithm [4], which solves
linear systems of equations e�ciently. In the quantum chemistry setting this
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4 CHAPTER 1. INTRODUCTION

dependence on the system size suggests the promising potential of quantum
computers to calculate the electronic structure of complex molecules e�ciently.
One of the algorithms to solve this problem is the Quantum Phase Estimation
(QPE) [5–7]. The QPE algorithm samples a Hamiltonian’s exact eigenvectors
and eigenvalues, allowing the precise electronic structure of a molecule to be
determined in a polynomial time with respect to the system size, in contrast to
exponential scaling on classical hardware.

To successfully run such complex quantum algorithms, it is essential, due to
the intrinsic noise of the qubits, to be in the fault-tolerant quantum computing
(FTQC) era. This requires using quantum computers that are able to run
quantum error correction codes.

1.2 Challenge of Resource-Limited
Quantum Computer

To perform quantum chemistry computations on an error-corrected quantum
computer, it is theorized that O(106) [8, 9] physical qubits are required. How-
ever, even when tremendous achievements in realizing quantum hardware have
been made in the most recent years, we are still in what John Preskill [10]
defined as the Noisy Intermediate-Scale Quantum (NISQ) era. This describes
quantum hardware with a limited number of qubits of O(10) to O(100), with
the qubits showing limited performance due to the intrinsic noise. Impressively,
it has already been possible to demonstrate that NISQ quantum machines could
be used for quantum chemistry calculations [11–13]. This is partly due to the
promising method Variational Quantum Eigensolver (VQE) [14–16], which is
able to run on NISQ devices. The VQE is a quantum-classical hybrid algorithm
that approximates the ground state variationally. It uses an iterative process
between a quantum and a classical computer that prevents errors from building
up over time on the quantum device. However the performed calculations are
currently still in reach of today’s classical hardware due to the restrictions on
the number of qubits in the NISQ era.

It is, therefore, clear that quantum computers will remain resource-limited
in the NISQ era as well as far into the FTQC era. In the NISQ era, we will be
limited by the intrinsic noise of the faulty qubits, whereas in the FTQC, we will
be limited by the costly overhead of error correction codes. To consider how
resource-limited quantum computers could be used successfully is, therefore, an
essential undertaking.

1.3 Goal of this Thesis

The goal of this research is to perform accurate quantum chemistry calculations
on a quantum computer even when they have limited resources. There are two
main reasons why this is a challenging task.

• Quantum chemistry calculations are computationally expensive.
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• Quantum computers have a limited number of qubits with low coherence
time.

It has not yet been possible to use quantum computing for a calculation of
an electronic structure of a molecule that is out of reach for classical hardware.
This is due to the severe restrictions quantum computers, as of today and in
the foreseeable future, have to face.

To perform quantum chemistry calculations with a quantum computer, it is
essential to develop computational methods that work with limited resources.
We tackle these issues by developing some quantum-classical hybrid algorithms.
The basis of these algorithms originates from well-established methods in quan-
tum chemistry performed on classical computers. Using such hybrid algorithms
allows us to combine and utilize the favorable properties of both classical and
quantum computers. This thesis is a step towards accurately predicting the
electronic structures of bigger molecules.

There are multiple approaches [17–19] that allow the approximation of an
electronic structure of a molecule where the orbitals exceed the number of
available qubits on a quantum computer. One of these methods is the deep
Variational Quantum Eigensolver (deep VQE) [20], which uses a divide-and-
conquer approach to the molecule. Another approach is the so-called active
space method, which regards only a subset of all orbitals and electrons most
relevant in the electronic structure calculation. However, both of these meth-
ods are approximations. They neglect certain electronic correlations within the
molecule, limiting the accuracy of the calculation. A goal of this thesis is to
overcome these methodical errors. In the case of the deep VQE, we achieve
this by improving the recombination of the divided subsystems by applying
appropriate interactions. In the case of the active space approximation on a
quantum computer, we reintroduce the missing electronic correlation using a
post-process correction method. We calculate the active space accurately on
a quantum computer and take into account the missing electron correlation in
a follow-up Tailored Coupled Cluster (TCC) [21–26] calculation on a classical
computer. We use Computational Basis Tomography (CBT) [27] to transfer
the relevant Coupled Cluster (CC) [28, 29] coe�cients onto the quantum com-
puter. For quantum computing multiple methods [30–52] have been proposed
to incorporate the missing electron correlation. However, they either su↵er
from tremendous measurement costs or require preexisting knowledge of the
electronic correlation.

Even though CC is a potent method to calculate the electronic structure,
it fails for strongly correlated systems [53]. A variational version of the CC
method could fix this. It has been shown that the Variational Coupled Cluster
(VCC) [53–63] method produces reasonable solutions for the electronic structure
of a molecule [57, 61, 62]. However, the VCC scales exponentially on a classical
computer. In addition, the VCC method can not be directly applied on quantum
computers since they are limited to unitary operations. Our goal is to develop a
quantum computing method that approximates the VCC state with polynomial
computational cost. We achieve this by splitting the exponent of the VCC
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ansatz into a Hermitian and anti-Hermitian part. The exponent of the anti-
Hermitian part can be directly applied on the quantum computer since it is a
unitary operation. We approximate the exponential of the remaining Hermitan
part using a Chebychev approximation and apply it to the quantum computer
using a Quantum Singular Value Transformation (QSVT) [64].

1.4 Overview of this Thesis

Chapter 2: Preliminaries
In Chapter 2, we discuss the background necessary to follow this thesis. We
introduce the mathematical background as well as provide a quick introduction
to quantum chemistry. We also discuss the fundamentals of quantum computing
and show the relevant quantum or quantum-classical hybrid algorithms used in
this thesis.

Chapter 3: Local bases of Deep Variational Quantum Eigensolver for
Quantum Chemistry
In Chapter 3, we address the limited resource problem with a divide-and-conquer
approach. In particular, we use deep VQE [20], which is a quantum-classical
hybrid algorithm. Its goal is to determine the ground state of a quantum system
that is too large to be mapped onto the quantum computer in full. We examine
di↵erent subspace-forming methods and compare their accuracy and complexity
on a 10 H-atom tree-like molecule as well as a 13 H-atom version. Additionally,
we examined the performance on the naturally occurring retinal molecule. This
Chapter is based on [Erhart, Mitarai, Mizukami, and Fujii, Phys. Rev. Applied
18, 064051].

Chapter 4: Coupled Cluster Method Tailored with Quantum Com-
puting
In Chapter 4, we propose a method of using a quantum computer to solve
an active space calculation and incorporate classical dynamic correlation. Our
method is a CC split amplitude approach where we use a quantum computer to
solve the static correlation and add the remaining dynamic correlation using a
classical computer. The e�cient state tomography CBT is used to transfer the
relevant coe�cients from the quantum computer onto the classical computer.
This makes this approach feasible in the NISQ era as well as for FTQC. We
show the performance of our method by predicting the potential energy curves
(PECs) of LiH, H2O, and N2. Additionally, we examined the influence of the
number of CBT measurements on the prediction uncertainty of our method.
Furthermore, we predict the activation energy for the Cope rearrangement re-
action of 1,5-hexadiene and compare it to established methods. This Chapter
is based on [Erhart, Yoshida, Khinevich, and Mizukami, Phys. Rev. Research
6, 023230].
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Chapter 5: Variational Coupled Cluster Method for Quantum Com-
puter
In Chapter 5, we present a method to prepare the Variational Coupled Cluster
with Single and Double excitations (VCCSD) state on a quantum computer
approximately, making it available for the first time to be used in further algo-
rithms such as QPE. We utilized the Chebyshev expansion to approximate the
VCCSD ansatz as a polynomial and applied it using a QSVT. We demonstrate
the accuracy of our method on highly correlated molecules such as linear H4,
H6, and N2, respectively. This Chapter is based on [Erhart, Yoshida, Khinevich,
and Mizukami, arXiv:2406.07364].

Chapter 6: Conclusion
We summarize the thesis in Chapter 6 and show how the di↵erent approaches
contributed to solving the current open questions. We also discuss some further
possible research directions.



8 CHAPTER 1. INTRODUCTION



Chapter 2

Preliminaries

2.1 Mathematical Background

In this section, we discuss the mathematical background needed to follow this
thesis.

2.1.1 Hilbert Space

In quantum mechanics, a quantum system’s state can be described using a vector
in a Hilbert space. A Hilbert space is a vector space with an inner product. The
state vectors |�i are normalized under the inner product

h�|�i = 1. (2.1)

In this thesis, we are only concerned with finite-dimensional Hilbert spaces. Lets
assume the dimension of the Hilbert space is N . Therefore, selecting a basis
with N vectors is possible. It is often convenient to choose the computational
basis set. The corresponding vectors can be written as

|0i ⌘

2

6664

1
0
...
0

3

7775
, · · · , |n� 1i ⌘

2

6664

0
...
0
1

3

7775
. (2.2)

The computational basis set is orthogonal under the inner product

hi|ji = �i,j . (2.3)

Since the Hilbert space is a vector space, the composition HC of two systems
Hilbert spaces H1 and H2 is a tensor product space

HC = H1 ⌦H2. (2.4)

Consequently, the combined system’s dimension is the product of the two sub-
systems

dim(HC) = dim(H1) · dim(H2). (2.5)

9
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2.1.2 Di↵erent Types of Matrices

This subchapter summarizes the di↵erent matrix types that play a role in this
thesis. Most crucially, in this thesis, we deal with closed quantum systems.
The multiplication of a unitary matrix onto the quantum state describes an
operation on a closed quantum system. A unitary matrix is defined as follows:

Definition 1 (Unitary matrix). A matrix U is called unitary when

U�1 = U †. (2.6)

Unitary operations leave the inner product invariant. It consequently also
conserves the normalization of quantum states.

Hermitian matrices play an important role in quantum mechanics. They
represent the observable needed to perform a measurement.

Definition 2 (Hermitian matrices). A matrix H is Hermitian if

H† = H. (2.7)

Definition 3 (Anti-Hermitian matrices). A matrix A is anti-Hermitian if

A† = �A. (2.8)

It is possible to separate every matrix into a Hermitian and an anti-Hermitian
part as follows:

M =
1

2
(M +M †) +

1

2
(M �M †). (2.9)

As a side note, the anti-Hermitian matrices are the generators for unitary ma-
trices, implying eM is unitary when M is anti-Hermitian.

Definition 4 (Nilpotent matrices). A matrix N is nilpotent if there exists an
integer k such that

Nk = 0. (2.10)

2.1.3 Commutators/Anti-Commutators

A commutator tests how the order of operators influences the product. A com-
mutator is defined as follows:

[A,B] = AB �BA. (2.11)

If the commutator is 0, the order does not play a role. In quantum mechan-
ics, this is an important property. Since a measurement collapses the state to
an eigenvector of the observable, measuring multiple observables with a single
quantum state is often impossible. However, this is not the case when two ob-
servables commute. In such a case, the measurements don’t interfere with one
another and can be performed on a single-state vector.
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Another important e↵ect is when we consider the Baker–Campbell–Hausdor↵
formula

eAeB = eZ , (2.12)

with Z being

Z = A+B +
1

2
[A,B] +

1

12
[A, [A,B]]� 1

12
[B[A,B]] + · · · . (2.13)

If A and B commute, than Z = A + B. An anti-commutator is defined as
follows:

{A,B} = AB +BA. (2.14)

It is an important operation when we discuss the anti-symmetric properties of
electrons or fermions in general.

2.1.4 Chebyshev Expansion

The Chebyshev expansion is often used to approximate a function with a poly-
nomial. The Chebyshev polynomials of the first kind can be constructed using
a recursive function

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x)� Tn�1(x).

(2.15)

They form an orthogonal basis and can be used to approximate a function
f(x) 2 R,�1  x  1

f(x) =
1X

n=0

anTn(x). (2.16)

The coe�cients an are determined using an inner product

an =
2� �0,n

⇡

Z
1

�1

Tn(x)f(x)p
1� x2

dx. (2.17)

For some functions such as eax, |x|  1 there are analytical solutions

eax = I0(a) + 2
1X

k=1

Ik(a)Tk(x), (2.18)

where Ik are the modified Bessel functions

Ik(a) =
1X

l=0

(�1)l
22l+kl!(k + l)!

(a)2l+k. (2.19)

This approximation is also valid when using functions of matrices.
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2.2 Quantum Chemistry

Computational chemistry uses the principles of quantum mechanics in the sense
that molecules and other chemical systems follow the laws of quantum me-
chanics. The time-dependent Schrödinger equation describes the evolution of a
quantum system. In principle, we can predict the system’s future development
when we know the initial state. This would allow us to predict what happens
during chemical reactions. However, this approach is rarely used in practice
since the computational requirements are too high. To calculate the ground
state of a system, we use the time-independent Schrödinger equation

Ĥ |�i = E |�i , (2.20)

with |�i being the wave function that describes the system.

2.2.1 Electronic Structure Theory

In this thesis, we are primarily concerned with solving the electronic structure
problem, which is at the heart of molecular quantum chemistry. It describes
how the electrons are distributed in the potential generated by the nuclei. In a
mathematical sense, this boils down to finding the eigenvalue and eigenvector
of a Hamiltonian as described in equation 2.20. A molecular Hamiltonian can
be written as follows:

Ĥ = �
X

i

~2
2mi

r2

i
�
X

A

~2
2MA

r2

A
�
X

i,A

ZAe2

4⇡✏0|ri �RA|
+
X

i>j

e2

4⇡✏0|ri � rj |

+
X

A>B

ZAZBe2

4⇡✏0|RA �RB |
,

(2.21)

with ~ being the plank constant and ✏0 is the vacuum permittivity. The masses
of the electron i and nuclei A are given by mi,MA. The electric charge of
nuclei A is given by ZAe, and the charge of an electron is indicated by e. The
coordinates of the particle are given by ri,j for electrons and by RA,B for the
nucleus. In this Hamiltonian, the first two terms describe the kinetic energy of
the electrons and the nuclei. The following terms describe the interaction energy
between nuclei and electrons. Because of their mass, nuclei change position
much slower than electrons. Therefore, we can consider them static. This is
the Born-Oppenheimer approximation. To solve the eigenvalue equation, we
can separate the state of a quantum chemical system into two parts. One part
describes the position of the electrons around the nuclei, and the other describes
the position of the nuclei. The wave function can be written as

|�i = |�(r,R)i
elec

⌦ |�(R)i
nuc

. (2.22)

Since the nuclei do not change position, we can consider |�(R)i
nuc

to be con-
stant and only solve for the electronic part. This leaves us with the electronic
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Schrödinger equation

Ĥelec |�(r,R)i
elec

= Eelec |�(r,R)i
elec

, (2.23)

where Ĥelec is given by

Ĥelec = �
X

i

~2
2mi

r2

i
�
X

i,A

ZAe2

4⇡✏0|ri �RA|
+
X

i>j

e2

4⇡✏0|ri � rj |
. (2.24)

Throughout this thesis, we are mainly concerned with finding the eigenstate
with the lowest eigenvalue of Ĥelec. We call this state the ground state. In the
following, we will refer to Ĥelec as Ĥ.

2.2.2 Second Quantized Hamiltonian

Di↵erent formalisms exist to express a molecular system’s Hamiltonian. The
second quantization formalism with a basis set model is most commonly used.
We utilized this model in this thesis and will explain it in detail here.

In a basis-set formalism, the Hamiltonian gets represented in the basis of N
molecular spin orbitals {�k(ri,!)}. With r being the coordinates of the i-th
electron and ! its spin. Combining the spacial coordinates r and the ! in a
combined coordinate x is common. We introduce the basis sets used in this
thesis in Sec. 2.2.3. The state of the electron system needs to be written in
the same basis as the Hamiltonian. But the postulates of quantum mechanics
demand that the state of composite electrons is anti-symmetric since they are
1

2
-spin particles.
We can accomplish this by writing the states in a basis created by the Slater

determinant. A Slater determinant � of N electrons is written as

�(x0, . . . ,xN�1) =
1p
N !

���������

�0(x0) �1(x0) · · · �N�1(x0)
�0(x1) �1(x1) · · · �N�1(x1)

...
...

. . .
...

�0(xN�1) �1(xN�1) · · · �N�1(xN�1)

���������

. (2.25)

The pre-factor 1p
N !

is required since a state needs to be normalized. The Slater

determinant has N electrons occupying N spin-orbitals �k. The rows indicate
the electron, whereas the columns are labeled by the spin-orbitals. Interchang-
ing the position of two electrons switches the order of the rows in the Slater
determinant, which changes the sign. The Slater determinant, therefore, fol-
lows the anti-symmetric requirement from the quantum mechanic postulate.
Having two electrons in the same spin-orbital results in two identical columns
and a 0-determinate. Therefore, the Pauli exclusion principle is also directly
met.

In the second quantization formalism, we write the Slater determinant as

�(x0,x1, . . . ,xN�1) ⌘ |f0f1 · · · fN�1i , (2.26)
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where fk is equal to 1 when the orbital �k is occupied by an electron and 0
otherwise. A general state can be written as a linear combination of Slater
determinants like

|�i =
X

i

ci |f0f1 · · · fN�1ii , (2.27)

with ci being the coe�cients. The anti-symmetric property is accounted for by
how operators act on these states. Electrons can be created and annihilated in
an orbital i. The associated creation operator â†

i
and the annihilation operator

âi act on a state in the following way:

â†
i
|f0f1 · · · fN�1i = �i,0(�1)

Pi�1
r=0 fr |f0f1 · · · fi � 1 · · · fN�1i ,

âi |f0f1 · · · fN�1i = �i,1(�1)
Pi�1

r=0 fr |f0f1 · · · fi  1 · · · fN�1i .
(2.28)

The phase (�1)
Pi�1

r=0 fr is needed to ensure the anti-symmetric property. This is
required since the spin operators that act on an orbital do not follow the fermion
anti-commutator relationship. We discuss how the creation and annihilation
operators can be mapped to spin operators using the Jordan-Wigner (JW) [65]
mapping in Chapter 2.3.3. The creation and annihilation operators follow the
anti-commutator rules given by

{â†
i
, â†

j
} = 0,

{âi, âj} = 0,

{âi, â†
j
} = �i,j .

(2.29)

Writing the Hamiltonian using these creation and annihilation operators
takes the form

Ĥ =
X

i,j

hij â
†
i
âj +

1

2

X

i,j,k,l

hijklâ
†
i
â†
j
âkâl. (2.30)

The single hij and double-electron integrals hijkl take the form

hij =

Z
�⇤
i
(x)

 
�1

2
r2 �

X

A

ZA

|r�RA|

!
�j(r) dx, (2.31)

hijkl =

Z Z
�⇤
i
(x1)�

⇤
j
(x2)

1

|r1 � r2|
�k(x1)�l(x2) dx1 dx2. (2.32)

2.2.3 Basis Sets

In the previous section, we described how the second quantized Hamiltonian is
represented using a basis set of molecular orbitals. However, handling molecular
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orbitals on a computer is computationally quite expansive. It is, therefore, com-
mon practice to approximate the molecular spin orbitals using easier functions

�i(x) =
nbasisX

j=0

bi,j�j(x). (2.33)

In quantum chemistry, di↵erent types of basis sets {�j(x)}nbasis
j=0

are used
to represent molecular spin orbitals. A common approach is to use a linear
combination of atomic-type orbitals. Another approach is to use a plane wave
representation, which is often utilized when describing solid-state systems.

For atomic-type orbitals, Slater-type orbitals (STOs) are physically well-
motivated. However, they are computationally challenging for evaluating in-
tegrals, such as those in Eq. (2.32). To overcome this challenge, typically, an
approximation of the STOs by a linear combination of Gaussian-type orbitals
(GTOs) is used.

Various GTO-based basis sets have been developed and are available in
databases [66]. In this thesis, we use the STO-nG basis set, in which each STO
is approximated by n GTOs. Specifically, we used the basis set STO-3G [67].
Additionally, we use the 6-31G* [68] and the correlation-consistent polarized
valence double-zeta basis set (cc-pVDZ) [69] basis sets. The 6-31G* basis set is
a split-valence basis set that represents the core orbitals with 6 GTOs, while the
valence orbitals are approximated with two STOs that are represented with 3,
respectively, 1 GTO. The asterisk indicates that polarization functions are also
included in the basis set. The cc-pVDZ is a widely used basis set for accurate
quantum chemistry calculations. The cc-pVDZ basis set is a type of basis sets
called cc-pVnZ, for which n indicates the number of zeta functions. Increasing
the parameter n allows for a systematic convergence to the complete basis set
limit.

2.2.4 Hartree-Fock

We need a method to optimize Eq. (2.33) to find the molecular orbitals. For
this, it is common to use the Hartree-Fock (HF) method. The HF method is an
e�cient method to solve the electronic structure problem using a classical com-
puter. However, the electronic structure can only be solved exactly for particular
systems. The HF method simplifies the problem by treating each electron as
moving independently in the mean-field created by the other electrons. This is
achieved by approximating the Hamiltonian with the Fock operator. The Fock
operator includes the contribution of the electron-electron repulsion only in a
mean-field way. This treatment, however, ignores electron-electron correlation.
The HF method approximates the system’s ground state as a single Slater de-
terminant. The method follows an iterative process. It begins with an initial
guess for the molecular orbitals using one of the previously discussed basis sets.
The Fock operator is represented within this basis. Using the solution of the
Fock equation, the molecular orbitals’ approximation is updated. This process
of defining a Fock operator and updating the molecular orbitals is repeated



16 CHAPTER 2. PRELIMINARIES

until convergence. The converged molecular orbitals and the energy are the
final output of this method. However, because the HF method treats electron-
electron interaction using only a mean field of electrons, it ignores electronic
constellation. This neglect leads to the requirement to use post-HF methods
to incorporate these correlations. The HF method is most e↵ective for systems
where a single Slater determinant dominates, and correlation plays a minor role.

2.2.5 Electronic Correlation

The HF theory is not exact since it considers the influence on the electrons from
all the other electrons by a single mean field. The di↵erence between the exact
energy Eexact and the HF energy EHF is called the correlation energy. The
physical reason for this di↵erence is that electrons are correlated. This means
that the probability for one electron to be in one specific position depends on the
positions of the other electrons. In quantum chemistry, we consider two di↵erent
types of correlations. Firstly, the strong (or static) correlation is an e↵ect that
occurs when a single Slater determinant can not accurately describe the ground
state of a system. This is most noticeable with systems with near-degenerate
electronic states. It is also essential to describe the breaking of chemical bonds.
As a bond breaks, the system transforms from a single molecule with a bond
to two separate molecules; this requires multiple electronic configurations to be
described accurately. The second type of correlation is called weak (or dynamic)
correlation. It describes the correlation of electronic motion. It can even play
a role when a single Slater determinant is su�cient to describe the ground
state but when the electron-electron interaction is not accurately described. In
many molecular systems, both correlations play a role simultaneously. In order
to increase the accuracy of quantum chemical calculations, Post-Hartree-Fock
methods are required to take this electronic correlation into account.

2.2.6 Configuration Interaction

Configuration Interaction (CI) is a Post-Hartree-Fock method used to describe
the electronic correlation in a molecule. In contrast to HF, it approximates
the eigenstates of a Hamiltonian as a linear combination of Slater determinants
instead of a single Slater determinant. The Slater determinants are usually
constructed by considering excitations from the HF state as the reference state.
In the CI algorithm, the eigenstate of the Hamiltonian is approximated by
variational optimization of the coe�cients in the linear combination of the Slater
determinants

|�i
CI

= C0 |�0i+
X

i,a

Ca

i
|�ia

i
+
X

i,j,a,b

Ca,b

i,j
|�ia,b

i,j
+ · · · . (2.34)

Typically |�0i is the HF state |�i
HF

. The other states are created by acting with

excitation operators on the |�0i, |�iai = â†
a
âi |�0i , |�ia,bi,j

= â†
a
â†
b
âiâj |�0i , · · · .

The indices a, b, · · · indicate empty orbitals and i, j, · · · orbitals occupied with
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electrons. Therefore, to consider all possible determinates, the sums in Eq. (2.34)
need to continue until excitations that excite all possible electrons are also con-
sidered. This method is called Full Configuration Interaction (FCI) and is exact
considering the basis set. However, since the number of di↵erent Slater determi-
nants scales exponentially with the number of electrons and the number of basis
functions, it is often necessary to reduce the computational cost by introducing
approximations. One way to reduce the computational cost is to only consider a
subset of all the electrons and orbitals in the molecule. This is a so-called active
space. This method is called CASCI, which stands for Complete Active Space
Configuration Interaction. Another approach to reduce the computational cost
is only considering a subset of the excitations. It is common to use only the
single and the double excitations. This restriction leads to the method CISD,
which stands for Configuration Interaction Single and Double. However, a se-
vere drawback of the CISD method is that due to the truncation of excitations,
the method is not size-consistent anymore. This means that calculating two
systems separately and adding the energy leads to di↵erent amounts of energy
than calculating them at the same time. This size consistency is a property
often beneficial in computational studies.

2.2.7 Coupled Cluster

Coupled Cluster (CC) [28, 29] is used to expand on a reference wave function
|�0i, including missing electronic correlations. Typically, the HF state is chosen
as the reference state |�0i for it has heuristically a good overlap with the ground
state. Mathematically, the CC includes the electronic correlation by applying
all possible excitations using an exponential ansatz

|�i
CC

= eT̂ |�0i . (2.35)

The parameterized ansatz T̂

T̂ =
X

i<a

ta
i
â†
a
âi +

X

i,j<a,b

ta,b
i,j

â†
a
â†
b
âiâj + ...

a, b, · · · 2 {unoccupied}, i, j, · · · 2 {occupied}.
(2.36)

Di↵erent truncations of T̂ are possible. Typically, Coupled Cluster is used with
Single and Double (CCSD) excitations, truncating the ansatz operator T̂ at the
two body terms. The parameters of the ansatz ta

i
and ta,b

i,j
need to be optimized

to find the appropriate wave function. â† and â are the creation and annihilation
operators. Our notation enumerates occupied orbitals as i, j... and unoccupied
orbitals as a, b.... The parameters ta

i
, ta,b

i,j
, tab...

ij...
can be determined solving the

equations

ECC = h�0| e�T̂ ĤeT̂ |�0i , (2.37)

0 =
⌦
�ab...
ij...

�� e�T̂ ĤeT̂ |�0i , (2.38)
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where ECC is the ground state energy and
���ab...

ij...

↵
= â†

a
â†
b
...âiâj ... |�0i are ex-

cited Slater determinants. Using the similarity-transformed Hamiltonian H̄ =
e�T̂ ĤeT̂ in these functions naturally factors out redundant excitations signifi-
cantly reduces the computational cost.

The asymmetrical energy Eq. (2.37) makes the energy not variational. Im-
plying that the predicted energy is not an upper bound to the true ground state
energy when a truncation is used. This can be seen in highly correlated systems
such as N2, where CCSD produces energies below the exact FCI solution.

Variational Coupled Cluster

The Variational Coupled Cluster (VCC) [53–63] is an alternative to the CC
theory that does not break for highly correlated systems. It uses a symmetric
expectation value, which takes the form

EVCC =
h�0| eT̂

†
ĤeT̂ |�0i

h�0| eT̂ †eT̂ |�0i
. (2.39)

The parameters are found by minimizing the expectation value EVCC in an
iterative manner.

The ansatz operator T̂ in Eq. (2.36) acts as a nilpotent operator on the
qubits. We can see this directly when we consider it in the matrix representation.
T̂ is a sum of â†

a
âi and â†

a
â†
b
âiâj terms. Using the JW transformation, these

summands take the form

â†
a
âi =

(X̂a � iŶa)

2
⌦ Ẑa�i ⌦

(X̂i + iŶi)

2
(2.40)

and

â†
a
â†
b
âiâj =

(X̂a � iŶa)

2
⌦ Ẑa�b ⌦

(X̂b � iŶb)

2

⌦ (X̂i + iŶi)

2
⌦ Ẑi�j ⌦

(X̂j + iŶj)

2
.

(2.41)

In both expressions, the first term (X̂a � iŶa)/2 is nilpotent, leading to the
tensor product being nilpotent. Keep in mind that all excitations are from oc-
cupied to unoccupied; therefore, the indices a, b > i, j. A sum of upper triangle
nilpotent matrices is again nilpotent.

Since T̂ is nilpotent, a polynomial approximations of eT̂ =
P

d

i=0
ciT̂ i can

be exact when a su�cient high polynomial degree d is used. To determine the
maximal power k when T̂ k = 0, we can consider the behavior of the smallest
body term in powers of T̂ . The smallest body term occurring is a direct result
of the product of the single body terms in T̂ i. All terms of T̂ i become 0 when
the smallest body terms exceed the available occupied or unoccupied orbitals.
In that case, at least two excitation or de-excitation operators act on the same
orbital. Since â†

a
⇤ â†

a
= 0 = âi ⇤ âi, we can conclude that

dmax = min(# of occupied orbitals, # of unoccupied orbitals). (2.42)
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Unitary Coupled Cluster

With the rise of quantum computing, the unitary ansatz gained a lot of trac-
tion, especially in the context of VQE. In contrast to the VCC, the Unitary
Coupled Cluster (UCC) [70] ansatz uses the anti-Hermitian operator T̂ � T̂ † in
the exponent. The expectation value is given by

EUCC = h�0| eT̂
†�T̂ ĤeT̂�T̂

†
|�0i . (2.43)

The wave function eT̂�T̂
† |�0i is normalized by construction.

Variational versus Unitary Coupled Cluster

The VCC and the UCC share many similarities. However, Harsha et al. showed
in their work [61] following the work of Pal et al. [71] the di↵erence between
VCC and UCC mathematically. It can be shown that some of the energy terms
vanish for the UCC compared to the VCC. This di↵erence can lead to significant
di↵erences in the accuracy of the methods. Multiple numerical experiments have
shown that the di↵erence is most notable in strongly correlated systems [57, 61].
In their work, they showed energy di↵erences between UCC and VCC using
several molecules. VCC constantly produced more reliable results, with energy
di↵erences up to several mH.

2.3 Fundamentals of Quantum Computing

Quantum computing utilizes quantum mechanical e↵ects such as entanglement
and superposition in order to increase computational capabilities. Since a quan-
tum computer behaves itself in a quantum mechanical way, it is more capable
of representing a quantum state than a classical computer.

Quantum computing evolves an initial state using a unitary transformation
to a final point in the Hilbert space. The unitary transformation represents
the algorithm executed on a quantum computer. To learn about the produced
state, one can measure an observable. This happens projectively, meaning that
measuring the observable collapses the system’s state to an eigenvector of the
observable.

Multiple approaches exist to represent a quantum algorithm. However, the
most used method is to use gates to represent the circuit. We used this model
in this thesis, so we will discuss it in more detail. In this model, the quan-
tum computer can execute predefined unitary operations. This operations are
called gates. The gates available on a quantum device depend on the concrete
implementation. In Sec. 2.3.2 we will discuss the most common used gates.

2.3.1 Qubits

The smallest unit in a quantum computer is a qubit. It is the equivalent of a bit
on a classical computer. However, in contrast to a classical bit that can represent
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the states 0 and 1, a qubit can hold the states |0i and |1i in a superposition.
For a pure state, the state can be written as

|�i = a |0i+ b |1i . (2.44)

The state is normalized by imposing the restriction

|a|2 + |b|2 = 1, a, b 2 C (2.45)

on the coe�cients a and b.

2.3.2 Gates

In this section, we introduce the most common gates. Gates are predefined op-
erations executable on a quantum computer. We summarize the most common
gates in Tab. 2.1, showing the symbols used in a quantum circuit as well as
their matrix representation. It should be noted that a quantum computer does
not need to be able to execute all of these gates since some of them can be
constructed from a combination of the other gates.

2.3.3 Fermion to Qubit Mapping

Quantum computers operate using qubits, which are two-level systems and can
naturally represent spin- 1

2
systems. However, simulating this spin- 1

2
systems is

still challenging since the operators need to follow the non-trivial commutation
relationships we have mentioned in Eq. (2.29). In this thesis, we used the
JW [65] mapping. It creates a one-to-one mapping of spin-orbitals to qubits and
ensures that the operators follow the correct commutation rules. The creation
and annihilation operator can be mapped to the qubit system on a quantum
computer following these rules

â†
j
7! 1

2
( ⌦j�1)⌦ (X̂j � iŶj)⌦ Ẑ⌦N�j�1 (2.46)

and

âj 7!
1

2
( ⌦j�1)⌦ (X̂j + iŶj)⌦ Ẑ⌦N�j�1, (2.47)

where X̂, Ŷ , Ẑ are the Pauli operators and is the identity matrix.

However, the JW transformation is not the only encoding strategy. Other
also exist such as the Parity encoding or the Bravyi-Kitaev encoding. These
encodings could lead to more compact representations of the creation and an-
nihilation operator; however, the correspondence between fermion occupation
and qubit configurations is not as straightforward as in JW. These methods are
explained in detail in Ref. [72].
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Operator Gate(s) Matrix

Pauli-X (X) X

✓
0 1
1 0

◆

Pauli-Y (Y) Y

✓
0 �i
i 0

◆

Pauli-Z (Z) Z

✓
1 0
0 �1

◆

Hadamard (H) H 1p
2

✓
1 1
1 �1

◆

Phase (S, P) S

✓
1 0
0 i

◆

⇡/8 (T) T

✓
1 0
0 ei⇡/4

◆

Controlled Not (CNOT, CX)

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA

Controlled Z (CZ)

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

1

CCA

SWAP

0

BB@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

CCA

To↵oli (CCNOT, CCX, TOFF)

0

BBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

1

CCCCCCCCCCA

Rx(✓) Rx(✓)

✓
cos(✓/2) �i sin(✓/2)
�i sin(✓/2) cos(✓/2)

◆

Ry(✓) Ry(✓)

✓
cos(✓/2) � sin(✓/2)
sin(✓/2) cos(✓/2)

◆

Rz(✓) Rz(✓)

✓
e�i✓/2 0

0 ei✓/2

◆

Table 2.1: Quantum Logic Gates
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2.4 Quantum and Quantum-Classical Algorithms

2.4.1 Variational Quantum Eigensolver

The variational quantum eigensolver (VQE) [14–16] algorithm solves an eigen-
value problem using a classical and a quantum computer. Its goal is to find
the lowest eigenvalue E(G) and the corresponding ground state. The VQE is
an iterative algorithm. We show a single iteration step in Fig. 2.1. A parame-
terized ansatz Û(~✓n) is used to generate a trial state |�ni of the ground state
on a quantum computer. Here, the index n indicates that we are in the n-th
iteration. Usually, the HF state |HFi is selected as the reference state |�0i.

|�ni = Û(~✓n) |�0i . (2.48)

The literature uses multiple di↵erent ansatzes, such as hardware-e�cient or the
chemically inspired UCC ansatz. In this thesis, we used the Unitary Coupled
Cluster with Single and Double excitations (UCCSD) ansatz.

VQE measures the energy E(n) of the trial state in a variational way

E(n) = h�n| Ĥ |�ni ⌘ E(n) � E(G). (2.49)

Therefore, the measured energy E(n) is always greater or equal to the ground
state energy E(G). A classical computer is used to interpret the measured
energy and update the parameters ~✓n ! ~✓n+1 accordingly to an optimization
algorithm. In this thesis, we often used the L-BFGS algorithm, which is a
classical gradient descent optimization procedure. The VQE was developed in
2014 by Peruzzo et al. [14]. It is an alternative approach to QPE or Imaginary
Time Evolution (ITE) [73–77], which both require long coherence times and
high-fidelity gates. The VQE, being a quantum-classical hybrid algorithm, is
expected to require more shallow circuits and be, therefore, better suited for
the NISQ era of quantum computing.

2.4.2 Quantum Singular Value Transformation

This section reviews the quantum singular value transformation (QSVT) [64] al-
gorithm. We follow the notation of Ref. [78], which includes a great pedagogical
tutorial. QSVT is a quantum algorithm allowing to perform a polynomial trans-
formation Poly(SV)(A) on the singular values of a matrix A. Here Poly(SV)(A)
indicates that the singular values of matrix A get transformed according to a
polynomial. QSVT can often be used as a subroutine in algorithms [78–81].
The achievable polynomials are restricted by

deg(Poly(SV))  d,

Poly(SV) has parity d mod 2,

8x 2 [�1, 1], |Poly(SV)(x)|2  1.

(2.50)

The expression deg(Poly(SV)) indicates the degree of the applied polynomial.
Given a matrix A =

P
k
�k |wki hvk| with |wki , |vki being its left and right
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Energy

Classical Computer

Quantum Computer

No

Yes

State preparationMeasurement

Optimizer Initial state

Converged

Figure 2.1: Variational Quantum Eigensolver of a single iteration. A parame-
terized ansatz is applied on an initial state |�0i to create a trial state |�ni on a
quantum computer. The measured energy is returned to a classical computer,
which updates the parameters ~✓n to lower the trial energy according to a clas-
sical optimizer. This process is repeated until the energy converges.
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singular vectors and �k its singular values. The Poly(SV)(A) is defined depending
on whether it has even or odd parity as

Poly(SV)

odd
(A) =

X

k

Poly(�k) |wki hvk| ,

Poly(SV)

even
(A) =

X

k

Poly(�k) |vki hvk| .
(2.51)

When matrix A is Hermitian, the right and left eigenvectors are equivalent, and
the matrix can be written as A =

P
k
�k |vki hvk|. In such a case, the singular

and eigenvalue transformations are equivalent.
The QSVT achieves this transformation by first encoding matrix A into a

unitary operator Û using block-encoding [82–84]. This is done so that A can be
executed on a quantum computer.

Û =


A ·
· ·

�
. (2.52)

For the sake of readability, we omitted some entries of Û and replaced them
with ·. These entries are needed to ensure that Û is unitary and are determined
in the block-encoding algorithm. The QSVT algorithm transforms the operator
Û into the form

QSVT(Û) =


Poly(SV)(A) ·

· ·

�
, (2.53)

using the quantum circuits [78]

QSVT
odd

= ⇧̃ 1Û

2

4
(d�1)/2Y

k=1

⇧ 2k Û
†⇧̃ 2k+1Û

3

5 ,

QSVT
even

=

2

4
d/2Y

k=1

⇧ 2k�1Û
†⇧̃ 2k Û

3

5 .

(2.54)

⇧ = e2i 
P

k|vkihvk|, ⇧̃ = e2i 
P

k|wkihwk| are rotations round the subspace
defined by the right and left singular vector of the matrix A. From Eq. (2.54),
we see that the length of the QSVT algorithm scales polynomially with the
degree d of the polynomial, allowing it to be applied to high-degree polynomials.
The challenge in using QSVT is to find the appropriate angles  to execute the
correct transformation. Using the strategies discussed in [64, 85, 86], the angles
can be determined e�ciently using a classical computer.

In order to lift some of the restrictions on Poly(SV)(A) defined in Eq. (2.50),
we can combine multiple QSVT, allowing us to perform real polynomial tran-
sitions of indi↵erent parity. We can combine multiple QSVT using a linear
combination of unitaries [87] approach.



Chapter 3

Local Bases of Deep
Variational Quantum
Eigensolver for Quantum
Chemistry

In this Chapter, we address the limited resource problem with a divide-and-
conquer approach. In particular, we work with the deep VQE algorithm. Deep
VQE splits the molecule into subsystems and solves them individually using
VQE. The individual subsystem grounds states are used as a starting point
to form a reduced Hilbert space for the full system. We examined di↵erent
strategies to form the reduced Hilbert space in the deep VQE algorithm. Using
numerical experiments, we show that the di↵erent strategies di↵er in accuracy
and ability to reduce the number of needed qubits. Therefore, selecting a basis-
forming strategy is an essential part of the deep VQE algorithm. Selecting
an appropriate strategy, we were able to approximate the ground state within
chemical accuracy for some of the examined quantum systems. This Chapter
is based on [Erhart, Mitarai, Mizukami, and Fujii, Phys. Rev. Applied 18,
064051].

3.1 Introduction

Quantum algorithms have better asymptotic behavior than classical alternatives
for some of today’s most challenging and intriguing calculation problems. Out-
standing examples are factorization of large integers using the Shor algorithm [2,
3], linear algebraic processes (matrix inversion) [4, 64, 88], as well as promising
results in quantum machine learning [89]. Quantum chemistry will, however,
arguably be the research field that gets impacted most by quantum comput-
ing [90]. Simulating large molecules using a quantum computer will push our

25
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understanding of nature to new levels and significantly a↵ect today’s society. A
specific intent in quantum chemistry is to calculate the electronic ground state
of a molecule. Since the dimension of the Hilbert space grows exponentially to
the system size, a molecular electronic structure can be exceedingly complex to
solve on a classical computer.

Despite recent developments [91–93], we anticipate that quantum computers
in the near future still have a limited number of qubits and only partial error re-
sistance. Therefore, the number of operations on a quantum device is limited, as
the errors are building up to a point where we can not receive meaningful results.
These restrictions confine us to the area of so-called NISQ algorithms [10].

The VQE algorithm is a promising approach for overcoming these obstacles.
VQE is a method designed to find the ground state of a chemical system. One
uses a parameterized variational circuit, or ansatz, on a quantum device to
prepare a trial state whose energy gets measured. A classical computer sets the
parameters for the ansatz following some optimizer rules. By looping between
the quantum device and a classical computer, one tries to minimize the energy.
Using such an approach, it is possible to find a good approximation of the ground
state. The states created in such a way can be classically hard to represent.
Depending on the ansatz, this only requires a circuit with a modest number of
gates. Therefore, it is possible that VQE could be running on an NISQ device.

The system size solvable by the VQE is essentially limited by the number of
qubits on the quantum device, making it challenging to apply it to large-scale
systems. In classical quantum chemistry methods, fragmentation techniques [94]
proved to be highly successful in reducing the computational requirement to
handle large-scale molecules. Recently, divide-and-conquer techniques in quan-
tum computing also got much attention to potentially solve the problem of the
limited quantum resource [17–20]. They aim to decrease the number of qubits
needed to solve complex problems. These techniques separate the original sys-
tem into subsystems and solve them individually. The subsystem solutions set
the starting point to formulate a meaningful result of the original problem in
the next step.

One such method is the deep VQE [20]. It first separates the target quan-
tum system into subsystems and obtains their approximate ground states by
the usual VQE. The next step constructs a basis set for each subsystem by ap-
plying specific excitation operators to the subsystem ground states. The basis
set is later used to form an e↵ective Hamiltonian of the whole system. Another
VQE can then solve the e↵ective Hamiltonian to obtain a ground state of the
target system. This process can be repeated multiple times to solve increasingly
large systems. The performance of the deep VQE has been analyzed for spin
systems [20] and periodic materials [17], which have suggested that the deep
VQE can produce accurate results while reducing the number of needed qubits
simultaneously. However, only systems with minimal interactions between sub-
systems have been examined. Molecules are highly complex systems for which
the Hamiltonian consists of many terms with various strengths. Such complex
systems provide a unique set of challenges for the deep VQE. It is, therefore,
vital to examine the performance of the deep VQE for such systems.
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In this Chapter, we propose multiple methods to create the search-able
subspace and compare their influence on the accuracy of the deep VQE us-
ing tree-like molecules as a testbed. A 10-atom, and a 13-atom dendrimer-like
molecule only consisting of hydrogen atoms, were chosen as the tree-molecules
in question. Additionally to these toy-models we also apply the deep VQE to
retinal to examine its performance on a natural molecule. Retinal is a natu-
ral occurring molecule of considerable size and is therefore a good indicator for
the performance of deep VQE on a real complex molecule. The strategy for
creating a subsystem basis ultimately limits the deep VQE performance as it
determines which subspace of the entire Hilbert space can be explored to ex-
press the ground state. To examine the impact of di↵erent bases on the deep
VQE, we tested three strategies to select excitation operators to form the sub-
system basis. The first method followed the original paper and is based on the
interaction operators. The second technique uses single-qubit Pauli operators
to create a basis set, whereas the third obtains a basis using single-electron ex-
citation and deexcitation operators. Additionally to the di↵erent basis creation
methods, we propose multiple techniques to control the needed qubits. This
shows the remarkable accuracy and reduction of qubits the deep VQE o↵ers for
even complex quantum systems. We find that the deep VQE can simulate the
electron-correlation energy of the ground state to an error of below 1%, thus
helping us reach chemical accuracy in some cases. Our understanding of the
various basis creation methods and the comparison of their performance pro-
vides an essential recipe for determining the bases of subsystems for the use of
deep VQE in larger molecules of even more practical importance.

3.2 Theory

3.2.1 Deep VQE

The deep VQE [20] is an algorithm of the divide and conquer family. Its purpose
is to calculate the ground state of a quantum system. We review the algorithm
of the original deep VQE, which can treat spin Hamiltonians consisting of 2-
local interactions. In deep VQE, we first divide the system into M subsystems.
The problem Hamiltonian with 2-local interactions can consequently be written
in the form of,

Ĥ =
MX

i=1

Ĥi +
MX

i,j=1

V̂ij , (3.1)

where Ĥi acts on subsystem i and V̂ij on subsystems i and j. The interaction

term V̂ij decompose into operators V̂µ,i acting only on single subsystems i:

V̂ij =
X

µ

�µ
ij
V̂µ,iV̂µ,j , (3.2)

where µ indicates the di↵erent interaction terms. The deep VQE first finds
ground states |Gii of each subsystem Hamiltonian Ĥi using a VQE algorithm.
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Then we build a subsystem basis {|bi,ki}Ki
k=1

for each subsystem i with dimen-
sions Ki by acting with certain excitation operators Bi = {Bi,k} that |Gii. The
selection of the excitation operators Bi,k is a crucial step which determines the
performance of the deep VQE, and we will discuss it in detail in Sec. 3.3. To
ensure the created basis set {|bi,ki}Ki

k=1
is orthogonal a Gram-Schmidt orthogo-

nalization is applied.
In the next step, we construct an e↵ective Hamiltonian Ĥe↵ by project-

ing the original Hamiltonian Ĥ to the subspace spanned by
N

i
{|bi,ki}Ki

k=1
.

This can be achieved by measuring all matrix elements hbi,k| Ĥi |bi,li as well

as hbi,k| hbj,l| V̂i,j |bi,pi |bj,qi =
P

µ
�µ
i,j
hbi,k| V̂µ,i |bi,pi hbj,l| V̂µ,j |bj,qi. Notice that

calculating the expectation values only involves one subsystem, which can be
calculated separately on a quantum computer. Now, we represent each sub-
system by Ni = dlog

2
Kie qubits, and we again utilize the VQE using Ntot =P

i
dlog

2
Kie qubits to search for the ground state of Ĥe↵ . Even though Ĥe↵

whose dimension is d =
Q

i
Ki could, in principle, be mapped to dlog

2
de 6 Ntot

qubits, it is beneficial to map each subsystem individually since it preserves the
locality of the Hamiltonian. The deep VQE algorithm can be repeated itera-
tively to treat larger and larger systems on a qubit-limited quantum computer.

3.2.2 Deep VQE for Fermionic System

The central problem in quantum chemistry is finding the first-principles Hamil-
tonian’s ground state, which describes interacting electrons. In the second quan-
tization, the Hamiltonian can be written in the form

Ĥ =
NX

o,p=1

ho,pâ
†
o
âp +

NX

q,r,s,t=1

hq,r,s,tâ
†
q
â†
r
âsât. (3.3)

where N is the number of orbitals of the molecule. Here, we consider how to
apply the deep VQE to this Hamiltonian.

A frequent approach to treat the Hamiltonian of Eq. (3.3) on a quantum com-
puter is to map the fermionic operators â†

o
and âo to qubit operators through,

e.g., JW transformation. This leads to a Hamiltonian in the form of,

Ĥ =
X

i

hiPi, (3.4)

where Pi is a Pauli string, Pi 2 {Î , X̂, Ŷ , Ẑ}⌦N , and hi is a real coe�cient. The
obstacle to applying the deep VQE is that Pi is not 2-local but can be nonlocal
when using JW transformation, as we will see below.

After partitioning the system into M subsystems and Mint interaction terms,
we can write the Hamiltonian in Eq. (3.4) in the form of

Ĥ =
MX

i=1

Ĥi +
MintX

µ=1

�µV̂µ,1 ⌦ V̂µ,2 ⌦ · · ·⌦ V̂µ,M , (3.5)
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where Ĥi and V̂µ,i is an operator acting only on the i-th subsystem, and µ
indexes di↵erent interaction terms. To perform the deep VQE, we construct
the e↵ective Hamiltonian Ĥe↵ using the subsystem basis {|bi,ki}Ki

k=1
. To do

this, we measure the matrix elements (Ĥi

e↵

)k,l = hbi,k| Ĥi |bi,li and (V̂ e↵

µ,1
)k,l =

hbi,k| V̂µ,i |bi,li for all combinations of i, k, l, and µ. Let Ĥi

e↵

and V̂ e↵

µ,i
be

ni = dlog
2
Kie-qubit operators with the evaluated matrix elements. The total

e↵ective Hamiltonian can be written as

Ĥe↵ =
MX

i=1

Ĥi

e↵

+
MintX

µ=1

�µV̂ e↵

µ,1
⌦ V̂ e↵

µ,2
⌦ · · ·⌦ V̂ e↵

µ,M
. (3.6)

If we wish to perform the VQE of Ĥe↵ , we must be able to e�ciently measure
the expectation value hĤe↵i = h | Ĥe↵ | i for a given state | i prepared on
a quantum computer. A usual approach to measure the expectation value of
a Hamiltonian is to expand it into Pauli operators. However, if we do so in
Eq. (3.6), the number of Pauli operators grows exponentially to M due to its
nonlocality, which blocks e�cient evaluation of hĤe↵i.

We must avoid this exponential growth to apply the deep VQE to fermionic
systems. To this end, we first diagonalize V̂ e↵

µ,i
classically and obtain unitary

Uµ,i such that

V̂ e↵

µ,i
= U †

µ,i
diag(�µ,i)Uµ,i, (3.7)

where �µ,i are eigenvalues of V̂ e↵

µ,i
. Note that this process can be performed in

time 2O(ni) and that it is natural to assume ni is a small constant in the deep
VQE. We can also construct a quantum circuit to realize a 2ni -dimensional
unitary Uµ,i in time 2O(ni). Therefore, we can measure hV̂ e↵

µ,1
⌦ · · ·⌦ V̂ e↵

µ,M
i for

a given
P

M

i=1
ni-qubit state | i by first applying Uµ,1⌦· · ·⌦Uµ,M to | i and then

measuring it in the computational basis. Therefore, the required measurements
to determine the expectation value of the interaction term scale linearly with
the number of interactions in the system. Thereby, we can e�ciently measure
hV̂ e↵

µ,1
⌦ · · ·⌦ V̂ e↵

µ,M
i and hence hĤe↵i as well.

Note that we prefer JW transformation for applying deep VQE to fermionic
systems because it directly maps the i-th orbital to the i-th qubit; if the i-th
qubit is |1i, it indicates that an electron occupies the i-th orbital. This property
allows us to split systems naturally into subsystems using localized orbitals.
Although other techniques, such as Bravyi-Kitaev transformation, relax the
locality of Pauli strings down to O(logN), the correspondence between fermion
occupation and qubit configurations is not straightforward. Note that the above
technique may also be used for BK-transformation-based deep VQE to obtain
the expectation values e�ciently.
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Table 3.1: Description of basis sets with starting vector and excitations. ni

number of qubits in subsystem i. Ai number of qubits involved in strongest
interaction. In Interactions fix qubits method "adapt is selected such that the
generated basis set is of fixed dimension. Otherwise, a fixed " was chosen for
the interaction-based methods.

Method Start vectors Applied excitation Bi,k

Interactions
��G0

i

↵
8V̂µ,i 2 V̂i,j,... �µ > "

Interactions & excited |Ge

i
i 8e < l 8V̂µ,i 2 V̂i,j,... �µ > "

Interactions fix qubits
��G0

i

↵
8V̂µ,i 2 V̂i,j,... �µ > "adapt

Single Pauli
��G0

i

↵
Ps s 2 {1, ..., ni}

Single Pauli & excited |Ge

i
i 8e < l Ps s 2 {1, ..., ni}

Single Pauli edge
��G0

i

↵
Ps s 2 Ai

Particle conserving
��G0

i

↵
SWAPs,s’, âs, â†

s
s, s0 2 {1, ..., ni}

Particle conserving edge
��G0

i

↵
SWAPs,s’, âs, â†

s
s 2 Ai

3.3 Method

3.3.1 Basis Creation Strategies

Choosing a basis set impacts the performance of the deep VQE. It ultimately
determines the number of qubits needed to run the algorithm and the accuracy
of the result. It is, therefore, vital to make an educated decision about the
method used.

Below, we examine di↵erent procedures to generate the basis sets, which
are summarized in Tab. 3.1 as well as their scaling in Tab. 3.2. In the single
Pauli method, we use the set of the Pauli operators X,Y, Z acting on each
qubit as Bi. In the interactions approach, we apply all V̂µ,i in Eq. (3.6) to the

subsystem i to create a basis, this leads to Bi = {V̂µ,i}Mint
µ=1

. For the particle

conserving approach, we apply the excitation â†
s
or the de-excitation operators

âs to every qubit s of the ni qubits of the subsystem. Additionally, to capture
e↵ects inside the subsystems, we applied swap gates between di↵erent qubits
belonging to the same subsystem to create a basis. Therefore, in this approch,
Bi = {âs}ni

s=1
[ {â†

s
}ni
s=1

[ {SWAPs,s0}ni
s,s0=1

.
We also use additional low-lying energy eigenstates |Ge

i
i to generate the

basis sets instead of using only |Gii as has been done in the original paper [20].
The superscript e marks the e-th excited state and we define

��G0

i

↵
:= |Gii.

Note that if the subsystem Hamiltonian has degenerate ground states, |Ge

i
i

does not necessarily have a di↵erent energy than
��G0

i

↵
. Such excited states

can be constructed with an algorithm like the subspace-search VQE [95]. After
applying Bi to {|Ge

i
i}l

e=1
, we use the Gram-Schmidt algorithm to ensure that

the created basis is orthogonal and minimal with Ki elements.
The number of basis vectors determines how many qubits we need to run

the deep VQE algorithm. We, therefore, also examine di↵erent approaches
to reduce the dimensionality of the basis. For the interaction-based methods,
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we only consider interactions between subsystems with �µ exceeding a certain
threshold " > 0. In the numerical experiments that follow, we examine the
results for " = 10�2 if not stated otherwise. This selection was necessary since
otherwise, the interaction-based methods would lead to basis sets that resemble
no reduction from the entire Hilbert space. This was caused due to the numerous
interaction terms between the subsystems for the molecular Hamiltonian.

The particle conserving and single Pauli methods as well can produce basis
sets with a dimensionality that is challenging to represent on a quantum ma-
chine. We, therefore, also examine methods to truncate their basis sets. Our
approach aimed to reduce the number of participating qubits in the subsystems
for the basis-creating step, leading to a subset of the entire basis. To do so, we
select the interaction

N
M

i=1
�µV̂µ,i which has the largest absolute �µ. Let us de-

note the set of qubits involved in this interaction by Ai for each subsystem i. We
then apply the corresponding excitation operators of the particle conserving or
single Pauli methods to the qubits in Ai to create the basis. We call these meth-
ods particle conserving edges and single Pauli edges, respectively. Mathemati-
cally, the former method uses Bi = {âs}s2Ai[{â†

s
}s2Ai[{SWAPs,s0}s,s02Ai and

the latter uses Bi = {X̂s, Ŷs, Ẑs}s2Ai . The dimensionalities Ki for the di↵erent
strategies scale di↵erently with increasing system sizes, which are summarized
in Tab. 3.2. These methods will be compared numerically in Sec. 3.4.3.

The above strategies can reduce the number of qubits but in a hardware-
agnostic way. In practice, a quantum computer has a fixed number of qubits,
and we wish to use as many qubits as possible within the hardware limitation.
With this in mind, we also propose an adaptive interaction-based strategy to
create a basis set. We first order the interactions between the subsystems based
on the interaction strength. By gradually increasing the threshold "adapt, we
find a basis set of the desired dimensionality. This selection of thresholds can
be performed for each subsystem independently. We will present the numerical
demonstration of this method in Sec. 3.4.4.

Table 3.2: Upper bound of the number of independent vectors Ki in sub-system
i. ni number of qubits in subsystem i. Ai number of qubits involved in strongest
interaction.

Method Ki

Interaction O(#Interactions > ")
Single Pauli O(ni)
Single Pauli edge O(Ai)
Particle conserving O(n2

i
)

Particle conserving edge O(A2

i
)
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3.3.2 Remarks on Degenerate Eigenstates of Subsystems

A subsystem Hamiltonian having degenerate ground states can lead to unex-
pected results. A VQE then cannot find a unique ground state. The found
ground state would be semi-random and depends on multiple factors, such as
the starting condition of the VQE and the noise in the quantum device. In
principle, all linear combinations of the degenerate ground states are possible
solutions to the VQE without any treatment. This results in an instability of
the deep VQE since the random starting vectors, in general, lead to di↵erent
basis sets and consequently to di↵erent Ĥe↵ .

This dependency on the starting vector set is tricky as, without supple-
mentary knowledge about the system, there is no justification for favoring one
sub-vector set over the other without running it through the deep VQE first.
Therefore, the deep VQE must consider all degenerate vectors as starting vec-
tors to ensure that the result is independent of the randomness of the first VQE.
Alternatively, we should design the first VQE to return a unique solution for
the reproducibility of the experiment by, for example, unfolding the degeneracy
with constrained VQE [96].

3.4 Numerical Simulation

3.4.1 Setup

Tree-like Molecules

We apply the deep VQE to two di↵erent toy models of tree-like molecules in
Fig. 3.1, a 10-atom and a 13-atom version. We describe the geometry of the
tree-like molecules in the Appendix 6, notice that their geometry were not opti-
mized rather it was chosen, to have an angle of 120 degrees and a torsions of 30
degrees. Nakatani and Chan have used a similar molecule for benchmarking tree
tensor network [97], however the distance between atoms were chosen di↵erent.
Since a tree-like molecule naturally separates into di↵erent branch-like subsys-
tems, it is also an ideal benchmark molecule for the deep VQE. These molecules
are the first step to calculating dendrimers or Cayley tree-like molecules. To-
day’s industry frequently uses dendrimers, e.g., for pharmaceuticals [98]. Un-
derstanding dendrimers better would allow us to tailor them specifically to the
applications. We repeated the deep VQE simulation multiple times, enlarging
the distance between atoms by applying a stretching factor ranging from 0.9 to
2.0 to all Cartesian coordinates, simulating the performance of deep VQE under
the influence of di↵erent interaction strengths between subsystems.

Using STO-3G minimal basis set, the molecules in Fig. 3.1 (a) and Fig. 3.1 (b)
respectively have 20 and 26 spin-orbitals. The Hamiltonians of the molecules are
obtained with PySCF [99]. We map it to a qubit system by JW transformation
implemented in OpenFermion [100], resulting in 20- and 26-qubit Hamiltonians.

For simulating the quantum states of these molecules on a classical machine,
we use the Python library Qulacs [101].
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(a) 10 Hydrogen atom tree-like

molecule

(b) 13 Hydrogen atom tree-like

molecule

Figure 3.1: Toy-model molecules for deep VQE. Red circles indicate the parti-
tion of subsystems.

Fig. 3.1 shows the separation of the tree-like molecule into subsystems. Other
selections of subsystems would be possible and an exciting research topic; how-
ever, we have to leave it to future research as it would exceed the scope of this
Chapter. We use localized orbitals to define the subsystems based on the dis-
tance between their associated atoms. The Löwdin orthogonalization method
is employed to create well-localized orbitals.

We use the FCI to solve the molecules’ ground state. The FCI solution was
used as a reference for the performance of deep VQE. Additionally, we show
the energy of the “combined subsystem” solution, which is the product state of
all individual subsystem solutions, as well as the restricted HF solution. HF is
a standard mean-field method that cannot account for the electron-correlation
energy in the molecule.

The performance of deep VQE depends partially on the subroutine VQE al-
gorithm employed. However, here we aim to compare the di↵erent basis creation
methods. Therefore, we replaced all VQE subroutines with direct diagonaliza-
tions of the matrix representation of the observable to find the ground state of
the subsystem and the e↵ective Hamiltonian. This replacement assures us that
we find accurate eigenstates of the systems equivalent to having performed an
FCI calculation. Additionally, the direct diagonalization replacement allows us
to compare the di↵erent basis sets without the additional e↵ects a realistic VQE
algorithm would add, such as the noise of the quantum system. The ground
state solution of the subsystems, as well as for the Ĥe↵ , was determined using
the exact diagonalization with SciPy [102].

We find that the ground state of each subsystem of the 10-atom molecule
shown in Fig. 3.1 (a) has a two-fold degeneracy for all stretching factors. We
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suspect that this degeneracy of the subsystems is due to a degeneracy of the
spin eigenstates. For the 13-atom tree molecule shown in Fig. 3.1 (b), each
subsystem, except for the central hydrogen atom, has a unique ground state,
but their first excited states are three-fold degenerate. We also consider how
this degeneracy a↵ects the overall result in Sec. 3.4.2.

The following subsections show the energy di↵erence between the di↵erent
basis sets and the FCI solution for the 10 and 13-atom tree molecules. To
better compare the di↵erent methods, we also show the weighted mean error of
correlation energies over the di↵erent stretching factors and the required number
of qubits to run the deep VQE on a quantum machine. We define the weighted
mean error of correlation energies as,

Weighted mean error
of correlation energies

=
1

|X|
X

x2X

E(x)� EFCI(x)

Esubsystems(x)� EFCI(x)
, (3.8)

where E(x), EFCI(x), and Esubsystems(x) are the energy obtained by the deep
VQE using particular strategies, the FCI energy, and the energy of the ”com-
bined subsystem” solution at a stretching factor x. X denotes the set of stretch-
ing factors for which we perform the calculations, and |X| indicates the number
of elements in X. Here, X is {0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 2.0}. We applied the
weight Esubsystems(x) � EFCI(x) to the correlation energy error to take into
account the di↵erence in magnitude over the stretching factors.

Retinal

Additional to the toy tree-like molecules, we also apply the deep VQE algorithm
to a natural molecule, retinal. Retinal is essential in visual phototransduction,
where visible light gets detected in our eyes. We use library Gaussian 16 [103] at
a B3LYP/6-31G** level of theory to find the optimized geometry of the retinal.
We show the geometry in the Appendix 6. Retinal consists of 20 carbons, 28
Hydrogen, and one Oxygen. The number of orbitals in the STO-3G basis for
the molecule forced us to calculate the ground state in an active space. We
started by forming 20 ⇡-orbitals using the PiOS [104] function of PySCF. 10
electrons are considered for this calculation. The ⇡-orbitals take part in forming
double bonds between the carbons in retinal. Then we localize the obtained ⇡-
orbitals using the Cholesky localisation method [105]. The localized orbitals
were used as the active space for molecules. As a reference for the deep VQE
result we used a CASCI calculation. CASCI calculates the molecule’s ground
energy in the active space without optimizing the orbitals as CASSCF would do
and is, therefore, less system-dependent. The Hamiltonian in this active space
was mapped to a qubit system by a JW transformation using OpenFermion
resulting in a 20 qubit Hamiltonian. We split the molecule into 2 subsystems of
each 10 spin orbitals and 5 electrons as indicated in Fig. 3.2. Again, this split is
by no means unique, and other separations could be examined. Both subsystems
produced double degenerate eigenstates. This degeneracy is most likely due to a
degeneracy of the spin eigenstates. In the case, we only considered one starting
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Figure 3.2: Retinal for deep VQE. Red circles indicate the partition of sub-
systems. Retinal was calculated using 20 ⇡-orbitals, splitting it equally into
subsystems of 10 orbitals.

vector, we selected the spin # ground state as the starting vector. The results
are shown in Sec. 3.4.5. In the case of the edge methods, we used the bordering
spin orbitals as the active qubits in the basis state finding method.

3.4.2 Influence of Starting Vector for Degenerate Subsys-
tems

First, we discuss the dependency of the deep VQE on the starting vector. For
the sake of readability, we only show the results using the particle conserving
method to produce the basis in the deep VQE. We show the 10-atom tree
molecule results in Fig. 3.3. The ground states of all the subsystems of the
10-atom tree molecule are doubly degenerate. The ground state found by the
VQE or, in our case, the direct diagonalization is therefore not unique. We use
the spin state to distinguish the degenerate states. We mark the spin-up ground
state with " and the spin-down ground state with #. We only show a selection of
all possible spin configurations due to redundancy resulting from the symmetry
in the molecule. We observe two distinct resulting energy levels, indicating that
the stating vector |Gii can considerably influence which Hilbert space can be
searched for the overall ground state and, therefore, the performance of the deep
VQE.

The choice of the starting vector is not trivial, and without further knowledge
of the system, all possible starting vectors have to be considered. Additional
starting vectors, however, come at the cost of requiring additional qubits to
represent Ĥe↵ .
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Figure 3.3: (a) Performance of the particle conserving edges method with dif-
ferent incomplete starting vector compositions. The results are for the 10-atom
tree molecule, which has a two degenerate ground state. The first marker de-
scribes the spin state of the central subsystem starting vector, whereas the three
following markers indicate the spin state of the branch-like subsystems starting
vectors. Since the results overlap in two lines, we introduce the labels (1) and
(2) to indicate to which line the result belongs. (b) Weighted mean error of
correlation energies for the particle conserving edges method with di↵erent in-
complete starting vectors composition (1111).

3.4.3 Di↵erent Basis Methods

Next, we compare the performance of di↵erent basis methods with di↵erent
starting vectors introduced in Sec. 3.3 using the tree-like molecules. We compare
two choices of starting vectors. The first choice uses single ground states of each
subsystem, whereas the second uses additional eigenstates of each subsystem. In
the former case, we chose the spin configuration #### for the starting vectors for
a 10-atom tree molecule since we had degenerate eigenstates. In the case of the
13-atom tree molecule, only the central subsystem had a two-fold degeneracy,
and we also chose the spin # ground state as the starting vector. For the
interaction method, an ✏ = 10�2 was chosen for the 10-atom tree molecule
and an ✏ = 10�3 for the 13-atom tree molecule. The number of considered
starting vectors is indicated in the method’s name in the bracket. The first digit
indicates the number of starting vectors for the central subsystem, whereas the
three following digits count the starting vectors for the branch-like subsystems.

Fig. 3.4 (a) and Fig. 3.4 (b) show the corresponding results for the 10-atom
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tree system. We also show the number of qubits needed for each method in
Tab. 3.3. We note that we are unable to perform the calculation for the particle
conserving method with additional starting vectors due to its sizeable compu-
tational requirement. The particle conserving methods with only one starting
vector per subsystem performed exceptionally well in terms of accuracy. For all
tested basis creation methods, including an additional eigenstate significantly
increased the accuracy of the deep VQE. This is a consequence of the expanded
Hilbert space that can be explored.

Unlike the other methods, we observe that the interaction methods with
a fixed truncation have a decreasing accuracy with increasing stretching fac-
tors. More concretely, the energy obtained by interaction methods jumps to the
combined subsystem’s energy at the stretching factor of 1.4. The interaction
methods also display di↵erent behavior regarding the saved qubits, showing a
significant dependence on the stretching factor as shown in Tab. 3.3. This de-
pendence is due to our selection process of the interactions to generate a basis
set. We set a fixed cut-o↵ of the interaction strength �µ for the interactions
involved in the basis creation step. Consequently, as the interactions between
subsystems become weaker by stretching the molecule, more interactions are
disregarded. Lowering the dimensionality of the basis sets allows us to save
more qubits but comes at the cost of lowering the method’s accuracy.

Fig. 3.5 (a) and Fig. 3.5 (b) show the results for the 13-atom tree molecule.
Here, only the central subsystem was doubly degenerate, and the first excited
state of the branch subsystems for the 13-atom tree molecule is a triplet. To
see the e↵ect of adding additional excited states as starting vectors on the per-
formance of the deep VQE, we considered all three states as additional starting
vectors. Due to the high computational cost of the other methods, only the
single Pauli edges and the particle conserving edges methods could be prepared
with additional starting vectors. For both methods, the additional starting vec-
tors were able to increase the accuracy of the deep VQE, but this came at the
expense of requiring extra qubits (see Tab. 3.4 for the exact number of qubits
required for each method). The particle conserving edges methods performed
slightly better than others. This is consistent with the case of the 10-atom tree
molecule, indicating an advantage of using the particle conserving approach in
deep VQE for chemistry problems.

3.4.4 Interaction Based Deep VQE with Fixed Qubit Num-
bers

We show the results for the fixed qubit numbers approach in Fig. 3.6 and Fig. 3.7.
We fix the number of qubits to 11, 14, and 17. For the 13-atom tree molecule,
we could not produce an 11-qubit version as already including only the strongest
interaction strength results in a basis set requiring more than 11 qubits. The
qubit number is increased by three per step to take into account that there are
three equivalent branch-like subsystems of the molecules.

In Fig. 3.6 and Fig. 3.7, we see that if we define a fixed number of qubits, we
can avoid the decreasing accuracy for increasing stretching factors. However, if
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Figure 3.4: (a) The energy di↵erence between FCI and the deep VQE for the
10-atom tree molecule. We compare the di↵erent basis creation methods when
using a single starting vector marked as (1111) and a complete degenerate basis
set indicated by (2222). The first digit indicates the number of starting vectors
for the central subsystem, whereas the three following digits count the starting
vectors for the branch-like subsystems. (b) Weighted mean error of correlation
energies for all methods for the 10-atom tree molecule.

the number of qubits is too restrictive, we cannot improve the result from the
”combined subsystems”. We see this behavior for the interaction(2222) method
with 11 qubits for the 10-atom tree molecule in Fig. 3.6.

3.4.5 Retinal

Additional to the toy model of a 10 and 13-atom hydrogen trees, we also applied
the deep VQE algorithm to retinal to examine the performance on a natural
molecule. We applied di↵erent basis forming strategies and compared them
based on their accuracy and the number of qubits in Tab. 3.5. The calculation
was performed with no stretching factors applied. The molecule was separated
into two 10-qubit subsystems. With such a division, the eigenstates of the
subsystems are double degenerate. In the case when only one starting vector for
the basis forming step was considered, we chose the spin-down starting vector.

Deep VQE proves to be e↵ective in treating such a molecule as retinal. Es-
pecially the addition of additional states as starting vectors seems to be a valid
strategy. For both the 12 and the 14 qubit interaction treatment, the addition of
a second starting vector resulted in a significantly better ground state energy ap-
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Figure 3.5: (a) The energy di↵erence between FCI and the deep VQE for the
13-atom tree molecule. We compare the di↵erent basis creation methods when
using a single starting vector marked as (1111) and a full degenerate basis set
indicated by (2444). The first digit indicates the number of starting vectors
for the central subsystem, whereas the three following digits count the starting
vectors for the branch-like subsystems. (b) Weighted mean error of correlation
energies for all methods for the 13-atom tree molecule.

proximation. This can be a consequence of the doubly degenerate ground state
of the individual subsystems. The particle conserving edges method with each
10 starting vectors performed again exceptionally well and was able to approx-
imate the ground state energy in the STO-3G basis within chemical accuracy
while saving 8 qubits.

3.4.6 Performance Comparison

Overall we achieved similar accuracy for the 10 and the 13-atom tree molecules
(see Fig. 3.4 and Fig. 3.5). We expect this from the minor influence the newly
added outer atoms have on the overall ground state. This behavior would also
explain the remarkable success the edge methods provide, saving up to 15 qubits
with comparable accuracy to the other methods (see Tab. 3.4). All methods
were able to produce lower energies than the HF method. Multiple methods
were able to approximate the ground state energies within an error of below
1% of the electron correlation energy of the molecule. The electron correla-
tion energy is equivalent to the error of the HF method shown in Fig. 3.4 and
Fig. 3.5 and represents the error due to the mean-field approximation of HF.
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Figure 3.6: (a) The energy di↵erence between FCI and the deep VQE for the 10-
atom tree molecule. We compare the interaction fixed methods with a di↵erent
number of qubits. The fully degenerate basis set is indicated by (2222). The
first digit indicates the number of starting vectors for the central subsystem,
whereas the three following digits count the starting vectors for the branch-like
subsystems. (b) Weighted mean error of correlation energies for the interaction
based method with fixed number of qubits for the 10-atom tree molecule.

This improvement helped us reach chemical accuracy for some stretching fac-
tors. The particle conserving edges method performed exceptionally well both
for the tree-like molecules as well for retinal. Especially the use of additional
starting vectors proved to be beneficial for retinal. Using an edge method allows
us to focus on changes a↵ecting the orbitals involved in the most substantial
interaction. We expect electrons occupying such orbitals to experience the most
dramatic changes from the individual subsystem solutions when forming a bond
with the other subsystems. To use the computational resources o↵ered most
e↵ectively, it is advisable to use basis sets that focus on exploring the changes
to the occupation of the most involved orbitals.

In contrast to the other methods, the interaction methods with a fixed trun-
cation for the participating interactions significantly depended on the stretching
factor. The number of qubits decreased with increasing distance. This reduc-
tion allows us to save more and more qubits but comes at the cost of decreasing
accuracy. However, we consider this is not preferable if we have access to a
quantum device with a fixed number of qubits. It seems unreasonable to not
use all of them. The fixed number qubits interaction method we propose in this
Chapter seems a more reasonable approach as it allows the use of all qubits.
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Figure 3.7: (a) The energy di↵erence between FCI and the deep VQE for the 13-
atom tree molecule. We compare the interaction fixed methods with a di↵erent
number of qubits. The fully degenerate basis set is indicated by (2444). The
first digit indicates the number of starting vectors for the central subsystem,
whereas the three following digits count the starting vectors for the branch-like
subsystems. (b) Weighted mean error of correlation energies for the interaction
based method with fixed number of qubits for the 13-atom tree molecule.

It also performs more stable for less interacting systems, not su↵ering from
decreasing accuracy.

3.5 Conclusion and Discussion

The deep VQE approach successfully reduced the number of qubits to calculate
a ground state of a complex chemical molecule. Notice that we have not ex-
ploited any symmetries in the molecules. Using such could be a further way to
make deep VQE more e�cient. All di↵erent basis creation methods we tested
could create a ground state energy within a few mHa of the FCI/CASCI so-
lution. However, they showed a significant di↵erence in the accuracy and the
number of qubits they could save. We discussed the challenges of degenerate
subsystems and provided a solution in the form of additional stating vectors or
marking the single starting vector by its spin state. We also showed that adding
additional low-lying states as starting vectors for the basis-creation method
can improve the accuracy. However, the approximation of such states can be
costly. Therefore, further research is needed to determine if this accuracy can
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Table 3.3: Qubits needed to represent the Ĥe↵ of the 10-atom tree molecule for
the di↵erent basis creation methods. The number of considered starting vectors
is indicated in the method’s name in the bracket. The first digit indicates the
number of starting vectors for the central subsystem, whereas the three following
digits count the starting vectors for the branch-like subsystems.

Stretching factor 0.9 1.0 1.1 1.2 1.3 1.4 2.0
Interaction(1111)(�µ > 102) 17 14 11 7
Interaction(2222)(�µ > 102) 17 14 10
Particle conserving(1111) 17
Particle conserving edges(1111) 11
Particle conserving edges(2222) 14
Single Pauli(1111) 17 14
Single Pauli edges(1111) 11
Single Pauli edges(2222) 14

Table 3.4: The numbers of qubits needed to represent the Ĥe↵ of the 13-atom
tree molecule for the di↵erent basis creation methods. The number of considered
starting vectors is indicated in the method’s name in the bracket. The first digit
indicates the number of starting vectors for the central subsystem, whereas the
three following digits count the starting vectors for the branch-like subsystems.

Stretching factor 0.9 1.0 1.1 1.2 1.3 1.4 2.0
Interaction(1111)(�µ > 103) 17 11 7
Particle conserving edges(1111) 11
Particle conserving edges(2444) 17
Single Pauli(1111) 17
Single Pauli edges(1111) 11
Single Pauli edges(2444) 17

be achieved using other basis creation methods. A possible approach would
be to consider double Pauli excitation compared to the here used single Pauli
method. Another exciting way to think about a new basis creation method is
its similarity to the VQE ansatz. A new basis creation method could be created
using a VQE ansatz with discrete fixed parameters. We also proposed meth-
ods to upper bound the number of qubits by using edge methods or selection
of interaction in the interaction-based approach. These methods have proven
e↵ective strategies to reduce the number of needed qubits for the deep VQE.
With these modifications to the deep VQE and a proper basis set, we believe
that using deep VQE in a quantum chemistry setting can be highly beneficial.
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Table 3.5: The numbers of qubits needed to represent the Ĥe↵ of retinal for the
di↵erent basis creation methods. The number of considered starting vectors is
indicated in the methods name in the bracket. � E indicated the energy error
of the method compared to the CASCI solution.

Method Qubits Energy (Ha) � E (mHa)
Interaction(1,1) 12 qubits 12 -838.2504 42.41
Interaction(1,1) 14 qubits 14 -838.2832 9.578
Interaction(2,2) 12 qubits 12 -838.2911 1.759
Interaction(2,2) 14 qubits 14 -838.2924 0.362
Particle Conserving (1,1) 14 -838.2821 10.75
Particle Conserving Edges(10,10) 12 -838.2921 0.710
Single Edges(8,8) 12 -838.2909 1.897

CASCI -838.2928
HF -838.1550
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Chapter 4

Coupled Cluster Method
Tailored with Quantum
Computing

In this Chapter, we show how an active space solution on a quantum computer
can be combined with a classical computer used to incorporate classical dynamic
correlation. To solve the active space on a quantum computer, we are free to
choose the algorithm we use. Our method is, therefore, applicable to the NISQ
era as well as the FTQC era. After solving the active space, we use the CBT to
determine the CI parameters of the produced state. These parameters can be
used to tailor some of the CC amplitude on the classical hardware. The remain-
ing CC amplitudes are then determined on the classical computer. We could
show that our method successfully incorporates missing electron correlation into
the active space solution, increasing its accuracy. We show this using multiple
numerical experiments. This Chapter is based on [Erhart, Yoshida, Khinevich
and Mizukami, Phys. Rev. Research 6, 023230].

4.1 Introduction

Quantum chemistry is expected to be an application of quantum computing
where it could be possible to outperform its classical counterpart [90]. Quantum
computers can hold and manipulate a superposition of an exponential number of
electronic configurations using a polynomial number of quantum bits (qubits).
They are, therefore, considered particularly suitable for simulations of strongly
correlated systems, where the nature of quantum superpositions, often di�cult
to handle using current classical computers, is of essential importance.

Nevertheless, for the foreseeable future, quantum computers are limited in
the number of qubits they have. In most cases, they cannot handle all the
electronic degrees of freedom (orbitals and electrons) of a targeted molecule on

45
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a quantum computer. Furthermore, even if the number of qubits in a quantum
computer increases su�ciently in the future, it is known that there will still
be practical limits on the number of electrons and orbitals that a quantum
computer can handle because of the slow clock speed of fault-tolerant quantum
computers [106, 107]. Given these limitations, it is expected that quantum
computers can only be applied to what is known as the ‘active space,’ which is
a user-defined, chemically important space around the Fermi level of a molecular
electronic structure.

Active spaces are designed to consider only the most important orbitals
for treating the strong correlation of electrons (i.e., static correlation). The
active spaces, however, naturally ignore the remaining weak correlation (i.e.,
dynamical correlation) resulting from the non-active orbitals. Moreover, as the
selection of an active space is more or less based on the chemical intuition of
the user, there is often a degree of arbitrariness. This user dependency can
have a significant impact on the accuracy of the methods using an active space.
Recently automated active space selection procedures have been proposed to
reduce user bias and improve the reliability of results [104, 108–114]. The active
space approximation has been extensively discussed and addressed in traditional
quantum chemistry [115–121].

In quantum computing, various approaches have been proposed to incorpo-
rate ignored electron correlation [30–52]. These approaches fall into two broad
categories. The first involves constructing models incorporating weak electron
correlation during the development of e↵ective Hamiltonians, which are then
solved using quantum computers. This method is often called the ‘perturb-then-
diagonalize’ approach. The second category improves the results based on an
active space Hamiltonian solution obtained by quantum computers and is known
as the ‘diagonalize-then-perturb’ approach. The former requires an up-front es-
timation of the electron correlation outside the active space, which introduces
some arbitrariness. The latter commonly uses the internally-contracted mul-
tireference perturbation theory or multireference configuration interaction, and
there have already been proposals for implementation using quantum computing
results. However, these classical computing methods require higher-order Re-
duced Density Matrices (RDMs), leading to prohibitive measurement costs on
quantum computers and seem impractical [41, 122–124]. Consequently, there is
an increasing demand for methods considering weak electron correlation without
relying on higher-order RDMs.

One of the practical and easy-to-use approaches to account for dynamical
correlation from outside the active space without using higher-order RDMs is
TCC. In TCC, after finding the ground state of an active space Hamiltonian by
the CASCI method, the lost dynamical correlation in the CASCI calculation is
described in an additional CCSD optimization of the whole space while keeping
the static correction of the CASCI solution. TCC can be worked with not
only CASCI but also other quantum chemical theories such as DMRG [125],
FCIQMC [126, 127], and pair coupled cluster doubles [128–131]. It should be
noted that there is another method, known as the externally corrected coupled
cluster method, which is similar to the TCC in its conceptual framework [132–
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139].
In this Chapter, we propose to combine TCC and quantum computing to

recover dynamical correlation from excluded orbitals outside the active space.
Our practical method is a two-step approach using a quantum computer to
solve the static correlation and add the remaining dynamical correlation using
classical computers. This method requires only a limited number of qubits to
mainly solve the static correlation, while the relatively computationally cheap
consideration of weak correlation can be performed on classical hardware. To
extract the solved quantum state from a quantum computer, we use a CBT.
CBT is based on computational basis sampling [27] and is an e↵ective strategy
when only a small number of Slater determinants are non-negligible, as is often
the case in quantum chemistry. Additionally, a method is proposed, in which
we utilize the direct access to the energy of the active space and add our newly
determined electron correlation outside the active space. The accuracy of the
proposed method is further enhanced using this approach.

We demonstrate that our approach can produce accurate PECs for LiH,
H2O, and N2. As CBT is naturally a statistical process that uses measurements
to determine a quantum state, we investigate the number of measurement de-
pendencies in CBT on LiH, H2O, and N2. Finally, to demonstrate the analysis
of a realistic chemical reaction, we estimate the activation energy of the Cope
rearrangement of 1,5-hexadiene.

The remainder of this Chapter is organized as follows: We discuss the rele-
vant theories of TCC, CBT, and our new approach QC-CBT-TCC in Sec. 4.2.
The numerical results for the PECs of LiH, H2O, and N2 are shown in Sec. 4.3,
as well as the influence of di↵erent numbers of measurements in CBT have on
the confidence of our approaches. Additionally, we determined the activation
energy of the Cope rearrangement using our method and presented the results
in Sec. 4.3. In Sec. 4.4, we summarize our findings.

4.2 Theory

4.2.1 Tailored Coupled Cluster

The TCC proposed by Kinoshita et al. [21] is a two-step theory designed to
incorporate strong correlation into the standard CC theory, particularly the
CCSD model. CCSD often breaks down when strong electron correlation exists.
The main idea behind TCC is to split the CC parameters into those for strongly-
correlated electrons in the active space and those for weakly-correlated electrons.
They can then be determined individually. This gives rise to a formulation, as
shown in the following equation

| TCCi = eT̂
rest

(✓
rest

)eT̂
active

(✓
active

) | 0i . (4.1)

The operators eT̂
active

act exclusively on the active space. The other operators
eT̂

rest

also act on the rest of the space. For CCSD, those operators are written
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as

T̂ active(✓) =
X
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T̂ a

i
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i
) +
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i,j,a,b
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T̂ rest(✓) =
X
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T̂ a
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) +

X
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T̂ a,b

i,j
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i,j
)

{i, j, a, b} 6⇢ active space,

(4.3)

where T̂ a

i
and T̂ a,b

i,j
are the single and double excitation CC operators. Say, T̂ a,b

i,j

excites electrons from the occupied orbitals i and j to the unoccupied orbitals
a, b. The brackets {} in Eq. (4.3) indicate that at least one of the i, j, a, b orbitals
is not present in the active space.

In the first step of TCC, the molecule is described using a variational method
using an active space approximation, such as the CASCI approach. This step
aims to incorporate strong correlation by assuming that all the strongly corre-
lated degrees of freedom are involved in the active space. Electron configura-
tions’ coe�cients of the variational wavefunction

�� active

variational

↵
can be mapped

directly to CC amplitudes through the known relationship between their corre-
sponding CC and CI operators

T̂ active

1
= Ĉ1, (4.4)

T̂ active

2
= Ĉ2 �

1

2
Ĉ2

1
, (4.5)

where Ĉ1 and Ĉ2 are the CI operators to create single and double excitations,
respectively. This procedure allows us to approximately reconstruct the varia-
tional wavefunction

�� active

variational

↵
in the CCSD ansatz.

The second step is the optimization of the remaining operators eT̂
rest

(✓
rest

),
while the active space operators are kept fixed during the optimization. This pre-
served the description of static correlation. The optimized operator eT̂

rest
(✓

rest
)

incorporates the previously missing dynamic correlation into the solution.
Additionally, given that TCC is a method rooted in CCSD, after optimizing

the CCSD operator eT̂
rest

(✓
rest

), one can further improve accuracy by perturba-
tively incorporating the e↵ects of the three-body excitation operator in the same
way as in CCSD(T). So, we denote TCC with the (T) correction as TCC(T) in
this thesis. For TCC(T), all active single and double amplitudes must be set to
zero during the (T) correction calculation to prevent double-counting [23, 140].

4.2.2 Computational Basis Tomography

Computational Basis Tomography (CBT) is an estimation method to determine
a quantum state prepared on a quantum computer using the computational
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basis sampling method proposed by Kohda et al. [27]. In this section, we briefly
review how CBT estimates a quantum state | i on a quantum computer.

Let us call the estimated state CBT state | CBTi. Its definition is given as

| CBTi =
1

N

RX

i=1

hki| i|kii, (4.6)

where 1/N is the normalization constant and |kii is a computational basis (i.e.,
Slater determinants or electron configuration) listed in the order of the absolute
values of the coe�cients hki| i. The coe�cients hki| i are equivalent to the
CI coe�cients. The parameter R is introduced to truncate the trivial computa-
tional basis; therefore, R needs to be chosen large enough in order to adequately
approximate the original quantum state | i. We tentatively consider the upper
limit of R to be around 1000-10000, this is limited by the number of mea-
surements possible on a current quantum computer. By keeping the number
of extracted coe�cients R constant, the method sacrifices some accuracy but
enables scalability to large systems.

CBT aims to estimate the quantum state via measurements rather than the
expectation value of an observable. The coe�cients are expressed as follows:

hki| i = |hki| i|ei�i . (4.7)

To get the coe�cients, we must determine their absolute values and the phases
�i. The absolute value |hki| i| can be readily obtained using projective mea-
surements; we show it in a later stage. However, a more detailed method is
required to determine the phase. Instead of determining the phase directly,
Kohda’s computational basis sampling approach enables the e�cient determi-
nation of CI coe�cients through the observation of phase di↵erences. We can
use the following relationship to determine the phase di↵erence between two
computational bases |kii and |kji

ei(�i��j) =
hki| ih |kji

|hki| i||h |kji|
. (4.8)

As the global phase of a state can be neglected, we can freely set the phase
for one coe�cient to zero and determine the relative phase di↵erences for the
remaining basis states using Eq. (4.8). As described later, the absolute value
of the coe�cient |hki| i| and what we call the interference factor hki| ih |kji
can be determined relatively easily by projective measurements, thus allowing
the estimation of phase di↵erences.

When a su�cient number of samplings Nsample are performed, the squared
weight of hki| i is estimated as

|hki| i|2 '
Ni

Nsample

, (4.9)

where Ni is the number of times the outcome ki is obtained. This directly gives
us an approximation for the absolute values of the coe�cients.
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To determine the phase factor, we need to measure the interference factors
hki| ih |kji. In the case ki = kj this is equivalent to a determine |hki| i|2.
When ki 6= kj , we can rewrite the interference factor as

hki| ih |kji = |h0|Uki,kj | i|2 + i|h0|Vki,kj | i|2

� 1 + i

2
(|hki| i|2 + |hkj | i|2),

(4.10)

where Uki,kj and Vki,kj are unitary operators acting in the following way

Uki,kj

✓
|kii+ |kjip

2

◆
= |0i , Vki,kj

✓
|kii � |kjip

2

◆
= |0i . (4.11)

How to construct the circuits Uki,kj and Vki,kj was discussed in Ref. [19, 27].
Using the relation

hki| ih |kji =
(hk1| ih |kii)⇤hk1| ih |kji

|hk1| i|2
, (4.12)

we note that we only need to measure the case for ki = k1 and kj 6= k1 and can
recover the remaining interference factors. We explicitly write the cases ki = k1
and kj 6= k1 as

hk1| ih |kji = |h0|Uk1,kj | i|2 + i|h0|Vk1,kj | i|2

� 1 + i

2
(|hk1| i|2 + |hkj | i|2).

(4.13)

The first term in Eq. (4.13) is estimated as

|h0|Uk1,kj | i|2 '
N0

NU

, (4.14)

where N0 is the count that we obtain the outcome zero and NU is the total
amount of samplings. Similarly, when NV is the number of measurements used
to determine the second term in Eq. (4.13). The second term is estimated as

|h0|Vk1,kj | i|2 '
N 0

0

NV

, (4.15)

where N 0
0
is the count of the times we obtained the outcome zero. The remaining

terms of Eq. (4.13) can be determined similarly, as in Eq. (4.9).
In summary, the truncation number R and the numbers of the three types

of measurements Nsample, NU , and NV play vital roles in CBT.

4.2.3 QC-CBT-TCC

In this section, we discuss our quantum-classical hybrid tailored coupled cluster
theory with CBT method, which we denoted as QC-CBT-TCC. This method
aims to include dynamic correlations for quantum computing while using an
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Figure 4.1: Schematic depiction of QC-CBT-TCC. In the first step, we deter-
mine the ground state solution of the active space using a quantum computer. As
the state is classically inaccessible, we indicate this by not showing the concrete
electronic structure of the active space. To determine the relevant CI-coe�cients
of the state, we use a CBT method and tailor the corresponding CCSD coef-
ficients. In the last step, we optimize the remaining CCSD coe�cients while
keeping the active space coe�cients constant.

active space. QC-CBT-TCC uses a quantum computer to consider the strong
correlation and then describes the remaining dynamic correlation using a classi-
cal device. In our framework, the CBT method is used to transfer the quantum
solution onto a classical device. We present a graphical representation of our
method in Fig. 4.1 and explain it in more detail in the following.

In the first step, we determine the active-space ground state
�� active

QC

↵
using

a quantum computer. Di↵erent quantum (or quantum-classical hybrid) algo-
rithms, such as VQE, QPE, or ITE can be used in this step.

In the second step, CBT is used to determine the most significant CI coef-
ficients of the produced ground state on a quantum computer

�� active

QC

↵
. Using

the obtained CI coe�cients, the ground state of the active space
�� active

QC

↵
is

approximately converted to a CC ansatz. Mapping the CI operators to their
CC counterparts follows the same relationship as already described in Sec. 4.2.1
in equation (4.4) to (4.5). As the wavefunction parmameters ✓active for

�� active

QC

↵

are practically approximated by CBT, we call them ✓active
CBT

. The obtained ap-
proximate active-space ground state wavefunction in the CC is written as

�� active

CBT

↵
= eT̂

active
(✓

active
CBT ) | 0i . (4.16)

In the third step, the remaining ✓rest coe�cients are optimized by solving the
standard projected CC equations. During the optimization, the amplitudes of
the active space operators are held constant. This procedure allows the addition
of dynamical correlation descriptions while conserving that of static correlation.
The final produced state of QC-CBT-TCC | QC-CBT-TCCi can be written as

| QC-CBT-TCCi =eT̂
rest

(✓
rest

)eT̂
active

(✓
active
CBT ) | 0i

=eT̂
rest

(✓
rest

)
�� active

CBT

↵
.

(4.17)
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The QC-CBT-TCC energy EQC-CBT-TCC is then given by the following pro-
jected energy:

EQC-CBT-TCC = h 0| Ĥ | QC-CBT-TCCi . (4.18)

4.2.4 Enhanced QC-CBT-TCC

One of the issues associated with QC-CBT-TCC is the lack of assurance that
the energy obtained via QC-CBT-TCC will outperform classical algorithms in
accuracy. This arises because of the approximate nature of both CBT and TCC
methodologies. The TCC approach employs the standard CCSD ansatz to ap-
proximate the active space wavefunction, which implies that it does not incor-
porate information about higher-order excitations, such as triple and quadruple
excitations, obtained from a quantum computer. Furthermore, CBT is a sta-
tistical method, and its inherent statistical nature introduces additional errors.
To address this problem, we introduce a correction method as described below.
The corrected energy EQC�CBT�TCC(c) is defined as

EQC-CBT-TCC(c) = Eactive

QC

+ (EQC-CBT-TCC � Eactive

QC-CBT-TCC
).

(4.19)

The first term Eactive

QC
in Eq. (4.19) represents the expectation value of the active

space Hamiltonian via quantum computing such as QPE. The di↵erence in the
second term corresponds to the additional correlation added to the active space
solution using the QC-CBT-TCC technique. EQC-CBT-TCC is the predicted
energy using the QC-CBT-TCC method, whereas

Eactive

QC-CBT-TCC
= h 0| ĤeT̂

active
(✓

active
CBT ) | 0i , (4.20)

is the CCSD energy after dressing the CCSD amplitudes but before the re-
maining CCSD optimization. In that case, the remaining operators eT̂

rest

are
equivalent to the identity. Since the same error arises in EQC-CBT-TCC and
Eactive

QC-CBT-TCC
, taking the di↵erence between these terms removes the errors in

the active-space electron correlation inherent to the QC-CBT-TCC method.
Note that Izsák et al. have already employed a similar extrapolative cor-

rection method in Ref. [141] in the context of using quantum computers for
quantum chemistry as well as Daniel Kats and his co-workers for FCIQMC-
TCC [126].

4.3 Results and Discussion

This section describes our new method, QC-CBT-TCC, and the QC-CBT-
TCC(c) approach’s performance. Sec. 4.3.1 presents the PECs for three molecules,
LiH, H2O, and N2. In Sec. 4.3.2, we conducted multiple experiments at di↵erent
interatomic distances for each molecule to discuss the reliability of CBT, as CBT
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is a statistical method and QC-CBT-TCC is influenced by the statistical errors
of CBT. In Sec. 4.3.3, we apply our method to a prototype organic reaction, the
Cope rearrangement of 1,5-hexadiene.

The computational details are as follows: A chemqulacs [142] library was
used to simulate quantum circuits on classical hardware. We employed disen-
tangled UCCSD as an ansatz for VQE and BFGS as an optimizer. CCSD,
CCSD(T), CASCI, and FCI were calculated using PySCF [143]. The MR-
CISD+Q method was employed to obtain reference data for the PECs of H2O
and N2 because the FCI calculation was too computationally demanding for
the hardware at hand. This method was implemented in the ORCA quantum
chemistry program Version 5.0.3 [144]. All calculations for the PECs in this
Chapter were performed using the cc-pVDZ basis set. In Sec. 4.3.3, we used the
6-31G⇤ basis set to compute the activation energy for the Cope rearrangement.
We used the canonical orbitals for all molecules except for LiH, which was calcu-
lated using the natural orbitals provided by a CCSD calculation. This, however,
is an approximation because the CCSD implementation of PySCF used assumes
canonical orbitals, so o↵-diagonal terms in the Fock matrix are ignored. The
active spaces were determined using the lowest energy level unoccupied orbitals
and the highest energy occupied orbitals from the HF calculation. To transfer
the CI coe�cients determined by CBT to the amplitudes for CCSD, only the
real parts were considered. This was necessary because usually the CCSD for
a non-relativistic or non-periodic Hamiltonian expects real coe�cients. The CI
coe�cients were normalized to ensure the normalization. Unless otherwise in-
dicated, we applied the parameters R = 100, Nsample = 106, NU = 106, and
NV = 106 for all the CBT calculations.

4.3.1 Potential Energy Curves

First, we investigated the PEC of the LiH molecule. In addition to the QC-
CBT-TCC(c), we show the results for QC-CBT-TCC, active space UCCSD,
and FCI, as well as HF, CCSD, CCSD(T) and orbital-optimized-UCCSD [43,
44]. The selected active spaces for these calculations were two electrons and two
spatial orbitals, the highest occupied and the lowest unoccupied orbitals.

Fig. 4.2 (a) shows the PEC of the LiH molecule. All considered methods
followed the qualitative features of the FCI energy curve shape, except for HF.
The active space UCCSD increased the accuracy compared to that of the HF
solution. This behavior is most notable in the bond dissociation region. At the
equilibrium bond length, the active space UCCSD can capture some dynamic
correlation. Active space OO-UCCSD produced almost identical energies to the
active space UCCSD. We assume this results from using natural orbitals in the
case of UCCSD, which are already a good choice of orbitals to capture some
of the electron correlation e↵ects. The QC-CBT-TCC and its enhanced ver-
sion, the QC-CBT-TCC(c), further increased the computed energy’s accuracy.
This indicates that additional dynamical correlations outside the active space
are required to reach good ground state energy. CCSD and CCSD(T) both
gave energies very similar to FCI. In the high dissociation regime, where static
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(a) (b)

Figure 4.2: (a) Potential energy curves of LiH using the cc-pVDZ basis sets.
The CCSD natural orbitals were employed for the VQE and subsequent QC-
CBT-TCC and QC-CBT-TCC(c) calculations. An active space consisting of 2
orbitals and 2 electrons [i.e., (2o, 2e).] was used. (b) Deviations from the FCI
potential energy curve.

correlation dominates, all methods except for HF gave similar results.
We focus on the energy errors of the CC and present methods compared

with the FCI energy in Fig. 4.2 (b). CCSD and CCSD(T) showed better ac-
curacy throughout the tested bond lengths than the QC-CBT-TCC and QC-
CBT-TCC(c). This can be attributed to the small static correlation within the
molecule. For such a system, CCSD and CCSD(T) can capture electron correla-
tion up to high accuracy. The energy di↵erence between the QC-CBT-TCC and
QC-CBT-TCC(c) was small. However, the QC-CBT-TCC(c) appears to pro-
duce a smoother energy error. We assume that some errors in the QC-CBT-TCC
did cancel out when the QC-CBT-TCC(c) was constructed. QC-CBT-TCC and
QC-CBT-TCC(c) produced energies that are lower than the FCI energy. This
is possible since QC-CBT-TCC tailors the classical CC equations, which are not
variational.

Secondly, we observed the two-bond dissociation behavior of H2O. We si-
multaneously increased the two H-O distances while leaving the HOH angle
constant at 104.52°. Such a treatment can be understood as an example of a
doubly bond dissociation [21]. We selected an active space of eight electrons
and six spatial orbitals of the four highest occupied and two lowest unoccupied
orbitals. The MR-CISD+Q calculation was based on preliminary state-specific
CASSCF(6o,8e).

As shown in Fig. 4.3 (a), QC-CBT-TCC and QC-CBT-TCC(c) reproduce
the quantitative features of the MR-CISD+Q calculation and show good ac-
curacy throughout the observed bond distances. The CCSD energy curve, on
the other hand, shows less accurate results but still follows the MR-CISD+Q
energy curve. This contrasts with CCSD(T), which fails to compute the en-
ergy in the high dissociation region. At the equilibrium point, the active space
UCCSD(6o,8e) and HF estimated similar energies. For long bond distances,
UCCSD gave more accurate energies than HF. OO-UCCSD(6o,8e) consistently
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(a) (b)

Figure 4.3: (a) Potential energy curves of the double dissociation of the water
molecule’s OH bonds using the cc-pVDZ basis sets. An active space consisting
of 6 orbitals and 8 electrons [i.e., (6o, 8e)] was used. (b) Deviations from the
MR-CISD+Q potential energy curve of the double dissociation of the water
molecule’s OH bonds.

produced more accurate energy than active space UCCSD(6o,8e), indicating
that optimizing the orbitals structure allows for more electronic correlation to
be considered. Treating the molecule within natural orbitals would probably
increase the accuracy of the UCCSD(6o,8e). Methods that included out-of-
active space correlation produced significantly more accurate results than the
UCCSD(6o,8e) or the OO-UCCSD(6o,8e). This shows that such correlation
must be included to obtain an accurate ground state description.

In Fig. 4.3 (b), we show the explicit error of the presented methods compared
to MR-CISD+Q. CCSD(T), and arguably CCSD, also break in the highly entan-
gled region. QC-CBT-TCC and the QC-CBT-TCC(c) can give accurate ener-
gies. However, in the high dissociation region, QC-CBT-TCC’s error increases,
whereas that of QC-CBT-TCC(c) shows this e↵ect is reduced, indicating that
the QC-CBT-TCC(c) method produces more stable energies.

Finally, we investigated the PEC of N2 as an example of a triple-bonded
molecule. We used the three highest occupied and three lowest unoccupied or-
bitals for the active space to perform the active space UCCSD calculations. The
MR-CISD+Q calculations were performed following the state-specific CASSCF
(10o,10e).

Fig. 4.4 (a) shows that the QC-CBT-TCC(c) reproduces the MR-CISD+Q
PEC well. However, there is an almost constant, small energy gap between the
two PECs in the region of approximately more than 4.0 Bohr. We expect this
gap to result from the di↵erent active spaces selected for the QC-CBT-TCC(c)
and MR-CISD+Q calculations. CCSD and CCSD(T) failed to reproduce the
triple-bond breaking for extensive bond lengths as well known. They exhibited
unnatural behavior and overestimated the correlation energy. The energy of ac-
tive space UCCSD increased the accuracy compared with the HF energy because
it could consider electron correlation inside the active space. OO-UCCSD(6o,6e)
consistently produced more accurate energy than active space UCCSD(6o,6e),
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(a) (b)

Figure 4.4: (a) Potential energy curves of N2 using the cc-pVDZ basis sets.
UCCSD calculations employed the active space consisting of 6 orbitals and 6
electrons [i.e., (6o, 6e)], while MR-CISD+Q calculations used CASSCF with
the active space of 10 orbitals and 10 electrons as a reference wavefunction. (b)
Deviations from the MR-CISD+Q potential energy curve of N2.

indicating that optimizing the orbitals structure allows for more electronic cor-
relation to be considered. Like the previous results, the additional dynamical
correlation from non-active space a↵ected the QC-CBT-TCC energy, and QC-
CBT-TCC(c) further demonstrates the significant accuracy.

The error of the observed methods compared with that of MR-CISD+Q is
shown in Fig. 4.4 (b). Only the QC-CBT-TCC(c) provided a good solution
for all observed distances. As well known, CCSD and CCSD(T) fail to predict
accurate energies for N2 for considerable bond lengths, but also QC-CBT-TCC
started to produce unfaithful results in the high dissociation limit. This e↵ect
suggests that the QC-CBT-TCC(c) can cancel out some errors resulting from
the transition from the quantum device to the CCSD ansatz and is a genuine
improvement of the method.

4.3.2 Number of Shot Dependency of QC-CBT-TCC

CBT used in our method adds a certain level of uncertainty to our computed
energies. Determining the CASCI coe�cients using CBT is a statistical pro-
cess. To investigate this statistical behavior, we examined for the molecules
LiH, H2O, and N2 the impact of varying measurement repetitions in CBT on
the QC-CBT-TCC(c). We considered two constellations, one for the molecules
at the equilibrium bond length [21] and one for a bond length of twice the
equilibrium bond distance. Note that the geometries were not optimized. To
ensure statistical significance, we repeated each measurement setup 1000 times
and showed its e↵ect on the QC-CBT-TCC(c). The parameter R, used to trun-
cate the trivial computational basis in CBT, is set as 100. The behavior of LiH
was similar to that of H2O and N2, and the results are shown in the Appendix.
We demonstrated the e↵ect using a box blot to demonstrate numerical data
graphically.
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Figure 4.5: Energy insecurity of QC-CBT-TCC(c) for H2O with a di↵erent num-
ber of measurements for CBT. Nsample, NU , and NV were all measured in the
specified quantities in the figure as the X-axis values. CBT was performed 1000
times for each setting to obtain an estimate for the statistical errors. The box
indicates the range from the first to the third quartile, called the inter-quartile
range (IQR), with the median drawn in the middle. The box contains 50% of
the data. Whiskers are the lines extending 1.5 times the IQR from the first and
third quantiles. Data points that exceed the whiskers are considered outliers
(fliers) and are represented as single dots. (a) Number of measurements depen-
dency at an equilibrium distance of 1.808 Bohr. (b) Number of measurements
dependency at 3.617 Bohr, twice the equilibrium distance.

Fig. 4.5 (a) and Fig. 4.5 (b) discuss the influence of the number of CBT mea-
surements for QC-CBT-TCC(c) for H2O. The two graphs show the di↵erences
in the bond lengths between oxygen and hydrogen. The boxes become smaller
in both cases. Thus, the uncertainty decreases with an increased number of
measurement repetitions. This e↵ect is more prevalent in Fig. 4.5 (b), which
was expected as the electronic structure of the ground state in the dissociation
region is more complex and involves more relevant electron configurations than
those around the equilibrium point. The greater complexity in the dissociation
region requires more measurements to determine all relevant CI coe�cients ac-
curately. Statistical errors are smaller at the equilibrium point because the HF
state, a single computational basis state, is already a good approximation.

The results for N2 show a behavior similar to that of H2O in that increasing
the number of measurements reduces the QC-CBT-TCC(c) energy distribution,
as seen in Fig. 4.6 (a) and Fig. 4.6 (b). This behavior can be explained by
the higher accuracy and decreased uncertainty in determining the CBT state
coe�cients. Consequently, the produced state is more consistent; therefore, the
energy expectancy can be determined with a higher degree of confidence.

These observations show the importance of accounting for the complexity of
electronic structures when applying CBT. This becomes increasingly important
in the high dissociation region when the states become more entangled. A large
number of measurements are necessary to accurately determine all the relevant
coe�cients.

To estimate the number of shots needed to reach sub-mH standard devia-
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Figure 4.6: Energy insecurity of QC-CBT-TCC(c) for N2 with a di↵erent num-
ber of measurements for CBT. Nsample, NU , and NV were all measured in the
specified quantities in the figure as the X-axis values. CBT was performed 1000
times for each setting to obtain an estimate for the statistical errors. The box
indicates the range from the first to the third quartile, called the inter-quartile
range (IQR), with the median drawn in the middle. The box contains 50% of
the data. Whiskers are the lines extending 1.5 times the IQR from the first and
third quantiles. Data points that exceed the whiskers are considered outliers
(fliers) and are represented as single dots. (a) Number of measurements depen-
dency at an equilibrium distance of 2.060 Bohr. (b) Number of measurements
dependency at 4.119 Bohr, twice the equilibrium distance.

tion of the predicted energy, we performed further calculations for the N2 at
5.355 Bohr. This system is the most challenging system for CBT we exam-
ined. The other molecules need considerably fewer measurements. A stan-
dard derivation of 0.61 mH using QC-CBT-TCC(c) can be reached using 3⇥
107(Nsample = 107, NU = 107, and NV = 107) shots. This is in reach for today’s
quantum hardware and similar to the predicted shot counts reported by Scheurer
et al. [145] using the matchgate classical shadows to extract CI coe�cients from
a quantum computer.

4.3.3 Application to Cope Rearrangement

Our dynamical correlation correction allows the analysis of realistic chemical
processes using quantum computers. We estimated the activation energy of the
Cope rearrangement using our method. Cope rearrangements are well-known
organic chemical reactions. In this reaction, the carbon chain of 1,5-hexadiene
is rearranged in a concerted way to convert into itself via the transition state of
the chair form.

We considered the energy di↵erence between the 1,5-hexadiene and its chair-
form transition state, which are Ci symmetry structures. Their geometric struc-
tures are shown in Fig. 4.7 (a) and Fig. 4.7 (b). We performed QC-CBT-TCC(c)
with the perturbative tripled corrections, denoted as QC-CBT-TCC(T)(c), to
evaluate the activation energy.

For the chair and hexadiene (Ci symmetry) geometries, we used the opti-
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Figure 4.7: (a) 1,5-hexadiene in the Ci symmetry structure. (b) Transition state
of Cope rearrangement of 1,5-hexadiene in the chair-form.

mized structures from Ref. [146]; they used the analytic MR-CISD and multiref-
erence averaged quadratic coupled-cluster (MR-AQCC) gradient methods [147]
to optimize the structures with a reference space of complete active space (6o,6e)
in a 6-31G⇤ basis set.

The result is shown in Tab. 4.1. Our newly proposed method agrees well
with the experimental value in Ref. [148] and the value of MR-AQCC [146].
We observed that methods that ignore outside-of-active space correlation, such
as HF, CASCI, and the active space UCCSD, failed to compute a reasonable
activation energy. Including the dynamical correlation significantly improved
the accuracy of these methods. The QC-CBT-TCC(T)(c) produced compara-
ble results to the MR-AQCC method. This result demonstrates our method’s
potential for simulating complex chemical processes with strong correlation.

Table 4.1: Activation energies in kcal/mol for 1,5-hexadiene Cope rearrangement
calculated in the 6-31G⇤ basis set. The VQE calculations used the disentangled
UCCSD ansatz and an active space consisting of 6 orbitals and 6 electrons [i.e.,
(6o, 6e)]. The experimental values were obtained from the computational study
in Ref. [148], which was based on the experimentally measured enthalpy from
Ref. [149]

Methods Activation energy
HF 66.0

CASCI(6o, 6e) 59.0
UCCSD(6o, 6e) 60.1

QC-CBT-TCC(T)(c) 38.7
MR-AQCC [146] 37.3
Experiment [148] 35.0
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4.4 Conclusion

In this Chapter, we combine the TCC approach with quantum computing. The
TCC approach separates the active space from the remaining orbitals. This
allows for a more rigorous active space treatment while maintaining the dynamic
correlation from the out-of-active space orbitals. Computing an eigenvalue of
an active space Hamiltonian using a quantum computer is desirable because it
is expected that they can simulate much larger quantum systems. We tailor the
CCSD approach using the quantum state of the active space determined on a
quantum computer. We use this approach to describe the dynamical correlation
from the out-of-active space orbitals on the quantum solution. We employ CBT
to determine the relevant CCSD amplitudes using a quantum computer. This
makes our method universally usable for all quantum algorithms that produce
an eigenstate of an active-space Hamiltonian.

The QC-CBT-TCC was applied to three small molecules, LiH, H2O, and
N2. In the LiH case, where static correction is less important, our method may
improve the accuracy compared to the active space UCCSD, and we observe that
our method with correction scheme, QC-CBT-TCC(c), works well to cancel out
the error of QC-CBT-TCC. In the H2O and N2 cases, our method improved the
accuracy and could provide suitable quantitative PECs, even when standard
CCSD or CCSD(T) fails. Hence, our method has the potential to practically
include the lacking dynamical correlation into a static correlated active space
solution of quantum computation.

We investigated the influence of the di↵erent number of measurements for the
CBT on our method’s uncertainty. We conclude that determining the correct
coe�cients becomes more challenging in the high dissociation region with large
static correlation. A su�cient number of measurements must be performed to
determine the CCSD amplitudes with su�cient accuracy. For the investigated
molecules, a total of R = 100, Nsample = 106, NU = 106, and NV = 106 mea-
surements were appropriate to predict energies with a high level of confidence.

In addition, we applied our method with the perturbative triples correction
to Cope-rearrangement, a well-known organic reaction. We demonstrated that
our method produced activation energy comparable to MR-AQCC. This showed
our method’s potential for complex chemical reactions.

Nevertheless, for more complex systems or in the presence of real device
errors such as depolarising noise, further verification is required to determine
the extent to which QC-CBT-TCC works well. Although, in this Chapter, we
utilized the CBT method to approximate the wavefunction on the quantum
computer, it is possible to explore extensions that combine TCC with methods
that are more resilient to noise and statistical errors, such as quantum selected
configuration interaction [150, 151]. Another potential avenue for further de-
velopment of this method is to create a self-consistent version [152, 153] that
iterates between the calculation of the active space wavefunction and the opti-
mization of the CC amplitudes in the outside of the active space, although such
a self-consistent approach multiplies the computational cost associated with the
method.
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Finally, the performance of a tomography method depends heavily on the
number of shots available. Matchgate/Fermionic shadows has good asymptotic
scaling and can be highly e�cient if enough shots are available [50, 154]. On
the other hand, these shadow tomography methods may not always be the best
approach given realistic shot budgets [124]. We chose CBT because it requires
shallower circuits and can be e↵ective with small shot budgets by adjusting the
R parameter. Nevertheless, it is an open question as to which method is better
for extracting CI coe�cients with a limited number of shots.
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Chapter 5

Variational Coupled Cluster
Method for Quantum
Computer

In this Chapter, we show how we can prepare an approximation of the VCCSD
state on a quantum computer. This has multiple benefits. A VCCSD state could
present itself as a suitable initial state for QPE, allowing for exact determina-
tion of the ground state. Additionally, the VCCSD and the CCSD parameters
are connected. This can be helpful when we want to predetermine some of
the VCCSD parameters on a classical computer or when we extract informa-
tion on the produced state of the quantum computer since we can directly use
the VCC parameters as the parameters of CCSD on a classical computer. To
implement the VCCSD, we utilized the Chebyshev expansion to approximate
the ansatz as a polynomial and applied it using QSVT. In multiple numerical
experiments, we were able to produce ground state energies in agreement with
VCCSD. This Chapter is based on [Erhart, Yoshida, Khinevich, and Mizukami,
arXiv:2406.07364].

5.1 Introduction

The CC theory is a highly e↵ective framework for quantum chemical calcula-
tions [29]. For weakly correlated systems, the CCSD(T) is widely known to
achieve chemical accuracy. The development of CC methods has progressed
steadily within the quantum chemistry community, making them applicable to
a wide range of systems. In 2013, a CC calculation of an entire small protein
was achieved [155]. In recent years, applications have extended beyond molecu-
lar systems to include solid-state and surface systems under periodic boundary
conditions [156, 157]. CCSD and CCSD(T) are routinely used as reference meth-
ods and have been actively utilized for creating datasets for machine learning,
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especially in recent times [158–160].
However, it is well known that CC methods do not work well for strongly

correlated systems. CC methods assume weak electron correlations and are not
variational; therefore, they break down for complicated electronic structures.
If CC methods could be solved variationally, their range of applicability would
greatly expand. Solving VCC on a classical computer requires an exponen-
tial computational cost, making VCC calculations virtually impossible for most
molecules.

This situation changed in 2014 when it was revealed that UCC, a variational
version of the CC theory, could be solved in polynomial time using the quantum-
classical hybrid algorithm VQE. This study triggered extensive research on UCC
and related theories using quantum computers. Over the past decade, numerous
studies have revealed several practical problems with VQE [16]. One major issue
is the enormous measurement cost (sampling cost) required to calculate energies
with the accuracy needed for chemistry [122]. Another problem is the lack of
e�cient algorithms for optimizing the parameters of nonlinear wavefunction
models. Parameter optimization requires repeated energy calculations, and a
large number of optimization steps means that high-cost energy calculations
must be repeated, making parameterization of wavefunctions such as UCC using
VQE di�cult [161].

To address this problem, it is desirable to determine as many parameters
as possible in advance using a classical computer. This requires a wavefunction
ansatz that can be optimized on a classical computer. For example, Matrix
Product States [162] can be optimized classically and are easy to implement on
quantum computers. However, UCC is di↵erent from classical CC, and while
some approximate parameters can be prepared on a classical computer, it is dif-
ficult to ensure su�cient correspondence. If CC could be directly implemented
on a quantum computer, this issue would be greatly improved.

Another issue is that VQE and QPE generally require more than twice the
number of qubits as spatial orbitals. When using basis functions of the size
needed for quantitative calculations, the number of required qubits becomes
very large. Therefore, in VQE and QPE, it is inevitable that the application of
quantum computers will be limited to essential degrees of freedom, necessitating
the introduction of the active space orbital approximation. The electron corre-
lation in other degrees of freedom outside the active space must be considered
using a classical computer before or after the quantum computation. In this
case, the information from the wavefunction on the quantum computer needs to
be transferred to the classical computer. However, measuring high-order RDMs
is unrealistic due to the enormous measurement cost [41, 122–124], and ap-
proximate tomography methods [27, 163] also require repeating a considerable
number of measurements. In contrast, if a common ansatz could be used for
both classical and quantum computers, such as implementing CC on a quan-
tum computer, the wavefunction information could be directly transferred to
the classical computer from the parameters of the quantum circuit. Therefore,
realizing the widely used non-unitary CC on classical computers as a quantum
circuit, which connects quantum and classical methods, is significant.
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In this Chapter, we aimed to implement non-unitary CC theory on quantum
computers. Specifically, we proposed an approximated VCC theory by expand-
ing the exponential ansatz in Chebyshev polynomials. We also developed a
method for Chebyshev expansion based on the decomposition of the cluster op-
erator into Hermitian and anti-Hermitian parts and showed its implementation
in a quantum circuit.

The structure of this Chapter is organized as follows: In Sec. 5.2, we pro-
vide an overview of the VCC theory and the Chebyshev expansion method. We
explain the method of Chebyshev expansion based on Hermitian cluster oper-
ators and its implementation in a quantum circuit. In Sec. 5.3, we detail the
numerical simulations, including the software, algorithms, and computational
conditions used. In Sec. 5.4, we present the results of the numerical verifica-
tion for small molecules and evaluate the accuracy of VCC using Chebyshev
expansion. Finally, in Sec. 5.5, we summarize this Chapter and discuss future
prospects.

5.2 Methods

5.2.1 Review of Variational Coupled Cluster

VCC [53–63] is a variant of CC. The energy expression of VCC is given by

EVCC :=
h 0| eT̂

†
ĤeT̂ | 0i

h 0| eT̂ †eT̂ | 0i
, (5.1)

where | 0i is the reference wave function, usually the HF state. The operators
Ĥ and T̂ are the electronic Hamiltonian and the cluster operator. The cluster
operator T̂ comprising single and double excitation operators is expressed as

T̂ =
X

i,a

ta
i
â†
a
âi +

X

i<j, a<b

tab
ij
â†
a
â†
b
âiâj , (5.2)

where â†
a
and âi are the creation and annihilation operators of the a-th and

i-th orbitals, respectively. The indices i, j, · · · and a, b, · · · correspond to the
occupied and unoccupied orbitals, respectively. The coe�cients ta

i
and tab

ij
are

known as the cluster amplitudes. The exponential ansatz with the single and
double cluster operators is called the CCSD ansatz.

In Variational Coupled Cluster Singles and Doubles (VCCSD), these pa-
rameters are variationally optimized to minimize the energy of Eq. (5.1) and,
therefore, produce an upper bound for the exact ground state energy. How-
ever, it has to be mentioned that if the normalization factor h 0| eT̂

†
eT̂ | 0i

becomes small, the variance of this method could increase. Additionally, com-
puting the VCC energy on classical computers is known to require exponential
computational costs. This is because the Baker–Campbell–Hausdor↵ expansion
of h 0| eT̂

†
ĤeT̂ | 0i is not terminated. To address this issue, the standard CC
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method employs the following energy expression based on the similarity trans-
formation

ECC := h 0| e�T̂ ĤeT̂ | 0i . (5.3)

This approach allows the computation of CC energy and the determination of
the cluster amplitudes with polynomial costs on classical computers. One draw-
back of this method is that the energy is no longer variational and breaks down
when the overlap between the reference wavefunction and the target wavefunc-
tion is small.

5.2.2 Chebyshev Expansion of VCC towards Quantum Com-
puting Applications

Evaluating EVCC is challenging, even using quantum computers, due to the non-
unitary nature of eT̂ . Here, we introduce the Chebyshev expansion of eT̂ for
implementation on a quantum computer, where QSVT is employed to prepare
Chebyshev polynomials. The Chebyshev expansion and the QSVT algorithm
have been discussed in Chapter 2.

Chebyshev Expansion of eT̂

The exponential ansatz eT̂ can be expanded using Chebyshev polynomials

eT̂ =
NX

n=0

cnTn(T̂ /⌧), (5.4)

where Tn and cn are the n-th degree Chebyshev polynomials of the first kind and
their real coe�cients, respectively. N denotes the number of electrons. Since
the Chebyshev expansion of a function f(x) is only defined for |x|  1, the
cluster operator T̂ is normalized with ⌧ = |T̂ | , when |T̂ | > 1. The Chebyshev
polynomial coe�cients cn are determined for the Chebyshev expansion of f(x) =
(e⌧ )x to compensate for the normalization of the cluster operator T̂ .

We truncate the Chebyshev polynomial expansion in Eq. (5.4) at n = d to
reduce computational costs. Henceforth, we will denote the Chebyshev polyno-
mial expansion of eT̂ truncated at the d-th degree as Â(d)(T̂ ). For example, the

low-degree truncated ansatzes of the Chebyshev polynomial expansion of eT̂ are
represented as

Â(0)(T̂ ) = c0, (5.5)

Â(1)(T̂ ) = c0 + c1T̂ /⌧, (5.6)

Â(2)(T̂ ) = (c0 � c2) + c1T̂ /⌧ + 2c2(T̂ /⌧)
2. (5.7)

In this manuscript, we refer to the Chebyshev expansion of VCCSD with degree
d as Cd-VCCSD. The ansatzes Â(d)(T̂ ) truncated at low degrees correspond
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to well-known quantum chemical theories. By substituting the 0-degree ansatz
Â(0)(T̂ ) for eT̂ into Eq. (5.1), it is evident that the energy expectation value
of the HF state is obtained. Applying the 1-degree ansatz Â(1)(T̂ ) enables the
wave function to incorporate single and double excitations and assume the same
form as CISD

Â(1)(T̂ ) | 0i

= c0 | 0i+ c1/⌧
X

i,a

ta
i
| a

i
i+ c1/⌧

X

i<j,a<b

tab
ij

�� ab

ij

↵
, (5.8)

where | a

i
i and

�� ab

ij

↵
are the singly and doubly excited configurations, respec-

tively.

Chebyshev Expansion of eT̂ based on a decomposed Hermitian cluster
operator

The implementation of the truncated Chebyshev expansion of the VCC ansatz
on a quantum computer requires an additional approximation. QSVT does
not allow for making a polynomial of any matrix on quantum computers. The
matrix for QSVT should be Hermitian. However, the cluster operator T̂ is
nilpotent, making QSVT not directly applicable for constructing Tn(T̂ /⌧).

To address this issue, we consider the following approximated form of the
VCC ansatz

eT̂ = e
1
2 (T̂�T̂

†
)+

1
2 (T̂+T̂

†
) ⇡ e

1
2 (T̂�T̂

†
)e

1
2 (T̂+T̂

†
). (5.9)

In this approach, the cluster operator is decomposed into the anti-Hermitian
1

2
(T̂ � T̂ †) and Hermitian parts 1

2
(T̂ + T̂ †). In this thesis, we call the ansatz as

a trotterized VCC ansatz. The exponential function of the anti-Hermitian part
1

2
(T̂�T̂ †) is unitary and closely resembles the UCC theory. The implementation

of a UCC ansatz in a quantum circuit has been extensively researched. The
disentangled UCC ansatz [164, 165] can be utilized to implement the former
part

e
1
2 (T̂�T̂

†
) ⇡

Y

µ

e
1
2 (T̂µ�T̂

†
µ), (5.10)

where T̂µ denotes each term of the cluster operator T̂ such as ta
i
â†
a
âi and

tab
ij
â†
a
â†
b
âiâj .

The Chebyshev expansion is applied to the latter part e
1
2 (T̂+T̂

†
). As men-

tioned in the previous subsection, we normalize the operator 1

2
(T̂ + T̂ †) with

the spectral norm  = | 1
2
(T̂ + T̂ †)|, when  > 1 to ensure the condition of the

Chebyshev expansion. The resulting Chebyshev expansion truncated at n = d
is expressed as

e
1
2 (T̂+T̂

†
) ⇡

dX

n=0

cnTn
✓
1

2
(T̂ + T̂ †)/

◆
. (5.11)
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Figure 5.1: Quantum circuit to execute the HCd-VCC ansatz for a q-qubit sys-
tem. QSVT even and QSVT odd apply the corresponding part of the Chebychev
polynomial with even/odd parity, respectively. The block encoding of 1

2
(T̂+ T̂ †)

in QSVT is performed using m-ancilla qubits. A linear combination of unitaries
structure with two ancilla qubits is required to perform the real polynomial of
indi↵erent parity resulting from the Chebyshev expansion.

An approximate VCC ansatz that can be implemented in a quantum circuit
is

eT̂ ⇡
Y

µ

e
1
2 (T̂µ�T̂

†
µ)

 
dX

n=0

cnTn
✓
1

2
(T̂ + T̂ †)/

◆!
. (5.12)

We refer to this ansatz as the Hermitian-part Chebyshev approximation with
degree d of VCC or HCd-VCC in the remainder of this thesis.

5.2.3 The QSVT Implementation of HCd-VCC Ansatz

The quantum circuit used to perform VCC for a q-qubit system is shown in
Fig. 5.1. The parity of the polynomials generated by a QSVT circuit is re-
stricted; a single QSVT function can return only even or odd polynomials.
Therefore, it is necessary to combine two QSVT circuits, each responsible for
even or odd polynomials, to realize the Chebyshev expansion. This combina-
tion was achieved using a linear combination of unitaries [87], requiring two
ancilla qubits. Additionally, additional m-ancilla qubits are required to realize
block-encoding [82–84] of 1

2
(T̂ + T̂ †) in QSVT. After the Chebyshev expansion

of e
1
2 (T̂+T̂

†
), the disentangled UCC part

Q
µ
e

1
2 (T̂µ�T̂

†
µ) may be applied to the

system state, finalizing the HCd-VCC ansatz.

5.3 Computational Details

Here, we provide the computational details of the proof-of-principle numerical
simulations of our methods. We implemented the circuit shown in Fig. 5.1 in
Python using Pennylane, version 0.34.0 [166]. The angles for the QSVT were
determined using the algorithm implemented in Pyqsp, version 0.1.6 [64, 78,

167, 168]. It should be noted that, in this manuscript, the exact e
1
2 (T̂�T̂

†
)

matrix was used instead of the disentangled UCC ansatz.
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We computed the PECs of N2, linear H4 and H6 molecules to assess the ac-
curacy of our methods. All calculations utilized the minimal basis set STO-3G,
with the HF state serving as the reference state. Variational parameters were
optimized using the L-BFGS-B algorithm [169]. For comparison, we performed
FCI or exact diagonalization. When using the active space approximation, the
CASCI was employed to obtain reference energies. Classical algorithms were
executed using the PySCF program, version 2.3.0 [143].

5.4 Results and Discussion

5.4.1 Chebyshev Approximation of VCCSD

First, we discuss the accuracy of the truncated Chebyshev expansion VCCSD,
denoted as Cd-VCCSD, compared to the exact VCCSD and its dependence on
the degree d. The simulation results are presented in Fig. 5.2. The C0-VCCSD
and C1-VCCSD are equivalent to HF and CISD, respectively. As expected, these
two methods show significant deviations from the exact VCCSD. However, the
Cd-VCCSD rapidly converges to the exact VCCSD as d increases.

The right panels of Fig. 5.2 illustrate the truncation errors for cases where
d � 2. The truncation error increases with the interatomic distance R but
decreases rapidly with the increase of the degree of truncation. For the linear H4

molecule, the C4-VCCSD shows slight errors. Since H4 is a 4-electron system,
the C4-VCCSD is expected to be exact. These observed errors likely stem
from numerical inaccuracies in the parameter gradients during the optimization
process. For H6 and N2, both 6-electron systems, the C5-VCCSD exhibits sub-
milliHartree (mHa) errors. These results suggest that the Cd-VCCSD with
d < N can su�ciently reproduce the exact VCCSD.

5.4.2 Robustness of Trotterized VCCSD

Next, we validate the trotterized VCCSD ansatz in Eq. (5.9). Fig. 5.3 compares
the trotterized VCCSD PECs with the exact VCCSD. Note that the trotterized
VCCSD does not employ a Chebyshev expansion, so any deviation from the
exact VCCSD is solely due to trotterization. When using the parameters from
the exact VCCSD ansatz, the deviation increased in the strongly correlated
regime. However, the variationally optimized trotterized VCCSD significantly
reduced the error, indicating that most Trotter errors can be absorbed into the
variational parameters. A similar observation has been made in the context of
the UCC ansatz [170]. Nonetheless, for longer bond lengths, the Trotter error
remains non-negligible. This error may be further reduced using a higher-order
Trotter-Suzuki approximation [171, 172], though at the expense of increased
computational costs.
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(a) (b)

(c)

Figure 5.2: Convergence of Cd-VCCSD to exact VCCSD as the degree of trun-
cation in the Chebyshev expansion. The three rows correspond to the results
for linear H4, H6, and N2, respectively. The left panels display the PECs of Cd-
VCCSD, exact VCCSD, and FCI/CASCI for each molecule. The right panels
illustrate the energy di↵erence between Cd-CCSD and exact VCCSD. The hor-
izontal axes represent the inter-atomic distance R between neighboring atoms.
All calculations use the STO-3G basis set, with the active space for N2 set to
(6e, 6o).

5.4.3 Numerical Verification of HCd-VCCSD

Fig. 5.4 shows the performance of the HCd-VCCSD ansatz. The PECs of the
linear H4 and H6 molecules have been simulated. The errors in the HCd-VCCSD
ansatz stem from two sources: the Chebyshev expansion errors (Fig. 5.2) and the
Trotterization errors (Fig. 5.3). For the H4 molecule, where Trotterization errors
are negligible, the Chebyshev expansion error is smaller in HCd-VCCSD than in
Cd-VCCSD. For instance, at an H-H distance of 2.0 Angstrom, the HC2-VCCSD
error is approximately 1/4 of the C2-VCCSD error. This result is because HCd-
VCCSD does not use the Chebyshev expansion for the disentangled UCC ansatz.
In the H6 molecule, for d = 4 or higher, the main source of error is Trotterization,
with the Chebyshev expansion error being small and non-dominant.

5.5 Conclusions

In this Chapter, we proposed an approach to implementing the VCC theory on
quantum computers by expanding the exponential cluster operator using Cheby-
shev polynomials. We introduced the Chebyshev approximated VCC (Cd-VCC)
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Figure 5.3: Energy errors in trotterized VCCSD using amplitudes optimized for
exact VCCSD, t = texact, and trotterized VCCSD, t = tTrotter. Panels (a) and
(b) represent the results for linear H4 and H6, respectively. The distance R spec-
ifies the interatomic distance between neighboring hydrogens. All calculations
were performed using the STO-3G basis set.

Figure 5.4: Convergence of HCd-VCCSD to exact VCCSD as the degree of trun-
cation in the Chebyshev expansion increases from d = 2 to d = 6. HCd-VCCSD
was implemented using QSVT. The two rows correspond to the results for linear
H4 and H6. The left panels display the PECs of HCd-VCCSD, exact VCCSD,
and FCI for each molecule. The right panels illustrate the energy di↵erence be-
tween HCd-CCSD and exact VCCSD. The distance R specifies the interatomic
distance between neighboring hydrogens. All calculations were performed using
the STO-3G basis set.
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and investigated its accuracy and convergence with respect to the truncation de-
gree d. Numerical simulations demonstrated that the Cd-VCC rapidly converges
to the exact VCC with increasing d, and the Cd-VCC with d < N , where N is
the number of electrons, reproduced the exact VCC with su�cient accuracy.

Implementing the Cd-VCC itself on quantum computers is not straightfor-
ward because the cluster operator is not diagonalizable. When an operator
is not diagonalizable, quantum algorithms such as QSVT cannot be directly
applied. To address this issue, we developed the Hermitian-part Chebyshev ap-
proximated VCC (HCd-VCC) ansatz, which decomposes the cluster operator
into anti-Hermitian and Hermitian parts. The anti-Hermitian part is repre-
sented by the well-known disentangled UCC ansatz, while the Hermitian part is
approximated using the Chebyshev expansion. For Hermitian operators, their
Chebyshev polynomials can be realized on quantum circuits using the QSVT
technique. Numerical simulations revealed that the HCd-VCC ansatz can ef-
fectively reduce the Chebyshev expansion error compared to the Cd-VCC, as it
does not employ the Chebyshev expansion for the UCC part.

Implementing non-unitary CC wave functions on quantum computers has
the potential to simplify the process of initial state preparation on quantum
devices, as it is expected that the circuit parameters with small rotation an-
gles can be determined on classical computers [173]. Furthermore, this method
may also facilitate the e�cient extraction of quantum state information, which
is essential for post-processing tasks on classical computers following quantum
computations. For example, the quantum circuit parameters (i.e., CC ampli-
tudes) in the active space can be directly used in the framework of tailored
or externally-corrected CC methods with quantum inputs [145, 174], e�ciently
considering the electron correlations ignored in quantum computing on a clas-
sical computer. Existing such post-processing methods require many repeated
measurements, while the present method allows us to extract the cluster ampli-
tudes without any measurement.
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Conclusion

After a short introduction to the field of quantum computing in Chapter 1, we
introduced in Chapter 2 some of the background needed to follow this thesis. In
Chapters 3-5, we discussed in detail the advantages of our developed quantum-
classical hybrid algorithms. In this Chapter, we will summarize our findings
and put them in the context of today’s status of quantum computing.

A major advantage of calculating electronic structures using quantum com-
puting is e↵ectively representing quantum states using qubits. The di�culties
of operating stable qubits challenge this fundamental advantage. Even when
tremendous e↵orts have been made to develop quantum computers that can
execute algorithms with high fidelity, the currently available qubits remain lim-
ited. Implementing error correction codes can only be a partial answer due
to the significant overhead required. This resource limitation led to the fact
that, as of today, quantum computers can only be used to calculate the elec-
tronic structure of relatively simple molecules. There are currently multiple
di↵erent approaches to improving electronic structure algorithms to put them
within reach of today’s and future improved quantum computers. We reached
the conclusion that in the context of resource-limited quantum computers, it is
advantageous to execute an algorithm that partly runs on a quantum computer
and partly on a classical computer. In this sense we speak of such algorithms
as a quantum-classical hybrid algorithm. Using such a concept, we e↵ectively
increase the degrees of freedom manageable by quantum computers by using the
quantum-classical optimization method deep VQE. In a second approach, for
molecules requiring a number of degrees of freedom that quantum computers
can not handle, we develop the quantum-classical correction method QC-CBT-
TCC, mitigating the error from ignored electronic correlation. A third approach
to using the concept of quantum-classical hybrid algorithms opens opportuni-
ties for an approximated ansatz of the CC theory usable by both quantum and
classical computers.

Deep VQE is a known method that combines the quantum-classical hybrid
algorithm VQE with the divide-and-conquer concept. It divides the full system
into subsystems and solves them individually using VQE. The found ground
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states are the foundation for building a reduced basis in which the full system
is represented. The system can then be calculated on a reduced basis using
a finalizing VQE. To e↵ectively increase the degrees of freedom manageable
by quantum computers, we focused in Chapter 3 on optimizing to build an
e↵ective basis set to represent the ground state of the recombined molecule.
Selecting a suitable basis set reduces the number of qubits needed in the final-
izing VQE, without sacrificing accuracy. Deep VQE optimized with our basis
forming methods produces results within a few mHa of the reference methods
FCI or CASCI, often achieving chemical accuracy. We showed that including
additional low-laying energy states can be beneficial when forming the e↵ective
basis set, especially when degenerate ground states are occurring. A future re-
search direction could consider an adaptive approach for building the basis sets
sequentially.

The active space approximation is a widely used method in quantum chem-
istry calculations. It reduces the computational cost by selecting the molecule’s
most relevant orbitals and electrons for calculating the electronic structure. It
is well-known that such a reduction su↵ers from lost electronic correlation and
needs to be corrected. In classical computation chemistry, the TCC is such a
correction method. In Chapter 4, we combined the TCC approach with quan-
tum computing, creating a quantum-classical hybrid algorithm. This allows us
to calculate e↵ectively the active space on a quantum computer and correct the
e↵ect from the missing electron correlation using a CC ansatz on a classical com-
puter. We utilized CBT to determine the relevant CC amplitudes to map the
active space solution from the quantum computer to the classical computer. We
could show that we successfully reintroduced the missed electron correlation in
the active space solution for multiple molecules and were even able to estimate
the activation energy of the 1,5-hexadiene Cope rearrangement in good agree-
ment with MR-AQCC. A possible way to improve the e�ciency of this method
is to develop a parameterized ansatz on the quantum computer that allows the
transfer of the state via the coe�cients directly to the classical computer. This
would allow us to circumvent the costly CBT method. We investigated such a
method in Chapter 5.

In Chapter 5, we proposed a method to enhance the connection between
quantum and classical computers. We achieve this with an approximation ver-
sion of the parameterized VCC on the quantum computer. We realized that
the approximation needed to execute the non-unitary algorithm on a quan-
tum computer can be largely absorbed during the classical optimization step of
the methods’s parameters. The similarity with the CC that can be executed
on a classical computer allows us to freely exchange the parameters between
the classical executable CC and the quantum computer approximated VCC.
This development further enhances the impact of quantum-classical hybrid al-
gorithms since it allows the extraction of information on the produced quantum
state and allows the pre-optimization of the VCC parameters on a classical
computer, leading to faster convergence. This makes quantum-classical hybrid
algorithm an even stronger choice to solve electronic structure problems with
resource-limited quantum computers and classical computers.
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We determined the performance of all the methods we developed in this
thesis by considering a noise-free quantum computer. This ignores that the
quantum calculation part of our quantum-classical hybrid algorithms on a real
quantum computer is su↵ering from external noise. Using a real quantum com-
puter would require the utilization of error correction or error mitigation. How-
ever, the overhead demanded to execute such codes often exceeds the number
of qubits available on a quantum device.

For quantum computing to be a viable tool for electronic structure calcu-
lations, it will be fundamentally important to develop scalable fault-tolerant
qubits. We assume that if this necessary condition is met, there will be good
reasons to use quantum-classical hybrid algorithms to find the solution for com-
plex chemical structures. In this sense, it is su�cient to use new high-potential
quantum algorithms, which are in part supported by already-developed classical
algorithms, allowing for improved results. When these necessary and su�cient
conditions are fulfilled, quantum computing has gone from basic research to a
practical tool for electronic structure calculations. We believe quantum-classical
hybrid algorithms could be the key to this goal since they combine the best of
two worlds.
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solvers via a gradient descent perspective”, arXiV preprint (2021), arXiv:2109.
04248 [quant-ph].

81T. L. Silva, M. M. Taddei, S. Carrazza, and L. Aolita, “Fragmented imaginary-
time evolution for early-stage quantum signal processors”, Scientific Reports
13, 18258 (2023).

82G. H. Low and I. L. Chuang, “Hamiltonian Simulation by Qubitization”,
Quantum 3, 163 (2019).

83D. Camps, L. Lin, R. Van Beeumen, and C. Yang, “Explicit quantum circuits
for block encodings of certain sparse matrices”, SIAM J. Matrix Anal. Appl.
45, 801–827 (2024).

84D. Camps and R. Van Beeumen, “FABLE: Fast Approximate Quantum Cir-
cuits for Block-Encodings”, Proceedings - IEEE International Conference on
Quantum Computing and Engineering, QCE, 104–113 (2022).

85G. H. Low, T. J. Yoder, and I. L. Chuang, “Methodology of resonant equian-
gular composite quantum gates”, Phys. Rev. X 6, 041067 (2016).

86Y. Dong, X. Meng, K. B. Whaley, and L. Lin, “E�cient phase-factor evalu-
ation in quantum signal processing”, Phys. Rev. A 103, 042419 (2021).

87A. M. Childs and N. Wiebe, “Hamiltonian simulation using linear combina-
tions of unitary operations”, Quantum Info. Comput. 12, 901–924 (2012).

88A. M. Childs, R. Kothari, and R. D. Somma, “Quantum Algorithm for Sys-
tems of Linear Equations with Exponentially Improved Dependence on Pre-
cision”, SIAM Journal on Computing 46, 1920–1950 (2017).

https://doi.org/10.1038/s41567-019-0704-4
https://doi.org/10.1021/acs.jctc.0c00666
https://doi.org/https://doi.org/10.1002/qute.202100114
https://doi.org/https://doi.org/10.1002/qute.202100114
https://doi.org/10.1021/acs.jctc.2c00906
https://doi.org/10.1103/PRXQuantum.2.040203
https://doi.org/10.1103/PhysRevLett.118.010501
https://arxiv.org/abs/2109.04248v1
https://arxiv.org/abs/2109.04248
https://arxiv.org/abs/2109.04248
https://doi.org/10.1038/s41598-023-45540-2
https://doi.org/10.1038/s41598-023-45540-2
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1137/22M1484298
https://doi.org/10.1137/22M1484298
https://doi.org/10.1109/QCE53715.2022.00029
https://doi.org/10.1109/QCE53715.2022.00029
https://doi.org/10.1103/PhysRevX.6.041067
https://doi.org/10.1103/PhysRevA.103.042419
https://dl.acm.org/doi/10.5555/2481569.2481570
https://doi.org/10.1137/16M1087072


84 BIBLIOGRAPHY

89Y. Liu, S. Arunachalam, and K. Temme, “A rigorous and robust quantum
speed-up in supervised machine learning”, Nature Physics 17, 1013–1017
(2021).

90Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová,
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Appendix

In Tabs. 6.1, 6.2 and 6.3, we show the geometry of the molecules used in the
Chapter 3. The distances are given in angstrom.

X Y Z
H 0.000000 0.000000 0.000000
H -1.732051 -0.000000 -1.000000
H -1.848076 -0.866025 -2.799038
H -3.348076 0.866025 -0.200962
H 0.000000 0.000000 2.000000
H -1.500000 -0.866025 3.000000
H 1.500000 0.866025 3.000000
H 1.732051 0.000000 -1.000000
H 3.348076 -0.866025 -0.200962
H 1.848076 0.866025 -2.799038

Table 6.1: XYZ-coordinate of the 10
hydrogen molecule with stretching
factor 1.

X Y Z
H 0.000000 0.000000 0.000000
H -1.732050 -0.000000 -1.000000
H -1.848080 -0.866030 -2.799040
H -3.348080 0.866030 -0.200960
H -3.464100 -0.000000 -2.000000
H 0.000000 0.000000 2.000000
H -1.500000 -0.866030 3.000000
H 1.500000 0.866030 3.000000
H 0.000000 0.000000 4.000000
H 1.732050 0.000000 -1.000000
H 3.348080 -0.866030 -0.200960
H 1.848080 0.866030 -2.799040
H 3.464100 0.000000 -2.000000

Table 6.2: XYZ-coordinate of the 13
hydrogen molecule with stretching
factor 1.
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Table 6.3: XYZ-coordinate of the retinal molecule.

X Y Z
O -8.60015 1.48468 0.81071
C 4.39241 -0.77397 0.51552
C 5.77904 -0.08948 0.48761
C 5.70665 1.40739 0.77579
C 3.33060 0.08350 -0.21654
C 4.86219 2.08607 -0.30026
C 3.57180 1.35840 -0.61706
C 3.94256 -1.00034 1.97865
C 4.55288 -2.15570 -0.16272
C 2.03748 -0.58705 -0.44366
C 2.62992 2.18732 -1.45862
C 0.81416 -0.05758 -0.20524
C -0.46332 -0.72138 -0.41518
C -0.46117 -2.12317 -0.97276
C -1.60447 -0.03909 -0.09459
C -2.96328 -0.48737 -0.21634
C -4.03235 0.27778 0.13513
C -5.42820 -0.10540 0.04014
C -5.75579 -1.47964 -0.49730
C -6.37349 0.79473 0.44081
C -7.82162 0.62021 0.43151
H 6.22690 -0.23284 -0.50558
H 6.43820 -0.59735 1.20232
H 6.71075 1.84544 0.80511
H 5.26112 1.58181 1.76272

X Y Z
H 5.44638 2.18475 -1.22944
H 4.61898 3.11698 -0.00678
H 4.64289 -1.66413 2.49891
H 3.88921 -0.05950 2.53474
H 2.94956 -1.45875 2.01686
H 5.40574 -2.68341 0.27827
H 3.67656 -2.79604 -0.02741
H 4.74164 -2.05316 -1.23676
H 2.08553 -1.61942 -0.78134
H 2.14548 2.97367 -0.86405
H 1.84672 1.59622 -1.93374
H 3.19801 2.70547 -2.24209
H 0.75642 0.95116 0.19869
H -1.46418 -2.53053 -1.09921
H 0.09232 -2.80140 -0.31283
H 0.03720 -2.15163 -1.94837
H -1.48044 0.96851 0.30163
H -3.13972 -1.48470 -0.60830
H -3.84165 1.27584 0.52734
H -5.29038 -2.25362 0.12287
H -5.35887 -1.59806 -1.51154
H -6.82567 -1.67873 -0.53230
H -6.05111 1.76391 0.81603
H -8.21260 -0.34930 0.05918
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Number of shot dependency of QC-CBT-TCC for LiH

In Figures 6.1 (a) and 6.1 (b) the results for LiH show a behavior similar
to that of H2O and N2 in that increasing the number of measurements reduces
the corrected energy distribution. This behavior can be explained by the higher
accuracy and decreased uncertainty in determining the coe�cients of a state on
a quantum computer. Consequently, the obtained CBT state is more consistent,
and therefore, the expected energy can be determined with a higher degree of
confidence.

(a) (b)

Figure 6.1: Energy insecurity of QC-CBT-TCC(c) for LiH with a di↵erent num-
ber of measurements for CBT. Nsample, NU , and NV were all measured in the
specified quantities in the figure as the X-axis values. CBT was performed 1000
times for each setting to obtain an estimate for the statistical errors. The box
indicates the range from the first to the third quartile called the inter-quartile
range (IQR), with the median drawn in the middle. The box contains 50% of
the data. Whiskers are the lines extending 1.5 times the IQR from the first and
third quantiles. Data points that exceed the whiskers are considered outliers
(fliers) and are represented as single dots. (a) Number of measurements depen-
dency at an equilibrium distance of 3.016 Bohr. (b) Number of measurements
dependency at 6.032 Bohr, twice the equilibrium distance.
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