

Title	Control of Proton Diffusion and Electrical Transport Properties in Transition Metal Oxides Strained Thin Films for Iontronic Switching Device Application
Author(s)	Sidik, Umar
Citation	大阪大学, 2024, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/98686
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (Umar Sidik)	
Title	Control of Proton Diffusion and Electrical Transport Properties in Transition Metal Oxides Strained Thin Films for Iontronic Switching Device Application (遷移金属酸化物歪み薄膜におけるプロトン拡散・電気伝導特性制御とイオンスイッチングデバイス応用)
<p>Abstract of Thesis</p> <p>Transition metal oxides with 3d-correlated systems have potential to enable densely scaled resistive switching for emerging nonvolatile memory and neuromorphic computing applications. From scientific perspective, the remarkable switching feature in these materials can be attributed to their complex electronic phase diagrams which are extremely sensitive to orbital occupancy of electrons and external stimuli, i.e., proton doping. In recent years, proton doping on perovskite nickelate thin films via gas-phase-chemical reaction (hydrogenation) has been intensively investigated due to its feature to completely reconstruct the electronic band structures, resulting in an immense resistance change of the materials. The vast resistance modulation is thought to be directly related to the proton diffusion within the perovskite lattice of the nickelates. Nevertheless, the nanoscopic understanding of how protons diffuse in these films, especially under intrinsic factors such as lattice strain, has not been clearly revealed. Finding the root correlation between proton diffusion and lattice strain in perovskite nickelates is essential in the field of correlated iontronics. This finding may lead to solve the long-standing issue in resistive switching device area, where a novel approach to enhance the switching operation speed is indispensable.</p> <p>In this dissertation, I have successfully established the correlation between proton diffusion and lattice strain in strongly correlated perovskite nickelate, namely NdNiO_3 thin film, resulting in an enhanced resistance modulation and switching speed. In essence, my achievements are listed in these following points:</p> <ol style="list-style-type: none"> (1) I have clearly elucidated the correlation between proton diffusion and lattice strain in NdNiO_3 thin film. The experimental results, supported by a first-principle calculation, provide a deep insight of how protons dynamically behave under a regulated strain in perovskite nickelate lattice. (2) I have successfully demonstrated that the proton diffusion speed critically affects the resistance state of NdNiO_3 thin film. External controls such as electric field and substrate selection were shown to effectively boost the diffusion speed which, in return, results in a remarkable resistance modulation and switching speed. (3) I have provided a fundamental understanding of strain-controlled proton diffusion, which can lead to an important strategy for overcoming the bottleneck in designing iontronic switching devices. 	

論文審査の結果の要旨及び担当者

氏　名　　(Umar Sidik)		
	(職)	氏　名
論文審査担当者	主　查　　教　授	田中　秀和
	副　查　　教　授	芦田　昌明
	副　查　　教　授	石原　一

論文審査の結果の要旨

3d遷移金属酸化物は、温度、圧力、磁場などの外界環境に応じて劇的な相変化を示す物質群であり、高機能量子材料の観点から、また新たな不揮発性メモリーなどへの期待から注目されている。中でもペロブスカイト構造を有する希土類ニッケル酸化物においては、触媒を利用して水素イオン（プロトン）をドーピングすることで、非常に巨大な抵抗変化現象を示すことが2014年に発見され、基礎物理・応用の両面から注目されている。近年、このようにイオンを利用し、電子/スピニ物性の一層巨大な変調を目指すイオントロニクス・デバイス創出の試みが始まっている。希土類ニッケル酸化物における巨大な抵抗変化は、結晶格子内でのプロトンの拡散現象に関係していると考えられるが、その原子レベルでの機構は明らかでない。また本現象のデバイス応用に向け、抵抗変化スピードの向上は重要な問題であるにもかかわらず、その設計・制御方法は明らかになっていない。

申請者は、格子定数の異なる基板上に同物質系の高品質エピタキシャル薄膜結晶を作製し、触媒を用いたプロトンのドーピングにおいて、基板と薄膜結晶の界面に誘起される格子歪みを積極的に利用することで、プロトンの拡散現象を制御し、抵抗変化の大きさおよび変化スピードを向上させることを実現した。併せて第一原理計算を適用し、歪み効果により酸素イオン間の距離が短縮され、プロトン拡散のポテンシャル障壁が減少し、拡散速度が向上することを見出し、実験事実を理論的に説明することに成功した。さらに電場を加えた状態で触媒を用いたプロトンのドーピングを行うと、電界が強いほど、また温度が高いほど、物質内でのプロトンの拡散が促進され性能が向上することを見出した。

このように遷移金属酸化物におけるプロトンの拡散と格子歪の間の相関関係、およびプロトンの拡散と電界の相関関係を確立した上で、格子歪を導入した電界プロトン駆動薄膜スイッチングデバイスを試作し、実際に室温・大気雰囲気条件で、約二桁のスイッチングスピードの向上に相当する抵抗変調率向上のデモンストレーションに成功した。遷移金属酸化物を用いたイオントロニクスは、物理と化学の融合した新しい領域である。本研究は、その基礎的理解を提供し、イオントロニクス・デバイスの発展に資する重要な貢献を為しており、博士（理学）の学位論文として価値のあるものと認める。