
Title Energy-Efficient Architectural Design of High-
Dimensional Computing Paradigm for Edge Devices

Author(s) Liang, Dehua

Citation 大阪大学, 2024, 博士論文

Version Type VoR

URL https://doi.org/10.18910/98690

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Energy-Efficient Architectural Design of

High-Dimensional Computing Paradigm for Edge Devices

Dehua LIANG

Submitted to
Graduate School of Information Science and Technology

Osaka University

July 2024

Publications

Journal Articles (Refereed)
[J1] Dehua Liang, Jun Shiomi, Noriyuki Miura, Masanori Hashimoto, and Hiromitsu

Awano, “A Hardware Efficient Reservoir Computing System Using Cellular Au-
tomata and Ensemble Bloom Filter,” IEICE Transactions on Information and
Systems, Vol. E105-D, No. 7, pp. 1273–1282, July 2022.

[J2] Dehua Liang, Jun Shiomi, Noriyuki Miura, and Hiromitsu Awano, “StrideHD:
A Binary Hyperdimensional Computing System Utilizing Window Striding for
Image Classification,” IEEE Open Journal of Circuits and Systems, just accepted
(May 2024). https://doi.org/10.1109/ojcas.2024.3401028

[J3] Dehua Liang, Hiromitsu Awano, Noriyuki Miura, and Jun Shiomi, “A Robust
and Energy Efficient Hyperdimensional Computing System for Voltage-scaled
Circuits,” ACM Transactions on Embedded Computing Systems, just accepted
(September 2023). https://doi.org/10.1145/3620671

International Conference Papers (Refereed)
[C1] Dehua Liang, Masanori Hashimoto, and Hiromitsu Awano, “BloomCA: A Mem-

ory Efficient Reservoir Computing Hardware Implementation Using Cellular
Automata and Ensemble Bloom Filter,” in 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE), Grenoble, France, 2021, pp. 587-590,
doi: 10.23919/DATE51398.2021.9474047.

[C2] Dehua Liang, Jun Shiomi, Noriyuki Miura, and Hiromitsu Awano, “DistriHD:
A Memory Efficient Distributed Binary Hyperdimensional Computing Architec-
ture for Image Classification,” in Proceedings of the 27th Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 43-49, Jan. 2022.

[C3] Dehua Liang, Hiromitsu Awano, Noriyuki Miura, and Jun Shiomi, “Depend-
ableHD: A Hyperdimensional Learning Framework for Edge-oriented Voltage-
scaled Circuits,” in Proceedings of the 28th Asia and South Pacific Design Au-
tomation Conference (ASP-DAC), pp. 416-422, Jan. 2023.

ii

Summary

With the emergence of the Internet of Things (IoT), devices are generating massive data
streams. Running big data processing algorithms, e.g., machine learning, on edge de-
vices poses substantial technical challenges due to limited device resources. Compared
to the sophisticated machine learning method, the brain-inspired high-dimensional com-
puting paradigm are considered as promising alternative in terms of energy efficiency
and robustness, which is suitable for the resource limited scenario. As a novel comput-
ing paradigm, how to reduce the hardware cost while maintaining sufficient accuracy
performance on edge devices is still an open problems for circuit designers. The goal of
this thesis is thus to provide the strategies to design an energy efficient high-dimensional
computing paradigm on edge devices. In this thesis, we provide the solutions for high-
dimensional computing from different perspectives: arithmetic operations, memory us-
age, and robustness, which eventually leading to the pursuit of energy efficiency.

In Chapter 3, we discussed the bottleneck for the reservoir computing (RC) sys-
tems in several related papers, which is one of the typical high-dimensional computing
paradigms. Suffered from the huge memory usage and expensive arithmetic operations,
there was still gap between the RC concept to practical implementation on edge devices.
Therefore, this thesis propose a novel RC architecture EnsembleBloomCA, which uti-
lizes cellular automata (CA) and an ensemble Bloom filter to organize an RC system.
By adopting CA as the reservoir in the RC system, it can be implemented using only
binary operations and is thus energy efficient. The rich pattern dynamics created by
CA can map the original input into a high-dimensional space and provide more features
for the classifier. Applying the ensemble Bloom filters as the classifier, the features
provided by the reservoir can be effectively memorized. As the combination of these
two techniques, the novel RC architecture successfully eliminates all floating-point cal-
culation and integer multiplication. Our experiment result demonstrated that 43× and
8.5× reduction is achieved in terms of memory usage and power consumption, while
the accuracy performance is maintained.

Although the extreme energy efficiency is achieved in the first prototype with novel
RC architecture, the circuits designer’s target changes for variety application scenar-
ios. The high-dimensional computing paradigm are also expected to achieve not only

iv

sufficient but also competitive accuracy performance, which has posed designers prob-
lems to balance the trade-off between different key indicators. In Chapter 4, we found
the similar issues should be tackled in hyper-dimensional computing (HDC), which are
also considered as high-dimensional computing paradigm. To alleviate the huge mem-
ory cost during encoding procedure in HDC (i.e., over 95% of the memory capacity
is consumed), we propose a novel HDC architecture StrideHD that utilizes the window
striding in image classification. It encodes data points to distributed binary hypervectors
and eliminates the expensive Channel item Memory (CiM) and item Memory (iM) in
the encoder, which significantly reduces the required hardware cost for inference. For
the improvement of accuracy on edge devices during inference, we provide the itera-
tive learning mode for the proposed HDC architecture. It also enables HDC systems
to be trained and tested using binary hypervectors and achieves very competitive accu-
racy performance. The experiment result shows that the proposed HDC model achieves
extreme memory efficiency (27.6×) with acceptable accuracy performance under the
single-pass mode, while its iterative mode provides competitive performance (11.33%
classification accuracy improvement) and keeping the memory efficiency (8.7times im-
provement) for inference phase. The iterative retraining can be accomplished within
fewer iterations compared to the baseline HDC works.

Besides the trade-off between accuracy performance and hardware resource in high-
dimensional computing, the robustness issue are also arousing the attention of circuit
designers. As we commonly known, scaling down the supply voltage is a promising
approach to reduce the energy consumption of the circuits, while the aggressive voltage
scaling will pose designers several severe problems such as the performance variation
and functional failures. It is a potential solution to tolerate the voltage-scaling induced
functional failures by the superior robustness of the brain-inspired high-dimensional
computing paradigms. Therefore, we introduces the concept of margin enhancement for
model retraining and utilizes noise injection to improve the robustness in the proposed
HDC framework DependableHD, which is capable of application in most state-of-the-
art HDC algorithms. After analyzing the error patterns in voltage-scaled circuits, we
come up with a strategy to take fully advantage of the equivalent structure transforma-
tion in HDC architecture. We additionally propose the dimension-swapping technique,
which aims at handling the stuck-at errors induced by aggressive voltage scaling in the
memory cells. The experiment shows that under 8% memory stuck-at error, the pro-
posed method exhibits a 2.42% accuracy loss on average, which achieves a 14.1× ro-
bustness improvement compared to the baseline HDC solution. The work also supports
the systems to reduce the supply voltage from 430mV to 340mV for both item Memory
and Associative Memory, which provides a 41.8% energy consumption reduction while
maintaining competitive accuracy performance.

Acknowledgments

First of all, I would like to express my deepest gratitude to Associate Professor Jun Sh-
iomi for his invaluable guidance, support, and encouragement throughout my PhD jour-
ney at Osaka University. His profound expertise, insightful suggestions, and advanced
perspective have led me to these achievements. His mentorship has been a cornerstone
of my research career, and I am sincerely appreciative of all the time and effort he has
invested in my development.

I would like to express my sincere appreciation to Associate Professor Hiromitsu
Awano at Kyoto University for his precious suggestions and enormous help throughout
my master’s and doctoral research.

I am deeply grateful to Professor Noriyuki Miura at Osaka University for providing
me with a precious opportunity and an excellent environment to study as a doctoral
student in his laboratory.

I would also like to thank Professor Yasushi Sakurai at Osaka University for his
detailed reviews and insightful suggestions.

I extend my appreciation to Professor Masanori Hashimoto at Kyoto University for
giving me the chance to study VLSI design in his laboratory during my master’s degree.

My sincere appreciation goes to Associate Professor Yoshihiro Midoh at Osaka Uni-
versity, Assistant Professor Ryo Shirai at Kyoto University, and Associate Professor
Jaehoon Yu at the Tokyo Institute of Technology for their invaluable suggestions and
enormous help.

I am grateful to Dr. Jun Chen, Dr. Tai-Yu Cheng, Miss Yangchao Zhang, Mr. Lukas
Nakamura from Osaka University and Dr. Ángel López from Tokyo Institute of Tech-
nology for their technical discussions and suggestions. I would also like to thank my
colleagues, past and present, from the Intelligent Integrated Systems Laboratory at Os-
aka University for their daily discussions and support. Special thanks to our laboratory
secretary, Mrs. Makiko Arai, for her various support. I appreciate the financial support
from the Osaka University fellowship. Additionally, I would like to thank all of my
friends for their financial and emotional support.

I would like to extend my heartfelt gratitude to my parents. They have always sup-
ported and encouraged me with their best wishes.

vi

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation: High-Dimensional Computing 5
1.3 Challenges toward High-Dimensional Computing 8

1.3.1 Elimination of Expensive Arithmetic Operations 9
1.3.2 Memory Efficient High-Dimensional Computing 10
1.3.3 Model Robustness in the Low Voltage Operation 11

1.4 Research Goal and Thesis Contribution 12
1.4.1 Research Target . 12
1.4.2 Thesis Contribution . 13

1.5 Thesis Organization . 16

2 Literature Review and Preliminaries on High-Dimensional Computing 17
2.1 Reservoir Computing . 17

2.1.1 Basics of Reservoir Computing 17
2.1.2 Suitable Components for Hardware Implementation 19

2.2 Hyper-Dimensional Computing . 20
2.2.1 Basic of Hyper-Dimensional Computing 20
2.2.2 Related Works . 26

2.3 Voltage Scaling for Low Power Design 30
2.4 Summary . 31

3 RC System using CA and Ensemble BF 33
3.1 Introduction . 33
3.2 Preliminary . 34

3.2.1 Cellular Automata (CA) . 34
3.2.2 Cellular Automata Applied to Reservoir Computing 35
3.2.3 Application of Bloom Filter 37

3.3 Proposed Method . 38
3.3.1 EnsembleBloomCA . 38

viii CONTENTS

3.3.2 Ensemble Bloom Filter . 40
3.4 Experiment . 41

3.4.1 Experiment Setup . 41
3.4.2 Optimization of ReCA . 42
3.4.3 Experiment Results . 43
3.4.4 Hardware Implementation . 44

3.5 Conclusion . 45

4 Binary HDC System utilizing Window Striding 47
4.1 Introduction . 47
4.2 Proposed Method . 49

4.2.1 Feature Extraction by Window Striding 49
4.2.2 Encoder . 51
4.2.3 Single-Pass Training . 53
4.2.4 Inference . 54
4.2.5 Optimized Model Sparsification 54
4.2.6 Iterative Retraining . 55

4.3 Hardware Implementation of Inference 56
4.3.1 Encoding Blocks . 56
4.3.2 Associative Memory (AM) Blocks 57
4.3.3 AND Gates Array . 57
4.3.4 Nearest Distance Searching 58

4.4 Experiment . 58
4.4.1 Experimental Setup . 58
4.4.2 Single-Pass Training Parameters Tuning 59
4.4.3 Memory Efficiency . 59
4.4.4 Retraining Iterations & Classification Accuracy 61
4.4.5 Hardware Implementation . 63

4.5 Conclusion . 64

5 Robust HDC System for Voltage-scaled Circuits 67
5.1 Introduction . 67
5.2 Proposed Method . 69

5.2.1 Margin Enhancement . 70
5.2.2 Random Noise Injection . 72
5.2.3 Dimension-swapping . 73

5.3 Architecture of DependableHDv2 . 74
5.3.1 Memory Blocks . 75
5.3.2 Encoding Modules . 75
5.3.3 Nearest Distance Searching 75

CONTENTS ix

5.3.4 Dimension Sorting Modules 75
5.4 Experiment . 77

5.4.1 Experimental Setup . 77
5.4.2 Impact of Voltage Scaling, Dimensionality and Precision 77
5.4.3 Margin Enhancement Level 78
5.4.4 Random Noise Injection Level 79
5.4.5 Performance of Dimension-swapping 80
5.4.6 DependableHDv2 Robustness 81
5.4.7 Energy Consumption Reduction 83

5.5 Conclusion . 84

6 Summary 87
6.1 Summary of This Thesis . 87
6.2 Clarification of Proposed Methods . 89
6.3 Future Works . 91

Bibliography 93

x CONTENTS

List of Figures

1.1 The worldwide market size of Artificial Intelligence (AI) in 2021 with
a forecast until 2030 (in billion U.S. dollars). 2

1.2 Trend Data of the Transistors Numbers and Maximum Clock Frequency
in Microprocessor. 4

1.3 (a) Generality and Energy Efficiency of Computing Architecture. (b)
Generality/Accuracy and Efficiency of Computing Paradigm. 8

1.4 Arithmetic Operations Challenges on High-Dimensional Computing. . 9
1.5 Memory Usage Challenges on High-Dimensional Computing. 10
1.6 Voltage Scaling Challenges on High-Dimensional Computing. 11
1.7 Overview of the Challenges on High-Dimensional Computing. 12
1.8 Solutions toward the Challenges on High-Dimensional Computing. . . 13

2.1 Comparison of conventional DNN and Reservoir Computing (RC) system. 18
2.2 (a) Overview of General HDC. (b) Retraining Process. 21
2.3 Functionality of three popular encoders. 22
2.4 Dimension-wise Model Sparsification in HDC System. 25

3.1 Example of cellular automata evolution in Rule 90. 35
3.2 Example of Bloom filter operations with a 16-bit array and three hash

functions. 38
3.3 Overview of the proposed EnsembleBloomCA. 39
3.4 Accuracy Performance applying different ECA rules. 43
3.5 Accuracy - Nsub / Training Memory Cost. 44

4.1 Overview of the proposed StrideHD. 51
4.2 Overview of the proposed encoder in StrideHD. 52
4.3 Hypervector Orthogonality of different Encoders. 53
4.4 (a) Dimension-wise Sparsification. (b) Feature-wise Sparsification. . . 55
4.5 The hardware implementation of StrideHD during inference includes

Encoding, Associative Memory Blocks, AND Gates Array, and Nearest
Distance Searching modules. 57

xii LIST OF FIGURES

4.6 Impact of Different Parameters: (a) Length of Receptive Window. (b)
Binary Levels Lb. (c) Number of Training Subsets Le. (d) Dimensions
D. (e) Dimension-wise Sparsity. (f) Feature-wise Sparsity. 60

4.7 The comparison of accuracy and memory cost. 61
4.8 Comparison of Iterative Retraining for StrideHD and Baseline HD mod-

els in different datasets. 63

5.1 Overview of DependableHD (v2) framework. 69
5.2 Overview of Margin Enhancement technique during Retraining. 70
5.3 Impact of Margin Enhancement technique during Retraining. 71
5.4 Overview of Random Noise Injection technique during Retraining. . . 72
5.5 Validation Accuracy during iterations. 72
5.6 Overview of Dimension-swapping technique. 73
5.7 Impact of VDD. 78
5.8 Impact of D and precision. 78
5.9 Impact of Margin Enhancement Level M. 79
5.10 Impact of Random Noise Injection Level R. 79
5.11 Impact of Dimension-swapping technique. 80
5.12 Accuracy of Binary DependableHDv2 under different Supply Voltages. 83

List of Tables

2.1 Arithmetic Comparison of HDC Encoders in the Previous Works. . . . 24
2.2 Inference Memory Occupations in popular HDC model BinHD. 24
2.3 Information about datasets covered by high-dimensional computing

paradigms. 27

3.1 Performance Comparison. 44
3.2 Hardware Performance Comparison. 45

4.1 Parameters Setting for StrideHD. 58
4.2 Classification Accuracy Comparison between StrideHD and baseline

HDC models for different datasets. 62
4.3 Hardware Performance Comparison. 64

5.1 DependableHDv2 Parameters Setup. 81
5.2 Accuracy Loss Comparison. 82
5.3 Energy Consumption Comparison. 84

6.1 Computational Characteristics and Accuracy Performance of Popular
DNN Models. 89

6.2 Hardware Cost Comparison between DNN Accelerators and our Pro-
posed Architectures. 90

xiv LIST OF TABLES

Chapter 1

Introduction

This dissertation aims to provide an energy-efficient architectural design of the high-
dimensional computing paradigms for edge devices. This chapter provides the back-
ground of the research and the objectives of this dissertation. Section 1.1 introduces
the background of AI applications for edge devices. Section 1.2 shows the motivation
of high-dimensional computing paradigm. Section 1.3 describes the challenges for this
research and points out issues preventing us from energy-efficient hardware implemen-
tation. Section 1.4 claims the goal of our research and the contribution of this thesis.
Finally, the overall organization of this dissertation is presented in Section 1.5.

1.1 Background

Artificial intelligence (AI) has become a ubiquitous technology indispensable for per-
sonal daily life. Statistical data reveals that the investment in AI has incredibly grown
in recent years, which could even burst in the coming decade [1]. Fig 1.1 shows that the
AI market has grown to 208 billion USD by 2023, while the data forecast that the value
would reach 1.85 trillion USD by 2030. Currently, the AI market covers a vast number
of industries, such as IoT, supply chains, and product making, while more are fields that
will in some aspect adopt artificial intelligence within their business structures. Chat-
bots, image/video generating AI, IoT, and mobile applications are all among the major
trends improving AI in the near future.

Rather than serving as a replacement for human intelligence, AI should be consid-
ered a supporting tool for our society in the information era. The machine learning al-
gorithms in AI applications can recognize objects and speech and have mastered games
like chess, even surpassing human performance, e.g., DeepMind’s AlphaGo Zero [2].
More and more AI-related companies are poised to play a crucial role in shaping the
future economy and society. Taking the OpenAI as an example, it stands among the

2 CHAPTER 1. INTRODUCTION

���

Figure 1.1: The worldwide market size of Artificial Intelligence (AI) in 2021 with a
forecast until 2030 (in billion U.S. dollars).

most well-funded machine learning related startups globally, having secured more than
12 billion USD in investments and recorded more than 100 million monthly active users
as of 2023.

Deep neural network (DNN) has thrived and formed the foundation for many ad-
vanced machine learning algorithms in the AI applications due to its unmatchable per-
formance. It contributes to unprecedented success in different AI tasks thanks to its
outstanding accuracy and generality in several fields, e.g., image processing, computer
vision, and natural language processing. In many of these domains, DNNs are now able
to exceed human accuracy performance, which mainly comes from its ability to extract
high-level features from raw sensory data after using statistical learning over a large
amount of data to obtain an effective representation of an input space. This is different
from earlier approaches that use hand-crafted features or rules designed by experts [3].
However, as DNNs grow in complexity, their associated energy consumption becomes
a challenging problem when it comes to the implementation in edge devices like the
Internet of Things (IoT).

Villalobos et al. study the tendency in model size of the popular and notable ma-
chine learning systems over time in Ref. [4]. A great increase shows in the size of
machine learning models, measured in the number of free parameters that have to be fit
to the data. Model size has become especially important as researchers have improved
the understanding of scaling laws for language models, which govern how increases in
model size and training data produce better performance. However, the rapid growth of
model size and computing resource requirement also leads to the bottleneck of machine
learning on edge devices. In general, DNNs have millions of parameters. For exam-

1.1. BACKGROUND 3

ple, a popular DNN model, AlexNet [5] has 60 million parameters and requires 249MB
of inference memory and performs 1.5 billion high-precision operations to classify one
image. More recently, it took seven months to train a DNN with 175 billion parameters,
developed by OpenAI for natural language processing (NLP) [6]. The memory capac-
ity of most edge devices is hard to store all data for large-size DNNs with hundreds of
layers and millions of weights. Even applying the hardware-friendly implementation
techniques to get the Binarized Neural Networks (BNNs) [7] or XNOR-Networks [8],
still require considerably intensive computation costs due to the floating-point calcula-
tion and backpropagation algorithm during the training. The emergence of the IoT has
led to a copious amount of small connected edge-oriented devices and systems [9], while
most of these small edge-oriented systems do not have sufficient computing power to
accomplish the sophisticated machine learning algorithms such as DNNs individually.
The energy constraint of edge devices hinders them from the real-time training of neural
network models [10].

In order to optimize the power dissipation of digital systems on edge devices, low-
power methodology should be applied throughout the design process, which usually
includes the system-level design, architecture-level design, and device-level design [11].

Regarding to the device-level design, one of the most practical ways of reducing
the energy consumption for edge devices is to shrink the feature size of transistors,
i.e., the minimum length of the MOS transistor channel between the drain and the
source. Moore’s law has been driving the semiconductor industry for over 50 years.
With continuously scaling of technology node, the transistor count per die kept dou-
bling in bi-annual pace [12–15]. Meanwhile, though clock frequency for single thread
reached operation has reached a plateau around the year of 2006, it still keeps 15% to
20% increment per technology node generation [13, 16]. Following the ITRS2.0 (Inter-
national Technology Roadmap for Semiconductors) and IRDS (International Roadmap
for Devices and Systems) prediction [17, 18], to the 2030s, even for the low-power mo-
bile devices, computing capability can increase 10× within a decade. However, such a
technology scaling trend pushes the future chip design to the power wall [14, 19, 20],
because the increasing frequency and transistor count will eventually hit the physical
limitations such as thermal dissipation limit and battery capacity limit [21]. Fig. 1.2
shows the trend data of the commercial microprocessor in terms of number of transis-
tors and maximum working clock frequency, which are collected by M. Horowitz et
al. in Ref. [12, 13]. Therefore, more and more researchers turn their attention to the
exploration of system-level design and architectural design for driving the computer
performance in the Post-Moore’s Era.

In terms of the architecture-level optimization, many designers needs to balance
the trade-off between efficiency and generality base on the application scenario. Com-
pared to the general-purpose Central Processing Units (CPUs), many AI applications

4 CHAPTER 1. INTRODUCTION

Figure 1.2: Trend Data of the Transistors Numbers and Maximum Clock Frequency in
Microprocessor.

look to the Graphics Processing Units (GPUs) and Tensor Processing Unit (TPUs) as
accelerator architectures. GPUs, initially designed for graphics rendering, have evolved
into versatile processors capable of handling AI tasks due to their parallel processing
strengths. For the TPUs developed by Google, they are specialized for AI computa-
tions, and offer optimized performance for many popular machine learning algorithms.
When it comes to implementation on edge devices, the Application-Specific Integrated
Circuits (ASICs) are customized for a particular use and leads to the extreme energy ef-
ficiency. Rather than intended for general-purpose use, ASICs are optimized to deliver
the best performance for a specific application, making them incredibly efficient but
inflexible compared to CPUs, GPUs, and TPUs. The co-design between system-level
algorithms and architecture-level hardware implementation provides potential solution
for the strict resource constrains on edge devices.

For the system-level design, the power reduction can be achieved through algo-
rithm selection [11]. Cloud computing has emerged as one of the solutions to meet the
hardware requirements of complex models. It has become increasingly common to de-
ploy the ML algorithms like DNNs using cloud platforms, which are high-performance
computing platforms with tremendous speed and memory. Training can be performed
within a reasonable time on cloud machine learning platforms, where the servers pro-
vide large computational resources, large data storage, high-speed computation, low
latency, and high availability. Cloud computing is also used to deploy DNNs for on-

1.2. MOTIVATION: HIGH-DIMENSIONAL COMPUTING 5

line applications [22]. However, cloud computing also causes high latency and requires
high transmission bandwidth and privacy security issues [23]. For example, in health
care monitoring, we often require learning algorithms to have real-time control of the
patient’s daily behavior, speech, and bio-medical sensors. Sending all data points to the
cloud, cannot guarantee scalability and real-time response, which is often undesirable
due to privacy and security concerns [24]. On the other hand, edge computing aims at
processing the information/data from edge devices with extreme limited resource con-
strains. For the specific scenario, the processing task with simple workload is requested
on the edge devices, which makes it possible to run the light-weight model and finish
the task on local devices. Hence, for running the machine learning algorithms on edge
devices, we recognize the following technical challenges:

• Sufficient performance for edge applications: Although trade-offs may exist
in machine learning algorithms between factors such as accuracy, speed, and re-
source consumption, maintaining high accuracy remains a primary objective when
deploying AI solutions in real-life scenarios.

• Limited hardware resources: The embedded devices in IoT systems often do
not have sufficient computing resources and memory capacity for the processing
of sophisticated learning and big data applications. Running existing machine
learning using traditional cores results in high energy consumption.

• High robustness: The technological and fabrication issues in highly scaled tech-
nology nodes add a significant amount of noise to the VLSI circuits. Most existing
algorithms do not have the enough robustness to work with noisy devices while
providing accurate results.

To address such challenges for edge devices, the demand for a more energy-efficient
architectural design with the novel computing paradigms is crucially rising.

1.2 Motivation: High-Dimensional Computing
Classical computation can be interpreted as the computers embodied in the Turing/von
Neumann paradigm. Nowadays it has been incredibly successful for information pro-
cessing. However, the increased demand due to highly complex computational tasks has
motivated the search for advanced unconventional computation. To achieve real-time
performance with high energy efficiency, we need to rethink not only how we accelerate
machine learning algorithms in hardware, but also we need to redesign the algorithms
themselves using strategies that more closely model the ultimate efficient learning ma-
chine: the human brain. The nervous system in human brains carries out computation
through elegant and sophisticated spatio-temporal dynamics [25]. The human brains are
capable to process signals with excellent precision and power efficiency (the brain drains
20% of the body’s energy [26,27], which amounts to an overall power-consumption es-

6 CHAPTER 1. INTRODUCTION

timated at around 20 W). Such energy requirements are impressive compared to digital
machines, which easily exceed 100 W during inference and several kilowatts during the
training of traditional DNNs. Motivated by the observation that the human brain oper-
ates on high dimensional representations of data originated from the large size of brain
circuits [28], computational neuroscientists begins the exploration of modeling memory
of human brain. In the high-dimensional computing (e.g., reservoir computing, hyper-
dimensional computing), human memory are modeled by mapping input data points
to the representation in high-dimensional space, while the important functionalities of
human brain are refered by the well-defined vector operations.

Reservoir computing (RC), first applied to temporal signal processing, is a recur-
rent neural network in which neurons are randomly connected. Once initialized, the
connection strengths remain unchanged. These fixed and nonlinear hidden layers are
generally referred to as the reservoir part, which can map the original input data into
a higher-dimensional feature space. On the other hand, the output layer is considered
as a classifier. The model’s rich dynamics, linear separability, and memory capacity
then enable a simple linear readout to generate adequate responses for various applica-
tions [29]. Compared with conventional DNNs, RC systems use fixed weights in the
input and hidden layers and only modify the weights of the output layer in the training
process [30]. Because most of the weights can be fixed during training and inference,
they can be implemented using hardwired logic and thus do not require memory circuits.
Hence, RC is considered to be a promising alternative to replace DNNs, the model size
of which continues to increase exponentially [31].

Hyperdimensional computing (HDC) is a strategy developed by computational neu-
roscientists as a model the human short-term memory. HDC is motivated by the under-
standing that the human brain operates on high dimensional representations of data orig-
inated from the large size of brain circuits. It models the human memory using points of
a high-dimensional space, called hypervectors. The hyperspace typically refers to tens
of thousand dimensions. HD mimics several important functionalities of the human
memory model with vector operations which are computationally tractable and mathe-
matically rigorou. HDC models are computationally efficient with high parallelism and
amenable to hardware level optimization. It offers a complete computational paradigm
that can be applied to cognitive as well as learning problems. Meanwhile, it provides
strong robustness to noise and naturally enable secure and lightweight learning, which
makes it a promising solution for today’s edge devices with limited storage, battery, and
resources, as well as future computing systems in deep nano-scaled technology which
devices will have high noise and variability.

One one hand, both of RC and HDC have been widely explored by many researchers.
These two kind of systems are connected by several similar core principles in the cur-
rent studies: (i) Random projections of input values onto a reservoir (which in essence

1.2. MOTIVATION: HIGH-DIMENSIONAL COMPUTING 7

is a high-dimensional vector) matches random HDC representations stored in a super-
position. (ii) The update of the reservoir by a random recurrent connection matrix is
similar to HDC adding/shifting operations. (iii) The non-linearity of the reservoir can
be approximated with the thresholded addition of integers in HDC. Therefore, both of
RC and HDC can be considered as high-dimensional computing paradigms.

On the other hand, the focus of these two types of computing systems might be
different for the current studies. For the RC system using reservoirs based on physical
phenomena has recently attracted increasing interest in many research areas. Various
physical systems, substrates, and devices have been proposed for realizing RC. A moti-
vation for physical implementation of reservoirs is to realize fast information processing
devices with low learning cost. Regarding the HDC system with massive parallelism
and simple arithmetic, different kinds of training strategies and architectures have been
proposed for the scope of energy-efficient and ultra-low-latency computing, especially
with the rise of emerging hardware.

As frameworks for neural symbolic representation, computation, and analogical rea-
soning, there are two main advantages for the high-dimensional computing paradigms
compared to the conventional DNN architectures: (i) Only some of the parameters are
required to be trained, while the rest can be fixed. (ii) The complex data structures
and analogical reasoning are implemented by simple arithmetical operations, e.g., bind-
ing, addition/bundling, and permutation, and a well defined similarity metric. Owing
to these unique features, the RC systems and HDC systems can be implemented with
limited hardware resources.

Besides the novel computing paradigm, the voltage-scaling is also one of the classic
low power design methodologies for energy efficiency improvement in device-level. In
typical circuits, the dominant source of energy consumption is a dynamic energy con-
sumption which is consumed when Complementary MOS (CMOS) circuits charge or
discharge load capacitors. Since the dynamic energy consumption is quadratically pro-
portional to the supply voltage, the low voltage operation is a good choice to reduce
the power and energy dissipation at the cost of degrading the computational power [32].
Although the it also brings challenges to fully guaranteeing stable operation in the cir-
cuits, the natural robustness of HDC provides the room for the systems to tolerate the
hardware error issues induced by voltage-scaling.

Therefore, in order to achieve practical machine learning on edge devices, we pro-
pose utilizing high-dimensional computing paradigm with energy-efficient architectural
design, which includes three techniques from different design level: (i) reservoir com-
puting for light-weight implementation, (ii) hyper-dimensional computing for energy
reduction, and (iii) voltage-scaling for low power design. The literature review and
preliminaries of these techniques are discussed in the Chapter 2.

8 CHAPTER 1. INTRODUCTION

�
������

�
��

�������������	
��

�����

���������	�

�
������

�
��

�������������	
�����
�������

����

����

���	
���
�
�

�������
�

Figure 1.3: (a) Generality and Energy Efficiency of Computing Architecture. (b) Gen-
erality/Accuracy and Efficiency of Computing Paradigm.

1.3 Challenges toward High-Dimensional Computing

Fig. 1.3 shows the research target area of this thesis. Fig. 1.3(a) shows the generality and
energy efficiency of different computing architectures. CPUs are the most general com-
puting architecture. However, their computing efficiency is not sufficient for some edge
computing scenarios. Other popular architectures are GPUs and FPGAs at the cost of
degrading the generality, while ASICs are the most efficient device for specific dedicated
purposes. From the viewpoint of edge computing, ASICs are a suitable candidate for
lightweight specific purposes in edge computing. Fig. 1.3(b) shows the generality/accu-
racy and energy efficiency of different computing paradigms. Here the generality intents
to represent the ability of handling multi-task. Many other popular machine learning al-
gorithms (e.g., multi-task learning) has been emerged as a powerful paradigm in deep
learning to obtain language and visual representations from large-scale data [33]. By
leveraging supervised data from related tasks, these approaches reduce the expensive
cost of curating the massive per-task training data sets needed by deep learning meth-
ods and provide a shared representation which is also more efficient for learning over
multiple tasks. When targeting the scenarios with multiple tasks, the current researches
about high-dimensional computing paradigms are still lack of convincing performance
in terms of generality. Most high-dimensional computing paradigms are focusing on
the energy efficiency and robustness improvement. The ability of handling single task
with wide coverage is sufficient for the scenarios on edge devices. The DNNs are very
powerful but energy consuming, which may not be suitable for the edge computing
scenario. Therefore, this thesis targets high-dimensional computing with ASICs as a
potential solution for the edge computing scenario. This section describes challenges
toward high-dimensional computing.

1.3. CHALLENGES TOWARD HIGH-DIMENSIONAL COMPUTING 9

�����

����

�������

���	
���
��	�
�����
����������

�������
��������

�����
������

����

����������	
������
�	�
���������

���������	 ��
����
��	�������
����

����	��������	���	������	����

Figure 1.4: Arithmetic Operations Challenges on High-Dimensional Computing.

1.3.1 Elimination of Expensive Arithmetic Operations

Although the high-dimensional computing is a promising alternative for drastically re-
ducing the computational burden compared to the traditional machine learning meth-
ods, the trade-off between accuracy performance and arithmetic precision still exists.
From the circuit designer’s point of view, it is important to reduce the hardware cost
while maintaining accuracy performance. The arithmetic operations challenges on high-
dimensional computing paradigms are diagrammed in Fig. 1.4. For high-dimensional
computing, the hardware cost of arithmetic operations is affected by the precision of ele-
ments in the model. Although applying the precised FP calculation on high-dimensional
computing can improve the accuracy performance, it also brings heavy computational
burden to the edge devices.

For example, Ref. [34] select the most accurate cellular automata rules to repre-
sent the reservoir structure, which can easily be reproduced using a set of XOR gates
and shift registers. They achieve a high-performance alternative for RC hardware imple-
mentation in terms of circuit area, power, and system accuracy, which can be considered
as a low-cost method to implement fast pattern recognition digital circuits. However,
this model exploits the softmax function as its classifier, which still requires expen-
sive floating-point (FP) calculations; hence, it is not suitable for implementation on
resource-constrained edge devices. For [35], authors utilize a random forest algorithm
as the classifier, which avoids the costly FP calculation during the inference but also
brings higher consumption for the training.

Similarly, in some HDC works, it is common to utilize hypervector with high-
precision elements for accuracy improvement. In Ref. [36–41], authors need to encode
data points to hypervectors with non-binary elements, i.e., storing integer or FP value for
each element. This leads to the high memory requirement and expensive computational
cost. To reduce the inference cost, Rahimi et al. [42] and Imani et al. [24] propose bina-

10 CHAPTER 1. INTRODUCTION

�����

����

�������

���	
���
��	�
�����
����������

�������
��������

�����
������

����

��������	
�����

�������

���������	
�	 ��
������������

���������� ��
������
�����

Figure 1.5: Memory Usage Challenges on High-Dimensional Computing.

rizing the elements of class hypervectors after the training. Although these approaches
can simplify the inference similarity matrix to Hamming distance and lead to a faster
computation speed, it comes with the cost of significantly degraded HD classification
accuracy on practical image recognition applications. For instance, Imani et al. [40]
proposed a HDC model for face image classification task. If the model is binarized,
the accuracy performance sharply decreases to 38.9%, which is far lower than the non-
binarized mode. Since the frequent use of floating-point and integer calculations makes
the hardware implementation challenging, the elimination of expensive arithmetic op-
erations while maintaining accuracy performance becomes a must.

1.3.2 Memory Efficient High-Dimensional Computing

The high-dimensional computing paradigms need to ensure that the model has the sep-
aration capacity so that the no-linear mapping operations allow to differentiate different
input signals. The performance of the computing paradigms usually related to how
well the model separates the input signals, i.e. whether sufficiently different input sig-
nals become linearly separable in the high-dimensional space. The stronger a model’s
separation capacity, the larger the set of functions that it can approximate, which gener-
ally increases with the size of the no-linearity of networks, and also grows with larger
memory capacity. The memory efficiency challenges on high-dimensional computing
paradigms are diagrammed in Fig. 1.5. For high-dimensional computing, the input data
points are mapped into the high-dimensional space in a fixed and no-linear way, which
usually takes huge memory usage. Also, to storage the universal information in high-
dimensional space, the hardware cost sharply increase when utilizing high-precision
elements.

For example, Ref. [43, 44] adopts the bloom filters as the classifier in the RC sys-
tem, which is a space-efficient probabilistic data structure aimed at approximate member
queries. Such structure is capable of eliminating the costly FP calculations and charac-
terized by its simple implementation in both software and hardware. However, the large

1.3. CHALLENGES TOWARD HIGH-DIMENSIONAL COMPUTING 11

�����

����

�������

���	
���
��	�
�����
����������

�������
��������

�����
������

����

��������	
������
�������
��

���������	
���	��
�

��������
�
��
��

�����	�

������	

Figure 1.6: Voltage Scaling Challenges on High-Dimensional Computing.

amount of memory required remains as the bottleneck for its application, which makes
it impractical when used for a portable device or hardware-resource-constrained system.
Also, in many of the popular HDC models [36–42,45], they need to represent the index
and value of the input features via hypervectors, which requires a large size of mem-
ory blocks. Such a process takes huge occupation of the total inference memory cost,
e.g., 96.15% for a letters recognition task. Therefore, the demand of memory efficiency
improvement is crucially rising for the high-dimensional computing paradigms.

1.3.3 Model Robustness in the Low Voltage Operation

The voltage scaling challenges on high-dimensional computing paradigms are dia-
grammed in Fig. 1.6. The aggressively scaled voltage operation poses the further re-
quirement of model robustness. Energy consumption in circuits largely results from the
charging and discharging of internal node capacitances and can be reduced quadratically
by lowering supply voltage (VDD). Ref. [46] achieved 4.7× energy consumption reduc-
tion by scaling down the voltage to the near-threshold voltage region compared with
the nominal voltage operation. The near-threshold voltage region is a voltage region
where the supply voltage is downscaled to near the threshold voltage of the transistor. If
we further downscale the supply voltage, the minimum energy voltage can be found in
the sub-threshold region [47], where the supply voltage is reduced below the threshold
voltage of the transistor [48]. However, low-voltage designs may suffer from functional
failures due to various causes, e.g., soft errors, aging, and processing variation. As a re-
sult, such functional failures might eventually result in the degradation of performance
on edge devices.

A key attribute of high-dimensional computing is its robustness to the imperfections
associated with the computational substrates on which it is implemented. It is therefore
particularly amenable to emerging non-von Neumann approaches such as in-memory
computing, where the physical attributes of nanoscale memristive devices are exploited

12 CHAPTER 1. INTRODUCTION

�����

����

�������

���	
���
��	�
�����
����������

�������
��������

�����
������

����

��������	
������
�������
��

���������	
���	��
�

��������
�
��
��

�����	�

������	

�������������
�������
��

����	�
������ ������

�������

���
����

 ������
�
�
����

���������
�����������
�������
��

���
����

 ���
�
����
��	��	������

����
��������
���
������
���

Figure 1.7: Overview of the Challenges on High-Dimensional Computing.

to perform computation [49]. Many works have indicated and explored the robustness
of HDC learning framework. Ref. [42, 50] proposed a robust HDC that can tolerate ap-
proximately 5×10−7 probability of failure of memory cells while maintaining accuracy.
Compared to the conventional DNNs architecture, the robustness of high-dimensional
computing not only brings the advantage toward the future computing systems in deep
nano-scaled technology which devices will have high noise and variability but also pro-
vides the potential for voltage-scaling on edge devices [51–54]. However, it is still far
away from the prior solution to serious memory failure issues induced by scaling down
the voltage to the sub-threshold region. For example, if the supply voltage of 65nm
SRAM cells are scaled down from normal value (1.2V) to 500mV, the typical failure
probability sharply increases from ∼ 10−7 to 4% due to the process variations [55, 56].
Therefore, a further development of model robustness is necessary for applying aggres-
sive voltage-scaling technique on edge devices.

1.4 Research Goal and Thesis Contribution

1.4.1 Research Target

The goal of this thesis is to improve the energy efficiency for the architectural design of
high-dimensional computing. Although the high-dimensional computing paradigm is a
promising approach for the implementation on edge devices, its application still suffers
from the expensive arithmetic operations, huge memory cost, and insufficient robust-
ness against the aggressive voltage-scaling. The overall challenges on high-dimensional

1.4. RESEARCH GOAL AND THESIS CONTRIBUTION 13

�����

����

�������

���	
���
��	�
�����
����������

�������
��������

�����
������

����

��������	
�����
�

����������	
��
�������

�����������

�����	�

������	

������������������

�����	�
���
	�����������

������	
�����	������
	�����������

	�����������������������

�������
	��������	�����������

�
����	 ��

�
��	�����������

Figure 1.8: Solutions toward the Challenges on High-Dimensional Computing.

computing paradigms are diagrammed in Fig. 1.7. The following requirements should
be met for achieving energy-efficient high-dimensional computing architecture on edge
devices:

1. Capability of hardware-friendly arithmetic operations,
2. Architecture with high memory efficiency, and
3. Model robustness in against to functional failures in voltage over-scaling.

From the circuit designer’s point of view, the first two items are considered as universal
and key indicators. The high-dimensional computing paradigm needs the capability
to choose the appropriate arithmetic operations for different scenarios. Although the
application of voltage-scaling has been widely studied, how to utilize model robustness
to tolerate the functional failures induced by aggressive voltage-scaling is still the open
problem.

1.4.2 Thesis Contribution

To pursue the research target, this thesis presents an RC system with extreme hard-
ware efficiency, an HDC system with competitive accuracy performance and memory
efficiency, as well as the strategies overcoming the functional failures when applying
voltage over-scaling. The solutions toward the challenges on high-dimensional comput-
ing paradigms are diagrammed in Fig. 1.8. The contribution of this thesis is summarized
below.

• EnsembleBloomCA: An RC System for Light-weight Implementation

14 CHAPTER 1. INTRODUCTION

Reservoir computing (RC) is an attractive alternative to machine learning models
owing to its computationally inexpensive training process and simplicity. In this
thesis, we propose EnsembleBloomCA, which utilizes cellular automata (CA) and
an ensemble Bloom filter to organize an RC system. In contrast to most exist-
ing RC systems, EnsembleBloomCA eliminates all floating-point calculation and
integer multiplication. EnsembleBloomCA adopts CA as the reservoir in the RC
system because it can be implemented using only binary operations and is thus
energy efficient. The rich pattern dynamics created by CA can map the original
input into a high-dimensional space and provide more features for the classifier.
Utilizing an ensemble Bloom filter as the classifier, the features provided by the
reservoir can be effectively memorized. Our experiment revealed that applying
the ensemble mechanism to the Bloom filter resulted in a significant reduction in
memory cost during the inference phase. In comparison with Bloom WiSARD,
one of the state-of-the-art reference work, the EnsembleBloomCA model achieves
a 43× reduction in memory cost while maintaining the same accuracy. Our hard-
ware implementation also demonstrated that EnsembleBloomCA achieved over
23× and 8.5× reductions in area and power, respectively.
Such architecture is suitable for scenarios targeting medium-level tasks with ex-
tremely strict resource constraints. Because it can eliminate the costly arithmetic
operations, supporting the hardware-friendly bit-wise operations for extreme en-
ergy efficiency. With around 18 KB memory usage, 91.9% classification accuracy
is achieved for the handwritten number recognition task, which can be considered
as a practical solution for edge devices with extremely limited hardware resources.

• StrideHD: A Memory Efficient HDC System
Hyper-Dimensional (HD) computing is a brain-inspired learning approach for ef-
ficient and fast learning on today’s embedded devices. Although HDC achieved
reasonable performances in several practical tasks, it comes with huge memory
requirements since the data point should be stored in a very long vector having
thousands of bits. To alleviate this problem, we propose a novel HDC architec-
ture, called StrideHD. By utilizing the window striding in image classification,
StrideHD enables HDC system to be trained and tested using binary hypervectors
and achieves high accuracy with fast training speed and significantly low hardware
resources. StrideHD encodes data points to distributed binary hypervectors and
eliminates the expensive Channel item Memory (CiM) and item Memory (iM) in
the encoder, which significantly reduces the required hardware cost for inference.
Our evaluation also shows that compared with two popular HD algorithms, the
single-pass StrideHD model achieves a 27.6× and 8.2× reduction in inference
memory cost without hurting the classification accuracy, while the iterative mode
further provides 8.7×memory efficiency. Under the same inference memory cost,

1.4. RESEARCH GOAL AND THESIS CONTRIBUTION 15

our single-pass mode StrideHD averagely achieves 13.56% accuracy improve-
ment in comparison with the single-pass baseline HD, which is a similar perfor-
mance even in comparison with the costly iterative baseline HD models. As an
extension, the iterative retraining mode of StrideHD averagely provides 11.33%
accuracy improvement to its single-pass mode, which can be accomplished in
fewer iterations in comparison with the baseline HD algorithms. The hardware
implementation also demonstrates that StrideHD achieves over 9.9× and 28.8×
reduction compared with baseline in area and power, respectively.
This architecture is suitable for scenarios with limited resources and facing com-
plex datasets. It supports elements in fp16, int16, and binary format. The wide
range of element precision provides sufficient room for the customers to select
the appropriate strategy. The single pass mode training can achieve acceptable
accuracy performance, while the iterative training mode can further provide 13%
accuracy improvement. Even for the recognition tasks in complicated levels, a
competitive accuracy is achieved while maintaining 8.7× memory efficiency.

• DependableHDv2: A Robust HDC System for Voltage-scaled Circuits
Voltage scaling is one of the most promising approaches for energy efficiency
improvement but also brings challenges to fully guaranteeing stable operation in
modern VLSI.
To tackle such issues, we firstly developed a DependableHD framework, which
aims to improve the robustness of HDC in against to the functional failures in-
duced by voltage-scaling. Targeting the stuck-at errors of SRAM cells in low volt-
age region, we extend the DependableHD to the second version DependableHDv2
for further improvement in HDC robustness. DependableHDv2 introduces the
concept of margin enhancement for model retraining and utilizes noise injection
to improve the robustness, which is capable of application in most state-of-the-art
HDC algorithms. We additionally propose the dimension-swapping technique,
which aims at handling the stuck-at errors induced by aggressive voltage scaling
in the memory cells. Our experiment shows that under 8% memory stuck-at er-
ror, DependableHDv2 exhibits a 2.42% accuracy loss on average, which achieves
a 14.1× robustness improvement compared to the baseline HDC solution. The
hardware evaluation shows that DependableHDv2 supports the systems to reduce
the supply voltage from 430mV to 340mV for both item Memory and Associative
Memory, which provides a 41.8% energy consumption reduction while maintain-
ing competitive accuracy performance.
It is suitable for scenarios with an extremely unreliable and noisy situation. Such
architecture and design strategy can tolerate more than a 10% memory error
for the medium-level task. Exploiting this advantage, aggressive voltage down-
scaling can be applied to the systems. Note that both of margin enhancement and

16 CHAPTER 1. INTRODUCTION

random noise injection techniques in this model focus on the retraining phase,
which means it can be easily applied to other HDC architectures simultaneously
for robustness improvement.

1.5 Thesis Organization
This thesis is organized in the following way. In Chapter 2, we present the literature
survey and preliminaries relating the energy-efficient computing paradigms and the low
power design methodology, i.e., reservoir computing (RC), hyper-dimensional comput-
ing, and voltage-scaling. In Chapter 3, this thesis presents an RC system with extreme
hardware efficiency, which utilize cellular automata and ensemble Bloom Filter. Chap-
ter 4 presents a binary HDC system ttilizing window striding for image classification.
Chapter 5 presents the strategies overcoming the functional failures when applying volt-
age over-scaling in HDC system. Chapter 6 concludes this thesis.

Chapter 2

Literature Review and Preliminaries
on High-Dimensional Computing

This chapter provides the literature review and preliminaries for this dissertation. Sec-
tion 2.1 and 2.2 introduces the reservoir computing (RC) system and hyper-dimensional
computing system, while both of these two computing paradigms aim to map the input
data into high-dimensional space and can be considered as the energy-efficient alterna-
tives. Section 2.3 shows the basic of voltage-scaling, which is a classic and promising
low power design methodology. Finally, a summary of these techniques is presented in
Section 2.4.

2.1 Reservoir Computing

2.1.1 Basics of Reservoir Computing

Reservoir Computing (RC) can be considered as a potential candidate of the energy-
efficient computing paradigms for edge devices. Fig. 2.1 shows a structural comparison
between conventional DNN models and RC systems. The most critical advantage of RC
is that only some of the parameters are trained, while the rest can be fixed. Owing to this
unique feature, RC can be implemented with limited hardware resources, that is, fixed
weights can be realized using hardwired logic. RC circumvents the difficulty of learning
a number of RNN parameters, which has been successfully applied in numerous fields
such as robot control [57] and image/video processing [58]. More recently, echo state
networks [59] and liquid state machines [60] have been proposed for the use in different
research domains. These technologies are collectively referred to as RC because both
have a component called a reservoir [61]. The fixed and nonlinear hidden layers are
generally referred to as the reservoir part, which can map the original input data into
a higher-dimensional feature space. Meanwhile, the output layer is considered as a

18
CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES ON

HIGH-DIMENSIONAL COMPUTING

Input Reservoir Classifier

fixed updated
fixed

Input

updated updated
updated

outputhidden layer

Figure 2.1: Comparison of conventional DNN and Reservoir Computing (RC) system.

classifier.

Compared with conventional neural networks, RC systems use fixed weights in the
input and hidden layers and only modify the weights of the output layer in the training
process [30]. Because most of the weights can be fixed during training and inference,
they can be implemented using hardwired logic and thus do not require memory circuits.
Hence, RC is considered to be a promising alternative to replace DNNs, the model size
of which continues to increase exponentially [31]. The state of each node is updated over
M steps according to a nonlinear mapping F , which aims to map the low-dimensional
input signal into the high-dimensional feature space as follows:

xi(k) = F [x(k−1),u(k−1)]. (2.1)

Here, xi(k) is the state of the i-th node at time step k, where i ∈ {1,2, · · · ,N} and
k ∈ {1,2, · · · ,M}. x(k) = {x1(k),x2(k), · · · ,xN(k)} is the N-dimensional node state
vector. Further, u(k) = {u1(k),u2(k), · · · ,uN(k)} is the N-dimensional input vector,
where ui(k) is the input to the i-th node at step k. As Eq. (2.1) shows, the state of node
xi(k) depends on the previous state xi(k−1) and input ui(k−1).

Note that the weights in the reservoir, which represents the nonlinear mapping, can
be fixed during training and inference. Hence, the reservoir can be implemented using
hardwired logic, which contributes to a reduction in hardware resources. However, the
nonlinear mapping still requires floating-point computations, which may lead to con-
straints when considering the implementation of RC in portable devices. To eliminate
floating-point computations in the reservoir, several studies [34, 35, 62] have proposed
exploiting cellular automata (CA) as an alternative components to traditional reservoirs,
which are summarized in the following Subsection 2.1.2.

2.1. RESERVOIR COMPUTING 19

2.1.2 Suitable Components for Hardware Implementation
The key idea of RC is to may the input to a higher-dimensional space to facilitate the
classification. As the basic components of the RC system, various methods have been
proposed to perform the reservoir and classifier. The following techniques are com-
monly used because they are considered suitable for hardware implementation.

Cellular Automata

To reduce the massive usage of arithmetic units, the use of cellular automata (CA) has
been proposed as a promising alternative to reservoirs [35]. A CA consists of multiple
cells aligned in a one-dimensional array, where each cell takes two possible discrete
states (“1” or “0”) and evolves in discrete time steps. This evolution process is guided
by specific rules and interactions between the nearest neighbors. With rich pattern dy-
namics, which makes CA very well suited to the hardware implementation of reservoir
structures. The CA is a discrete computational model consisting of a regular grid of
cells, each in one of a finite number of states. The state of an individual cell evolves in
time according to a fixed rule, depending on the current state and the states of its neigh-
bors. CA governed by certain rules have been proven to be computationally universal,
that is, capable of simulating a Turing machine [63].

Ref. [34, 62] perform exhaustive studies of the performance of different CA rules
when applied to pattern recognition of time-independent input signals using an RC
scheme. Nichele et al. [62] evaluates the model on a 5-bit task, which is insufficient
for the complicated application field. Moran et al. [34] selects the most accurate CA
rules to represent the reservoir structure, which can easily be reproduced using a set of
XOR gates and shift registers. They achieve a high-performance alternative for RC hard-
ware implementation in terms of circuit area, power, and system accuracy, which can be
considered as a low-cost method to implement fast pattern recognition digital circuits.
However, this model exploits the softmax function as its classifier, which still requires
FP calculations; hence, it is not suitable for implementation on resource-constrained de-
vices. Lopez et al. [35] utilizes a random forest algorithm as the classifier, which avoids
the costly FP calculation during the inference but also brings higher consumption for
the training.

Bloom Filter

Bloom filters (BFs) are probabilistic data structures that represent a set as a small bit ar-
ray allowing the occurrences of false positives, i.e., in a Bloom filter, an element can be
incorrectly classified as a member of a set when it is not. Such memory-oriented classi-
fiers for pattern recognition are typically very simple and can be easily implemented in
hardware and software.

20
CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES ON

HIGH-DIMENSIONAL COMPUTING

In [44], Bloom WiSARD was presented as an optimized framework that utilizes the
BFs in a memory-segment way. Compared with the standard BFs, this model signif-
icantly reduces the memory requirement to some extent at the cost of allowing false
positives and shows practically useful performance in image recognition tasks. The
elimination of FP calculation and fast single-pass training are important advantages of
Bloom WiSARD in terms of hardware efficiency. However, a large amount of memory
required remains a key bottleneck. Take the MNIST classification task [64] as an exam-
ple, when the false positive rate is 10%, the memory requirement is over 800MB for the
inference implementation. It makes the adoption of Bloom WiSARD impractical for use
in portable devices or memory-constrained systems.

2.2 Hyper-Dimensional Computing

2.2.1 Basic of Hyper-Dimensional Computing

HDC is a computing paradigm involving long vectors with dimensionality in the thou-
sands, which are called hypervectors. In high-dimensional space, there are several
nearly orthogonal hypervectors. HDC exploits well-defined vector operations to com-
bine these hypervectors, while also preserving most of the information of the hyper-
vectors [65]. Hypervectors are holographic and (pseudo) random with independent and
identically distributed components as well as full holistic representation, thus no com-
ponent has more responsibility to store any piece of information than any other hyper-
vector.

Fig. 2.2 shows the overview of the classification in high dimensional space. HDC
system generally consists of an encoder and an Associative Memory (AM). For all sam-
ple data within a class, HDC maps data to high dimensional vectors, called hypervectors,
then combines them together to create a single hypervector modeling each class. There-
after, the encoded hypervectors belonging to the same prediction class (label) are accu-
mulated to build up the class’s hypervector. All trained class hypervectors are stored in
the AM. During the inference process, the same encoding scheme maps test input data
to high dimensional space. AM looks at the similarity of the generated query hypervec-
tor against all stored class hypervectors. The input then gets the label of that class with
which it has the highest similarity.

General Encoding Approach

The goal of HDC is to represent the input data in high-dimensional space. In the
current HDC algorithms, models need to encode the input data to a single hypervec-
tor

⇀

H = ⟨h1, ...,hD⟩ with D dimensions as well as the corresponding precision. Here

2.2. HYPER-DIMENSIONAL COMPUTING 21

Si
m

ila
rit

y

QueryTesting
Data

En
co

di
ng

Training
Data

Class 1

Class 2

Class k

In
iti

al
 T

ra
in

in
g

A
rg

so
rt

Retraining

Counter Quantized Model

3
4

5
6

1 Traditional HDC Learning Framework

2 Associative Memory
Label

A
rg

so
rt

Correct

Incorrect R
et

ra
in

in
g

if

6 HDC Retraining

Figure 2.2: (a) Overview of General HDC. (b) Retraining Process.

the elements of hypervector
⇀

H are m-bits length, while the values of hi are in the
range of (−2m−1,2m−1). Consider an input data represented by the feature vector
⇀

F = ⟨ f1, f2, ..., fn⟩, where n ≪ D is the number of features for each input data. In
Ref. [66], Aygun et al. summarized many encoding styles for the prior HDC. The
difference of encoders epitomizes from two perspectives: (i) The operation in the high-
dimensional space. E.g., the binding in Record-based encoder, the bundling in Random-
projection encoder, and the permutation in N-gram based encoder [42]. (ii) The way to
consider the impact of each feature value on the final hypervector. For the reference, we
explain the functionality of three popular encoders in detail:
Encoder I: Record-based encoder
Fig. 2.3 (a) shows the functionality of this encoding scheme, which was proposed and
utilized in [24, 67]. Assume the original data point has n features { f1, ..., fn}. The first
step is to quantize the range of pixel values into m levels. Then it assigns a random bi-
nary hypervector with D dimensions to each quantized level {

⇀

L1, ...,
⇀

Lm}, where Li is the
ith feature values level. The number of dimensions D in the hypervector is large enough
compared to the number of features (D>>n) in the original data. The level hypervec-
tors are generated such that the neighbor levels have higher similarity, as their absolute
values have closer distance. To take the impact of each feature position under considera-
tion, the encoding module assigns a random binary hypervector to each existing feature
index {

⇀

ID1, ...,
⇀

IDn}, where
⇀

ID ∈ {0,1}D. These
⇀

IDs are randomly generated such that
all features will have orthogonal

⇀

IDs. The encoding can happen by linearly combining
the feature values over different indices, where a hypervector corresponding to a feature
index preserves the position of each feature value in a combined set:

⇀

H =
⇀

ID1⊕
⇀

L1 +
⇀

ID2⊕
⇀

L2 + ...+
⇀

IDn⊕
⇀

Ln. (2.2)

Here the
⇀

H is the non-binary encoded hypervector,⊕ denotes the XOR operation, and
⇀

Li
is the binary hypervector corresponding to the i-th feature of vector

⇀

F . The binarization

22
CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES ON

HIGH-DIMENSIONAL COMPUTING

base vector

+

2 (a) Encoder I

+

+

Distribution

(b) Encoder II

binary : sign()
int16 : int()
fp16 : cos()

index vector
x

iM
read read

CiM

base vector

index vector
x

base vector

index vector
x +

Query

Compare

Query

Non-binary

Binary

n/2

+

+

(c) Encoder III

cos()
sign()

Non-binary

Binary

Figure 2.3: Functionality of three popular encoders.

of the encoded hypervector can happen by comparing each dimension of
⇀

H with n/2
value. All dimensions with a smaller value than n/2 are assigned to 0, while other
elements are assigned to 1.
Encoder II: Random-projection encoder
Unlike Encoder I, the second encoder differentiates feature positions by multiplying
feature values with the corresponding index hypervector,

⇀

ID ∈ {−1,1}D and adding
them for all the features. Fig. 2.3 (b) shows the functionality of the second encoding
scheme when generating binary hypervectors, which is proposed in [37]. For example,
where fi is a feature value, the following equation represents the generation of encoded
hypervector

⇀

H:
⇀

H = sign(f1 ∗
⇀

ID1 + f2 ∗
⇀

ID2 + ...+ fn ∗
⇀

IDn) (2.3)

Here the
⇀

H is the binary encoded hypervector, the ∗ denotes the element-wise multipli-
cation, and sign is a sign function that maps the elements of results to ‘+1’ or ‘0’.

Since the element in
⇀

IDs is ‘-1’ or ‘+1’, which simplified the element-wise multipli-
cation of fi ∗

⇀

IDi to the wire connection in hardware, i.e., using the readout data from
the index hypervectors

⇀

IDs as the sign bit of input features fi. This encoder also assigns
a unique index hypervector

⇀

ID to each feature position and is stored in the Channel item
Memory (CiM). But on the other hand, the item Memory (iM) is eliminated at the cost
of broadening the range of summarizing results ∑

n
i=1 fi ∗

⇀

IDi.
Note that such encoding scheme also capable of generating hypervectors with

integer/floating-point elements. Similarly, for the generation of hypervectors with m-
bits integral elements, the first step is to assign a random hypervector with D dimensions
for each feature value, i.e., {

⇀

B1,
⇀

B2, ...,
⇀

Bn}, called base hypervector
⇀

Bi. For the HDC
model with 16-bits integral or floating-point elements, we are randomly generating the
base hypervectors

⇀

Bi from a Gaussian distribution (mean equals to 0 and standard devia-

2.2. HYPER-DIMENSIONAL COMPUTING 23

tion equals to 1) with the dimensionality of D. Since the base hypervectors are generated
from the random bit streams, the similarity of different base hypervectors is nearly or-
thogonal. For each dimension, different features are combined by multiplying feature
values with the corresponding base hypervector and addition.

⇀

H = f1 ∗
⇀

B1 + f2 ∗
⇀

B2 + ...+ fn ∗
⇀

Bn (2.4)

where ∗ represents the scalar multiplication and can make a hypervector that has inte-
gral elements. Similarly, for hypervectors with floating-point (FP) elements, different
features are combined by multiplying feature values with the corresponding base hyper-
vector, addition, and Cosine arithmetic.

⇀

H = cos(∑
n
i fi ∗

⇀

Bi) (2.5)

In this way, each input data can be mapped/encoded to the high dimensional space and
represented by a single hypervector with D dimensions as well as the corresponding
precision (fp16, int16, and binary). Note that this encoder is sensitive to data pre-
processing. Normalizing or standardizing the features of input data before encoding
can benefit the performance of the HDC model.
Encoder III: Non-linear encoder
Fig. 2.3 (c) shows the functionality of the third encoding scheme, which is proposed
in [68]. This method explicitly considers non-linear interactions between input features.
Though the data is not linearly separable in original dimensions, it might be linearly
separable in higher dimensions. To generate a binary hypervector

⇀

H = {h1,h2, ...,hD}
with D dimensions from an input feature vector

⇀

F = { f1, f2, ..., fn}, the first step is
to calculate a dot product of the feature vector with a randomly generated vector as
hi = cos(

⇀

IDi ·
⇀

F). Here the
⇀

IDi represents the index hypervector, which is a randomly
generated vector from a Gaussian distribution (mean λ=0 and standard deviation σ=1)
with the same dimension as the feature vector. After this, the final encoded hypervector
can be obtained by binarization with a sign function.

Note that to ensure the index hypervectors
⇀

ID follow the Gaussian distribution and
keep the summaries results in a suitable range before applying cosine function, the
elements in

⇀

ID need to be floating-point data, which seriously increases the memory
requirement in the CiM. Meanwhile, in comparison with Encoder II, it requires the more
expensive floating-point arithmetic, which limits the computation efficiency during the
encoding procedure.

Table 2.1 shows the comparison between these three popular encoders. The values
of level hypervectors

⇀

L and index hypervectors
⇀

ID are stored in the item Memory(iM)
and the Channel item Memory (CiM) respectively. Take the Encoder I utilized in [24]
as an example, for different classification tasks, the occupations of memory cost during

24
CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES ON

HIGH-DIMENSIONAL COMPUTING

Table 2.1: Arithmetic Comparison of HDC Encoders in the Previous Works.

Encoder I Encoder II Encoder III
CiM ✓ ✓ ✓
iM ✓ — —

Arithmetic
XOR — FP Mul

int Add int Add FP Add
sign sign sign & cos

Table 2.2: Inference Memory Occupations in popular HDC model BinHD.

MNIST [64] ISOLET [69] UCIHAR [70] FACE [71]
CiM 94.92% 91.41% 92.73% 94.70%
iM 3.87% 4.74% 5.29% 4.98%
AM 1.21% 3.85% 1.98% 0.31%

the inference are shown in Table 2.2. We observed that the CiM and iM averagely take
more than 93.4% and 4.7% of the inference memory cost, respectively. Meanwhile,
the arithmetic difference is seriously affecting the hardware resource requirement, e.g.,
the FP calculations in Encoder III increase the computational complexity and memory
requirement under the same number of dimensions.

Initial Training

The simplicity of HDC training makes it distinguished from conventional learning al-
gorithms. HDC training simply adds all hypervectors of the same class to generate the
final model hypervector [39], which represents initial training Fig.2.2(❸). For example,
after generating all encoded integer hypervector

⇀

H l of inputs belonging to the class l,
the class hypervector Cl can be obtained by adding all

⇀

H l with the counter. Assuming
there are J inputs having label l: Cl = ∑

J

j

⇀

H l
j

Similarity Measurement

The first step of inference is to get the class hypervectors Q j with corresponding preci-
sion from counter class hypervectors C j as:

Q j = {Q j
1, ...,Q

j
D}= Quant(C j) (2.6)

where Quant() is a quantization function that maps the elements of results to elements
with m-bits precision. Such a quantization process Fig.2.2(❹) can effectively reduce
the hardware cost for inference implementation. Then we create the encoded query hy-

2.2. HYPER-DIMENSIONAL COMPUTING 25

0 0 0 0

0 0 0 0

Dimension () Dimension ()

Figure 2.4: Dimension-wise Model Sparsification in HDC System.

pervectors
⇀

H = ⟨h1, ...,hD⟩ from the input using the encoding module described above.
In this way, the HDC system with FP/integral elements can compute the Cosine simi-
larity Fig.2.2(❺) of each encoded testing data with all the quantized class hypervectors
Q j. For the HDC system with binary elements, we can simplify this process and utilize
Hamming matrix for similarity measurement. In this way, the HDC system can com-
pute the similarity Fig.2.2(❺) of each encoded testing data with all the quantized class
hypervectors Q j. The class with the highest similarity is considered as the predicted
label.

Model Sparsification

The goal of HDC at inference is to find a class hypervector with the highest similarity
to the query hypervector, which is relative to the class hypervectors. However, not all
dimensions of the class hypervectors have useful information that can distinguish one
class from others. In some of the dimensions, all class hypervectors store common in-
formation shared among all classes, which add relatively similar weight to all classes in
calculating the Cosine distance or Hamming distance. Ref. [40] proposed a framework
to explore the sparsity of hypervectors on the class-wise and dimension-wise, which
enables discarding the elements with minimal impact on the results and discarding the
inconsequential (non-informative) dimensions shared across all learned hypervectors.
The number of dimensions in hypervectors can be equally reduced and the classifica-
tion accuracy can be improved with the same inference memory cost.

For the dimension-wise sparsity in HDC, the changes in the class elements in each
dimension should be measured. After obtaining the variation of dimensions, the di-
mensions with the lowest change are selected to be dropped from the HDC model as
they have the least impact on differentiating the classes. Fig. 2.4 shows the overview of
sparsification on dimension-wise.

However, the redundancy of dimensions in hypervectors is not the only limitation.

26
CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES ON

HIGH-DIMENSIONAL COMPUTING

The difference of contributions from each feature should be taken under consideration,
especially in the image classification tasks. In most of the current HDC algorithms, all
the pixels of images play an equal role in the generation of the non-binary hypervectors.
Then it applies the majority voting to get the binary hypervectors as the representation
of the input image. In this encoding mechanism, the crucial information from the key
patterns could be minified by the noise from the other less important pixels, which may
limit the application of HDC in image processing tasks. Hence, we proposed a novel
sparsification mechanism to match our StrideHD model, which can be applied on the
dimension-wise and feature-wise. The details will be described in Chapter 4.

Retraining

For the conventional retraining in Fig.2.2(❻), the encoded hypervector of each training
sample is created as

⇀

H, and then the similarity with the j-th class hypervector δ j =

δ (
⇀

H,Q j) is checked. Hence, δl represents the similarity for target label l. Taking δr as
the highest similarity within all incorrect classes:

δr = Max(δincorrect). (2.7)

When δl − δr < 0, the target label l is not considered as output, which means the pre-
diction is mismatch to incorrect label r. In such case, the counter class hypervector C
are updated as follows: {

Cl = Cl +η(1−δl)
⇀

H

Cr = Cr +η(δr−1)
⇀

H
(2.8)

where η is a learning rate. In such iterative retraining, each encoded data is added
to class hypervectors depending on how much new information the pattern adds to class
hypervectors [39]. The retraining continues for multiple iterations until the validation
accuracy has small changes and gets convergence during the last few iterations. Here
the conventional model retraining only refers to the iterative learning for the mispredic-
tion samples, while we proposed a margin enhancement technique during the retraining
phase. The details are shown in Chapter 5.

2.2.2 Related Works
Hyperdimensional Computing (HDC) leads to fast learning ability, high energy effi-
ciency and acceptable accuracy in learning and classification tasks [72]. Besides, many
researchers have been exploring the application of the high-dimensional computing
paradigms on different datasets, which are shown in Table 2.3. For the further im-
provement of memory efficiency, classification accuracy, and robustness, many works
have been proposed.

2.2. HYPER-DIMENSIONAL COMPUTING 27

Table 2.3: Information about datasets covered by high-dimensional computing
paradigms.

Dataset Feature Classes Train Size Test Size Description
MNIST 784 10 60,000 10,000 Number Recognition

K-MNIST 784 10 60,000 10,000 Kuzushiji Recognition
F-MNIST 784 10 60,000 10,000 Fashion Recognition

ISOLET 617 26 6,238 1,550 Voice Recognition
UCIHAR 561 12 6,213 1,554 Activity Recognition (Mobile)

FACE 608 2 522,441 2,494 Face Recognition

PECAN 3112 3 22,290 5,574 Urban Electricity Prediction
PAMAP2 75 5 611,142 101,582 Activity Recognition (IMU)

APRI 36 2 67,017 1,241 Performance Identification
PDP 60 2 17,385 7,334 Power Demand Prediction

Accuracy & Memory Efficiency

The first general idea is to utilize hypervector with high-precision elements. In Ref. [36–
41], authors need to encode data points to hypervectors with non-binary elements, i.e.,
storing integer or FP value for each element. This leads to the high memory requirement
and expensive computational cost. To reduce the inference cost, Rahimi et al. [42] and
Imani et al. [24] propose binarizing the elements of class hypervectors after the training.
Although these approaches can simplify the inference similarity matrix to Hamming
distance and lead to a faster computation speed, it comes with the cost of significantly
degraded HD classification accuracy on practical image recognition applications. For
instance, Imani et al. [40] proposed a HDC model for face image classification task. If
the model is binarized, the accuracy performance sharply decreases to 38.9%, which is
far lower than the non-binarized mode.

To recover the model performance degraded through the quantization step, iterative
training algorithms have been proposed [36–41,45]. After encoding all the training data
point into high-dimensional binary vectors, these hypervectors are stored in the Asso-
ciative Memory (AM). Utilizing the labeled training data, the similarity between the en-
coded hypervectors and stored hypervectors of each class can be measured. According
to the correctness of prediction, the HD models are adjusted and optimized iteratively.
By employing such gradient descent, the error rate of the HD model can be significantly
reduced. However, this strategy requires tens of iterations to adjust the model, which
leads to a long training time in comparison with the single-pass training.

Since the number of dimensions in the HDC model is strictly related to the perfor-
mance of classification accuracy, Imani et al. [40] proposed a framework to sparse the

28
CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES ON

HIGH-DIMENSIONAL COMPUTING

HDC model. They explore the prospect of sparsity in hypervectors to improve HDC
efficiency without serious loss to accuracy. The research mainly focused on the sparsity
of hypervectors class-wise and dimension-wise. Such strategy enables discarding the
elements with minimal impact on the results and discarding the inconsequential (non-
informative) dimensions shared across all learned hypervectors, which means the num-
ber of dimensions in hypervectors can be equally reduced. In this way, the classification
accuracy can be improved with the same memory cost.

However, the redundancy of dimensions in hypervectors is not the only limitation.
The difference of contributions from each feature should be taken under consideration,
especially in the image classification tasks. Most of the current HDC algorithms use a
simple encoder, in which all the pixels of images play an equal role in the generation
of the non-binary hypervectors. Then it applies the majority voting to get the binary
hypervectors as the representation of the input image. In this encoding mechanism, the
crucial information from the key patterns could be minified by the noise from the other
less important pixels, which may limit the application of HDC in image processing
tasks.

Model Robustness

Regarding to the robustness of HDC system, Ref. [42,50] propose a robust HDC that can
tolerate approximately 5×10−7 probability of failure of memory cells while maintain-
ing accuracy. However, it is still far away from the solution to serious memory failure
issues induced by scaling down the voltage to the sub-threshold region.

Poduval et al. [73] develops a learning system to include the traditional feature ex-
tractor into HD space. By operating accurate and robust learning over raw generated
data, this work enables an entire learning application, including feature extractor algo-
rithms like Convolution and Fast Fourier Transform, to process using HDC data repre-
sentation. This model provides competitive robustness to the possible noise compared
with the traditional HDC with feature extractors in the original space. They indicate
that for the binary data representation in HD space, an error that only flips a reference
dimension results in minor changes in the entire hypervector pattern. In contrast, an
error for the feature extractor in the original space can happen in the most significant
bits, which significantly affects the absolute value and robustness. However, this model
mainly focuses on reducing the impact of hardware failure during the extra feature ex-
traction phase.

Poduval et al. [74] proposes a data recovery mechanism as a runtime framework that
adaptively identifies and regenerates the faulty dimensions unsupervised. This mecha-
nism mainly focuses on handling the bit flip attack and random bit flip introduced by
the temporary noise. By detecting the position of memory failures, it writes the correct
values back to the memory cells statistically. However, this strategy only targets the

2.2. HYPER-DIMENSIONAL COMPUTING 29

temporary bit-flip attacks instead of the permanent stuck-at errors. It assumes that the
correct model and data can be written back to the attacked memory cells. When it comes
to voltage-scaled circuits, permanent bit-stuck errors constitute a significant proportion
of functional failures. Hence, an energy-efficient and robust HDC learning framework
against both temporary and permanent memory errors is required.

Zhang et al. [75] explores two low-cost error masking techniques (word-level and
bit-level) that can detect and mask errors. Utilizing a simple Razor circuit based on
double sampling, this method can detect the existence and location of memory errors.
Upon the detection of a bit flip, their scheme can mask the error by setting the faulty
words or bits to logic 0s. After setting the corresponding words or most significant bits
to 0s, the data bias induced by fault bits is limited, which reduces the impact of memory
errors and improves the error resilience of the HDC models. Note that there is room for
the native round-to-zero mechanism to be further improved. Also, such detection and
masking process is executed during the inference, which results in the area and power
overhead.

Alejandro et al. [39] proposes an HDC model with significant improvement in terms
of robustness. The authors revealed the explanation of robustness in HDC systems. The
logical value stored at each bit in the hypervectors has the same impact on the inference
results. Therefore, even in a part of bits can not represent correct values, HDC sys-
tems have the potential to guarantee stable operation, which makes a hypervector robust
against errors in its components as compared with the conventional data representation.
This work indicated that using the precision of elements in hypervector has an impact
on the dimensionality and robustness of the HDC model. On one hand, the HDC model
utilizing binary elements in Ref. [24,39] can obtain better robustness. On the other hand,
the HDC model with more precise elements, e.g., 16-bit integer, can provide acceptable
accuracy with fewer dimensions and reduce over 70% Energy-Delay Product (EDP) on
CPU platform [39].

The emerging memory devices have various reliability issues such as endurance,
durability, and variability. This, coupled with the high computational complexity of
learning algorithms, results in many writes to memory resulting in endurance issues
in the accelerators. Embedded devices are resource constrained. Instead of accelerat-
ing the existing algorithms on the embedded devices, we need to think how to design
algorithms that mimic the efficiency and robustness of the human brain. To achieve
real-time performance with high energy efficiency, we need to rethink not only how we
accelerate machine learning algorithms in hardware, but also we need to redesign the
algorithms themselves using strategies that more closely model the ultimate efficient
learning machine: the human brain.

Hyperdimensional computing (HDC) is a strategy developed by computational neu-
roscientists as a model the human short-term memory. HDC is motivated by the under-

30
CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES ON

HIGH-DIMENSIONAL COMPUTING

standing that the human brain operates on high dimensional representations of data orig-
inated from the large size of brain circuits. It models the human memory using points
of a high-dimensional space, called hypervectors. The hyperspace typically refers to
tens of thousand dimensions. These points can be manipulated with a formal algebra
operations to represent semantic relationships between objects. HDC mimics several
desirable properties of the human brain, including: robustness to noise and hardware
failure and single-pass learning where training happens in one-shot without storing the
training data points or using complex gradient-based algorithms.

Hyperdimensional (HD) computing is well suited to address learning tasks for IoT
systems as: (i) HD models are computationally efficient (highly parallel at heart) to
train and amenable to hardware level optimization, (ii) HD models offer an intuitive and
human-interpretable model, (iii) it offers a complete computational paradigm that can
be applied to cognitive as well as learning problems, (iv) it provides strong robustness
to noise, which is a key strength for IoT systems, (v) HD can naturally enable secure
and lightweight learning. These features make HD computing a promising solution for
today’s embedded devices with limited storage, battery, and resources, as well as future
computing systems in deep nano-scaled technology which devices will have high noise
and variability.

2.3 Voltage Scaling for Low Power Design

Energy consumption in circuits largely results from the charging and discharging of
internal node capacitances and can be reduced quadratically by lowering supply voltage
(VDD) [76]. In [46], compared with the nominal voltage operation, they achieved 4.7×
energy consumption reduction by scaling down the voltage to the near-threshold voltage
region. For the application of voltage-scaled circuits, the portable medical devices (e.g.,
blood pressure monitors, glucose monitoring systems, automated insulin pumps, ECG
monitors) can be the suitable scenarios. Such portable devices are expected to run in
a long time, which requires extremely high energy efficiency. The patient information
also needs to be protected due to the privacy concerns. Meanwhile, some the monitors
needs to receive the bio-information under the unreliable and noisy situation. If we
further downscale the supply voltage, the minimum energy voltage can be found in the
sub-threshold region [47]. However, low-voltage designs may suffer from functional
failures due to various causes, e.g., soft errors, aging, and processing variation.

Static Random Access Memories (SRAMs) are one of the most vulnerable circuits
to such variations. For example, if we consider process variation in SRAMs, some bit
cells can not be accessed correctly. For 65nm SRAM cells at the nominal voltage which
has a typical failure probability of ∼ 10−7 increases to approximately 4% at the voltage
of 500mV due to process variations [55, 56]. If we target to further downscale the Vdd

2.4. SUMMARY 31

in advanced process technologies such as [77], the failure probability sharply increases.
Ref. [78] shows the Monte Carlo simulation results of 6T SRAM bit cells with a 65-nm
process technology in a low voltage region. If we consider the FS corner case, the read-
out failure probability sharply increases in the low-voltage region. The results indicate
that the readout failure probability reaches more than 10% with a 500 mV supply volt-
age, which becomes the fundamental drawback of the application in the sub-threshold
voltage region. One possible solution is to design memory blocks that are robust to such
variation at the cost of increasing the hardware resource of VLSI circuits [46], which is
not desirable for resource-constrained edge-oriented devices.

Several recent works studied the solution to circuit failure or bit-flip attacks in mem-
ory, mainly targeting machine learning applications. When it comes to the DNN models,
which usually have high sensitivity to noise and often require floating-point precision
for calculation, this magnitude of circuit failure probability induced by voltage scaling is
unbearable. Though [79] proposes a novel reconfigurable SRAM architecture for under-
mining the impact of memory failure in higher-order bits, changing the well-optimized
memory block could be significantly costly and less desirable for the industry. Under
a 10% memory failure rate, approximately 68%, 36%, 19%, and 3.1% accuracy loss
are suffered for DNN, support vector machines (SVM) [80], AdaBoost [81], and the
state-of-the-art HDC model, respectively [39, 73, 74]. Hence in comparison with the
traditional DNN models, the HDC models show great potential and the advantage of
robustness in the application of edge-oriented voltage-scaled circuits.

2.4 Summary
Section 2.1 and Section 2.2 introduces the reservoir computing (RC) system and hyper-
dimensional computing system, while both of these two computing paradigms aim to
map the input data into high-dimensional space and can be considered as the energy-
efficient alternatives. Section 2.3 shows the basics of voltage scaling, which is a classic
and promising low-power design methodology. Finally, a summary of these techniques
is presented in Section 2.4.

32
CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES ON

HIGH-DIMENSIONAL COMPUTING

Chapter 3

RC System using CA and Ensemble BF

3.1 Introduction

With the increasing scale of deep neural networks (DNNs), most portable and wearable
devices are becoming unable to handle the large memory consumption and computing
demand in both the training and inference phases. For example, AlexNet [5] requires
249MB of inference memory and performs 1.5 billion high precision operations to clas-
sify one image. Even applying the hardware-friendly implementation techniques to get
the Binarized Neural Networks (BNNs) [7] or XNOR-Networks [8], still require ex-
pensive computation costs due to the floating-point calculation and backpropagation
algorithm during the training. Most of the small edge devices do not have sufficient
computing power to accomplish such sophisticated algorithms. Hence, it is crucial to
meet the rising demand for more computationally efficient models.

Reservoir computing (RC) is a promising alternative for drastically reducing the
computational burden of machine learning methods. The most critical advantage of RC
is that only some of the parameters are trained, while the rest can be fixed. Owing to
this unique feature, RC can be implemented with limited hardware resources, that is,
fixed weights can be realized using hardwired logic. The standard RC architecture gen-
erally consists of a reservoir and classifier. All the input signals are given to a reservoir,
which is often constructed by a recurrent neural network (RNN) whose synaptic weights
are randomly initialized [30]. After being fed into the fixed and nonlinear pattern dy-
namic reservoir, these input signals are mapped into a higher-dimensional feature space.
Finally, the output of RC is obtained using the trainable linear layer.

In comparison with the conventional CNNs with hardware implementation tech-
niques e.g., BNNs and XOR Net, the design strategy of RC systems effectively avoid
the use of complex training method in the reservoir part, and thus the learning process is
simplified to a classical regression problem. Because of its simplicity and low compu-
tational cost in both the training and inference phases, RC systems have been success-

34 CHAPTER 3. RC SYSTEM USING CA AND ENSEMBLE BF

fully applied in many different fields, such as image recognition and robot control [31].
However, the frequent use of floating-point (FP) arithmetic found in most existing RNN
models makes the implementation of RC systems on hardware challenging.

To reduce the massive usage of arithmetic units, the use of cellular automata (CA)
has been proposed as a promising alternative to reservoirs [35]. A CA consists of multi-
ple cells aligned in a one-dimensional array, where each cell takes two possible discrete
states (“1” or “0”) and evolves in discrete time steps. This evolution process is guided
by specific rules and interactions between the nearest neighbors. With rich pattern dy-
namics, CA is very well suited to the hardware implementation of reservoir structures.

The Bloom filter (BF) is a space-efficient probabilistic data structure aimed at ap-
proximate member queries, that is, testing whether an element belongs to a given
set [82]. This filter can be treated as a special case application of HD computing models.
By adopting the BF, a weightless neural network has been proposed for image classi-
fication tasks, successfully eliminating costly FP calculations while maintaining fast
single-pass training and yielding satisfactory accuracy performance [43,44]. In contrast
to conventional neural networks, the BF-based model is characterized by its simple im-
plementation in both software and hardware. However, the large amount of memory
required remains as the bottleneck for the application of BF, which makes it impractical
when used for a portable device or hardware-resource-constrained system.

To further reduce the memory footprint, we propose a novel RC model: Ensemble-
BloomCA. Similar to the ReCA proposed in [34], EnsembleBloomCA adopts CA as the
reservoir. The uniqueness of EnsembleBloomCA lies in the utilization of the ensemble
Bloom filter as a classifier, which can alleviate the pollution of Bloom filters, even when
memory capacity is limited, and thus contribute to the significant reduction of memory
cost. The main contributions of our model are the following:

• Eliminating all floating-point calculation and integer multiplication, which makes
EnsembleBloomCA suitable for hardware implementation.

• Achieving 43×memory reduction during inference in comparison with [43] with-
out hurting the accuracy.

• Achieving reductions of over 23× and 8.5× in area and power consumption, re-
spectively.

3.2 Preliminary

3.2.1 Cellular Automata (CA)

Because CA provides a simple method to map the input into a high-dimensional space, it
is useful as a hardware reservoir. Therefore, we adopt CA as a reservoir in the proposed
method, similar to the existing methods [34]. Elementary cellular automata (ECA) is

3.2. PRELIMINARY 35

Iteration
0 1 2 3 4 5 6 7

input
output

input output

90 'd = 01011010 'b

0 1 0 1 1 0 1 0

Figure 3.1: Example of cellular automata evolution in Rule 90.

the simplest class of 1-dimensional CA [83], where each cell takes binary states, i.e.,
either “1” or “0.” The updated state of a cell is determined by three cells, i.e., the cell
and two neighboring cells, and hence, the time evolution of cell states can be written as

xi(k) = F [xi−1(k−1),xi(k−1),xi+1(k−1)]. (3.1)

There are 223
= 256 possible evolution rules in total which can be labeled from Rule 0

to Rule 255. Fig. 3.1 is an example of ECA Rule 90.

3.2.2 Cellular Automata Applied to Reservoir Computing

For the image classification tasks, assume the image u as the input data of the RC sys-
tem. To apply CA to RC, the internal nodes and inputs should be converted into a
binary format. Ref. [34] proposed the use of thermometer encoding, where an n-bit
integer value is converted into a 2n-bit binary string as follows:

u(l) =

{
1, R·l

d < u,

0, R·l
d ≥ u,

(3.2)

36 CHAPTER 3. RC SYSTEM USING CA AND ENSEMBLE BF

where d is the length of the binary data, R is the range of intensity for each pixel, u is
the original input image with decimal data, and u(l) represents the l-th channel of the
binary input data. For each pixel, the vector is initialized with d bits of 0s. The bits
ranging from the most significant bit (MSB) to the first bit with a threshold higher than
the pixel value are changed to 1. All the integer values u ∈ [0,R]. Thus, the thresholds
of thermometer encoding can be obtained by dividing the pixel space R into d parts.

This encoding mechanism has been proven to significantly increase the error toler-
ance of neural networks, especially in terms of constructing adversarial samples [84].
Meanwhile, we note that there is another advantage of our model for hardware im-
plementation, which benefits from thermometer encoding and is rarely noticed. This
binary encoding mechanism can implement the max-pooling function utilizing only bit-
wise OR gates. This hardware friendliness decreases the energy consumption for both
the training and inference phases.

After obtaining the binarized input signal, the ECA rule is applied to rows and
columns independently with a fixed boundary condition. These two image results are
combined with a bitwise XOR operation. This process is repeated for M iterations; for
all images, rows and columns are independently iterated over with the same ECA rule,
and the resulting vectors are combined with a bitwise XOR operation.

After decomposing the original images into d binary channels, we obtain the l-th
channel of the input signal u(l), where l ∈ [1,d]. There is no communication between
binary channels. The same ECA rule is repeated M times in total.

Let gk be the function g applied k times, and let x(l)(k) be a Boolean time-dependent
image, which can be expressed as

x(l)(k) = gk(u(l)) =

{
u(l), k = 0,

g1(x(l)(k−1)), k > 0.
(3.3)

We can obtain the state of the reservoir in the i-th position, k-th iteration, and l-th
binary channel as x(l)i (k), where i ∈ {1,2, ...,N}, k ∈ {1,2, ...,M} and l ∈ {1,2, ...,d}.
Thus,

x(l)(k) = [x(l)1 (k),x(l)2 (k), ...,x(l)N (k)]. (3.4)

The images are iterated over independently by rows and columns. We define x(l)row(k)
as the result of iterating images by rows, that is, the state of each updated cell is de-
termined by two horizontal neighboring cells and the cell itself. Similarly, x(l)col(k) rep-

resents the results of iterating over images by columns. The vectors x(l)f eature(k) are

obtained by combining x(l)row(k) and x(l)col(k) with an XOR operation:

x(l)f eature(k) = x(l)row(k)⊕ x(l)col(k). (3.5)

3.2. PRELIMINARY 37

The x f eature(k) is defined as

x f eature(k) =
d−1

∑
l=0

x(l)f eature(k), (3.6)

where k ∈ [0,M]. Subsequently, we apply a max-pooling layer to improve the gener-
alization of the network and reduce the weights in the classifier. Because the internal
states are binarized, the CA is suitable for digital hardware implementation. However,
the classifier still requires a softmax operation in [34], which should be eliminated for
ease of implementation on resource-constrained devices.

3.2.3 Application of Bloom Filter

To completely eliminate the FP calculations, we propose the exploitation of the Bloom
filter (BF) to construct the classifier in the RC system. The Bloom filter is considered
as a space-efficient probabilistic data structure, which aims to test whether an unknown
item is a member of the given set [82]. As the term “probabilistic” suggests, the query
result may contain errors, i.e., the Bloom filter returns either “possibly in the set” or
“definitely not in the set.” From a neural processing point of view, BFs are a special case
of an artificial neural network with two layers (input and output), where each position
in a filter is implemented as a binary neuron. Such a network does not have interneu-
ronal connections; that is, output neurons (positions of the filter) have only individual
connections with themselves and the corresponding input neurons. The most significant
advantage of the Bloom filter is its memory space efficiency over other data structures,
which is suitable for error-resilient applications such as machine learning [85].

The standard BF allows the addition of new elements to the filter and is characterized
by a perfect true positive rate (i.e., 1), but a nonzero false positive rate. The false positive
rate depends on the number of elements to be stored in the filter, as well as the filter
parameters, including the number of hash functions and the size of the filter. In the
BF model, the element is considered as an L-bit binarized vector, which represents the
position within the Bloom filter. Thus, each Bloom filter contains 2L bits. We define
B(index) as the index-th bit in the Bloom filter, where index ∈ [0,2L−1].

In the insertion phase, all the values in the Bloom filters are initially set to zero. Each
training sample is inserted into the corresponding Bloom filter based on their labels. The
value of the accessed bit B(index) is set to one. In the query phase, the testing sample is
sent to all the Bloom filters and returns the value of the accessed bit B(index) in every
Bloom filter. When it returns positive (logic “1”), the testing sample is considered as
“possibly in this category.” When it returns negative (logic “0”), the sample is judged
as “definitely not in this category.”

Fig. 3.2 shows an example of Bloom filter operations with a 16-bit array and three

38 CHAPTER 3. RC SYSTEM USING CA AND ENSEMBLE BF

0

a

1

1

0

0 1
False

Positive

True

Negitive

True

Positive

Insertion

Query

b

cd e

c

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1

1
1

1 1 1 1 1

Hash 1

Hash 2

Hash 3

Figure 3.2: Example of Bloom filter operations with a 16-bit array and three hash func-
tions.

hash functions. In the insertion operation, each element is mapped into three positions
according to the three different hash functions (e.g., MurmurHash [86]). Then these
corresponding hashed bits are set to 1. The query operation looks up the positions
mapped from the input element, indicating whether it is a member of the set. As Fig. 3.2
shows, d is a false positive, as it was returned as a member of the set (only a,b and c
were inserted).

3.3 Proposed Method

3.3.1 EnsembleBloomCA

EnsembleBloomCA is a novel RC architecture comprising an ingenious combination of
CA and an ensemble Bloom filter. Fig. 3.3 shows the overview of EnsembleBloomCA,
which consists of CA for extracting a high-dimensional binary feature vector from an
input figure, and Bloom filters, each of which corresponds to a class label. Once an
input image is provided, EnsembleBloomCA first extracts the binarized feature vector
in the same manner as in Subsection 3.2.1. Then, the similarity between the extracted
feature vector and each Bloom filter is computed and the class whose corresponding
Bloom filter exhibits the maximum similarity is output as the model prediction. In the
following, we detail the algorithm of EnsembleBloomCA, which exploits the benefits of

3.3. PROPOSED METHOD 39

#9
32

-bits
Hash

-bitsTraining

#3

#01

Inference

Hash

ECA

ECA

Blank
Bloom Filters

#3 #3
#9

32

#2

#01

#2 #2

ECA

#9
3

#3

#01

#3 #3

2

#9
3

#01

#

2 0

1

1

1

1

1

1

1

#0
#1

#2

ECA

Well-trained
Bloom Filters

Validation

Hash

Hash

Hash

Figure 3.3: Overview of the proposed EnsembleBloomCA.

CA and Bloom filters.

Training Phase: Initially, the Bloom filter classifier is blank, that is, all the values
are set to zero (logic “0”). Then, the input image is fed into the CA part for feature
extraction. Here, the evolution rule is applied M times to elevate the pattern dynamics
that are ready for classification. In the next step, we extract patches of the CA output by
applying a Wrec×Hrec size receptive field with a stride of Lrec and again apply a simple
hash function to each extracted patch to obtain a binary feature vector. Details regarding
the hash function are provided in Subsection 3.3.2. Finally, the extracted feature vector
is fed into the Bloom filter, which is specified by the corresponding training label, with
bitwise OR gates, and the training for this image is completed. For example, a training
image labeled “5” is inserted into Bloom filter #5.

Inference Phase: Similar to the training phase, the input images are fed into the
CA, followed by image patch extraction and application of the hash function to obtain
the feature vector for the input image. Then, using counters and bitwise AND gates to

40 CHAPTER 3. RC SYSTEM USING CA AND ENSEMBLE BF

calculate the similarity between the feature vector and Bloom filters, the Bloom filter
with the highest response is chosen as a representative category for the testing image.

As can be seen, the similarity should reach the maximum value if the input pattern
belongs to the corresponding category, which enables us to determine which class the
unseen input pattern belongs to without using computationally expensive floating-point
arithmetic. Although the pattern dynamics are extremely elevated by the CA reservoir,
this also increases the number of Bloom filters in every category, which results in un-
tenable memory usage during the inference phase. Nsub, which represents the number
of samples inserted into each Bloom filter, has a significant correlation with the perfor-
mance of the Bloom filter. The more elements are added to a single Bloom filter, the
higher the probability of false positives (FPR) [87]. To optimize this data structure, we
propose utilizing an ensemble Bloom filter as the classifier in our RC system.

3.3.2 Ensemble Bloom Filter

Ensemble learning is a machine learning paradigm in which multiple base learners are
trained to solve the same problem. The generalization ability of an ensemble is usually
much stronger than that of the base learners. The base learners are usually generated
from training data using a base learning algorithm that can be a decision tree, neural
network, or other type of machine learning algorithm [88].

Several algorithms are commonly used for ensemble learning, including bagging. In
this method, training data subsets are randomly drawn from the entire training dataset.
Each training data subset was used to train a classifier of the same type. Individual clas-
sifiers are then combined by taking a simple majority voting in the classifier or using
relatively weak classifiers (such as decision stumps, an approach which constitutes a
random forest classifier). Another popular method, boosting, also creates an ensemble
classifier by resampling the data and then combining it through majority voting. How-
ever, in boosting, resampling is strategically geared to provide the most informative
training data for each consecutive classifier [89].

In our case, we apply the bagging algorithm. The training dataset is divided into
Nsub subsets and inserted into different Bloom filters as base learners. Then, the results
of these base learners are summed up together, a process which can be considered as
an ensemble Bloom filter classifier. The basic operations of the ensemble Bloom filter
model involve adding elements to the corresponding set (insertion phase) and querying
for element membership in the probabilistic set representation (query phase).

For the ensemble Bloom filter, a binarized pattern with N · L bits is split into N
vectors of L bits. We define Bn(i) as the i-th bit in the n-th mini Bloom filter, where
n ∈ {1,2, ...,N}. In our case, the patterns from the Wrec×Hrec size receptive field need
to be memorized by a different ensemble Bloom filter. Similar to [43], each binarized

3.4. EXPERIMENT 41

pattern is split into Wrec and Hrec vectors in rows and columns.
During the insertion phase, the vectors are inserted into the corresponding Bloom

filters, which we call “mini Bloom filters.” These vectors are considered as addresses
within the mini Bloom filters, as well as the results of the hash function. In the query
phase, if and only if all the values of accessed bit Bn(i) in the mini Bloom filters are
positive (logic “1”), this Bloom filter returns one. Otherwise, this Bloom filter returns
zero. All the returned results of Bloom filters in each category are summed together and
considered as the discriminator response r, which also represents the similarity between
the testing sample and the corresponding category. The discriminator with the highest
response r is chosen as the representative category.

After training each Bloom filter, we select those exhibiting good classification ac-
curacy using validation samples. Similar to the training phase, the class labels of the
validation images are predicted to evaluate the classification accuracy of each Bloom
filter. Then, we select Nin f Bloom filters exhibiting the top Nin f performance rankings;
these filters construct the classifier used in the inference phase.

The key idea behind using the Bloom filter as a classifier is to store the pattern infor-
mation within the given set, which means that an excessive difference between patterns
leads to the pollution of Bloom filters. Compared to the baseline model in Ref. [43,44],
one of the main differences comes from the ensemble learning, which treats the Bloom
filters as base learners. Instead of using a single standard Bloom filter with high mem-
ory cost, utilizing Bloom filters in an ensemble way can not only prevent the pollution
from large scale of training data but also effectively improve the performance of image
recognition tasks. Meanwhile, the number of well-trained Bloom filters in each Bloom
filter pool decreases, which leads to a significant reduction in memory cost during the
inference phase

3.4 Experiment

3.4.1 Experiment Setup

In our experiment, we focused on the handwritten digit number classification task based
on the MNIST dataset, which is a collection of 70k handwritten digits in grayscale
format. This task is extensively used to compare the performance of many classification
models by evaluating the performance of a machine learning algorithm [64]. Among
60k images, we randomly selected 55k images for training and 5k images for validation.
The training images were used to populate Bloom filters, while the validation images
were used to optimize the hyperparameters, such as the CA evolution rules or evolution
times. The remaining 10k images were used for testing. We will make a comparison
between the following three methods:

42 CHAPTER 3. RC SYSTEM USING CA AND ENSEMBLE BF

Bloom WiSARD is the baseline algorithm in [43]. It is an optimized application of
standard BFs, which utilizes BFs in a memory-segment way. The input images belong-
ing to the same category with the size of 28×28, are split into 28 rows, and individually
stored into the 28 BFs during the training. When it comes to the inference phase, each
BFs returns the query results as logic “0” or “1”. The sum of these query results rep-
resents the response of the corresponding category. Hence, the class with the highest
response is considered as the output of the classification.

Ensemble Bloom filter is a special case of our proposed method. For the comprehen-
sive exploration, we also evaluate the performance of our model without utilizing CA.
In this case, no reservoir architecture is applied and we directly use the proposed en-
semble Bloom filter in subsection 3.3.2 as the classifier, which can help us to evaluate
the contribution of CA and ensemble Bloom filter individually.

EnsembleBloomCA is our proposed method. 55k training images were inserted into
the ensemble Bloom filter as the training set. We then divided 55k training images into
Nsub subsets for every category in order. The other 5k training images were used as the
validation set for adjusting the ensemble Bloom filter classifier. Then, we utilized 10k
testing images as the inference set to evaluate the performance of our approach.

In our experiment, w = 28, h = 28, d = 16, and R = 256. For the reservoir, CA
maps the original input into a higher-dimensional space and obtains high-dimensional
patterns. The max-pooling layer was selected to have a stride of two, a squared window
of size two, and zero padding. A 5×5 receptive field was applied to every binary chan-
nel and iteration of the reservoir output, with a stride of 3. The software implementation
was emulated in C++ to evaluate the performance of EnsembleBloomCA .

3.4.2 Optimization of ReCA

Although the reservoir using CA recreates a rich pattern for the EnsembleBloomCA
model, extra features also require more memory resources and data transfers. In [34],
an approach using only the 8th iteration to train the classifier was proposed. Every time
the iterative patterns are obtained with a fixed CA evolution rule, the pattern is changed
to some extent.

Considering the difference in contribution from every iterative pattern, we only
choose the first iterative pattern which represents the original input data and the lat-
est iterative pattern as features. This strategy can effectively refine the input feature for
the ensemble Bloom filter and reduce the memory cost in both the training and inference
phases.

3.4. EXPERIMENT 43

3.4.3 Experiment Results

Using the EnsembleBloomCA model described in section 3.3, we examined the perfor-
mance of all existing CA evolution rules. The iteration count M is in the range from 1
to 24. As shown in Fig.3.4, the RC system achieves different accuracy performances
under different ECA rules. According to the hyperparameter optimization from the
validation set, we adopt the ECA evolution Rule 184 and iteration count M = 8.

Fig. 3.5 shows the classification accuracy as a function of the number of samples
inserted into a single Bloom filter and memory cost required during training. The dashed
horizontal line shows the classification accuracy of [43], which is the baseline of our
work. When the training memory cost is lower than 400 KB, the accuracy drops sharply.
In these cases, an excessive number of feature vectors are inserted into the same Bloom
filter, which pollutes the Bloom filter and affects the accuracy of the ensemble Bloom
filter. When the training memory cost is up to 825 KB, the accuracy trend appears to be
saturated.

Table 3.1 shows the results of several different models in the MNIST hand-
written number classification task. The EnsembleBloomCA model achieved over
819.05/18.75 ≈ 43× memory reduction compared with the baseline while maintain-
ing the same accuracy. This reduction in memory cost mainly comes from the use of
Bloom filters in an ensemble. Although this method also leads to a slight decrease in
accuracy, this disadvantage can be overcome by using CA as the reservoir. The rich
pattern dynamics recreated by CA can effectively provide more candidates for Bloom
filter pools and improve accuracy from 89.58% to 91.86%, which also illustrates the
impact of CA in our model.

For the Bloom WiSARD [43]architecture that splits the input images in row and stores
the binary patterns with standard Bloom filters individually, its feature extraction pro-
cedure is homogeneous and lacks of focus on the regional information in the image
processing tasks. On the other hand, the reservoir of our proposed EnsembleBloomCA
utilizes the cellular automata to elevate the pattern dynamics, then further applies the
techniques like receptive field and max-pooling to extract the information from input

�����

����

��

����

��

����

��

����

��

� � � � �

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�

�
	

�
�

�
�

�

�
�

�
�

�
�

�
	

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
	

�
�

	
�

	
�

	
�

	
�

	

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�
�

�
�
	

�
�
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
	
�

�
	
�

�
	
�

�
	
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�

�

�

�
�
�

�
��
�
��
��

��
	

	
�

�����

Figure 3.4: Accuracy Performance applying different ECA rules.

44 CHAPTER 3. RC SYSTEM USING CA AND ENSEMBLE BF

���������

	
��
�����������

��� ��� ��� ��� ��� ��� ���� ����

��

��

��

��

��

��

��

��

� � �� �� �� �� �� �� �� �� ��

��
������������������ !"#

�
��
�
��
��
��
	

$���

Figure 3.5: Accuracy - Nsub / Training Memory Cost.

Table 3.1: Performance Comparison.

Bloom WiSARD Ensemble Bloom filter EnsembleBloomCA

(baseline) (proposed) (proposed)

Arithmetic multiplication addition addition

Number of hash 3 1 1

Accuracy(%) 91.50 89.58 91.86

Inference Memory (KB) 819.05 18.75 18.75

images and map the input into high-dimensional space. Hence, the rich pattern dy-
namics recreated by CA can effectively provide more candidates for Bloom filter pools
and improve the accuracy performance. Overall, our proposed model can significantly
reduce the memory cost for the inference phase while maintaining the accuracy. Mean-
while, the simplicity of the hash function avoids high computational costs, allowing for
practical hardware implementation.

3.4.4 Hardware Implementation

The hardware architecture of the baseline Bloom WiSARD and our proposed Ensem-
bleBloomCA were designed using SystemVerilog. We used Synopsys Design Compiler
to synthesize and report the area and power consumption of our approach in a 65-nm
ASIC flow. The hardware costs of the memory part were individually simulated using
CACTI, which is an integrated memory access time, area, leakage, and power model. In

3.5. CONCLUSION 45

Table 3.2: Hardware Performance Comparison.

Area (mm2) Power consumption [mW] MPD

Reservoir Memory Total Reservoir Memory Total [10−9s]

Baseline 0.206 7.805 8.012 258.9 1059.8 1318.7 33.77

Proposed 0.095 0.253 0.348 121.4 34.5 155.9 3.78

Reduction 2.2× 30.8× 23.0× 2.13× 30.7× 8.5× 8.9×

addition, the memory type was chosen to be the main memory in the 65-nm ASIC flow,
which does not contain any tag array, and every access occurs at a page granularity.
Table 4.3 shows the comparison between EnsembleBloomCA and [43] in terms of ASIC
area and energy consumption. The maximum propagation delay (MPD) of our model is
3.78 ns.

The memory takes 0.253/0.348 ≈ 72.7% of the area of EnsembleBloomCA, while
the other circuits take 37.3%. In terms of power consumption, the memory portion only
uses 34.5/155.9 ≈ 22.13%, and the power consumption percentage of other circuits is
increased to 77.87%. Although the memory occupies almost half of the entire circuit
area, the energy is mainly consumed by the non-memory part, that is, CA, owing to the
high switching activity of the non-memory part. Overall, EnsembleBloomCA achieved
over 23× and 8.5× reductions in area and power, respectively.

3.5 Conclusion

In this work, we propose a novel RC architecture, the EnsembleBloomCA model, which
is a combination of a reservoir using CA and an ensemble Bloom filter classifier. By
utilizing EnsembleBloomCA, we achieved a 43× reduction in memory cost for the in-
ference phase while maintaining accuracy. Our hardware implementation also demon-
strated that EnsembleBloomCA achieves over 23× and 8.5× reductions in area and
power, respectively. The experimental results also illustrate the efficacy of using CA as
a reservoir. Mapping the input signal into a higher-dimensional feature space, the rich
dynamics recreated by CA can effectively improve the performance of the ensemble
Bloom filter classifier. This model can completely eliminate expensive computational
operations, such as floating-point calculation and integer multiplication. Owing to the
simplicity of EnsembleBloomCA, our model shows promising potential for hardware
implementation.

Chapter 3 contains material from “BloomCA: A Memory Efficient Reservoir Com-
puting Hardware Implementation Using Cellular Automata and Ensemble Bloom Fil-

46 CHAPTER 3. RC SYSTEM USING CA AND ENSEMBLE BF

ter”, by Dehua Liang, Masanori Hashimoto, and Hiromitsu Awano, which appears in
Design, Automation & Test in Europe Conference & Exhibition (DATE), February
2021 [90]. The dissertation author was the primary investigator and author of this paper.

Chapter 3 contains material from “A Hardware Efficient Reservoir Computing Sys-
tem Using Cellular Automata and Ensemble Bloom Filter”, by Dehua Liang, Jun Sh-
iomi, Noriyuki Miura, Masanori Hashimoto, and Hiromitsu Awano, which appears in
IEICE Transactions on Information and Systems, July 2022 [91]. The dissertation au-
thor was the primary investigator and author of this paper.

Chapter 4

Binary HDC System utilizing Window
Striding

4.1 Introduction
The emergence of the Internet of Things (IoT) has led to a copious amount of small
connected edge devices and systems [9]. Many of these devices need to perform clas-
sification tasks such as speech recognition [69], activity recognition [70], and image
classification [64]. Though Deep neural networks (DNNs) have provided high accuracy
for complex classification tasks, with the scale of DNNs increasing, the high computa-
tional complexity and memory requirement of DNNs hinder usability to a broad variety
of embedded applications. The energy constraint of edge devices hinders them from the
real-time training of NN models [92].

Although sending the data to a powerful cloud platform to perform tasks is one of
the options, there are still transmission delays and privacy security issues. For example,
in health care monitoring, we often require learning algorithms to have real-time control
of the patient’s daily behavior, speech, and bio-medical sensors. Sending all data points
to the cloud, cannot guarantee scalability and real-time response, which is often unde-
sirable due to privacy and security concerns [24]. Hence, for edge devices with limited
hardware resources, the demand for a more processing-efficient model is rising.

Brain-inspired hyperdimensional computing (HDC) has been proposed as a comput-
ing method that processes cognitive tasks in a more lightweight way [93]. HDC aims
at realizing real-time performance and robustness through using strategies that more
closely model the human brain [94]. HDC relies on mathematical properties of high-
dimensional vector spaces and use high-dimensional distributed representations called
hypervectors [95]. HDC works based on the existence of orthogonal hypervectors which
can be combined using well-defined vector space operations. The mathematics govern-
ing the high dimensional space enables HDC to be easily applied to different learning

48 CHAPTER 4. BINARY HDC SYSTEM UTILIZING WINDOW STRIDING

problems. The first step in HDC is to encode/map data points from the original domain
to the high-dimensional space with bit-wise operations. During the training, HDC com-
bines the encoded hypervectors to generate a hypervector representing each class. The
classification task at inference performs by searching the similarity of an encoded test
hypervector with all trained classes.

However, there are still several remaining challenges in the application of HDC in
edge devices: (i) Huge memory cost for the encoding procedure. In most HDC models,
they need to represent both the index and value of the input features via hypervectors,
which requires a large size of memory blocks. Such a process takes huge occupation
of the total inference memory cost, e.g., 96.15% for letters recognition task. (ii) Many
HDC algorithms need to be trained on expensive floating-point (FP) hypervectors and
perform the inference with costly cosine similarity measurement, which leads to the
increase of hardware resource requirement in edge devices. (iii) The hypervector of
most HDC is generated holistically. For the hypervector with thousands of dimensions,
optimization based on dimension-wise sparsity has been proposed in some prior works.
However, feature-wise sparsity should also be under consideration when it comes to
image processing tasks. (iv) The widely used retraining procedure in current HDC
algorithms requires tens of iterations to get saturated, which leads to long training time.

In this work, we propose a novel HDC system: StrideHD. The uniqueness of
StrideHD is to capture the critical features utilizing window striding method and or-
ganize the HDC architecture in a distributed way. After utilizing the window striding
to chop the input images, thermometer binarization and max-pooling are applied. The
extracted binary features are further encoded to hypervectors with high orthogonality,
which enables efficient training/testing in our HDC model. Meanwhile, the hypervectors
can be generated without the expensive item memory requirement. The main contribu-
tions of our StrideHD model are as follows:

• Successfully eliminated the costly Channel item Memory (CiM) and item Mem-
ory (iM) by exploiting a pseudo-random hypervector generation mechanism in
the encoder. Besides the traditional dimension-wise sparsification, a feature-wise
model sparsification is further proposed for image processing tasks.

• Compared to two HDC baselines, our single-pass training achieved a 27.6× and
8.2× reduction in memory cost without hurting the accuracy, while the iterative
training can further improve 8.7× memory efficiency.

• Under the same inference memory cost, the classification accuracy of single-pass
mode StrideHD is averagely 13.56% higher than the baseline HDC models.

• As an extension, we propose an iterative retraining mode in our StrideHD, which
averagely provides 11.33% accuracy improvement to its single-pass mode in Dis-
triHD [96], which can be accomplished in fewer iterations compared to the other
baseline HD models.

4.2. PROPOSED METHOD 49

• For hardware cost, we achieved over 9.9× and 28.8× reduction compared with
baseline HD [24] in area and power, respectively.

4.2 Proposed Method
As a novel HDC system, StrideHD utilizes window striding to capture the critical fea-
tures in the distributed way, and enables to train/test the model with such distributed
binary hypervectors. Fig. 4.1(a) shows the overview of StrideHD for image classifica-
tion task. In StrideHD, the first step is to extract the feature from the original images,
in which we apply the window striding technique. Utilizing the receptive window strid-
ing, the critical locality patterns can be captured effectively. Then, for features in each
receptive window, we apply maxpooling layer and thermometer encoding method to
quantize the non-binary values into binary data [90]. After obtaining the binary features
for each receptive window, we apply the hypervector encoder to convert features into
hypervectors. Note here that, contrary to the conventional HD, a single input image is
converted into multiple (i.e., distributed) hypervectors. During the initial single-pass
training, these distributed hypervectors are combined in a training module in order to
create a set of binary hypervector representing each class. The classification is per-
formed by finding the class distributed hypervectors set which has the highest similarity
with the test distributed hypervectors set. Note again that the similarities are respec-
tively computed for each hypervectors. Further, for the model size reduction, we prune
part of the class distributed hypervector by using validation dataset whose procedure is
detailed in Sec. 4.2.5. Since StrideHD works with a binary model, the inference can
be performed with hardware-friendly Hamming distance as the similarity matrix. As
an extension, we also proposed iterative learning in our framework for performance im-
provement. The pseudo-code for the StrideHD is further shown as the Algorithm 1 and
the Algorithm 2. In the following, we explain the details of the StrideHD functionality.

4.2.1 Feature Extraction by Window Striding

For the input image, we firstly apply a Wrec×Hrec size receptive field with a stride of
Trec, i.e., chopping the pixels with striding windows. Then we apply a max-pooling op-
eration to improve the generalization of the model. After these two steps, Lr distributed
patterns with non-binary elements are generated. Subsequently, we binarize the non-
binary element with thermometer way [90]. Assume the range of non-binary element u
is ∆u = umax−umin and quantize it into Lb levels as follow:

u(b) =

{
1, ∆u·b

Lb
< u,

0, ∆u·b
Lb
≥ u.

(4.1)

50 CHAPTER 4. BINARY HDC SYSTEM UTILIZING WINDOW STRIDING

Algorithm 1: StrideHD Computing framework
Design Parameters: shape of striding window Wrec×Hrec, number of training
subsets Le, number of dimension-wise selected distributed hypervectors Ms, number
of feature-wise selected distributed hypervectors Ls, thermometer binarized levels
Lb, number of dimensions D.
Require: Initialize an integer model C and a binary model B in shape of
N×M×L×D with ‘0’s, where N is the number of categories, M is the number of
dimension-wise distributed hypervectors, L is the number of feature-wise distributed
hypervectors.
Ensure: Update the binary model B=sgn(C)
{① Single-pass & Iterative Training}
Split training set to Le minibatch including samples ue with N f eature non-binary
features u(n), which corresponds to the labels y(u).
u(e)(n)←u(n),e=1,2, ...,Le
for e=1 to Le do

for n=1 to N f eature do
thermometer binarization
u(e,b)(n)←u(e)(n),b=1,2, ...,Lb using Eq.(4.1)
for b=1 to Lb do

window striding & max-pooling
u(e,b,l)(n′)←u(e,b)(n), l=1, ...,Lb;n′=1, ...,Wrec×Hrec

Reshape u(e,b,l)(n′) as f l
n, l∈[0,L],n∈[1,Wrec×Hrec]

where L=Le×Lb×Lr
Generate a random matrix R(i, j)∈[1,Wrec×Hrec]

M×B

for i=1 to M do
pi←∑

B
j=1 fR(i, j)2

B− j using Eq.(4.3)
for l=1 to L do

if single-pass training then
for k=1 to N do # all categories
Cl

k[pi]←Cl
k[pi]+1

else if iterative training then
if ypredict , y then
Cl

correct [pi]←Cl
correct [pi]+1 # correct category

Cl
predict [pi]←Cl

predict [pi]−1 # predict category

4.2. PROPOSED METHOD 51

Test
Data

Class

En
co

de
r

Class

D
is

 ≥
 M

?

Similarity = 0~L

M
ax

im
um

 S
im

ila
rit

y

Si
ng

le
-P

as
s

Tr
ai

ni
ng

En
co

de
r

Class

Class

Feature
Extract

Associative Memory

Train
Data

Feature
Extractor

Window Striding
Thermometer
Max-pooling

D
is

 ≥
 M

?

Output

Iterative Retrain

Figure 4.1: Overview of the proposed StrideHD.

where b ∈ [1,Lb]. In this way, Lr × Lb distributed binary patterns are extracted from
each image.

4.2.2 Encoder

Considering the expensive memory cost of item Memory, we proposed an encoder with
a pseudo-random hypervector generation mechanism that can map a pattern to a hyper-
vector only using the shifting operation. Fig. 4.2 shows the overview of the proposed
encoder, and Fig. 4.3 shows the orthogonality comparison between the hypervectors
generated by different encoders. Assuming the l-th binary pattern (l ∈ [1,Lb×Lr]) ob-
tained via feature extraction is represented by vector F l . Where F l = { f1, f1, ..., fn}with
n elements (fi ∈ N), will be mapped to the distributed hypervector H l = {hl

1,h
l
2, ...,h

l
D}

with D dimensions (hi ∈ {0,1}D). Firstly, we randomly select the elements from vector
F l and construct a matrix R:

R =


fσ(1,1) fσ(1,2) · · · fσ(1,B)

fσ(2,1) fσ(2,2) · · · fσ(2,B)
...

...
. . .

...

fσ(M,1) fσ(M,2) · · · fσ(M,B)

 (4.2)

where fσ(i, j) ∈ { f1, f1, ..., fn}, i ∈ [1,M], j ∈ [1,B]. M and B represent the number and
range of the generated binary numbers, respectively. And the function σ represents the

52 CHAPTER 4. BINARY HDC SYSTEM UTILIZING WINDOW STRIDING

R
an

do
m

 S
el

ec
tio

n

Shifting

h11

h11 h1D

h21 h2D

1 0 0 0 0000

h31 h3D

hM1 hMD

hMD

R
an

do
m

 S
el

ec
tio

n

Shifting Operations

h11

1 0 0 0 0000

hMD

0 0 0 0

1 0 0 0 0000 0 0 0 0

0 0 0 0 0000 0 0 1 0

0 0 0 0 1000 0 0 0 0

0 1 0 0 0000 0 0 0 0

Figure 4.2: Overview of the proposed encoder in StrideHD.

random selection. Each row of the matrix R can be considered as a binary number pi:

pi =
B

∑
j=1

fσ(i, j)2
B− j (4.3)

Similar to Bloom filter [90], we can generate M binary vectors in the range of B-bits
by flipping the pi-th bit of the empty vector (all logic “0”), which can be easily accom-
plished with shifting operation. Finally, the distributed hypervector H l is the connection
of these binary vectors.

Such a mechanism has three main advantages as compared to the other encoding
methods in the HDC algorithms [24, 37–42]. First, unlike existing approaches which
need to read the index hypervectors from item Memory, this encoding method can gen-
erate hypervectors only using shifting operation. The expensive memory cost by item
Memory (shown in table 2.2) can be avoided. Second, this method doesn’t need to do
accumulation and majority voting for each dimension during encoding, which means it
is hardware-friendly and suitable for parallel implementation. Third, the hypervectors
generation with high orthogonality. We randomly select 1,000 training images from
MNIST dataset and generate the hypervectors with different encoders. As shown in
Fig. 4.3, the orthogonality measure is based on Hamming distance, while our encoder
achieved superior performance.

4.2. PROPOSED METHOD 53

���

���

���

���

���

���

���

��	

��

���

���

� ��� ��� ��� ��� ��� ��� 	��
�� ��� ����

�
�
��
�
�
�
�
�
	

��

�
�����������������

��������

	
�����
�

	
�����
�

	
�����
�

Figure 4.3: Hypervector Orthogonality of different Encoders.

4.2.3 Single-Pass Training

Initially the AM is blank, i.e., all the values are set to logic “0”. After the feature
extraction, Lr×Lb distributed binary patterns are obtained. By using the record-based
encoder we described in Chapter 2, a set of distributed hypervectors H l are generated
(l ∈ [1,Lb×Lr]). For all input within the same class, the training data will be divided
into Le training subset. For all the data within the same training subset {S1, ...,SK},
the distributed hypervectors are added to create the class distributed hypervectors C =

{C1,C2, ...,CL} with integer addition for each dimension as follow:

Cl = H l
1 +H l

2 + ...+H l
K (4.4)

where Cl
i represents the l-th distributed hypervector belonging to the i-th class and L =

Lb× Lr × Le. These class distributed hypervectors will be stored in the AM during
the training. Note that in comparison with the existing HD model, the majority voting
is simplified to OR operation, which contributes to a fast and ultra-efficient learning
process.

54 CHAPTER 4. BINARY HDC SYSTEM UTILIZING WINDOW STRIDING

4.2.4 Inference

After the feature extraction and encoding procedure, L distributed hypervectors H l are
generated to represent one input image for query. Similarly, L distributed class hyper-
vectors Cl have been trained and stored in the AM part, which contains the universal
information of each class in HD space. When it comes to the inference, we measure the
similarity of them as follows:

Similarity =
L

∑
l=1

sgn[δ (H l&Cl,Cl)−M]. (4.5)

Where & represents the bitwise AND operation and the δ is the Hamming distance
between two vectors. The sgn represents the sign function that extracts the sign of a real
number. The class of distributed hypervectors with the highest similarity is chosen as a
representative category of the testing image.

4.2.5 Optimized Model Sparsification

To improve memory efficiency, we proposed to sparsify associative memory with the la-
beled validation data. Compared with the existing mechanism, our model sparsification
is changed from unsupervised to supervised mode, which are performed dimension-wise
and feature-wise. The details are shown in Fig. 4.4.

For dimension-wise sparsity, we use the labeled validation images to calculate the
accuracy of each dimension. In the ideal scenario, the value of a dimension in the
validation hypervector should be equal to the corresponding dimension in the matching
class hypervector, while all other values of this dimension in the mismatching class
hypervectors should not be equal to it. After obtaining the accuracy performance of
dimensions, the dimensions with the lowest accuracy are selected to be dropped from the
HDC model as they have the least/worst impact on differentiating the classes. Note that
in our proposed encoding, the distributed hypervector H l is a connection of the shifted
binary vectors, which means the dimensions in these shifted binary vectors can not be
dropped separately. Hence, the discard of dimensions only happened for the whole
shifted binary vectors, which makes the dimensions of class distributed hypervectors
decrease: Cl ∈ {1,0}M·D→ Cl ∈ {1,0}Ms·D.

Similarly, for the feature-wise sparsity, we can also calculate the accuracy for class
distributed hypervector by validation images simultaneously. The Cl with the lowest
accuracy are selected to be dropped as those represented features have the least impact
on differentiating the classes. The number of Cl is decreased: l ∈ [0,L]→ l ∈ [0,Ls].

4.2. PROPOSED METHOD 55

Algorithm 2: Sparsification & Inference
{② Sparsification}
Calculate the accuracy of distributed hypervectors Cl[pi] where i∈[0,M], l∈[0,L],
discard the Cl[pi] with poor Acc. Model C and B are compressed as:
M −→Ms,L−→ Ls
{③ Inference/Prediction}
for k=1 to N do

for l=1 to Ls do # before ②:L; after ②:Ls
Similarity(k) += AND(Cl

k[pi]), i=1,2, ...,Ms
before ②:M; after ②:Ms

Output← Argmax(Similarity)

Class

00

Class

Class

Class

00

Distribution ()

Class

Class

Class

Class

Distribution ()

Class 1 vector

Class N vector

Associative Memory

0 0 0 0

0 0 0 0

Dimension ()

Dimension ()(a) (b)

Figure 4.4: (a) Dimension-wise Sparsification. (b) Feature-wise Sparsification.

4.2.6 Iterative Retraining

As an extension, we also proposed iterative learning in our framework, which aims
at reducing the error rate of the initial HD model by employing gradient descent. As
shown in Figure. 4.1, the StrideHD firstly encodes the training data to query distributed
hypervectors, then check its similarity with each pre-stored class distributed hypervector
set as mentioned in Subsection 4.2.4. If the class distributed hypervector set with the
highest similarity matches the correct label, the StrideHD ignores updating the model.
However, if an encoded training data H incorrectly matches with the model, we add this
query to the correct class Ccorrect while subtracting it from the predicted incorrect class
Cpredict as follows: {

Ccorrect = Ccorrect [+]H

Cpredict = Cpredict [−]H
(4.6)

56 CHAPTER 4. BINARY HDC SYSTEM UTILIZING WINDOW STRIDING

Where [+] and [−] is a binary addition and subtraction for each dimension. Note that
such accumulation is performed in class distributed hypervectors with integer elements
in a pre-defined range, which is also considered as the counters model [24]. When it
comes to the inference, we can use an additional binarized model with the same size of
dimensions. All dimensions with a smaller value than 0 are assigned to 0, while other
elements are assigned to 1.

Based on the novel encoding procedure described in 4.2.2, the percentage of logic
‘1’ in the encoded hypervector of StrideHD is much less than the conventional hyper-
vector. Hence, the update of model mainly focuses on the more significant dimensions,
which leads to efficient iterative retraining and fewer iterations.

4.3 Hardware Implementation of Inference
The hardware implementation of StrideHD during inference mainly consist of four dif-
ferent blocks: (❶) Encoding, (❷) Associative Memory Blocks, (❺) AND Gates Array,
and (❻) Nearest Distance Searching modules. Figure 4.5 shows the overview of our
hardware architecture.

4.3.1 Encoding Blocks

The hardware implementation of each encoding block is shown in Figure 4.5 (❹). This
process performs the (❸) feature extraction and pseudo-random hypervectors genera-
tion mechanism with the memory address decoder, which are integrated in the (❶) as
hardware implementation of the Encoding Blocks. Mathematically, the computation of
feature extraction can be performed by the window striding, thermometer binarization,
and max-pooling techniques.

• As for the window striding, it is mainly implemented with the wire connection,
which does not require additional transistors in hardware implementation.

• The next step is to convert each original decimal feature to the Lb-bits thermome-
ter binary data. This process can be accomplished with cheap combinational logic
circuits. According to Eq.(4.1), the more continuous ‘1’s at the beginning of the
converted data represent the larger value of the original feature.

• Based on the characteristic of thermometer binary data, it is convenient for the
implementation of the max-pooling layer, which can be performed by bit-wise
OR gates for each bit of the binary data.

Figure 4.5(❸) shows an example of thermometer binarization and its corresponding
max-pooling operation. After this step, each original data point is converted to Ls dif-
ferent Ms-bits binary patterns, which are the input of the address decoders. Based on
the decoded addresses, the data from the corresponding memory cells in C different

4.3. HARDWARE IMPLEMENTATION OF INFERENCE 57

MEM Block

1# Binary
Counter

Ls bits Log(Ls) bits

Ms bits

1 bits

C# Binary
Counter

&

&

&

&

&

&

C
om

p
C

om
p C

om
p

C
om

p

C
om

p

MEM Block

MEM Block

Ls

Ms

Ms× C bits

MEM Block

MEM Block

MEM Block

MEM Block

MEM Block

MEM Block

C

C bits

D
ec

D
ec

D
ec

D bits
cell

cell

cell

cell

cell

cell

cell

cell

Write/Read Circuit

D

C bits words

 Feature Extractor

143

1 1 0 0

Max-pooling
(OR Gates)

1 1 0 0
1 0 0 0
1 1 1 0
1 1 0 0
1 1 1 0

Thermometer
Binarization

(Comparators)

Output

cell

Memory Blocks

AND Gates Array Nearest Distance

1 2
3

5 6

4

A
dd

re
ss

 D
ec

od
er

input

1000111

C
om

p

Figure 4.5: The hardware implementation of StrideHD during inference includes En-
coding, Associative Memory Blocks, AND Gates Array, and Nearest Distance Search-
ing modules.

categories are read. Note that the Ls and Ms represents the number of feature-wise and
dimension-wise distributed hypervectors after the model sparsification, which has been
accomplished by validation data during the training. Such model sparsification process
aims at further reducing the memory usage of well-trained model, leading to a light
weight requirement for hardware implementation during the inference.

4.3.2 Associative Memory (AM) Blocks
Figure 4.5(❷) shows the implementation of the AM Blocks. Unlike the prior HDC
algorithms that read the data from all the memory cells, the StrideHD only requires
reading parts of the memory cells. For each inference operation, Ls×Ms×C bits of data
are read from the AM Blocks, while the AM Blocks contain D times larger memory in
total. Based on the decoded addresses, the data from the corresponding memory cells
are read, which leads to Ms different C-bits data as the input of the following AND gates
array. Note that the readout data are not the hypervector of each category but represent
the similarity measure results.

4.3.3 AND Gates Array
Figure 4.5(❺) shows the implementation of the AND gates array. Compared to the
XOR gates array in prior works, even costing the same number of memory cells in
AM Blocks, the scale of AND gates array in StrideHD is much smaller. On one hand,

58 CHAPTER 4. BINARY HDC SYSTEM UTILIZING WINDOW STRIDING

the scale of readout data from AM is reduced for D times. On the other hand, the
StrideHD are checking whether the readout dimensions are ‘+1’, while the traditional
way (Encoder I, II, and III) requires to check whether the readout dimensions are equal
to query hypervector. Hence, readout data from AM blocks are the only input of AND
gates array, while the two inputs of the traditional XOR gates array are the readout
data and query hypervector, respectively. When Ms-bits of readout data from the same
category are ‘+1’, the similarity of the corresponding category is increased by 1, which
makes the similarity in the range from 0 to Ls.

4.3.4 Nearest Distance Searching

Figure 4.5(❻) shows the implementation of the nearest distance searching module. After
getting C× Ls bits data from AND gates array, it requires C different binary counter
to calculate the number of ‘+1’ in the Ls-bits data, which is considered the similarity
for each category. Finally, utilizing the comparators to get the output. The range of
similarity in StrideHD is much smaller than the traditional one (D>>Ls).

4.4 Experiment

4.4.1 Experimental Setup

We consider the popular HDC algorithm [24] as the baseline, which is similarly utiliz-
ing binary hypervectors and eliminating FP calculations. We evaluated StrideHD and
baseline HD training and inference with three encoders on an Intel Core i7 7600 CPU
using an optimized C++ implementation. To verify recognition quality of StrideHD, we
consider three problems: MNIST [64], Kuzushiji-MNIST [97], Fashion-MNIST [98],
and SMILES [71]. For the MNIST-kind datasets, we randomly selected 55k images for
training and 5k images for validation.
MNIST: is a collection of handwritten digits in grayscale format and is intensively used
to compare the performance of many classification models.
Kuzushiji-MNIST: is a dataset that focuses on Kuzushiji (cursive Japanese) [97]. Even

Table 4.1: Parameters Setting for StrideHD.

Wrec Trec Lb Le D SD SF

*mnist 5 3 4 2 150 95% 20%

smiles 7 5 4 2 150 95% 20%

4.4. EXPERIMENT 59

though this dataset is created as a drop-in replacement for the MNIST dataset, the char-
acteristics of Kuzushiji and Arabic numbers are completely different, which makes it
more challenging than MNIST.
Fashion-MNIST: is a new dataset comprising of fashion products, such as shirts, T-
shirts, or coats that look very similar at 28× 28 pixel resolution in grayscale, making
many samples ambiguous even for humans (Human performance on Fashion-MNIST is
only 83.5% [98]).
SMILES: is a face recognition task that aims at classifying the images with or without
smiling. There are 13,165 images in the dataset, with each image having a size of 64×64
pixels. Among all the face images, 9475 of these examples are not smiling, while only
3,690 belong to the smiling class. Hence, we randomly select 600 positive images 600
negative images for testing, and 300 images for the validation.

In software, we utilize the MNIST dataset to explore the impact of several de-
sign parameters in StrideHD single-pass training, and the reduction of the inference
memory cost are evaluated in comparison with the baseline HD. As an extension, we
make a comparison between our proposed StrideHD, and three baseline HD algorithms.
The BinHD, SecureHD, and DUAL represent the iterative HDC learning framework
in [24] utilizing the Record-based Encoder I from [24], Random-projection Encoder II
from [37], and Non-linear Encoder III from [68], respectively.

4.4.2 Single-Pass Training Parameters Tuning
In our experiment for the MNIST dataset, the max-pooling layer is selected to have a
stride of 2, a squared window of size 2, and zero padding. According to the evalua-
tion results shown in Fig. 4.6(a), we applied a 5× 5 receptive window with a stride of
3. Meanwhile, Fig. 4.6(b-c) illustrates the impact of binary levels Lb and the number
of training subsets Le. With higher Lb and Le, the classification accuracy is improved
with a larger memory cost. Hence, for competitive accuracy and memory efficiency, we
choose Lb = 4 and Le = 2 as a performance trade-off. Fig. 4.6(d-f) shows the classifi-
cation accuracy under different Feature-wise sparsity, Dimension-wise sparsity, and the
dimensions D. Similarly, we adopt the Feature-wise and Dimension-wise sparsity as
20% and 95%, respectively. The parameters setting of our StrideHD in different tasks
are listed in Table 5.1.

4.4.3 Memory Efficiency
As we mentioned in Table 2.2, the iM and CiM are averagely taking huge occupation of
memory cost (93.4% and 4.7%) during inference for the BinHD, which is unnecessary
in the StrideHD. Based on the observation of Table 2.1 and Table 2.2, we found that the
hardware cost for Encoder III in DUAL is much higher than the Encoder I in BinHD and

60 CHAPTER 4. BINARY HDC SYSTEM UTILIZING WINDOW STRIDING

����

����

����

����

����

����

� � 	
 �� ��

�
�
�
�
�
�
�
�
��
	

����������	
����
�
������	���
���

��
	��

����

����

����

����

����

����

����

����

� � � � � 	

�
�
�
�
�
�
�
�
��
	

���������	
���
������
�

����

����

����

����

����

�	��

� � � � � 	

�
�
�
�
�
�
�
�
��
	

���������	
����

�����������	�����
�

����

����

����

����

����

����

����

�	��

�
��

�	 ��� ��	 �	� ��	 ��	 ��	

�
�
�
�
�
�
�
�
��
	

���������	
��	
���� �

����

����

����

����

����

����

�� 	�� ��� ���
�� ��� ��� ��� ���

�
�
�
�
�
�
�
�
��
	

���������	
�������
�
�

����

����

����

����

����

����

����

�	��

�
 ��
 ��
 ��
 ��
 ��
 	�
 ��
 ��

�
�
�
�
�
�
�
�
��
	

���������	
������
 �
�

��� �

Figure 4.6: Impact of Different Parameters: (a) Length of Receptive Window. (b) Binary
Levels Lb. (c) Number of Training Subsets Le. (d) Dimensions D. (e) Dimension-wise
Sparsity. (f) Feature-wise Sparsity.

Encoder II in SecureHD due to the expensive FP calculation and high data precision.
Hence, we make a comparison of StrideHD, BinHD, and SecureHD in terms of classifi-
cation accuracy and memory cost, which is shown in Fig. 4.7. For a comprehensive and
fair comparison, we evaluated the performance of the baselines in two different ways.

The first way is to calculate the inference memory cost including the CiM and iM
part, which performs very poor accuracy in Fig. 4.7 (a). To achieve the same level
of accuracy (e.g., 94.8%), the iterative BinHD and SecureHD require 27.6× and 8.2×
memory cost compared to the single-pass training StrideHD model. When applying
iterative learning to our proposed model, the accuracy is improved compared to the
single-pass training, which results in 8.7× memory efficiency. The significant memory
reduction mainly comes from the elimination of the costly CiM and iM.

The second way is to calculate the baseline memory cost without the expensive CiM

4.4. EXPERIMENT 61

��

��

��

��

��

��

��

�	

�

��

	��

�� �� �� �� �� �� �� �� ��

�
��
�
��
��
��
	

���������	
���
�

����������	���
���
	�
���������	���
���
������������
�����
���
�����
����������	����������
���
�����

���

��

��

��

��

��

��

��

�	

�

��

	��

�� �� �� �� 		� 	�� 	
� 	�� 	��

�
��
�
��
��
��
	

���������	
���
�

����������	���
���
	�
���������	���
���
������������
���������������
����������	��������������������

���

Figure 4.7: The comparison of accuracy and memory cost.

and iM parts, which can give a fair comparison to the performance of the trained classi-
fiers. Although increasing the number of dimension D in BinHD and SecureHD results
in improving the classification accuracy, but also leads to a huge usage of memory dur-
ing inference. In MNIST dataset, when D is increased to 10K, the accuracy of the
iterative baseline HDC models gets saturated at around 96%, which consumes 97.7 KB
for the associative memory (AM) part and 7.7 MB for the total memory cost. We found
that with the same usage of AM, our single-pass training has the advantage over the
iterative BinHD algorithm but is not competitive with the iterative SecureHD. When we
apply iterative learning to our proposed model, the accuracy of StrideHD is improved
to the same level as SecureHD. Hence, such experimental results show that our method
successfully eliminated the expensive CiM and iM while maintaining the same accuracy
as the classifier.

4.4.4 Retraining Iterations & Classification Accuracy

Besides the huge memory efficiency, the fast training process is also considered as the
advantage of StrideHD. Fig. 5.5 shows the comparison during the iterative training.
The parameters setting of StrideHD is shown in Table 5.1, while the D = 10k for the
baseline HDC models. Compared to the baseline HD algorithms, our method requires
much fewer iterations to achieve saturated and stable classification accuracy. Since
the percentage of logic ‘1’ in the encoded hypervector of StrideHD is much less than
the conventional hypervecotor in baseline HD algorithms [24, 37, 68]. Therefore, the
update of the model can mainly focus on the more significant dimensions, which leads to

62 CHAPTER 4. BINARY HDC SYSTEM UTILIZING WINDOW STRIDING

Table 4.2: Classification Accuracy Comparison between StrideHD and baseline HDC
models for different datasets.

MNIST K-MNIST F-MNIST SMILES Average

Single-Pass

BinHD 80.48% 49.41% 70.54% 69.83% 67.57%

SecureHD 81.42% 51.01% 67.06% 75.33% 68.71%

DUAL 81.25% 51.16% 66.87% 75.17% 68.61%

StrideHD 94.52% 75.34% 77.65% 79.92% 81.86%

Improvement 13.47% 24.81% 9.49% 6.48% 13.56%

Iterative

BinHD 93.57% 69.16% 82.62% 88.17% 83.38%

SecureHD 94.87% 78.31% 83.06% 86.09% 85.58%

DUAL 93.01% 79.76% 81.32% 86.17% 85.07%

StrideHD 97.51% 90.14% 86.67% 98.42% 93.19%

Improvement 3.69% 14.40% 4.34% 11.61% 8.51%

efficient iterative retraining and fewer required iterations. Meanwhile, most traditional
HDC algorithms simply calculating the Hamming distance during the inference query.
Although the iterative learning mode of HDC tends to increase the similarity between
the class hypervectors and training hypervectors, some of the dimensions still changes
back and forth. The noisy information within each training hypervector are accumulated
within such dimensions, which might result in the performance fluctuations of the HDC
model. For our StrideHD, the bit-wise AND operation and sign function are included
during hypervector query, which provides a threshold to reduce the noisy information
during the retraining. For the single-pass training mode, the classification accuracy of
StrideHD is averagely 13.56% higher than the baseline HDC models. As an extension,
the iterative retraining procedure averagely provides an 11.33% accuracy improvement
to the single-pass StrideHD model. The comparison of classification accuracy is shown
in Table 4.2.

Overall, in comparison with the popular HDC models BinHD, SecureHD, and
DUAL, our StrideHD significantly reduced the memory cost for the inference by the
elimination of costly item Memory. Meanwhile, the fast and simplicity of the training
process avoids expensive iterative training while maintaining the same level of classifi-
cation accuracy.

4.4. EXPERIMENT 63

��������	

��	�����

��

��

��

��

��

��

��

�	

�

��

	��

 � � � � �
 �� �� �� �� �
 �� ��

�
�
�
�
�
�
�
�
��
	

����������	
��������

�����

��

��

��

��

��

��

��

��

��

��

���

� � � � � �� �� �� �� �� �� �� ��

�
�
�
�
�
�
�
�
��
	

����������	
��������

������

��

��

��

��

��

��

��

��

��

��

��

� � � � � �� �� �� �� �� �� �� ��

�
�
�
�
�
�
�
�
��
	

����������	
��������

����������	
��

��

��

��

��

��

��

��

�	

�

��

��

� � � � � �� �� �� �� �� �� �� ��

�
�
�
�
�
�
�
�
��
	

����������	
��������

��������	
��

��������

	�
��

��������

�
��

Figure 4.8: Comparison of Iterative Retraining for StrideHD and Baseline HD models
in different datasets.

4.4.5 Hardware Implementation

The hardware architecture and functionality of StrideHD and BinHD are designed via
RTL SystemVerilog. Then we use Synopsys Design Compiler to synthesize and report
the area and power consumption in 65-nm ASIC flow. All the synthesis are based on
minimum hardware area cost approach, and the clock period are set as 5 nanoseconds.
The memory part can be individually simulated with CACTI [99]. The memory type is
also chosen to be the main memory in 65-nm ASIC flow, which doesn’t contain any tag
array and every access will happen at page granularity.

Table 4.3 shows the comparison of StrideHD and the BinHD during inference in
terms of ASIC area and power consumption with the same level of classification accu-
racy (94.8%). The maximum propagation delay of StideHD and BinHD is 4.61 and 4.83
nanoseconds, respectively. There are no timing violations. Both StrideHD and baseline
are using the binary mode, which mostly exploits the hardware-friendly Hamming dis-
tance for similarity measurement.

The memory block takes over 96.9% of the area and 99.1% of the power consump-
tion in the StrideHD model. The gap in hardware cost between the proposed model and
the baseline mainly comes from memory efficiency. The key concept behind StrideHD
is to eliminate the costly memory blocks in HDC, i.e., the CiM and the iM blocks, which
provides significant energy consumption reduction. We aim for this HDC model to bring
benefits to customers, irrespective of the type of memory used in hardware implementa-
tion. Hence, to exclude the performance gap of the memory, we didn’t manually design
the memory part for StrideHD and synthesize it alone with the logic parts, but simulate

64 CHAPTER 4. BINARY HDC SYSTEM UTILIZING WINDOW STRIDING

Table 4.3: Hardware Performance Comparison.

Baseline StrideHD Reduction

Area (mm2) 31.88 3.22 9.9×
Power (mW) 3839 133.2 28.8×

it by the architectural simulation model CACTI individually. Both of the baseline HD
architecture and our StrideHD are compared using the same method to evaluate the pow-
er/area performance of the memory block, the accuracy of CACTI does not affect the
comparison of the hardware cost. Another reason is that the baseline requires the ma-
jority voting mechanism to generate the hypervectors while the encoding in StrideHD
only requires shifting and OR operations, which also contributes to the improvement of
hardware efficiency.

4.5 Conclusion

In this work, we proposed a novel HDC system StrideHD that utilizes window striding
to capture the locality feature of images. This framework supports using binary hyper-
vectors and achieves high accuracy with fast training speed and significantly low hard-
ware cost. Compared to the baseline BinHD and SecureHD utilizing iterative learning
strategy, our framework achieves a 27.6× and 8.2× reduction in memory cost with-
out hurting the accuracy in single-pass mode, while the iterative training can further
provide 8.7× memory efficiency. Under the same inference memory cost, the accu-
racy of single-pass mode StrideHD is averagely 13.56% higher than the baseline HDC.
As an extension, the iterative retraining mode of StrideHD averagely provides 11.33%
accuracy improvement to its single-pass mode, which can be accomplished in fewer it-
erations compared to the baseline HDC. Our hardware evaluation results demonstrate
that compared to BinHD, our StrideHD achieves over 9.9× and 28.8× reduction in area
and power, respectively.

The experiment result illustrates that the improvement of memory efficiency mainly
comes from the innovation of hypervecter generation. Our StrideHD architecture uti-
lizes window striding to capture the critical features in a distributed way. By proposing a
pseudo-random hypervector generator as the encoder in the HDC system, the input im-
ages can be converted to distributed hypervectors without the requirement of the costly
CiM and iM while maintaining high orthogonality, which enables efficient training/test-
ing in our HDC model. Since the Channel item Memory (CiM) and item Memory
(iM) usually occupy over 95% of the memory requirement of the whole HDC model,
the elimination of those parts leads to a significant improvement in memory efficiency.

4.5. CONCLUSION 65

The distribution of hypervectors based on features also constrains the noisy information
from the less important pixels or binary channels. On the other hand, there is a trade-off
between memory requirement and accuracy performance. Both our proposed method
and the baseline HDC model can achieve higher classification accuracy when increasing
the length of the hypervector, which also results in the expensive memory cost. Hence,
the improvement of memory efficiency leads to better accuracy performance.

Chapter 4 contains material from “DistriHD: A Memory Efficient Distributed Binary
Hyperdimensional Computing Architecture for Image Classification”, by Dehua Liang,
Jun Shiomi, Noriyuki Miura, and Hiromitsu Awano, which appears in Proceedings of
the 27th Asia and South Pacific Design Automation Conference (ASP-DAC), January
2022 [96]. The dissertation author was the primary investigator and author of this paper.

Chapter 4 contains material from “StrideHD: A Binary Hyperdimensional Comput-
ing System Utilizing Window Striding for Image Classification”, by Dehua Liang, Jun
Shiomi, Noriyuki Miura, and Hiromitsu Awano, which appears in IEEE Open Journal
of Circuits and Systems, May 2024 [100]. The dissertation author was the primary
investigator and author of this paper.

66 CHAPTER 4. BINARY HDC SYSTEM UTILIZING WINDOW STRIDING

Chapter 5

Robust HDC System for Voltage-scaled
Circuits

5.1 Introduction
The emergence of the Internet of Things (IoT) has led to a copious amount of small con-
nected edge-oriented devices and systems [9]. Many of these devices need to perform
classification tasks such as speech recognition [69], activity recognition [39,70,74], and
image classification [64, 73, 90, 91, 96]. However, most of these small edge-oriented
systems do not have the sufficient computing power to accomplish the training process
of sophisticated classification algorithms such as Deep Neural Networks (DNNs) indi-
vidually. Even sending the data to a powerful cloud platform to perform tasks, there are
still transmission delays and privacy security issues. For example, in health care mon-
itoring, we often require learning algorithms to have real-time control of the patient’s
daily behavior, speech, and bio-medical sensors. Sending all data points to the cloud,
cannot guarantee scalability and real-time response, which is often undesirable due to
privacy and security concerns [24]. Hence, utilizing the cloud computing platform to
run the learning algorithm, and then downloading these well-trained models back to
edge-oriented systems is another efficient solution.

For practical implementation in real-life applications, energy consumption is one of
the key issues in today’s power-constrained edge-oriented systems. Ref. [47] points out
that the energy consumption of LSI circuits can be minimized if the supply voltage is
downscaled to the sub-threshold region. For example, the minimum energy consump-
tion can be typically found below a 400 mV supply voltage for a microprocessor [101],
or an FFT processor [102]. However, the aggressive voltage decrease also involves an
increase in the circuit delay and raises the possibility of functional failure due to process
variation [55, 56]. Meanwhile, today’s machine learning platforms have major robust-
ness issues dealing with insecure and unreliable memory systems. In traditional data

68 CHAPTER 5. ROBUST HDC SYSTEM FOR VOLTAGE-SCALED CIRCUITS

representation, when the circuit failure occurs in the memory systems, it may lead to
the flipping of the exponent or most significant bits. Such an issue can increase the
weight value to extremely large, thus changing the prediction result of machine learning
models. Prior work [103] showed how a few bit flips on the DNNs model can result in
a major change in the prediction result. Unfortunately, most existing learning solutions
are sensitive to memory functional failures induced by possible noise, bit-flip attacks, or
voltage scaling. To solve these new issues, the demand for a more lightweight algorithm
with sufficient accuracy and ultra robustness is crucially raising.

To closer model the human brain, many researchers proposed HyperDimensional
Computing (HDC) as an alternative computing method, which mimics important brain
functionalities towards energy-efficient and noise-tolerant computing paradigm. HDC
is motivated by the observation that the human brain operates on high-dimensional rep-
resentations of data [104]. It performs computation on ultra-wide words, which can be
considered as very high-dimensional vectors, or hypervectors. HDC works based on the
existence of a huge number of hypervectors that can be combined using well-defined
operations. The mathematics governing the high dimensional space enables HD to be
easily applied to different learning problems. The first step in HD computing is to en-
code/map data points from the original domain to the high-dimensional space. During
the training phase, HD combines the encoded hypervectors to generate a hypervector
representing each class. The classification task at inference performs by checking the
similarity of an encoded test hypervector with all trained classes. The HDC system
exploits a redundant and holographic representation, ensuring all bits have the same im-
pact on computing, which endues the model with potentiality against serious memory
failure [39].

To overcome the performance degradation induced by voltage scaling while guaran-
teeing edge-oriented systems for long-term operations, a dependable computing sys-
tem is one of the potential solutions. In this work, we further extend the Depend-
ableHD [105] to the second version DependableHDv2, which guarantees the operations
in sub-threshold voltage regions where even a part of memory cells can not correctly
operate due to process variation. We achieve a significant robustness improvement with
no extra inference hardware cost. The novelty of our proposed framework is to intro-
duce the concept of margin enhancement during the retraining and utilize random noise
injection as well as dimension-swapping techniques to improve the robustness of HDC
systems. Such a strategy is capable of application and robustness improvement in most
existing state-of-the-art HDC algorithms. The main contributions are listed below:

• Propose margin enhancement and random noise injection techniques to improve
the robustness of HDC systems without any extra inference hardware cost.

• To address the stuck errors induced by aggressive voltage scaling in memory cells,
a dimension-swapping technique is proposed. By the equivalent structure trans-

5.2. PROPOSED METHOD 69

Si
m

ila
rit

y

QueryTesting
Data

En
co

di
ng

Training
Data

Class 1

Class 2

Class k

In
iti

al
 T

ra
in

in
g

A
rg

so
rt

Margin Enhancement +

Random
Noise

Injection

Counter Quantized Model

3
4

5

8

7

1 DependableHDv2 Learning Framework

2

Retraining6

Figure 5.1: Overview of DependableHD (v2) framework.

formation in HDC systems, the valid stuck-at errors can be changed into invalid
stuck-at errors, which provides higher robustness for the HDC models.

• We further extend the DependableHD framework to the second version, called
DependableHDv2, which supports the systems to tolerate the serious memory
failure induced by aggressive voltage scaling. In addition to the margin enhance-
ment and the random noise injection techniques supported by DependableHD,
DependableHDv2 employs a dimension swapping technique which aims at han-
dling the stuck-at errors induced by aggressive voltage scaling in the memory
cells. Under the 8% memory stuck-at error rate, the experimental result shows
that our proposed HDC framework exhibits a 2.42% accuracy loss on average,
which corresponds to a 14.1× robustness improvement.

• The hardware evaluation shows that the supply voltage of our systems can be
reduced from 430mV to 340mV for both item Memory and Associative Memory
in HDC, which provides a 41.8% energy consumption reduction.

5.2 Proposed Method
In this section, we propose the DependableHDv2, which is a combination of three tech-
niques: Fig. 5.1 (❼) margin enhancement, Fig. 5.1 (❽) random noise injection and
Fig.5.6 dimension-swapping. The margin enhancement and random noise injection
techniques mainly focus on the optimization of the model retraining strategy, which
does not require any extra hardware cost during the inference. These two techniques can
be simultaneously applied to most state-of-the-art HDC frameworks. They are suitable
for both temporary memory errors (e.g., bit-flipping attacks) and permanent memory

70 CHAPTER 5. ROBUST HDC SYSTEM FOR VOLTAGE-SCALED CIRCUITS

Label

A
rg

so
rt

Correct
Incorrect

Correct
Risky

Retraining

if if

Margin Enhancement Baseline Retrain67

Figure 5.2: Overview of Margin Enhancement technique during Retraining.

errors (e.g., bit cells stuck-at errors), which improves the robustness of HDC models
in a universal way. As for the dimension-swapping technique, it particularly aims at
handling the stuck-at errors induced by voltage scaling in memory cells.

5.2.1 Margin Enhancement

In HDC classification, the similarity δr of target category r is supposed to be the high-
est one when the prediction is correct. The conventional HDC retraining focuses on
updating the model when the prediction is mismatched to another incorrect label l. By
adding/subtracting this mismatched training hypervector to the target/predicted class
hypervector, the similarity δr and δl is expected to get higher/lower. Once these two
similarity is modified to δl − δr > 0, the prediction is successfully recorrected by the
traditional retraining. However, the main challenge is that when memory failures arise
in the HDC models due to voltage scaling, all the similarity measurements will be af-
fected and result in bias to some extent. Such similarity bias may lead to a change in
sorting results, especially for those two key similarities δl and δr. Once they are offset
to δl − δr < 0, the prediction is mismatched due to the memory failure and eventually
resulting in classification performance loss.

For the retraining in our proposed DependableHDv2, instead of naively modifying
the mispredictions as Fig.5.2(❻), we propose margin enhancement (❼) which temps to
modify the wrong predictions and risky correct predictions. The encoded hypervector
of each training sample is created as

⇀

H, and then the corresponding similarity with the
j-th integer class hypervector δ j = δ (

⇀

H,Q j) is checked. Similarly, take δl and δr as the

5.2. PROPOSED METHOD 71

Figure 5.3: Impact of Margin Enhancement technique during Retraining.

similarity for target label l and the highest similarity within all incorrect classes.

δl−δr = δl−Max(δincorrect). (5.1)

We define the margin enhancement level as M for the HDC system with D dimensions.
When 0< δl−δr <M/D, we consider the distinction for the target label l is insufficient,
which means the prediction is risky. In such a case, the counter class hypervectors C
are required to be updated. Mathematically, the retraining process can be performed as
Eq. (2.8). In this way, the prediction margin δl−δr tends to enlarge during the retraining
phase, which might change the risky predictions into correct and safe predictions.

Figure 5.3 shows an example of baseline binary HDC and applying margin enhance-
ment technique, under 0% and 20% memory error rate, respectively. In this case, both
of these two models are utilizing hypervectors with binarized elements, while the Ham-
ming distance is considered as the similarity metric. From Fig. 5.3 (a) and Fig. 5.3 (b),
we found that even though the baseline HDC algorithm and DependableHDv2 achieve
similar accuracy under 0% memory error, the probability distribution of prediction mar-
gin is obviously changed. Not only improving the average value of the prediction mar-
gin but also increasing the standard deviation. Therefore, the number of risky samples is
sharped reduced from 27.6% to 13.5%. As shown from Fig. 5.3 (a) to Fig. 5.3 (c), when
the memory failure occurs, a large number of risky predictions could be affected and

72 CHAPTER 5. ROBUST HDC SYSTEM FOR VOLTAGE-SCALED CIRCUITS

Label

A
rg

so
rt

Random Noise
Injection

8

1 0 1 1

1 1 1

0 10

0

0 0

0 0

0

0

0

8 Random Noise Injection

-5

-5

+1

1 0 0 1

0 1 1

1 10

0

0 0

1 0

0

1

0

-1

-7

+37

8-bits integer

Figure 5.4: Overview of Random Noise Injection technique during Retraining.

��

��

��

��

��

���

� �� �� 	� �� ��� ���

�
�
��
�
�
��
�
�
	

��
�

�
��
	�
�
�

��
������

��������	

������������

��������

�����������

��

��

��

��

��

� � �� �� �� ��

�
�
��
�
�
��
�
�
	

��
�

�
��
	�
�
�

	
��

����

��������	

Figure 5.5: Validation Accuracy during iterations.

became misprediction. Hence, the classification accuracy performance sharply drops
down from 95.73% to 75.94%. On the other hand, the risky samples are much less in
DependableHDv2 model. Therefore, the bias of similarity results can be tolerated by
the HDC system, resulting in a significant accuracy improvement compared with the
baseline under 20% memory error rate.

Unlike the previous research [24, 39] focusing on the modification of learning rate,
this margin enhancement turns to the optimization of the selected samples during re-
training phase. With the utilization of risky samples, the HDC model tends to learn
the distinguishing information between risky prediction, resulting in higher robustness
against the misprediction induced by memory failures.

5.2.2 Random Noise Injection

Since the memory failures or bit-level attacks arise during the inference for edge-
oriented systems, the integer class hypervectors Q are affected, especially for the most
serious bit stuck-at errors. Therefore, we propose random noise injection during the
retraining phase, as shown in Fig. 5.4 (❽). Assume the hypervector Q has D dimensions
with m-bits elements, which requires m ·D bits of memory to store the information. We
define R as the random noise injection level, which represents the percentage of memory
stuck-at errors due to random noise injection. Hence, the readout data of m ·D ·R bits

5.2. PROPOSED METHOD 73

1000 00

0001 11

0100 00

0101 10

0110 00

#1 #2 #d

0000 00

0000 11

0100 01

0101 10

0100 00

#1 #2 #d

10

00

01

01

01

#2

00

01

01

01

10

#1

00

11

00

11

00

#d

m-bits precision

k classes

Voltage
Scaling

Dimension
Swapping

Valid stuck-at error Invalid stuck-at errorNo error

2→1
d→2
1→d
...

Figure 5.6: Overview of Dimension-swapping technique.

memory are stuck-at logic 1 or logic 0, resulting in various biases of data in the HDC
models. For each iteration, the random noise is injected into the ideal class hypervectors
independently. This process aims at simulating the similarity bias caused by memory
failure when it performs the inference query.

Figure 5.5 shows the validation accuracy performance of applying random noise in-
jection in DependableHDv2 for MNIST and ISOLET datasets. Similar to the dropout
layer in the neural network, this random noise injection technique not only helps the
HDC models for robust learning but also addresses the overfitting issue, which con-
tributes to faster convergence and slightly higher saturation accuracy during the retrain-
ing.

Note that for improving the robustness against the memory errors in a more general
way, the noise is required to be randomly injected into the model for each training
epoch. And the memory failure occurrence address needs to be shuffled after each
iteration. Otherwise, when injecting the fixed noise into the memory cells, i.e., the
positions/addresses of memory cells with flipping errors are fixed, the HDC model data
in the corresponding positions can not be effectively modified by iterative learning. The
bits with fixed error tend to become the trap for HDC retraining, which results in a
slower convergence and poor saturation accuracy.

5.2.3 Dimension-swapping

Due to the utilization of hypervectors, the superior parallelism characteristics provide
the HDC model with a unique way to handle the stuck-at errors induced by voltage
scaling. Under low voltage operation, SRAM cells may suffer from functional fail-
ures (under parameter variations) due to negative read SNM [106] and negative write
margin [107]. Since the read SNM and write margin have conflicting design require-
ments [108], we can ignore the probability that both have negative values simultane-
ously for the SRAM cells [109]. Applying the aggressive voltage scaling to SRAM
cells, the functional failures mainly performs as stuck-at errors, which results in the
accuracy performance degradation.

74 CHAPTER 5. ROBUST HDC SYSTEM FOR VOLTAGE-SCALED CIRCUITS

Regardless of the write-in data, the readout data for a memory cell remains stuck-at
logic 0 or logic 1. Such memory functional failures can be considered as stuck-at-0
errors and stuck-at-1 errors. When it comes to the implementation of the HDC models,
if the ideal write-in data is identical to the readout data, e.g., write-in logic 0 for the
memory cells with stuck-at-0 errors, such stuck-at errors are invalid. Otherwise, when
the memory cells with stuck-at errors are assigned to store the data with different types,
e.g., write-in logic 0 for the memory cells with stuck-at-1 errors, it is considered as valid
stuck-at errors, which is the main reason for performance degradation.

Hence, to handle the stuck-at errors induced by voltage scaling in memory cells,
our target is to change the valid stuck-at errors into invalid stuck-at errors. As shown
in Fig. 5.6, after the assignment of base hypervectors and the training of class hyper-
vectors, the swapping between any two dimensions for all the base hypervectors and
class hypervectors can be considered as an equivalent structure transformation. Thanks
to such characteristics, we can search the dimension with appropriate ideal data and
equivalently swap the data of the corresponding two dimensions, which can partially
change the valid stuck-at errors into invalid stuck-at errors.

Assuming we plan to apply the dimension-swapping technique within d dimensions
and m-bits precision. The first step is to detect the locations for stuck-at-0 errors and
stuck-at-1 errors. We define these locations with stuck-at errors as error matrices E0
and E1. Based on the locations of stuck-at errors and the ideal HDC model with d
dimensions, we need to determine the new order of dimensions for the HDC model.
Each dimension of the ideal HDC model can be considered as the candidate dimension
for fitting the stuck-at errors. The dimensions of error matrices with serious stuck-at
errors, e.g., high error rate, can be considered as target dimensions with high priority.
On the other hand, the dimensions of error matrices with fewer stuck-at errors can be
handled by limiting candidate dimensions. Based on such priority, we can swap the
corresponding d dimensions of the base hypervectors and the well-trained class hyper-
vectors. Repeat the operations for the next d dimensions until the dimension-swapping
is applied to the whole HDC model. After the equivalent structure transformation, the
percentage of valid stuck-at errors can be reduced.

Note that the dimension-swapping technique is not suitable for the HDC model [42,
104] with shifting (permutation) operations during the encoding. The detailed hardware
implementation of dimension swapping is described in Subsection. 5.3.4.

5.3 Architecture of DependableHDv2

The hardware architecture of DependableHDv2 mainly consists of four different mod-
ules: memory blocks, encoding modules, nearest distance searching modules, and
dimension-sorting modules.

5.3. ARCHITECTURE OF DEPENDABLEHDV2 75

5.3.1 Memory Blocks

In most HDC frameworks, the item Memory (iM) blocks for hypervectors encoding and
the Associative Memory (AM) for the class hypervectors storage are both necessary. For
the implementation of iM, the Non-Volatile Memory (NVM), combination circuits, and
SRAM circuits are all considered as candidates in the previous work [105]. On the other
hand, the AM mainly utilizes SRAM or DRAM for hardware implementation, which
depends on the memory capacity requirement. As for DependableHDv2, we choose
SRAM circuits to implement iM and AM, which share a unified supply voltage source
for energy efficiency. Unlike the previous DependableHD [105] that only apply the
voltage scaling in AM, DependableHDv2 further applies the voltage scaling to both of
these two memory blocks, which brings more challenges for the HDC system robustness
requirement. Meanwhile, utilizing SRAM leaves room for the edge-oriented device to
apply to multiple tasks.

5.3.2 Encoding Modules

Our approach stores all base hypervectors in the item Memory (iM) blocks. After access
to the feature values in the original domain, DependableHDv2 multiplies each feature
value with the base hypervectors. This process can perform in parallel for all features.
The results of multiplications are accumulated using D counter blocks, which are then
further applied to the Cosine function circuits [110, 111] if the elements are in floating-
point format. In this way, an encoded hypervector with D elements as well as corre-
sponding precision is generated.

5.3.3 Nearest Distance Searching

In the inference and dimension-swapping process, the nearest distance searching for
similarity measurement is required. For the HDC model with multiple bits integral or
floating-point elements, the similarity check is performed using Cosine metric. When
the elements are in binary format, the similarity check performs using Hamming metric.
Each row computes the distance of a query and class hypervector. A counter/accumu-
lator block is located at the right side of the array, which aims to count/accumulate the
number of mismatches in each class. Finally, a tree-based comparator block identifies a
class with the minimum distance.

5.3.4 Dimension Sorting Modules

Due to the process variation, the locations of functional failures under low supply volt-
age depend on chips by chips. For the implementation of dimension-swapping tech-

76 CHAPTER 5. ROBUST HDC SYSTEM FOR VOLTAGE-SCALED CIRCUITS

niques in an offline way, we perform this process in the following steps:

Step 1: Under the target supply voltage, write all logic 1s into the Associative Memory
(AM) block for the ideal HDC model with k categories, m-bits precision, and d dimen-
sions. Then store the readout as an error matrix E0 ∈ {0,1}k×m·d , which marks the
locations of stuck-at-0 errors with logic 0s. Similarly, write all logic 0s into the mem-
ory blocks and get the error matrix E1 for marking the locations of stuck-at-1 errors.
Assuming the ideal class hypervectors of the HDC model as Q= {Q1, ...,Qd}, which is
also considered as the candidate dimensions.

Step 2: To determine the new order of these d dimensions, we need to calculate the
fitting priority of dimensions with errors. Count the number of stuck-at errors for each
dimension. With more stuck-at errors in one dimension, more challenging to find the
dimension with appropriate memory data that fits the stuck-at errors, which represents
a higher priority to be fit.

Step 3: For the dimension with the highest fitting priority, store this index indexT in the
list T. Search the dimension with the most appropriate memory data from the candidate
dimensions Q, and store its index indexF in the list F.

Step 4: Based on the list T and F, we got the information that the ideal HDC model
should move the indexF -th dimension data to the indexT -th dimension: QindexF →
QindexT . Hence, the indexF -th dimension should be removed from the candidate di-
mensions Q, while the indexT -th dimension should be removed from the error matrices
E0 and E1.

Step 5: Repeat Step 2 ∼ 4 until the swapping operations for all d dimensions are de-
termined, with the information stored in the list T and F. Apply the same swapping
operations to both the ideal HDC model in AM and the base hypervectors in iM.

In such a dimension-sorting module, the dimension-swapping technique is applied to
the d dimensions of the HDC model. This process can perform for all D dimensions se-
quentially. Note that for the SRAM cells after fabrication, the location of the functional
failures are assumed to be fixed under a fixed PVT condition. Hence, under the tar-
get supply voltage, we can perform the dimension-sorting modules to change the valid
stuck-at errors to invalid stuck-at errors in those fixed SRAM cell locations. Similarly,
if the customers are looking for the application of the dimension-swapping technique
when facing the functional failures from different temperature, the dimension-sorting
modules should be activated under the target temperature condition. By changing the
valid stuck-at errors to invalid stuck-at errors, such an equivalent structure transfor-
mation helps the model adapt to the specific stuck-at errors under the target condition
(supply voltage and temperature) in each chip.

5.4. EXPERIMENT 77

5.4 Experiment

5.4.1 Experimental Setup

The performance and robustness comparison is estimated with six popular datasets:
HAR [70], ISOLET [69], MNIST [64], optdigits [112], Fashion-MNIST [98], and
Kuzushiji-MNIST [97]. For a comprehensive evaluation of different techniques in our
DependableHDv2, We firstly study the impact of different key parameters, e.g., the mar-
gin enhancement level M, random noise injection level R, and the range of dimension-
sorting module d for our DependableHDv2 system. We evaluate the performance of
DependableHDv2 and the baseline HD algorithm [39] in both software and hardware.

In software, both of these frameworks are written in Python and run on the Intel
Core i7 7600 CPU. All the memory failures are set as stuck-at errors, which means the
readout data for a memory cell remains stuck-at logic 0 or logic 1. In order to evaluate
the performance of HDC model in the low voltage region, the bit cell error patterns
of SRAMs in the unit are assigned to be uniformly distributed throughout the mem-
ory array in the simulation [78]. The retraining continues for multiple iterations until
the validation accuracy has small changes during the last few iterations. We randomly
inject the stuck-at errors for 1000 times to explore the robustness of the well-trained
models. Note that unlike the previous work [105] only evaluating the functional failures
in AM, we are injecting the stuck-at errors into both iM and AM, which brings higher
requirement of robustness.

In hardware, we manually design an SRAM with 32×128 bits capacity in 65nm
commercial technology using logic process. The functional failure probability of a sin-
gle SRAM cell are measured based on the bitcell’s static noise margin from DC Sweep
Analysis, for 10,000 times Monte Carlo simulation using HSPICE from Synopsys Inc.
in a TT (Typical-Typical) condition. The simulation varies device dimensions (gate
oxcide thickness, threshold voltage, and so on). We found that writing failure mainly
dominates in this process technology. In terms of inference energy consumption, the
similarity measure operations are the most dominating, which require the memory read-
out operation. Therefore, we will use the energy consumption of SRAM for each clock
cycle to evaluate the hardware performance of the HDC systems. We utilize testing
patterns to sequentially get access to the SRAM, and evaluate the energy consumption
based on the post layout netlist utilizing FineSim transistor-level circuit simulator from
Synopsys Inc. in a TT condition.

5.4.2 Impact of Voltage Scaling, Dimensionality and Precision

As shown in Fig. 5.7, the memory error rate sharply increases with the supply voltage
downscaling. For a manually designed SRAM in 65nm commercial technology, we

78 CHAPTER 5. ROBUST HDC SYSTEM FOR VOLTAGE-SCALED CIRCUITS

Figure 5.7: Impact of VDD. Figure 5.8: Impact of D and precision.

measured the memory error rate of a single SRAM cell based on the bitcell’s SNM from
DC Sweep Analysis, for 10,000 times Monte Carlo simulation. When the VDD is scaled
down to 400mV, a 4.26% memory stuck-at error rate is measured. If we further reduce
the VDD to 300mV, the memory error rate explosively increases to 19.26%.

To comprehensively support the requirements for all kinds of platforms and appli-
cations, the hypervector representation of HDC systems include fp16, int16, and binary
formats. Increasing the number of dimensions or precision of elements results in im-
proving the classification accuracy. However, increasing dimensional also results in an
memory capacity and energy efficiency issue. Fig. 5.8 shows the accuracy comparison
between the HDC systems with elements in different representations. The results indi-
cate that under the low dimensionality D = 1K, the int16 HDC model provides higher
accuracy compared to the binary HDC model, while the fp16 model shows the same
performance compared to int16 model. When increasing the number of dimension D
= 5− 7K, the binary and int16 model achieves similar maximum accuracy, while the
fp16 model provides superior performance.

5.4.3 Margin Enhancement Level

The margin enhancement level (M) significantly impacts the accuracy and robustness
of DependableHD system. The evaluations of the int16 model for MNIST dataset with
D = 3K, is shown in Fig. 5.9. During the experiment, the stuck-at errors are randomly
injected into all the memory blocks, including both the item Memory block for base
hypervectors and the Associated Memory block for class hypervectors.

On one hand, with the increase of M in the range of 0 ∼ 120, the saturation accu-
racy is slightly improved. The enhancement of prediction in risky samples benefits the
retraining of DependableHDv2 model. On the other hand, when the M is too large, the
number of samples treated as risky explosively grows. And the percentage of mispre-
diction samples that can update the model is declined, which may result in overfitting
issues. Hence, there is a trade-off between the robustness and convergence accuracy
performance promoted by this margin enhancement technique.

In terms of robustness, using a large M represents using more samples with risky

5.4. EXPERIMENT 79

����

����

����

����

����

����

� �� 	�
� ��� ��� ���

�
��
�
��
��
��
	

���������	��
����
��������

�

�

�

�

�

�

���� ���� ���� ���� ���� ���� ����

�
��
�
��
��
��
	

��
�

���������	

�
����
����

��������

�	
�

�	��

�	
��

�	���

Figure 5.9: Impact of Margin Enhancement Level M.

predictions for retraining the model. This results in the expansion of the prediction
margin, which significantly reduces the percentage of risky predictions and eventually
contributes to the decrease in accuracy loss. The margin enhancement technique is ca-
pable of the HDC model with different element precision, which is shown in Table. 5.2.

5.4.4 Random Noise Injection Level

Figure. 5.10 shows the impact of random noise injection level (R) for MNIST dataset
in int16 elements precision with D = 3K. During the training and inference phase, the
stuck-at errors are randomly injected into all the memory blocks, including both the iM
block and the AM block.

Similar to the dropout layer in the neural network, this random noise injection tech-
nique not only helps the HDC models for robust learning. With the increase of R in
the range of 0∼ 8%, the random noise addresses the overfitting issue for HDC models,
which contributes to a slight improvement in saturation accuracy. However, when the
R is too large, the encoded hypervectors are polluted by the injected noise during the
retraining, which limits the maximum accuracy. Hence, there is also a trade-off between
the robustness and convergence accuracy.

In terms of robustness, using a large R can simulate serious functional failure during
the retraining, which helps the model to adapt the functional failure is a general and
universal way. As shown in Fig. 5.10, the robustness of HDC system is improved with
the increase of R. Note that both margin enhancement and random noise injection tech-

����

����

����

����

����

����

�	 �	 �	 �	 �	
�	
�	

�
��
�
��
��
��
	

���������	
����
���	����

�

�

�

�

�

�

���� ���� ���� ���� ���� ���� ����

�
��
�
��
��
��
	

��
�

���������	

�
����
����

��������

�	
�

�	��

�	
�

�	�
�

Figure 5.10: Impact of Random Noise Injection Level R.

80 CHAPTER 5. ROBUST HDC SYSTEM FOR VOLTAGE-SCALED CIRCUITS

niques aims at exploring the robustness of different HDC models. Hence, the optimal
rate of random noise injection also depends on the dataset, model size (dimensionality of
hypervectors), element precision, and margin enhancement level M. The random noise
injection technique is also capable of the HDC model with different element precision,
which is shown in Table. 5.2 in detail.

5.4.5 Performance of Dimension-swapping

Figure. 5.11 shows the performance of dimension-swapping techniques. This technique
aims at changing the valid stuck-at errors into invalid stuck-at errors. The performance
of the dimension-swapping technique is determined by two parameters, the range of
dimension-sorting module d and the number of stuck-at errors in each dimension.

Take the binary DependableHDv2 model with D = 10K for the MNIST dataset as an
example, when the stuck-at errors are randomly injected into the AM block, we apply
the dimension-swapping techniques. Fig. 5.11 (a) shows the reduction of valid stuck-
at error rate achieved by different ranges of dimension-sorting d. With the increase of
dimension-sorting range d, each dimension-sorting module contains more candidate di-
mensions to fit the stuck-at errors. The sufficient candidate dimensions can significantly
reduce the valid stuck-at error rate. When d = 32, the percentage of valid stuck-at errors
sharply decreases from 10% to 2.54%, which achieved a 74.6% reduction. Meanwhile,
when the number of stuck-at errors in each dimension is increasing, it gets more chal-
lenging to find the appropriate candidate dimensions to fit the stuck-at errors. With the
same range d = 32, the original 20% stuck-at error rate was only reduced to 9.06% after
applying dimension-swapping technique, which is a 54.7% reduction and results in the
accuracy improvement as shown in Fig. 5.11 (b).

Note that number of stuck-at errors in each dimension differs with the applications.
For example, if the target task is changed from MNSIT dataset with 10 categories to
ISOLET dataset with 26 categories, the number of stuck-at errors in AM block also
increases. If the representation of element is changed from binary to int16 format, the
number of stuck-at errors in each dimension is expected to increase by 16×, which could

��������

����	��

�

�

��

��

��

��

��

� � �� �� �� �� ��

�
��
�
��
�
�	

�

��
�

�
�
�
�
�
�

�

���������	�
���
��
����
�

������������������	
��
��
���������
�����

����

���

���

��	

����

����������
����������

����������
����������
����������

����������
����������

���������
���������
���������

���������
�������������������

��������������������
��������������������

����������
����������
����������
�������������������

���������

���������
���������
���������

����������
����������
����������

����������
��������������������

����������
����������

���������
���������
���������

���������
���������

��

��

��

��

��

��

��

��

��

��

��� ��� ��� ��� ��� ��� �	� ���

�
��
�
��
��
��
	

����������	
���
���

������������	�
��
��	����
����	����������

����������
���������� ��������

�	

��

���	

Figure 5.11: Impact of Dimension-swapping technique.

5.4. EXPERIMENT 81

Table 5.1: DependableHDv2 Parameters Setup.
mnist, optdigits isolet har k&fmnist

fp16 int16 bin fp16 int16 bin fp16 int16 bin bin
D 3K 3K 10K 3K 3K 10K 3K 3K 10K 20K

+M 120 120 240 200 200 240 100 100 60 240
+R 6% 8% 6% 1% 1% 0.5% 4% 4% 2% 6%
+S – – 16 – – 16 – – 16 16

affect the valid stuck-at error rate reduction. Hence, the dimension-swapping technique
mainly focuses on optimization for the binary HDC models.

The dimension-swapping technique can be achieved both online and offline. To
evaluate the hardware overhead when users require to perform in edge-oriented devices,
we use Synopsys Design Compiler to synthesize and report the area consumption of
our approach in a 65-nm ASIC flow. The hardware cost of memory (iM and Am) was
individually simulated using CACTI, which is an integrated memory access time, area,
leakage, and power model. Since the dimension-swapping operations are performed
before writing the well-trained DependableHDv2 model into voltage-scaled devices for
once, the area overhead becomes the main concern. For the binary DependableHDv2
model with D = 10K, the area overhead consumed by the dimension-sorting module
with d = 32 is 3.04% compared with the AM block, which is negligible compared
with the total memory blocks (< 1%). Though a larger d requires sorting within a
wider range and increases the computational cost for the training, it is still considered a
practical implementation for edge-oriented devices.

5.4.6 DependableHDv2 Robustness
As observed in Subsections 5.4.3 and 5.4.4, when taking the margin enhancement level
M and random noise injection level R, there is a trade-off between the convergence ac-
curacy performance and the model robustness. The dimension-sorting range d also af-
fects the performance of the dimension-swapping technique. For the DependableHDv2
implementation, we choose the compromised parameter for competitive accuracy and
sufficient robustness, which is shown in Table. 5.1. In terms of the training cost, the
DependableHDv2 requires 1.18× training time compared with the baseline on average.
Since the training process can be individually performed on the cloud, a slight increase
in training cost is acceptable for edge-oriented systems.

The comparison of robustness is shown in Table 5.2 (for MNIST, ISOLET, and HAR
datasets). We comprehensively evaluate the robustness improvement from three key
techniques: Margin enhancement, Random noise injection, and dimension-Swapping.
Our experiment shows that under the 8% memory error rate, the DependableHDv2 ex-
hibits 2.42% accuracy loss on average, which achieves a 14.1× robustness improvement
compared to the baseline HDC solution.

82 CHAPTER 5. ROBUST HDC SYSTEM FOR VOLTAGE-SCALED CIRCUITS
Ta

bl
e

5.
2:

A
cc

ur
ac

y
L

os
s

C
om

pa
ri

so
n.

M
N

IS
T

IS
O

L
E

T
H

A
R

A
cc

L
os

s
St

uc
k-

at
E

rr
or

R
at

e
St

uc
k-

at
E

rr
or

R
at

e
St

uc
k-

at
E

rr
or

R
at

e

(%
)

2%
4%

6%
8%

2%
4%

6%
8%

2%
4%

6%
8%

FP
16

B
as

e
13

.2
1

24
.1

7
30

.8
4

37
.8

8
21

.9
0

25
.2

7
28

.6
7

29
.1

8
23

.5
7

30
.0

0
41

.2
1

46
.3

0

+M
0.

82
2.

20
4.

12
6.

96
2.

56
6.

27
8.

47
11

.0
4

0.
59

1.
01

3.
74

5.
03

+R
0.

70
1.

79
3.

45
5.

73
0.

81
2.

95
5.

15
8.

05
0.

25
0.

65
2.

07
4.

17

M
+R

0.
39

0.
87

1.
47

2.
34

0.
74

1.
57

2.
45

3.
43

0.
78

0.
91

1.
65

2.
90

2%
4%

6%
8%

2%
4%

6%
8%

2%
4%

6%
8%

In
t1

6
B

as
e

24
.3

9
41

.9
6

50
.9

4
57

.6
3

42
.3

9
51

.6
3

57
.5

1
61

.9
7

27
.0

8
48

.7
3

53
.2

6
56

.1
5

+M
0.

85
2.

16
4.

28
6.

93
5.

77
12

.3
8

19
.0

4
21

.6
5

1.
02

4.
79

9.
49

23
.3

7

+R
0.

53
1.

29
2.

17
3.

73
3.

51
9.

18
14

.1
3

19
.8

2
0.

73
1.

01
2.

26
2.

70

+M
+R

0.
33

0.
68

1.
07

1.
55

0.
53

1.
27

2.
24

4.
13

0.
26

0.
70

1.
21

2.
08

4%
8%

12
%

16
%

4%
8%

12
%

16
%

4%
8%

12
%

16
%

B
in

ar
y

B
as

e
1.

27
3.

63
6.

60
11

.4
1

1.
05

1.
81

2.
58

3.
72

5.
50

12
.4

3
16

.0
8

22
.6

2

+M
0.

73
1.

57
3.

22
5.

48
0.

25
0.

48
1.

28
1.

75
4.

80
9.

77
12

.8
1

19
.8

2

+R
0.

86
2.

29
4.

02
6.

63
1.

09
1.

85
2.

54
3.

73
4.

57
9.

58
8.

84
17

.5
4

M
+R

0.
64

1.
30

2.
43

3.
93

0.
69

1.
11

1.
75

2.
49

1.
76

5.
58

7.
38

10
.4

4

+S
0.

84
2.

13
3.

55
5.

66
0.

59
0.

91
1.

29
1.

71
3.

06
6.

07
6.

68
9.

02

M
+R

+S
0.

44
1.

06
1.

58
2.

39
0.

53
0.

83
1.

06
1.

47
1.

40
3.

49
4.

23
5.

15

5.4. EXPERIMENT 83

�������
�������

������
�������������

�������
�������
�������

�������
�������

�������
�������

�������
��������������

�������
�������
�������

�������
�������
�������

�������
�������������

������
�������
�������

�������
�������������

�������������
�������

��

��

��

��

��

��

��

��

��

��

��� ��� ��� ��� ��� ��� �	� ���

�
��
�
��
��
��
	

����������	
���
���

�����

����

��

��

���
������
������

�����

�������
�������

������
������

�������
�������

�������
��������������

�������
�������
�������

�������
�������

�������
��������������

��������������
�������

�������
�������������

������
�������
��������������

�������
������
�������������

�������

��

��

��

��

��

��

��

��

�	

�

��� ��� ��� �
� ��� ��� �	� ���

�
��
�
��
��
��
	

����������	
���
���

������
�������
�������

������
������

�������
��������������

�������
�������
��������������

�������
�������
�������

�������
��������������

�������
�������
��������������

�������������
�������������

��������������
�������������

������
�������
�������

��

��

��

��

��

��

��

�	

�

��

	�� ��� ��� ��� ��� �	� �
� ���

�
��
�
��
��
��
	

����������	
���
���

���

�������
�������������

������
�������
�������

�������
�������

������
������

�������
�������

�������
�������
�������

������
������

�������
�������

�������
�������

�������
�������

�������
��������������

�������
�������
�������

������
�������������

�������

��

��

��

��

��

��

��

�	

��

�

��
 �

 ��
 ��
 ��
 ��
 ��
 �	

�
��
�
��
��
��
	

����������	
���
���

���������

�������
�������

������
������

�������
�������

�������
�������

������
�������������

�������
�������
�������������

�������������
��������������

��������������
��������������

�������
�������
�������

�������
�������������

������

�������
�������

��

��

��

��

��

��

��

�	

��

�

��
 �

 ��
 ��
 ��
 	�
 	�
 	�

�
��
�
��
��
��
	

����������	
���
���

�
�����������

�������
�������

������
������

�������
�������

�������
�������

������
�������������

�������
�������
�������

������
�������������

�������
�������
��������������

��������������
�������

�������
��������������

�������
�������

������
������

�������
�������

��

��

��

��

��

��

��

�	

�

��

��	
		

	
�	
�	 ��	 ��	 ��	

�
��
�
��
��
��
	

����������	
���
���

���������������

Figure 5.12: Accuracy of Binary DependableHDv2 under different Supply Voltages.

5.4.7 Energy Consumption Reduction

Fig. 5.12 shows the comparison of performance under different supply voltages. De-
pendableHD utilizes the margin enhancement and the random noise injection techniques
to improve the robustness of the Baseline HD. DependableHDv2 is an improved version
of DependableHD employing the dimnesion swapping technique. Our evaluation shows
that DependableHDv2 averagely provides 91.73% accuracy when the supply voltage
of SRAM (including AM and iM) is downscaled to 340mV, which is significantly
higher performance as compared to the 83.73% accuracy achieved by the baseline HDC
model [39] and the 89.82% accuracy achieved by DependableHD [105]. All three tech-
niques (margin enhancement, random noise injection, and dimension-swapping) con-
tribute to robustness improvement.

Note that compared with the previous work [105], the DependableHDv2 supports
the application of voltage scaling in item Memory (iM), which usually consumes much
more capacity compared with the Associative Memory [96]. Though the functional fail-
ures in the iM bring the challenges of accuracy degradation, the total energy reduction
guarantees the edge-oriented system’s long-time operation and high energy efficiency.
As a combination of margin enhancement, random noise injection, and dimension-
swapping, the performance of DependableHDv2 is further improved. We utilize the
readout energy consumption per clock cycle of a 32x128 bits SRAM to represent the
energy consumption for HDC models. As shown in Table 5.3, downscaling the supply
voltage from 430mV to 370mV and 340mV can provide a 29.2% and a 41.8% energy

84 CHAPTER 5. ROBUST HDC SYSTEM FOR VOLTAGE-SCALED CIRCUITS

Table 5.3: Energy Consumption Comparison.

@Vdd Accuracy Energy Energy
Consumption Reduction

Baseline HD [39] 430mV 92.42% 0.93pJ –
DependableHD [105] 370mV 91.92% 0.66pJ 29.2%

DependableHDv2 340mV 91.73% 0.54pJ 41.8%

consumption reduction, respectively. A significant energy consumption reduction is
achieved for the inference phase.

5.5 Conclusion
This paper extends the novel HDC learning framework DependableHD [105] to the
second version DependableHDv2, which supports the systems to tolerate the memory
functional failures in the low voltage region with high robustness. After statistically
analyzing the impact of memory failures for HDC systems, we introduce the concept
of margin enhancement during the model retraining. Instead of the traditional retrain-
ing aims at correcting the missed predictions, our strategy also targets enhancing the
distinction when the predictions are correct but risky. Meanwhile, we propose random
noise injection during the model training for more robust learning. Based on the high
parallelism of HDC, we propose a dimension-swapping technique to handle the stuck-
at errors induced by voltage scaling in memory cells, which aims at changing the valid
stuck-at errors into invalid stuck-at errors.

Under an 8% memory error rate, the DependableHDv2 exhibits a 2.42% accuracy
loss on average, which corresponds to a 14.1× robustness improvement compared to
the state-of-the-art HDC system. The sufficient robustness enables the systems to oper-
ate even after scaling down the supply voltage from 430mV to 340mV, with negligible
accuracy loss. The aggressive voltage scaling strategy are applied to both item Mem-
ory and Associative Memory in HDC systems. The hardware evaluation shows that the
reduction of supply voltage provides a 41.8% energy consumption reduction. Such a ro-
bust and energy efficient learning framework is capable of improvement and application
in most existing state-of-the-art HDC algorithms without any extra inference hardware
cost, which equivalently guarantees the improvement of energy efficiency comes from
the near-threshold voltage computing.

Chapter 5 contains material from “DependableHD: A Hyperdimensional Learning
Framework for Edge-oriented Voltage-scaled Circuits”, by Dehua Liang, Hiromitsu
Awano, Noriyuki Miura, and Jun Shiomi, which appears in Proceedings of the 28th Asia
and South Pacific Design Automation Conference (ASP-DAC), January 2023 [105].

5.5. CONCLUSION 85

The dissertation author was the primary investigator and author of this paper.
Chapter 5 contains material from “A Robust and Energy Efficient Hyperdimensional

Computing System for Voltage-scaled Circuits”, by Dehua Liang, Hiromitsu Awano,
Noriyuki Miura, and Jun Shiomi, which appears in ACM Transactions on Embedded
Computing Systems, September 2023 [113]. The dissertation author was the primary
investigator and author of this paper.

86 CHAPTER 5. ROBUST HDC SYSTEM FOR VOLTAGE-SCALED CIRCUITS

Chapter 6

Summary

6.1 Summary of This Thesis

With the emergence of the Internet of Things (IoT), devices are generating massive data
streams. Running big data processing algorithms, e.g., machine learning, on edge de-
vices poses substantial technical challenges due to limited device resources. Compared
to the sophisticated machine learning method, the brain-inspired high-dimensional com-
puting paradigm are considered as promising alternative in terms of energy efficiency
and robustness, which is suitable for the resource limited scenario. As a novel comput-
ing paradigm, how to reduce the hardware cost while maintaining sufficient accuracy
performance on edge devices is still an open problems for circuit designers. The goal of
this thesis is thus to provide the strategies to design an energy efficient high-dimensional
computing paradigm on edge devices. In this thesis, we provide the solutions for high-
dimensional computing from different perspectives: arithmetic operations, memory us-
age, and robustness, which eventually leading to the pursuit of energy efficiency.

In Chapter 3, we discussed the bottleneck for the reservoir computing (RC) sys-
tems in several related papers, which is one of the typical high-dimensional computing
paradigms. Suffered from the huge memory usage and expensive arithmetic operations,
there was still gap between the RC concept to practical implementation on edge devices.
Therefore, this thesis propose a novel RC architecture EnsembleBloomCA, which uti-
lizes cellular automata (CA) and an ensemble Bloom filter to organize an RC system.
By adopting CA as the reservoir in the RC system, it can be implemented using only
binary operations and is thus energy efficient. The rich pattern dynamics created by
CA can map the original input into a high-dimensional space and provide more features
for the classifier. Applying the ensemble Bloom filters as the classifier, the features
provided by the reservoir can be effectively memorized. As the combination of these
two techniques, the novel RC architecture successfully eliminates all floating-point cal-
culation and integer multiplication. Our experiment result demonstrated that 43× and

88 CHAPTER 6. SUMMARY

8.5× reduction is achieved in terms of memory usage and power consumption, while
the accuracy performance is maintained.

Although the extreme energy efficiency is achieved in the first prototype with novel
RC architecture, the circuits designer’s target changes for variety application scenar-
ios. The high-dimensional computing paradigm are also expected to achieve not only
sufficient but also competitive accuracy performance, which has posed designers prob-
lems to balance the trade-off between different key indicators. In Chapter 4, we found
the similar issues should be tackled in hyper-dimensional computing (HDC), which are
also considered as high-dimensional computing paradigm. To alleviate the huge mem-
ory cost during encoding procedure in HDC (i.e., over 95% of the memory capacity
is consumed), we propose a novel HDC architecture StrideHD that utilizes the window
striding in image classification. It encodes data points to distributed binary hypervectors
and eliminates the expensive Channel item Memory (CiM) and item Memory (iM) in
the encoder, which significantly reduces the required hardware cost for inference. For
the improvement of accuracy on edge devices during inference, we provide the itera-
tive learning mode for the proposed HDC architecture. It also enables HDC systems
to be trained and tested using binary hypervectors and achieves very competitive accu-
racy performance. Our experiment result shows that the proposed HDC model achieves
extreme memory efficiency (27.6×) with acceptable accuracy performance under the
single-pass mode, while its iterative mode provides competitive performance (11.33%
classification accuracy improvement) and keeping the memory efficiency (8.7times im-
provement) for inference phase. The iterative retraining can be accomplished within
fewer iterations compared to the baseline HDC works.

Besides the trade-off between accuracy performance and hardware resource in high-
dimensional computing, the robustness issue are also arousing the attention of circuit
designers. As we commonly known, scaling down the supply voltage is a promising
approach to reduce the energy consumption of the circuits, while the aggressive voltage
scaling will pose designers several severe problems such as the performance variation
and functional failures. It is a potential solution to tolerate the voltage-scaling induced
functional failures by the superior robustness of the brain-inspired high-dimensional
computing paradigms. Therefore, we introduces the concept of margin enhancement for
model retraining and utilizes noise injection to improve the robustness in our proposed
HDC framework DependableHD, which is capable of application in most state-of-the-
art HDC algorithms. After analyzing the error patterns in voltage-scaled circuits, we
come up with a strategy to take fully advantage of the equivalent structure transforma-
tion in HDC architecture. We additionally propose the dimension-swapping technique,
which aims at handling the stuck-at errors induced by aggressive voltage scaling in the
memory cells. Our experiment shows that under 8% memory stuck-at error, the pro-
posed method exhibits a 2.42% accuracy loss on average, which achieves a 14.1× ro-

6.2. CLARIFICATION OF PROPOSED METHODS 89

bustness improvement compared to the baseline HDC solution. Our work also supports
the systems to reduce the supply voltage from 430mV to 340mV for both item Memory
and Associative Memory, which provides a 41.8% energy consumption reduction while
maintaining competitive accuracy performance.

6.2 Clarification of Proposed Methods

Prior research on DNNs reports that the energy consumption of the system with AI
application mainly comes from two perspectives: the memory and processing units.
On one hand, the scale of DNN models is sharply increasing. Table 6.1 shows the
memory requirement of the popular DNN models, while the last column represents
the accuracy performance of each DNN model in MNIST task. Millions of param-
eter need to be trained and stored in the memory (e.g., off-chip DRAM), while the
data movement usually dominates the energy consumption. On the other hand, DNNs
require massive numbers of multiply-accumulate (MAC) operations, which leads to a
huge amount of dedicated hardware resources and incurs a large energy consumption.
To alleviate the expensive energy consumption of the data movement and MAC op-
erations, many researches propose DNN accelerators utilizing computing-in-memory
(CIM) macro architectures to improve energy efficiency and maintain accuracy perfor-
mance. Table 6.2 shows the hardware cost comparison between DNN accelerators and
our proposed architectures. Here, we roughly assume the MobileNet V3 Small model
are fully implemented by different CIM macro accelerators, while impact in power and
area related to CMOS process is proportional. The accuracy performance comparison
is based on MNIST dataset. Thanks to the light-weight model and hardware-friendly
arithmetic operations in high-dimensional computing, our proposed EnsembleBloomCA
and StrideHD shows competitive performance in terms of power and area.

Table 6.1: Computational Characteristics and Accuracy Performance of Popular DNN
Models.

Models Parameters (M) Memory (MB) Accuracy (%)
VGG 16 [114] 138 527.8 99.04

AlexNet [5] 61.1 233.1 98.71
Resnet 18 [115] 11.7 44.7 99.05

EfficientNet B_0 [116] 5.29 20.5 97.84
MobileNet V3 Small [117] 2.54 9.8 98.35

MNASNet 0.5 [118] 2.22 8.6 93.55

EnsembleBloomCA 0.147 0.018 91.86
StrideHD 0.789 0.096 97.51

90 CHAPTER 6. SUMMARY

Table 6.2: Hardware Cost Comparison between DNN Accelerators and our Proposed
Architectures.

Architecture
Process

CIM Macro Total @(MobileNet, MNIST)
Power Area Memory Power Area Accuracy

(nm) (mW) (mm2) (KB) (W) (mm2) (%)
ISSCC’21 [119] 5 327 5.46 3072 32.71∗ 546.3∗

98.35%

ISSCC’24 [120] 14 4300 - 3000 16.2∗ -
ISSCC’24 [121] 28 5.5 1.41 16 3.369 853.6
ISSCC’19 [122] 8 39 5.5 1568 2.989∗ 421.2∗

ISSCC’24 [123] 28 98 3.8 513 1.872 72.59
ISSCC’21 [124] 28 19.4 1.9 206 0.923 90.39
ISSCC’24 [125] 22 13.13 8.2 8000 0.026∗ 16.28∗

EnsembleBloomCA 65 - - - 0.029∗ 0.065∗ 91.86%
StrideHD 65 - - - 0.025∗ 0.598∗ 97.51%

*Assuming a proportional impact in power and area related to CMOS process.

Summarizing the discussions so far, suitable edge-computing scenarios of the pro-
posed methods are clarified as follows:

• EnsembleBloomCA: Simple classification task. Take MNIST dataset as an ex-
ample, the proposed EnsembleBloomCA model can successfully eliminate all the
FP/integer arithmetic operations, supporting the hardware-friendly bit-wise oper-
ations for extreme energy efficiency. With around 18 KB memory usage, 91%
classification accuracy is achieved. Compared to existing methods, Ensemble-
BloomCA provides a 27.6× memory efficiency improvement. In conclusion, this
architecture and this design strategy are suitable for the scenarios with extremely
strict resource constrains.

• StrideHD: Medium task. This architecture supports element in fp16, int16, and
binary format. The wide range of element precision provides sufficient room for
the customers to select the appropriate strategy. The single pass mode training can
achieve acceptable accuracy performance, while the iterative training mode can
further provide 13% accuracy improvement. Even for the complicated dataset like
K-MNIST and F-MNIST, competitive accuracy performance is achieved while
maintaining 8.7× memory efficiency. In conclusion, this architecture and this
design strategy are suitable for the scenarios with limited resource and facing
complex datasets.

• DepedableHDv2: Medium task under unreliable environments. Take MNIST
dadaset as an exmaple, the proposed DepedableHDv2 model can tolerate more
than a 10% memory error. Exploiting this advantage, aggresive voltage down-

6.3. FUTURE WORKS 91

scaling can be applied to HDC systems. As a result, the energy efficiency can be
improved by 41.8% compared with exisitng methods. Note that both of margin
enhancement and random noise injection techniques in this model are focusing on
the retraining phase, which means it can be easily applied to other HDC architec-
tures simultaneously for robustness improvement. In conclusion, this architecture
and this design strategy are suitable for the scenarios with a extremely unreliable
and noisy situation.

6.3 Future Works
Currently, our three proposed architectures can be applied to different scenarios individ-
ually. If we are looking for the combination between the proposed methods, the key idea
of DependableHDv2 can be expected to apply to the EnsembleBloomCA architecture or
StrideHD architecture simultaneously.

On one hand, the current EnsembleBloomCA architecture mainly focus on the
single-pass training mode. For the further improvement of accuracy performance, it
is a potential solution to extend the single-pass mode training method to the iterative
mode. Since the key idea of DependableHDv2 locates on the optimization of traditional
iterative retraining process. Applying the retaining strategy from DependableHD, i.e.,
margin enhancement and random noise injection techniques, to the current Ensemble-
BloomCA architecture, the accuracy performance and model robustness are expected
to be improved. Note that such application of retraining strategy doesn’t require any
hardware cost for the inference phase.

On the other hand, the current StrideHD architecture shares similar iterative retrain-
ing strategy with other HDC models. It requires much less effort for the combination
of these two methods. With the utilization of hardware-friendly pseudo random hyper-
vector generator during encoding phase and robustness improvement during retraining
phase, the combination of StrideHD and DependableHDv2 is expected to achieve com-
petitive accuracy, high energy efficiency, and superior robustness.

92 CHAPTER 6. SUMMARY

Bibliography

[1] “Statista, artificial intelligence (ai) market size worldwide in 2021 with a forecast
until 2030 (in million u.s. dollars),” https://www.statista.com/statistics/1365145/
artificial-intelligence-market-size/, accessed: 2024-02-28.

[2] F. H. Sinz, X. Pitkow, J. Reimer, M. Bethge, and A. S. Tolias, “Engineering
a less artificial intelligence,” Neuron, vol. 103, no. 6, pp. 967–979,
2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0896627319307408

[3] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neu-
ral networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12,
pp. 2295–2329, 2017.

[4] P. Villalobos, J. Sevilla, T. Besiroglu, L. Heim, A. Ho, and M. Hobbhahn, “Ma-
chine learning model sizes and the parameter gap,” 2022.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Proceedings of the 25th International Confer-
ence on Neural Information Processing Systems - Volume 1, ser. NIPS’12. Red
Hook, NY, USA: Curran Associates Inc., 2012, p. 1097–1105.

[6] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considerations
for deep learning in nlp,” ArXiv, vol. abs/1906.02243, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:174802812

[7] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized
neural networks: Training deep neural networks with weights and activations
constrained to +1 or -1,” 2016.

[8] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet
classification using binary convolutional neural networks,” in Computer Vision –
ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham: Springer
International Publishing, 2016, pp. 525–542.

94 BIBLIOGRAPHY

[9] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role
in the internet of things,” in Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing, ser. MCC ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 13–16. [Online]. Available:
https://doi.org/10.1145/2342509.2342513

[10] C.-Y. Chang, Y.-C. Chuang, C.-T. Huang, and A.-Y. Wu, “Recent progress and
development of hyperdimensional computing (hdc) for edge intelligence,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, 2023.

[11] A. Bellaouar and M. Elmasry, Low-power digital VLSI design: circuits and sys-
tems. Springer Science & Business Media, 2012.

[12] cpudb.stanford.edu, “CPU database [Online].”

[13] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz, “Cpu db:
recording microprocessor history,” Commun. ACM, vol. 55, no. 4, p. 55–63, apr
2012. [Online]. Available: https://doi.org/10.1145/2133806.2133822

[14] P. A. Gargini, “How to successfully overcome inflection points, or long live
moore’s law,” Computing in Science & Engineering, vol. 19, no. 2, pp. 51–62,
2017.

[15] L. Xiu, “Time moore: Exploiting moore’s law from the perspective of time,”
IEEE Solid-State Circuits Magazine, vol. 11, no. 1, pp. 39–55, 2019.

[16] M. Horowitz, “1.1 computing’s energy problem (and what we can do about it),”
in 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2014, pp. 10–14.

[17] W. M. Holt, “1.1 moore’s law: A path going forward,” in 2016 IEEE International
Solid-State Circuits Conference (ISSCC), 2016, pp. 8–13.

[18] P. Gargini, ““roadmap evolution: From ntrs to itrs, from itrs 2.0 to irds,” in 2017
Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Tran-
sistors Workshop (E3S), 2017, pp. 1–62.

[19] L. Kish, “Moore’s law and the energy requirement of computing versus perfor-
mance,” Circuits, Devices and Systems, IEE Proceedings -, vol. 151, pp. 190 –
194, 05 2004.

[20] T. M. Conte, E. P. DeBenedictis, P. A. Gargini, and E. Track, “Rebooting com-
puting: The road ahead,” Computer, vol. 50, no. 01, pp. 20–29, jan 2017.

BIBLIOGRAPHY 95

[21] C. Jun, “Proactive supply noise mitigation and design methodology for robust vlsi
power distribution,” PhD thesis, Osaka University, Osaka, January 2020, avail-
able at https://ir.library.osaka-u.ac.jp/repo/ouka/all/76645/31287_Dissertation.
pdf.

[22] K. Y. Chan, B. Abu-Salih, R. Qaddoura, A. M. Al-Zoubi, V. Palade,
D.-S. Pham, J. D. Ser, and K. Muhammad, “Deep neural networks
in the cloud: Review, applications, challenges and research directions,”
Neurocomputing, vol. 545, p. 126327, 2023. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0925231223004502

[23] D. Xu, X. He, T. Su, and Z. Wang, “A survey on deep neural network partition
over cloud, edge and end devices,” 2023.

[24] M. Imani, J. Messerly, F. Wu, W. Pi, and T. Rosing, “A binary learning framework
for hyperdimensional computing,” in 2019 Design, Automation Test in Europe
Conference Exhibition (DATE), 2019, pp. 126–131.

[25] M. Cucchi, S. Abreu, G. Ciccone, D. Brunner, and H. Kleemann,
“Hands-on reservoir computing: a tutorial for practical implementation,”
Neuromorph. Comput. Eng., vol. 2, no. 3, p. 32002, 2022. [Online]. Available:
https://doi.org/10.1088/2634-4386/ac7db7

[26] R. Shulman, F. Hyder, and D. Rothman, “Energetic basis of brain activity: Impli-
cations for neuroimaging,” Quarterly reviews of biophysics, vol. 35, pp. 287–325,
09 2002.

[27] M. Fox and M. Raichle, “Spontaneous fluctuations in brain activity observed with
functional magnetic resonance imaging,” Nature reviews. Neuroscience, vol. 8,
pp. 700–11, 10 2007.

[28] B. Babadi and H. Sompolinsky, “Sparseness and expansion in sensory represen-
tations,” Neuron, vol. 83, no. 5, pp. 1213–1226, 2014.

[29] H. Zhang and D. V. Vargas, “A survey on reservoir computing and its
interdisciplinary applications beyond traditional machine learning,” IEEE
Access, vol. 11, p. 81033–81070, 2023. [Online]. Available: http://dx.doi.org/10.
1109/ACCESS.2023.3299296

[30] B. Schrauwen, D. Verstraeten, and J. Van Campenhout, “An overview of reservoir
computing: theory, applications and implementations,” in Proceedings of the 15th
european symposium on artificial neural networks. p. 471-482 2007, 2007, pp.
471–482.

96 BIBLIOGRAPHY

[31] M. Lukosevicius and H. Jaeger, “Reservoir computing approaches to recurrent
neural network training,” Comput. Sci. Rev., vol. 3, pp. 127–149, 2009.

[32] J. Shiomi, “Performance modeling and on-chip memory structures for minimum
energy operation in voltage-scaled lsi circuits,” PhD thesis, University of Kyoto,
Kyoto, October 2017, available at https://repository.kulib.kyoto-u.ac.jp/dspace/
bitstream/2433/228252/2/djohk00658.pdf.

[33] S. Wu, H. R. Zhang, and C. Ré, “Understanding and improving information
transfer in multi-task learning,” 2020. [Online]. Available: https://arxiv.org/abs/
2005.00944

[34] A. Morán, C. F. Frasser, and J. L. Rosselló, “Reservoir computing hardware with
cellular automata,” ArXiv, vol. abs/1806.04932, 2018.

[35] A. Lopez, J. Yu, and M. Hashimoto, “Low-cost reservoir computing using cel-
lular automata and random forests,” in 2020 IEEE International Symposium on
Circuits and Systems (ISCAS), 2020, pp. 1–5.

[36] M. Imani, J. Morris, J. Messerly, H. Shu, Y. Deng, and T. Rosing, “Bric: Locality-
based encoding for energy-efficient brain-inspired hyperdimensional comput-
ing,” in 2019 56th ACM/IEEE Design Automation Conference (DAC), 2019, pp.
1–6.

[37] M. Imani, Y. Kim, M. S. Riazi, J. Messerly, P. Liu, F. Koushanfar, and T. Rosing,
“A framework for collaborative learning in secure high-dimensional space,” in
IEEE Cloud Computing (CLOUD), IEEE. IEEE, 08/2019 2019.

[38] K. Behnam, X. Hanyang, M. Justin, and R. Tajana, “tiny-hd: Ultra-efficient hy-
perdimensional computing engine for iot applications,” in IEEE/ACM Design Au-
tomation and Test in Europe Conference (DATE), IEEE. IEEE, 2021.

[39] A. Hernandez-Cane, N. Matsumoto, E. Ping, and M. Imani, “Onlinehd: Ro-
bust, efficient, and single-pass online learning using hyperdimensional system,”
in 2021 Design, Automation Test in Europe Conference Exhibition (DATE), 2021,
pp. 56–61.

[40] M. Imani, S. Salamat, B. Khaleghi, M. Samragh, F. Koushanfar, and T. Rosing,
“Sparsehd: Algorithm-hardware co-optimization for efficient high-dimensional
computing,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2019, pp. 190–198.

BIBLIOGRAPHY 97

[41] M. Imani, C. Huang, D. Kong, and T. Rosing, “Hierarchical hyperdimensional
computing for energy efficient classification,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), 2018, pp. 1–6.

[42] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-efficient classifier
using brain-inspired hyperdimensional computing,” in Proceedings of the 2016
International Symposium on Low Power Electronics and Design, 2016, pp. 64–
69.

[43] L. Santiago, L. Verona, F. Rangel, F. Firmino, D. Menasché, W. Caarls, M. Bre-
ternitz, S. Kundu, P. Lima, and F. M. G. França, “Weightless neural networks as
memory segmented bloom filters,” Neurocomputing, 2020.

[44] L. S. de Araújo, L. Verona, F. Rangel, F. F. de Faria, D. Menasché, W. Caarls,
M. Breternitz, S. Kundu, P. Lima, and F. França, “Memory efficient weightless
neural network using bloom filter,” in ESANN, 2019.

[45] Y. Kim, M. Imani, and T. S. Rosing, “Efficient human activity recognition using
hyperdimensional computing,” in Proceedings of the 8th International Confer-
ence on the Internet of Things, 2018, pp. 1–6.

[46] S. Jain, S. Khare, S. Yada, V. Ambili, P. Salihundam, S. Ramani, S. Muthuku-
mar, M. Srinivasan, A. Kumar, S. K. Gb, R. Ramanarayanan, V. Erraguntla,
J. Howard, S. Vangal, S. Dighe, G. Ruhl, P. Aseron, H. Wilson, N. Borkar, V. De,
and S. Borkar, “A 280mv-to-1.2v wide-operating-range ia-32 processor in 32nm
cmos,” in 2012 IEEE International Solid-State Circuits Conference, 2012, pp.
66–68.

[47] B. Calhoun and A. Chandrakasan, “Characterizing and Modeling Minimum En-
ergy Operation for Subthreshold Circuits,” in International Symposium on Low
Power Electronics and Design, Aug. 2004, pp. 90–95.

[48] H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar,
“Near-threshold voltage (ntv) design — opportunities and challenges,” in DAC
Design Automation Conference 2012, 2012, pp. 1149–1154.

[49] G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi, and A. Se-
bastian, “In-memory hyperdimensional computing,” Nature Electronics, vol. 3,
no. 6, pp. 327–337, 2020.

[50] A. Rahimi, S. Datta, D. Kleyko, E. P. Frady, B. Olshausen, P. Kanerva, and
J. M. Rabaey, “High-dimensional computing as a nanoscalable paradigm,” IEEE

98 BIBLIOGRAPHY

Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 9, pp. 2508–
2521, 2017.

[51] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring hyperdi-
mensional associative memory,” in 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2017, pp. 445–456.

[52] T. F. Wu, H. Li, P.-C. Huang, A. Rahimi, J. M. Rabaey, H.-S. P. Wong, M. M.
Shulaker, and S. Mitra, “Brain-inspired computing exploiting carbon nanotube
fets and resistive ram: Hyperdimensional computing case study,” in 2018 IEEE
International Solid - State Circuits Conference - (ISSCC), 2018, pp. 492–494.

[53] H. Li, T. F. Wu, S. Mitra, and H.-S. P. Wong, “Device-architecture co-design for
hyperdimensional computing with 3d vertical resistive switching random access
memory (3d vrram),” in VLSI Technology, Systems and Application (VLSI-TSA),
2017 International Symposium on, IEEE. IEEE, 2017.

[54] H. Li, T. F. Wu, A. Rahimi, K.-S. Li, M. Rusch, C.-H. Lin, J.-L. Hsu, M. M.
Sabry, S. B. Eryilmaz, J. Sohn, W.-C. Chiu, M.-C. Chen, T.-T. Wu, J.-M. Shieh,
W.-K. Yeh, J. M. Rabaey, S. Mitra, and H.-S. P. Wong, “Hyperdimensional
computing with 3d vrram in-memory kernels: Device-architecture co-design
for energy-efficient, error-resilient language recognition,” in 2016 IEEE Inter-
national Electron Devices Meeting (IEDM), 2016, pp. 16.1.1–16.1.4.

[55] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge, “Near-
threshold computing: Reclaiming moore’s law through energy efficient inte-
grated circuits,” Proceedings of the IEEE, vol. 98, no. 2, pp. 253–266, 2010.

[56] A. Gebregiorgis, S. Kiamehr, F. Oboril, R. Bishnoi, and M. B. Tahoori, “A cross-
layer analysis of soft error, aging and process variation in near threshold com-
puting,” in 2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2016, pp. 205–210.

[57] E. A. Antonelo and B. Schrauwen, “On learning navigation behaviors for small
mobile robots with reservoir computing architectures,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 26, pp. 763–780, 2015.

[58] A. Jalalvand, G. V. Wallendael, and R. Walle, “Real-time reservoir computing
network-based systems for detection tasks on visual contents,” 2015 7th Interna-
tional Conference on Computational Intelligence, Communication Systems and
Networks, pp. 146–151, 2015.

BIBLIOGRAPHY 99

[59] H. Jaeger, “Adaptive nonlinear system identification with echo state networks,”
in NIPS, 2002.

[60] T. Natschläger, W. Maass, and H. Markram, “The "liquid computer": A novel
strategy for real-time computing on time series,” 2002.

[61] Y. Kume, S. Bian, and T. Sato, “A tuning-free hardware reservoir based on mos-
fet crossbar array for practical echo state network implementation,” 2020 25th
Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 458–463,
2020.

[62] S. Nichele and M. S. Gundersen, “Reservoir computing using non-uniform binary
cellular automata,” 2017.

[63] M. Cook, “Universality in elementary cellular automata,” Complex Systems,
vol. 15, 01 2004.

[64] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proc. of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[65] A. Rahimi, T. F. Wu, H. Li, J. M. Rabaey, H.-S. P. Wong, M. M. Shu-
laker, and S. Mitra, “Hyperdimensional computing nanosystem,” ArXiv, vol.
abs/1811.09557, 2018.

[66] S. Aygun, M. S. Moghadam, M. H. Najafi, and M. Imani, “Learning from
hypervectors: A survey on hypervector encoding,” CoRR, vol. abs/2308.00685,
2023. [Online]. Available: https://doi.org/10.48550/arXiv.2308.00685

[67] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdimensional
computing for efficient speech recognition,” in 2017 IEEE International Confer-
ence on Rebooting Computing (ICRC), 2017, pp. 1–8.

[68] M. Imani, S. Pampana, S. Gupta, M. Zhou, Y. Kim, and T. Rosing, “Dual: Ac-
celeration of clustering algorithms using digital-based processing in-memory,”
in 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020, pp. 356–371.

[69] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online].
Available: http://archive.ics.uci.edu/ml/datasets/ISOLET

[70] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human activity
recognition on smartphones using a multiclass hardware-friendly support vector

100 BIBLIOGRAPHY

machine,” in AAL, J. Bravo, R. Hervás, and M. Rodríguez, Eds. Springer, 2012,
pp. 216–223.

[71] http://mplab.ucsd.edu, “The MPLab GENKI Database.”

[72] L. Ge and K. K. Parhi, “Classification using hyperdimensional computing: A
review,” IEEE Circuits and Systems Magazine, vol. 20, no. 2, pp. 30–47, 2020.

[73] P. Poduval, Z. Zou, H. Najafi, H. Homayoun, and M. Imani, “Stochd: Stochas-
tic hyperdimensional system for efficient and robust learning from raw data,” in
IEEE/ACM DAC, 2021.

[74] P. Poduval, Y. Ni, Y. Kim, K. Ni, R. Kumar, R. Cammarota, and M. Imani, “Hy-
perdimensional self-learning systems robust to technology noise and bit-flip at-
tacks,” in 2021 IEEE/ACM International Conference On Computer Aided Design
(ICCAD), 2021.

[75] S. Zhang, R. Wang, D. Ma, J. J. Zhang, X. Yin, and X. Jiao, “Energy-efficient
brain-inspired hyperdimensional computing using voltage scaling,” in 2022 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE), 2022, pp.
52–55.

[76] C. Taiyu, “Energy-efficient dnn training with approximate computing and voltage
scaling,” PhD thesis, Osaka University, Osaka, January 2021, available at https:
//ir.library.osaka-u.ac.jp/repo/ouka/all/82288/31963_Dissertation.pdf.

[77] T. Song, W. Rim, S. Park, Y. Kim, G. Yang, H. Kim, S. Baek, J. Jung, B. Kwon,
S. Cho, H. Jung, Y. Choo, and J. Choi, “A 10 nm finfet 128 mb sram with assist
adjustment system for power, performance, and area optimization,” IEEE Journal
of Solid-State Circuits, vol. 52, no. 1, pp. 240–249, 2017.

[78] I. J. Chang, D. Mohapatra, and K. Roy, “A priority-based 6t/8t hybrid sram archi-
tecture for aggressive voltage scaling in video applications,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 21, no. 2, pp. 101–112, 2011.

[79] M. Cho, J. Schlessman, W. Wolf, and S. Mukhopadhyay, “Accuracy-aware sram:
A reconfigurable low power sram architecture for mobile multimedia applica-
tions,” in 2009 Asia and South Pacific Design Automation Conference, 2009, pp.
823–828.

[80] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,
no. 3, pp. 273–297, 1995.

BIBLIOGRAPHY 101

[81] R. E. Schapire, “Explaining adaboost,” in Empirical inference. Springer, 2013,
pp. 37–52.

[82] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Com-
mun. ACM, vol. 13, pp. 422–426, 1970.

[83] S. Wolfram, A New Kind of Science. Wolfram Media, 2002. [Online]. Available:
https://www.wolframscience.com

[84] J. Buckman, A. Roy, C. Raffel, and I. J. Goodfellow, “Thermometer encoding:
One hot way to resist adversarial examples,” in ICLR, 2018.

[85] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice of
bloom filters for distributed systems,” IEEE Communications Surveys & Tuto-
rials, vol. 14, pp. 131–155, 2012.

[86] Wikipedia contributors, “Murmurhash — Wikipedia, the free encyclopedia,”
2021, [Online; accessed 13-January-2022]. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=MurmurHash&oldid=1062710708

[87] I. Aleksander, M. Gregorio, F. França, P. Lima, and H. Morton, “A brief intro-
duction to weightless neural systems,” in ESANN, 2009.

[88] Z.-H. Zhou, Ensemble Learning. Boston, MA: Springer US, 2009, pp. 270–273.

[89] R. Polikar, “Ensemble learning,” Scholarpedia, vol. 4, no. 1, p. 2776, 2009, revi-
sion #186077.

[90] D. Liang, M. Hashimoto, and H. Awano, “Bloomca: A memory efficient reser-
voir computing hardware implementation using cellular automata and ensemble
bloom filter,” in 2021 Design, Automation & Test in Europe Conference & Exhi-
bition (DATE), 2021, pp. 587–590.

[91] D. Liang, J. Shiomi, N. Miura, M. Hashimoto, and H. Awano, “A hardware ef-
ficient reservoir computing system using cellular automata and ensemble bloom
filter,” IEICE TRANSACTIONS on Information and Systems, vol. 105, no. 7, pp.
1273–1282, 2022.

[92] C.-Y. Chang, Y.-C. Chuang, C.-T. Huang, and A.-Y. Wu, “Recent progress and
development of hyperdimensional computing (hdc) for edge intelligence,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, 2023.

[93] P. Kanerva, “Hyperdimensional computing: An introduction to computing in dis-
tributed representation with high-dimensional random vectors,” Cognitive Com-
putation, vol. 1, 06 2009.

102 BIBLIOGRAPHY

[94] H. Amrouch, M. Imani, X. Jiao, Y. Aloimonos, C. Fermuller, D. Yuan, D. Ma,
H. E. Barkam, P. R. Genssler, and P. Sutor, “Brain-inspired hyperdimensional
computing for ultra-efficient edge ai,” in 2022 International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), 2022, pp. 25–34.

[95] D. Kleyko, D. A. Rachkovskij, E. Osipov, and A. Rahimi, “A survey on hyperdi-
mensional computing aka vector symbolic architectures, part i: Models and data
transformations,” ACM Computing Surveys, vol. 55, no. 6, pp. 1–40, 2022.

[96] D. Liang, J. Shiomi, N. Miura, and H. Awano, “Distrihd: A memory efficient
distributed binary hyperdimensional computing architecture for image classifica-
tion,” in 2022 27th Asia and South Pacific Design Automation Conference (ASP-
DAC), 2022, pp. 43–49.

[97] T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto, and D. Ha,
“Deep learning for classical japanese literature,” ArXiv, vol. abs/1812.01718,
2018.

[98] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms,” 2017.

[99] R. Balasubramonian, A. Kahng, N. Muralimanohar, A. Shafiee, and V. Srinivas,
“Cacti 7: New tools for interconnect exploration in innovative off-chip mem-
ories,” ACM Transactions on Architecture and Code Optimization, vol. 14, pp.
1–25, 06 2017.

[100] D. Liang, J. Shiomi, N. Miura, and H. Awano, “Stridehd: A binary hyperdi-
mensional computing system utilizing window striding for image classification,”
IEEE Open Journal of Circuits and Systems, pp. 1–1, 2024.

[101] B. Zhai, L. Nazhandali, J. Olson, A. Reeves, M. Minuth, R. Helfand, S. Pant,
D. Blaauw, and T. Austin, “A 2.60pj/inst subthreshold sensor processor for op-
timal energy efficiency,” in 2006 Symposium on VLSI Circuits, 2006. Digest of
Technical Papers., 2006, pp. 154–155.

[102] A. Wang and A. Chandrakasan, “A 180-mV Subthreshold FFT Processor using
a Minimum Energy Design Methodology,” IEEE Journal of Solid-State Circuits,
vol. 40, no. 1, pp. 310–319, Jan. 2005.

[103] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural network with
progressive bit search,” in Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 2019, pp. 1211–1220.

BIBLIOGRAPHY 103

[104] Z. Zou, Y. Kim, F. Imani, H. Alimohamadi, R. Cammarota, and M. Imani,
“Scalable edge-based hyperdimensional learning system with brain-like neural
adaptation,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’21.
New York, NY, USA: Association for Computing Machinery, 2021. [Online].
Available: https://doi.org/10.1145/3458817.3480958

[105] D. Liang, H. Awano, N. Miura, and J. Shiomi, “Dependablehd: A hyperdimen-
sional learning framework for edge-oriented voltage-scaled circuits,” in 2023
28th Asia and South Pacific Design Automation Conference (ASP-DAC), 2023,
pp. 416–422.

[106] I. J. Chang, K. Kang, S. Mukhopadhyay, C. Kim, and K. Roy, “Fast and accurate
estimation of nano-scaled sram read failure probability using critical point sam-
pling,” in Proceedings of the IEEE 2005 Custom Integrated Circuits Conference,
2005., 2005, pp. 439–442.

[107] K. Takeda, H. Ikeda, Y. Hagihara, M. Nomura, and H. Kobatake, “Redefinition
of write margin for next-generation sram and write-margin monitoring circuit,”
in 2006 IEEE International Solid State Circuits Conference - Digest of Technical
Papers, 2006, pp. 2602–2611.

[108] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Statistical design and optimiza-
tion of sram cell for yield enhancement,” in IEEE/ACM International Conference
on Computer Aided Design, 2004. ICCAD-2004., 2004, pp. 10–13.

[109] I. J. Chang, D. Mohapatra, and K. Roy, “A priority-based 6t/8t hybrid sram archi-
tecture for aggressive voltage scaling in video applications,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 21, no. 2, pp. 101–112, 2011.

[110] M. Qin, T. Liu, B. Hou, Y. Gao, Y. Yao, and H. Sun, “A low-latency rdp-cordic
algorithm for real-time signal processing of edge computing devices in smart
grid cyber-physical systems,” Sensors, vol. 22, no. 19, 2022. [Online]. Available:
https://www.mdpi.com/1424-8220/22/19/7489

[111] T. Vladimirova and H. Tiggeler, “Fpga implementation of sine and cosine gener-
ators using the cordic algorithm,” in Proc. of Military and Aerospace Application
of Programmable Devices and Technologies Conference (MAPLD 99), 1999, pp.
28–30.

[112] E. Alpaydin and C. Kaynak, “Optical Recognition of Handwritten Digits,” UCI
Machine Learning Repository, 1998, DOI: https://doi.org/10.24432/C50P49.

104 BIBLIOGRAPHY

[113] D. Liang, H. Awano, N. Miura, and J. Shiomi, “A robust and energy
efficient hyperdimensional computing system for voltage-scaled circuits,” ACM
Trans. Embed. Comput. Syst., sep 2023, just Accepted. [Online]. Available:
https://doi.org/10.1145/3620671

[114] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2015. [Online]. Available: https://arxiv.org/abs/
1409.1556

[115] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1512.03385

[116] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks,” 2020. [Online]. Available: https://arxiv.org/abs/1905.11946

[117] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” 2017. [Online]. Available: https:
//arxiv.org/abs/1704.04861

[118] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V.
Le, “Mnasnet: Platform-aware neural architecture search for mobile,” 2019.
[Online]. Available: https://arxiv.org/abs/1807.11626

[119] J.-S. Park, J.-W. Jang, H. Lee, D. Lee, S. Lee, H. Jung, S. Lee, S. Kwon, K. Jeong,
J.-H. Song, S. Lim, and I. Kang, “9.5 a 6k-mac feature-map-sparsity-aware neural
processing unit in 5nm flagship mobile soc,” in 2021 IEEE International Solid-
State Circuits Conference (ISSCC), vol. 64, 2021, pp. 152–154.

[120] K. Nose, T. Fujii, K. Togawa, S. Okumura, K. Mikami, D. Hayashi, T. Tanaka,
and T. Toi, “20.3 a 23.9tops/w @ 0.8v, 130tops ai accelerator with 16×
performance-accelerable pruning in 14nm heterogeneous embedded mpu for
real-time robot applications,” in 2024 IEEE International Solid-State Circuits
Conference (ISSCC), vol. 67, 2024, pp. 364–366.

[121] Y. Wang, X. Yang, Y. Qin, Z. Zhao, R. Guo, Z. Yue, H. Han, S. Wei, Y. Hu, and
S. Yin, “34.1 a 28nm 83.23tflops/w posit-based compute-in-memory macro for
high-accuracy ai applications,” in 2024 IEEE International Solid-State Circuits
Conference (ISSCC), vol. 67, 2024, pp. 566–568.

[122] J. Song, Y. Cho, J.-S. Park, J.-W. Jang, S. Lee, J.-H. Song, J.-G. Lee, and I. Kang,
“7.1 an 11.5tops/w 1024-mac butterfly structure dual-core sparsity-aware neural

BIBLIOGRAPHY 105

processing unit in 8nm flagship mobile soc,” in 2019 IEEE International Solid-
State Circuits Conference - (ISSCC), 2019, pp. 130–132.

[123] Y. Ju, G. Xu, and J. Gu, “20.4 a 28nm physics computing unit supporting emerg-
ing physics-informed neural network and finite element method for real-time sci-
entific computing on edge devices,” in 2024 IEEE International Solid-State Cir-
cuits Conference (ISSCC), vol. 67, 2024, pp. 366–368.

[124] H. Mo, W. Zhu, W. Hu, G. Wang, Q. Li, A. Li, S. Yin, S. Wei, and L. Liu, “9.2
a 28nm 12.1tops/w dual-mode cnn processor using effective-weight-based con-
volution and error-compensation-based prediction,” in 2021 IEEE International
Solid-State Circuits Conference (ISSCC), vol. 64, 2021, pp. 146–148.

[125] T.-H. Wen, H.-H. Hsu, W.-S. Khwa, W.-H. Huang, Z.-E. Ke, Y.-H. Chin, H.-
J. Wen, Y.-C. Chang, W.-T. Hsu, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-T. Tang,
S.-H. Teng, C.-C. Chou, Y.-D. Chih, T.-Y. J. Chang, and M.-F. Chang, “34.8 a
22nm 16mb floating-point reram compute-in-memory macro with 31.2tflops/w
for ai edge devices,” in 2024 IEEE International Solid-State Circuits Conference
(ISSCC), vol. 67, 2024, pp. 580–582.

