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概要
高度経済成長期に敷設された社会インフラの老朽化が問題になっている．老朽化インフラを補修したり，新し
いものに置き換えるためには，金銭的，人的リソースが必要となるが，必ずしも潤沢とはいえない．このよう
な状況で社会インフラの予防保守の重要性が高まっている．そこで本研究では，特に電力設備の予防保全に着
目する．電力設備における故障の原因となる予兆として部分放電（PD）が生じることが知られている．PD

は，一般に地中送電線の絶縁体界面のボイド (空隙)や突起などに電界が集中することで発生する放電現象で
あり，PDの検出とそのパターンの分析は，地中送電線の劣化診断において重要となる. PDを検出するため
に，地中送電線内の交流電圧から放電パルス集計した時系列データを対象とする．本論文では，地中送電線内
の PD検出のために，時系列データに非負値行列因子分解 (NMF)を適用することを提案する. NMFにより
分解された基底行列とその係数行列は，放電パターンおよび，各パターンの寄与度を時系列に表したものと解
釈することができる. また NMF再構成誤差に着目した基底数の決定方法についても述べる. 提案手法は多く
のデータを必要とせず，教師情報なしで動作する. また時系列中に未知の PDパターンが生じても基底を追加
することにより追随可能である. PDを含むデータを用いた実験では，逐次的にデータを追加する実運用に近
い環境において，部分放電パターンが検出・追加できることを確認した. PDの研究は 80年近く続き今なお盛
んに取り組まれているが，NMFを用いた異常検知方法は，本研究が初めてとなる．



Abstract

The aging of social infrastructure laid down during periods of rapid economic growth has become a

significant problem. Repairing this aging infrastructure and replacing it with new structures requires

considerable financial and human resources, which are not always readily available. Consequently, the

importance of preventive maintenance for social infrastructure is increasing. In this study, particular

attention is focused on the preventive maintenance of power facilities. Partial discharge (PD) is known

to occur as a predictive sign of failure in power facilities. PD is a discharge phenomenon that typically

happens when an electric field is concentrated in voids or protrusions at the insulator interface of un-

derground power lines. Detecting PD and analyzing its pattern are crucial for diagnosing underground

power line degradation. To detect PD, time-series data of discharge pulses aggregated from AC volt-

ages in underground transmission lines are utilized. This paper proposes applying non-negative matrix

factorization (NMF) to the time-series data for PD detection in underground transmission lines. The

basis matrices and their coefficient matrices, decomposed by NMF, can be interpreted as a time series

representation of the discharge patterns and the contribution of each pattern. A method for determining

the number of bases, focusing on the NMF reconstruction error, is also introduced. The proposed method

does not necessitate a large amount of data and functions without supervised information. Additionally,

it can adapt to unknown PD patterns in the time series by incorporating additional bases. Experiments

conducted using data containing PD have validated that partial discharge patterns can be detected and

incorporated in an environment akin to real operation, where data is added sequentially. Although PD

research has been ongoing for nearly 80 years and remains actively pursued, this is the first instance of

an anomaly detection method utilizing NMF being developed.
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第 1章
はじめに
社会インフラの老朽化は日本に留まらず多くの国が今後直面する課題である．日本国内においては道路，橋
梁，水道管，送電線といった多くの基本インフラが高度経済成長期に敷設され，すでに 50年以上経過してい
るものも多い．社会インフラは経年変化に加え自然災害などによってもダメージが蓄積され，これらが原因と
考えられる事故は各地で発生している（表 1.1）．

事例 日時 概要
埼玉県 新座洞道火災事故 2016/10

ケーブル劣化による火災で，
大規模停電が発生．

広島県 砂防ダム決壊 2018/7
経年劣化した砂防ダムが豪雨で，
幅 50ｍにわたって決壊．

和歌山県 水管橋崩落 2021/10
腐食による水漏れなどで，
水道橋が一部崩壊．

山梨県 笹子トンネル 天板崩落事故 2022/12
天板の老朽化で，
トンネルが崩落．

表 1.1 日本の社会インフラ事故

社会インフラの事故は，一度起こってしまうと経済的損失が巨額になるだけでなく，人命も失われてしまう
可能性があるため，必要に応じて補修や代替を行う必要がある．これらの劣化したインフラを代替するための
総予算は 2011年度から 2060年度までの 50年間で，190兆円になると予想されている [2]．
このような背景から，構造物の時間的な健全性の監視を目指した構造ヘルスモニタリング（Structural

Health Monitoring, SHM）に関する関心が高まっている．SHMの目標は最も早い段階での損傷を特定する
ことであり，これはシステムのダウンタイム，全体的な運用コスト，保守コストを最小化し，壊滅的な故障の
リスクを低減するために必要な措置を取るために不可欠である [3]．SHMは，古くは 19世紀末のダムの定期
的な検査 [4]から，近年では機械学習を用いた手法も多く見られる [3]．SHMシステムは，センシング技術，
信号発生装置，信号処理，健全性評価と判定，システム統合の 5つから構成されている [5]．各種センサ，もし
くは信号発生装置から得られたデータは，ノイズ除去やメタ情報などを付加され，評価システムに渡される．
評価システムの決定に基づき，必要な補修あるいは補強を行い，目標性能が実現されているか確認するために
再度データを取得するといった一連のサイクルを繰り返す．また，継続的な監視を行うために各プロセスを統
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合的に管理，運用する必要がある．

1.1 本論文の対象と位置づけ
本論文では，前述の社会インフラの内，特に送電線などの高電圧装置の異常検知に焦点をあてる．高電圧装
置は電気的，機械的，環境的，熱的なストレスに常にさらされており，これにより装置内部及び外部の様々な
故障原因となる可能性がある [6]．これらの故障の大部分は，絶縁システムの劣化によって発生する [7]．例
えば，送電線における劣化は，表 1.1 の事例にもあげた通り，絶縁破壊による火災や大規模停電を引き起こ
す（図 1.1）．特に，本研究の対象となる OF ケーブルは，高度経済成長期に敷設され，運転開始からすでに
30∼40年を迎えるものが増加しており，劣化の進行も把握しきれているとは言えない [8]．

図 1.1 絶縁破壊した実際の接続部の写真
「出典：東京電力ホールディングス」

絶縁体の寿命を大幅に縮める可能性がある現象として，部分放電（Partial Discharge, PD）が知られてい
る [9]．PDは，局所電界が周辺媒体の部分的な破壊を引き起こす閾値より大きい場合に発生 [10]し，数ナノ
秒から数マイクロ秒の脈流を特徴とする [11]，[12]．特に高圧ケーブルの場合，水トリーと言われる微小な
PDが急速に電気トリーへと成長する可能性から，PD放電の大きさは必ずしも絶縁破壊の深刻さを正当化し
ない．[13]．したがって，PD活動を初期段階で検出・定量化することで，適切な時期に交換を計画できれば
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費用対効果は非常に高くなる．[14]，[15]．
ここでは，後述する PDの表現方法である φ− q − nマップに対し，PDのパターンを検出・分類する方法
について提案する．また，実際の監視システムへの運用において想定されるシステムの処理フローについても
述べる．
1.1.1 φ− q − nマップ
ここでは，本論文で扱う PD の表現方法である φ − q − n マップについて説明する．図 1.2 のように PD

は微小時間の間に発生する脈流を特徴としており，交流電圧の電圧サイクル中では放電パルスとして測定さ
れる．

図 1.2 電圧サイクル中の PD [1]

φ-q-nマップは，この放電パルスを，電源電圧の位相（φ），パルスの電荷量（q），測定時間内におけるパル
スの頻度（n）でマッピングしたものである [1]．具体的には，一定時間周期内のパルスを，同位相内ですべて
カウントし，行列の形に表現したものとなる [16]．このとき，行列の各行は各パルスの電荷量，各列は電圧の
位相をそれぞれ一定間隔で bin としたものであり，行列の要素がカウントされたパルスの頻度となる．した
がって，この行列は非負値行列となる．図 1.3は，本論文で用いた φ-q-nマップを 2次元で可視化した一例で
ある．ここでは，画像中の濃淡で nの大小を表している．また φ-q-nマップは 3次元で可視化されることも
ある（図 1.4）．この場合，z方向の大小として nが表現される．

3



図 1.3 pqnマップの一例
右は典型的な PDパターン，左は典型的なノイズパターンをそれぞれあらわす．

図 1.4 φ-q-nマップの 3次元表記
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1.2 SHMにおける φ-q-nマップによる PD検出の位置づけ
本論文で提案する，非負値行列因子分解（NMF）を用いた φ-q-n マップの異常検出は，SHM のプロセス
でいう信号処理から健全性評価の一部，およびシステム統合に相当する．PDはその発生箇所や発生メカニズ
ム，測定方法などによって様々なパターンが知られている [17]．測定環境が異なると得られるパターンも異な
ることに加え，正常な測定環境で PD が発生することはまれであることから，検出した PD パターンが既知
のものであるか，既知であったとして致命的な破壊につながるものであるかを判定することは現状は困難で
ある．このことから SHMにおける健全性の評価・判定についてより精度を向上させるためには，中長期的に
PDの検出・判定・蓄積などを行っていく必要がある．本論文の提案手法は，この改善サイクルを回すための
最初のプロセスとして位置づけることができる．

図 1.5 SHMにおける送電線の異常検出

1.3 本論文の貢献
本論文では，NMFを用いて φ-q-nマップから異常となる PDの検出を行う．部分放電検出における本論文
の貢献は以下の通りである．

• 部分放電の検出方法として初めて NMFを φ-q-nマップに適用した．
• 検出のための特徴量作成などを必要せず，正解データが不要である教師なし学習により φ-q-nマップを
分類することができる．

• このため，測定環境が変わっても同じ手法を適用することができる．
• NMFで分類した φ-q-nマップの寄与度を時系列の特徴として利用することができる．
• 実際の運用を想定し，ユーザーが直感的に理解しやすい再構成誤差に基づいた NMFの分解基準を提案
した．

• 常時監視を行うことを想定した，オンラインのアルゴリズムとデータが増えすぎた場合の圧縮アルゴリ
5



ズムを提案した．

1.4 本論文の構成
最後に，本論文の構成を述べる．第 2章では，PDの発生箇所とその原因，またそれぞれの φ-q-nマップに
ついてを中心に，検出方法や機械学習による分類などの関連研究を含めて確認する．第 3章では，現状の課題
を整理し，本論文で取り組むべき問題と提案手法によるアプローチを述べる．第 4章では，提案手法として，
φ-q-nマップから PDを検出するための基本的なアルゴリズムを述べる．この際，得られた PDパターンとそ
れらの時系列特徴として扱う方法について説明する．第 5章では，より現実的な設定として，データが逐次的
に与えられた場合に，それらが既知の PDパターンであるかを判断するオンラインアルゴリズムについて説明
する．合わせて，学習結果が増えすぎた場合の圧縮アルゴリズムについて述べる．第 6章では，人工データ，
実データのそれぞれで提案手法について検証する．第 7章では，本論文をまとめた上で，今後の展望と想定し
ている監視システムの処理フローについて述べる．
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第 2章
関連研究
2.1 φ-q-nマップ以外の特徴表現
φ-q-nマップのような時間方向のパルスの情報を位相角情報に畳み込んだ位相分解データは，放電パルスの
真の形状に関する情報は欠損している．一方，個々のパルスの形状をそのまま時間方向に記録した時間分解
データ（q-tデータ）は個々の PDパルスの形状が表示される [18], [19]．さらに，時間方向にパルスの形状が
明瞭に変化するため，絶縁材料の経年変化をより容易に観察することができる．ただし，データをそのままの
状態で保持するためデータ量が膨大になる問題がある．このため，得られたデータに対しWavelete変換など
の処理を行い，扱いやすい形にした上で分析をすることが多い [20], [21]．
本研究では，個々の PDパルスが位相と相関を持つことから [22]，部分放電の PD位置での様子を表現して
いる φ-q-nマップを対象としている．

2.2 部分放電の測定方法
ここでは，部分放電の測定方法について説明する．
電気的検出方法
PD によって発生する電磁波を検出する UHF センサは，外部ノイズなどを効果的に遮断することができ
る [23], [24]．高周波 CTセンサは，PDによって発生する高周波電流パルスを検出する．センサの周波数帯
は通常数百 kHz～数十 MHz であり，PD によって発生する高周波パルスを検出できることが証明されてい
る [25] [26]．
なお，本研究ではこの高周波 CTセンサにより取得された φ-q-nマップを対象とする．図 2.1は，電力ケー
ブルからの PD検出方法を図示したものである．
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図 2.1 電力ケーブルからの PD検出方法の一例

物理的検出方法
音響センサは PDによって発生する音波を，超音波までの範囲で検出する [27], [28]．複数の音響センサを
用いると，PDの発生箇所を特定することができる [27]．音響センサは電磁波の干渉を受けないという長所が
ある一方，バックグラウンドの音響ノイズのために感度が低くなる，距離に応じて信号が減衰するといった点
が欠点となる．
光学センサによる検出方法も提案されているが [29]，高コストであること，音響センサ同様に減衰などの影
響があることなどから研究は少ない．
本研究が対象とする地中送電線は，数 kmの電力ケーブルにおける PD検出を目的としているため，これら
の検出方法はそぐわない．
化学的検出方法
化学的検出方法は，放電反応が新しい化学成分を生成することに基づくものであり，トランスから抽出した
オイルサンプルを扱うことで，PD活性の特異的な分析で検出することができる [30]．しかし，化学組成を調
べるために定期的に操作することが必要であり，運用を想定した場合の緊急故障検知には適用できない．

2.3 部分放電の発生箇所と種類
ここでは，モーターや発電機，ケーブルなどの高電圧装置において，機器ごとの特徴や欠陥，そこから生じ
る PDパターン（φ-q-nマップ）及びその影響について概説する．
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2.3.1 高電圧モーターと発電機
HVモータと発電機は，一般的に 1000V以上の定格電圧を持つ回転機械を指す．これらが故障すると，場
合によっては発電や電力系統に非常に大きな経済的損失を与える可能性がある．ほとんどの場合，故障の原因
となる絶縁破壊は固定子巻線の経年変化によって引き起こされる．固定子巻線の絶縁は，機器稼働中の熱，電
気，機械，環境による経年劣化の影響を受け，PDをサポートする欠陥が発生し，その結果，経年劣化速度が
加速される．固定子巻線に発生する PDの最も一般的なタイプは，内部放電，スロット放電，コロナ放電，相
間放電，スパーク放電である [31]．以下では，それぞれを誘発する欠陥と放電について述べる．
内部放電
製造工程中に固定子巻線の主壁絶縁部に空隙が発生すると，内部放電が起こり絶縁部を損傷させる．ほとん
どの発電機とモータは，定格電圧において固定子巻線の主壁絶縁体内で内部放電を経験する．通常の内部放電
活性に対し，40年以上耐えうるよう製造された絶縁体もあるが，内部空隙が大きい場合，内部放電の振幅が
他の有害な PDを凌駕するレベルに達することがある [32]．
これらの内部放電は，実験室環境によるオフライン試験と実際のモータや発電機を用いたオンラインモニ
タリングの両方で確認 [33]が行われており，公称電圧より数千ボルト低い電圧で始まることが確認されてい
る [34]．また，[32]では，オフライン試験とオンラインモニタリングの二つの状況での φ-q-nマップが比較さ
れており，オフライン試験では，放電の振幅と回数がより明確に示され，安定したパターンが見られる．一
方，オンラインモニタリングでは，運転中のノイズや外的要因によりパターンが不規則になりやすいことが確
認されている．
スロット放電
スロット放電は，ステータコアスロットとステータコイルもしくはバーの主壁絶縁層との間のエアギャップ
の放電により発生する [35]．絶縁層の経年変化により，通常の熱伝導が妨げられ，巻線の局所温度が上昇し，
スロット放電が激しくなり，最終的に機械の動作寿命が短くなる [36]，[37]．
コアスロット内のステーターバーが緩むのは，運転中の振動が原因である可能性が考えられる．通常は不適
切な設置が原因となるが，材料や熱の経年変化による絶縁収縮が原因の場合もある．バーが振動し始めると，
その動きによってスロットの導電性コーティングと主壁の断熱材が摩耗し，エアギャップ内の PDが始まる．
結果，絶縁表面の窪みに酸化鉄粉が堆積し，誘電体表面を参加させることで故障につながる [38]，[39]．また，
振動や不適切な設置により導電性コーティングがエアギャップによって接地されたコアから分離された場合に
も，導電性コーティングが効果的に接地できずにスロット放電が発生する．また，スロット放電によりオゾン
が生成され，同時に発生した窒素酸化物がモーターの損傷の原因となることもある [40]．[41]では，スロット
放電とオゾンによるステータスロット内のコイルセミコンコーティング不良（炭素コーティングの消失）が報
告されている．
温度，湿度，ギャップ距離，摩耗状態など，スロットの放電に影響を与える要因に関する研究も多い [42]，

[37]，[43]，[44]，[45]．
スロット放電の PDパターン（φ-q-nマップ）は先述した内部放電とはまったく異り，正負それぞれの半サ
イクルにおいて，放電回数と放電振幅に大きな非対称性が存在する．PDの繰り返しによる鋼表面の酸化によ
り，正電圧の半サイクル中の電子の利用可能性が増加し，振幅の大きな少数の PDからより小さなパルスの高
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繰り返しへの移行が起こることに起因する [46]．さらに，スロット放電の典型的な φ-q-nマップは，電圧が負
となる半サイクルにおいて非常に急な傾斜を特徴とする三角形を示す [37]．
スロット出口部の放電
固定子巻線の端部における半導体コーティングと応力等級塗料の接合部における欠陥はコロナ放電を引き起
こす [41]．固定子巻線の出口端では，電界分布が極端に不均一になる．体積静電容量の作用により，体積単位
あたりの電流分布が不均一となり，エアギャップにおける電界が高くなるとコロナ放電が起きやすくなる．こ
のような PDの発生源として，接合部の隙間に酸化鉄の白色粉が析出していることが確認されている [47]が，
絶縁媒体がそれによりブロックされるため，より深刻なスパーク放電には発展しない．
このタイプの活動に対応する典型的な φ-q-nマップは，PDは電圧の半サイクルごとに非対称であることが
特徴で，正の放電の方が数が多く，大きさも負の放電より大きいことが知られている．なお，極性に対する非
対称性はスロット放電と同じであるが，パターンの形状はスロット放電で観察されたものよりもはるかに丸み
を帯びている．実験室での印加電圧下では，コロナ放電が強くなると，最大振幅に関する非対称性は消失する
傾向があった．ただし，PD振幅に関してパターンがほぼ対称であっても，パルスの数には通常まだ非対称性
があり，常に負の放電よりも正の放電の数が多くなる [32]．
相間放電
相間放電は，高電圧モータにおいて，2 つのステータバーやコイル，または隣接する巻線面の間に発生す
る [40]．固定子巻線内の銅コアにはアースへの誘導電位があり，この電位は容量効果によって絶縁表面に伝
達される．隣接する巻線絶縁面の電位差が十分に大きく，その電位によって発生する電界強度がエアギャッ
プの破壊電界強度を超えると，ガス分子がイオン化して電子なだれを発生させ，最終的に相間放電が発生す
る．[47]では，エンドアームの隣接するコイル間において発生した相間放電によりコロナ抑制層が焼け落ちた
事例が報告されている．また，相間放電の実験モデルは [32], [44], [45]などで検証されている．
相間放電の φ-q-n マップでは，正負それぞれの半サイクルでほぼ一定の放電振幅がある．電圧が増加する
と，相間放電の数と量が増加する．正の半サイクルにおける負の放電の振幅は，常に負の半サイクルにおける
正の放電の振幅より高く，負の放電位相幅は常に正の放電位相幅より狭い．ただし，他の PD 信号と混合され
ることが多いため，比較的区別がつきにくい [32], [48]．また，ステータバー間の φ-q-nマップは電圧の増加
に伴ってより明白になるが，コロナ放電を伴うこともある [48]．
スパーク放電
スパーク放電はステータバーの振動が起点となって生じる [49]．通常の動作中，ループ電流はコア積層板を
半径方向に通過し，ステーター コアの背面に沿ってバーまで軸方向に移動する．バーが振動すると，バーの
表面の導電性コーティングがコアから剥離する．結果としてバーの表面の半導電層の誘導電流ループが切断さ
れ，同時にアークが発生し，最終的には主絶縁体を非常に効果的に破壊するスパーク放電が形成される．他の
種類の放電と比較して，火花放電は放出されるエネルギーが大きく，絶縁に対する破壊性が高くなる．スパー
ク放電の発生から絶縁破壊に至るまでに約 5年かかるとの報告もある [41]．

[50]は実験室環境において，スパーク放電の φ-q-nマップは，90◦ 付近と 270◦ 付近に放電が集中すること
を確認している．また，他の放電より激しく，短時間で深刻な絶縁破壊を引き起こす可能性がある [51]ため，
早期の検出が重要となる．
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2.3.2 HVケーブル
ケーブル絶縁体，端子，接合部における放電現象は，過去半世紀にわたって広く研究されており，さまざま
なタイプの PDの影響を受ける高電圧ケーブルの脆弱なセグメントである．放電位置によって，コロナ放電，
表面放電，内部放電に分類できる．ケーブルの製造，輸送，組み立ての過程で，電気ストレスや PD を誘発
する欠陥が発生することがある．また，機械的ストレス (曲げ，引張，圧縮，振動など)，熱ストレス (大電流
キャリア条件，ジュール加熱など)，環境ストレス (水分，化学物質，放射線など)などによっても，断熱材の
酸化，化学分解が発生することがある．これらに加え，ケーブルの絶縁体を挟む半導体層のイオンが，電気ト
リー，水トリーなどの原因となることがある [52]. 欠陥のタイプが異なれば，劣化段階も異なり [53]，これら
は，得られた PDパターンに基づいて区別する必要がある．
コロナ放電
空気に接する高電圧導体の一部の突出は，送電線，配電盤，開閉装置，およびケーブル終端部で発生し，高
電界勾配によるガスのイオン化によりコロナ放電が開始される．一般に，ケーブルの終端で発生するこの種の
放電は，ケーブルの絶縁体と相互作用せずに空気をイオン化するため，有害性はそれほど高くない．放電は空
気中で起こるため，放電部位に再主導する電荷キャリアは存在せず，放電電流は電圧によって変位する．その
結果，放電は常に印加電圧の頂点に現れ，開始電圧と消滅電圧は同じである．さらに，電圧が高くなると放電
の幅も大きくなる．また，コロナ放電が発生するその他の原因としては，不適切なコロナリングや突出したボ
ルトを備えたコネクタが挙げられる [54]．ただし，この種の放電は容易に発生するので，検出されたパターン
が他の種類の重大な欠陥に対応するパターンと混合される可能性があり，区別して認識する必要がある．
コロナ放電の φ-q-nマップでは，放電源が高電圧端子上にある場合は PDパターンの負の半サイクルで検出
される．放電源が接地側にある場合，PDパターンは正側に集中する [54]．[55]では，丸い形状の電極と鋭い
形状の電極のそれぞれに対しコロナ放電を発生させ φ-q-nマップを比較しており，電極の形状によっても異な
る φ-q-nマップが得られることが確認されている．ただし，[56]では，電極の曲率半径による形状などの特性
に変化は見られず，印加電圧のみが影響を与えたとの報告もあり，実験環境が異なると形状も異なってしまう
ことを強く示唆している．
表面放電
誘電体表面の損傷は絶縁破壊の主な原因の一つであり，局所的な表面放電によって始まり，沿面放電，フ
ラッシュオーバー，そして電力系統機器の絶縁体や気体/固体界面の最終的な破壊にまで及ぶ．表面放電は，
ケーブルの外側絶縁層が損傷したり，ケーブルの継ぎ目や終端で絶縁体からスクリーンが剥がれたりした場合
に発生する．表面放電の電離導電路は絶縁体を劣化させ，炭化痕として観察される．
表面放電を促進する可能性がある要因として，電界の高いストレスコーン周辺の汚染物質や，露点以下での
ない表面上の水分などがある．また，絶縁部品間の長いエアギャップ，半導体の研磨不足なども表面放電に繋
がる可能性がある [54]．
表面放電は，100～1000pCの範囲で高い電流密度と高い放電振幅によって形成，増幅され，印加電圧のゼ
ロクロス後に発生する [54]．正負のハーフサイクルにおける表面放電の非対称な分布は，表面欠陥の形状と電
界の大きさおよび分布に依存し，[57]）では放電発生箇所の形状や電界を変えた場合の φ-q-nマップの変化を
調べている．
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内部放電
内部放電は絶縁体の内部で発生するため，観測が難しく，他のタイプの放電よりも検出が困難である．絶縁
体内のさまざまなタイプの欠陥が，図 2.2に示すように内部放電を引き起こす可能性がある [58]．これらの欠
陥はそれぞれ固有の PDパターンを持っているため，以下では個別に説明する．

図 2.2 内部放電を誘発する絶縁体内の欠陥の例

■ボイド ボイド（cavity, void）とは，導体と絶縁体の間，または絶縁体の内部に生じる微小な空洞であり，
よく知られた欠陥である．ガスで満たされた空洞の内部で電界が強まると，ガスと絶縁材料の誘電率の違いに
より，その場所で内部放電が発生する．放電の強さと危険度は，ボイドの大きさ，形状，位置，ガスとボイド
壁内部の化学化合物，絶縁体全体の電圧に依存する．
絶縁体の空洞内部での φ-q-n マップも，多くのパラメータに依存する．具体的には，絶縁体に関するもの

（誘電率，導電率，温度など），空洞の幾何学条件に関するもの（サイズ，位置，形状など），空洞内部のパラ
メータ（圧力，温度，封入ガスの化学化合物など），印加電圧源のパラメータ（振幅，周波数，波形など）があ
る．PDの経年変化や継続は，内部パラメータだけでなく，空隙の形状や大きさにも劇的な影響を与える．こ
れらのパラメータが内部放電の強さに及ぼす影響については，異なる経年変化モデルと実験結果を用いて研究
されている [59]，[58]．
空洞内部の物理的・化学的変化により，経時的にさまざまな φ-q-nマップが観察される．表面導電率の上昇，
空隙内部でのガスの解離と電気陰性ガスの生成，圧力と湿度の変化，表面での化学反応などが経年変化の過程
で起こる [60]．特に [61]がシミュレーションにより示したように，φ-q-nマップは「うさぎ」のようなパター
ンから「亀」のようなパターンへ変化することが確認されている．これらの変化は一定ではなく，この実験環
境化では 26時間から 200時間の間にランダムに変化した．同様の変化は，[58]においても確認されている．
■電気及び水ツリー ケーブルの絶縁不良を引き起こす主な原因の一つは，ボイド，突起物，クラックの周囲
で電界が強まる箇所から発生する導電性電気トリー（ET）である．発生したトリーの枝に PDが発生すると，
絶縁体に沿ってトラックが進行する．電気トリーにはその形状の違いで主に 3種類に分類されている [62]．
ETは，スパイク電圧のような電気的ストレスによって，枝状 (branch)または茂み（bush）のような形状

12



のトリーで開始されることがある．[63]では，温度と電圧レベルが架橋ポリエチレン（XLPE）における ET

の進行に大きな影響を与えることが示されている．低電圧では枝状トリーと茂み状トリーの両方が観察され，
高電圧では枝状樹木が支配的であった．これらの樹木は，温度が高いほど早く発生するが，報告された温度範
囲（50～90◦C）では，電圧が低いほど樹木の発生は遅く，この観察の背後にある理由は，まだ十分に解明され
ていない．
強電界領域周辺の絶縁体内部に水分が存在すると，比較的伝播速度が遅い水トリー (WT) が発生する．ET

やWTは過電圧によって発火し，初期導性電気ツリーは PDを発生させるのに十分な自由電子を先端周辺に
供給することができる．また，スパイク電圧は，WTを ETに変化させ [64]，使用年数の経過したケーブルで
はまれに ETをWTに変化させることがある [65].

ツリー化現象における物理的・化学的プロセスは十分に解明されていないが，絶縁状態や内部ツリーに対す
る脆弱性は，PDパルスを検出することで評価することができる．HV電極と接地電極の温度，および温度勾
配が ETsの発生と PD特性に及ぼす影響について調べた [66]では，温度度勾配を大きくすることで，PDの
大きさが増加し，HV電極の温度が高くなると，PDの大きさは小さくなることが確認できる．また，[67]は，
印可電圧を変化させながらトリーを発生させたときの φ-q-nマップの経時変化を調べている．
■その他の放電要因 導体シールドや絶縁体シールド上にある突起物は，絶縁強度を低下させ，電気ツリーを
発生させる可能性がある．ケーブルのスプライスやプラグインにおける剥離は，先に説明したように表面放電
の原因となり得る．また，設置時の乱暴な取り扱いによる半導電性スクリーンの剥離は，内部放電の原因とな
り，絶縁体内部でさらなるツリー化を引き起こす可能性がある [64], [68], [69]．絶縁体内の不純物としての汚
染物質やクラックは，局所的に電界を強め，ツリー化プロセスを開始し，絶縁体のさらなる劣化を引き起こし
うる．
2.3.3 高圧トランス
高圧トランスは，最も重要な機器であり，高いメンテナンスコストを伴う [70]．PDは瞬間的に深刻な絶縁
損傷をもたらすことはないが，長期間のうちに徐々に進行し，より深刻な断熱破壊をもたらす可能性があると
されている．初期には放電周波数と総放電量が非常に低く，PDの発生とともに両者ともゆっくりと成長し，
その後 PDは急速かつ不可逆的な発生段階に入り，放電がさらに発達し，最終的に絶縁破壊に至ることが観察
されている [71]．
コロナ放電
トランスオイル内の高電圧部品に金属突起が存在すると，空気に対するものと同様に，オイル内にコロナ状
の放電を発生させることがある [72]．その結果，絶縁油の誘電強度が徐々に低下し，トランスの故障につなが
る可能性が高い [70]．突起の形状や長さが放電の強さに影響を与えるだけでなく，絶縁油の温度や含水率など
も，絶縁強度や寿命に大きな影響を与える可能性がある [73]．このような放電は，油中に埋め込まれた針と電
極の配置を利用して，実験プラットフォームで確認されている [74]．
このタイプの欠陥に関する以前の研究では，オイルの圧力または温度が上昇すると検出される PDの数が減
少する一方，湿度は PDの数に逆の影響を与えることが示されている．[74]，[75] では，粘度とオイルの種類
が PDカウントに及ぼす影響が調査されている．[73]は温度を固定して，オイルに加える熱を変化させたとき
の φ-q-nマップを比較し，放電活動は印加交流電圧のピーク付近で発生していることを確認した．また，コロ
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ナ放電により発生する PDの大きさは，熱劣化試験片に比べて未使用試験片で大きいが発生する位相幅は熱劣
化したものの方がわずかに大きいことを報告している．
ボイドにおける放電
トランスの固体絶縁体には，非平滑油流や乱流に起因する油中の気泡のほか，製造工程不良や経年劣化に起
因する不完全含浸紙のガス充填空洞がある．固体絶縁には，油入トランスの絶縁システムにクラフト紙が広く
使用されている．クラフト紙中に空隙がある場合，空隙内の放電によって紙の誘電強度が変化し，劣化する可
能性がある．

[76]はオイルペーパー状のガス空隙によって発生した PDの φ-q-nマップを調べた．この欠陥は，上向き
に掃引してアークを形成するうさぎ型の φ-q-nマップによって特徴づけられる [76]，[77]．放電が両方の半周
期，電圧応力が増加する位相領域で発生し，放電の極性が電圧応力と逆であるという事実は，これらが内部放
電であることを示唆している．空気コロナなどの外部放電の場合，放電は通常片半サイクルのみであるが，ト
ランスの場合，PDのパターンは対称的であり，電圧の正の半サイクルの放電パターンは，電圧の負の半サイ
クルの放電パターンの鏡像である．このことは，放電を起こす欠陥の両側の誘電体材料が同じか類似している
ことを，加えて放電が油紙絶縁の空隙で発生していることを示唆している．もし放電を起こす欠陥の両側の材
料が異なれば，PDパターンは正と負の半サイクルで異なる可能性が高い [76]．
また，油含浸プレスボード (OIP)は，トランスの絶縁バリアとして広く使用されている．ただしこれには
吸湿性があり，空気で満たされた空洞の PD開始電圧 (PDIV)の低下により，OIPの水分を吸収し，絶縁性
を悪化させる可能性がある．PDIVの低減の理由は，OIPの比誘電率の増加，ガスに対する比誘電率，ボイド
内の電界によるものである [78]．したがって，OIPの PD特性に対する水分の影響は，トランスの絶縁診断
と信頼性解析において重要な要素となる．[79]は，OIPの PDパターンに対するさまざまなエアギャップお
よび油水分レベルの影響を調査した．結果，また異なるレベルの含水率に対する PDパターンは，印加された
電源周波数電圧に対する PD事象の発生位相において同様の傾向を示していることが確認された．
表面放電
プレス基板 (または紙)やオイルなどの固体と液体の絶縁体間の界面は，トランスの絶縁体の中でも比較的
脆弱な部分と考えられている．
油-紙絶縁の場合，油の強度は紙よりも相対的に低いが，油-固体の界面は油よりも劣化しやすい [80], [81]．
使用中の電源トランスにおける表面放電による故障は，[82]，[83]で報告されている．湿気，誘電体劣化，巻
線変形などの劣化により局所電界が増加した場合，紙面界面に沿って放電が発生することがある．PDが持続
すると，プレスボード表面に回復不可能なトラックや炭化領域が発生する [84], [85]．このような誘電体劣化
は，表面に沿ったフラッシュオーバー，巻線短絡，さらには接続部であるブッシングの爆発を引き起こす可能
性がある [82]．また，HVトランスの充填に使用される絶縁体の違いによっても発生する PDに違いがある．
ミネラルオイルはエステル系水銀に比べ，PDレベルが最も低く，最も高い PD値は，天然エステルに囲まれ
た合成エステルによって含浸されたプレスボードで報告されている [86]．
プレスボードの表面における沿面放電は，通常，位相角が小さいほど顕著であり，正の放電よりも負の放電
が促進される [82]，[87]．オイルペーパー絶縁体の表面放電には静水圧が影響する．静水圧の増加は，通常の
使用条件下では PD電荷振幅を非常に低い値まで減少させ，さらに静水圧を上げると PDの繰り返し率が大
幅に低下する．したがって，HV 変圧器の通常の運転状態において，油と紙の界面を保護するのに有用であ
る [82]．
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2.3.4 まとめ
以上を概要としてまとめたものが表 2.1のようになる．ここからわかるように，PDはその発生箇所，発生
メカニズムにおいてパターンが大きく異なる．また，同じパターンであったとしても，湿度や温度，劣化の度
合いなどによっても形状が変化しうる．

発生箇所 部分放電の種類 φ-q-nマップの形状例

高電圧モーター，発電機
内部放電 不規則なパターン
スロット放電 非対称，三角形

スロット出口部の放電 スロット放電より丸い，放電数は非対称
相関放電 他の放電と混在し判別困難
スパーク放電 90◦, 270◦ 付近に放電が集中

HVケーブル
コロナ放電 突起の形状によりパターンが変わる
表面放電 表面欠陥の形状などによってパターンが変わる
内部放電 経時変化により形状が変わる

高圧トランス
コロナ放電 オイルの温度や含水率などによりパターンが変わる

ボイドにおける放電 うさぎ型など
表面放電 負の放電が多い，水圧などで変化
表 2.1 部分放電の発生箇所とその種類

2.4 機械学習を用いた部分放電の検出と同定
ここでは，得られた φ-q-nマップに対し，機械学習を用いて分析を行った研究について述べる．
情報の圧縮
φ-q-nマップは φと qの配列の要素として nが格納されていると考えると，φと qの分割数の積の次元を持
つことになるため，何らかの次元圧縮が行われていることが多い．
φ-q-nマップの統計的特徴を抽出することで情報を代表する方法として，[88]では，φを N 当分した位相窓
ごとに特徴量 xi（iは位相窓のインデックス）を定義し，特徴量の重み付き平均，分散，歪度，尖度などを定
義した．例えばある φ-q-nマップの重み付き平均 ω は以下で定義される．

ω
def
=

∑N
i=1 xiw(xi)∑N
i=1 w(xi)

ここで特徴量 xi は，例えば各位相窓中の部分放電 nの回数の総和などとする．また w(xi)は xi の重要度と
する．分散，歪度，尖度も同様に定義される．
高次元のデータを圧縮する方法としてよく用いられる PCAの利用では，[89]では，1440次元のベクトルに
対し，19個の主成分を抽出し，その後の分類に利用している．[90]では，主成分分析に加え，カーネル主成分
分析による比較も行われているが，これらはその物理的な意味を解釈することは困難である．

15



また，データ間の局所的な構造（距離）を低次元空間に埋め込んだ際になるべく維持する手法として t-SNE

がある．[90]では，t-SNEを用いて 600次元のベクトルを 7次元に圧縮している．
分類
φ-q-nマップの情報を圧縮し，特徴空間で表現した後，教師あり学習もしくは教師なし学習に基づき，PD

信号を分析することができる．
■教師なし学習 複数の未知の PD信号を分離するために教師なし学習が用いられる．

[91]では，統計的特徴を入力として k-meansを用いて，4つの PDパターンが 8つのクラスタで完全に分
離されることを報告されている．[92]では，φと q を用いて k-meansを実施し，その後これらの特徴から PD

パターンを判断するヒューリスティックルールが提示されている．また，複数のクラスタに所属することを許
容した Fuzzy C-meansにおける分類実験では，[93]において統計的特徴を PCAにより圧縮し，分類がおこ
なわれている．

[94]ではマンハッタン距離を用いた階層型クラスタリングを PDパターンの分類に利用している．階層型
クラスタリングは，クラス間の連結基準をどうするかも考慮する必要がある．[95]では，単一，完全，セント
ロイドの 3種類の基準を用いた階層型クラスタリングと k-meansの結果が比較されている．
いずれの研究においても，将来的にはドメイン知識をシステムに組み込む必要がある．
■教師あり学習 すでにラベル付された PD信号に対し，ノイズと PDの分離や複数の PD信号の識別目的
で教師あり学習が用いられる．[96]では異なるタイプの PDを分類するために SVMが用いられた．[90]では
Fuzzy SVMが，[97]では最小二乗 SVMがそれぞれ PDの分類に用いられている．また [98]において，画像
判別の特徴量として用いられる HOGと SVMを組み合わせた手法も提案されている．

[99]では，既知の欠陥やノイズパターンを持つ実験室で収集された教師付き訓練データを用いて，決定木
による分類が行われている．[100]では統計的特徴を用いた決定木により，PDパターンの分類が行われてい
る．RandomForestを用いた分類としては，[101]などがある．
深層学習に代表されるニューラルネットワークを用いた分類も非常に多岐に渡る．2003 年までのニュー
ラルネットワークを用いた研究は，[102] に包括的なレビューがある．φ-q-n マップ以外の情報表現を用い
た研究も多く存在している [21], [103]．深層学習を用いた研究は近年でも盛んであり，AutoEncoder [104]，
CNN [105]，LSTM [106]などがある．
2.4.1 異常検知
部分放電は微小なノイズなどの日常的に発生する放電現象とはことなるため，PDの検出は機械学習の文脈
では異常検知と考える事ができる [107]．異常検知に関連する研究は非常に膨大に存在するため，本節ではそ
の一部について述べるにとどめる．
データが多次元正規分布に従うと仮定したときに，対数損失に相当するマハラノビス距離 [108]を用いては
ずれ値を検出する方法がある．同様に，PCAを用いて主成分ではない方向に現れたデータをはずれ値として
検出する方法もある [109]．また，データを原点とその周辺に写像し，原点から遠い点をはずれ値として検出
する one-class SVMもよく用いられている [110]．これらはデータがもつ何らかのパターンを学習し，そのパ
ターンからはずれたものを異常として検出する方法と解釈できる．
本論文で用いる NMF [111]や，AutoEncoder [112]をもちいた異常検知手法も存在する．これらは，もと
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のデータと学習後の結果の差があるしきい値を超えた場合に異常として検出する方法と解釈できる．
時系列データなど，途中でモデルの構造が変化する時点を検出することも広義の異常検知と考えられる．あ
る事象の出現頻度に着目し，その変化を検知するバースト検知 [113]，大規模時系列テンソルの典型的なパ
ターンの数や変化点を自動抽出を行う CubeMarker [114]などが該当する．
本研究で対象とする φ-q-nマップは時系列でデータが与えられるが，例えば教師あり学習は正解ラベルがわ
からないため利用できない．将来的な故障予測への適用などのため時系列でデータを扱うことが望ましいが，
時系列に与えられる φ-q-nマップに対し，何らかの特徴量抽出する必要があり，このためにはドメイン知識が
必須となる．しかしながら，先に述べた通りそのパターンが無数にあること，加えて地中送電線の部分放電に
おいては何をもって異常とするかの知見が潤沢に存在しないことなどから，特徴量の設計が困難であるという
問題がある．
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第 3章
課題定義
前章までで確認した通り，PDはその発生箇所，発生メカニズムにおいてパターンが大きく異なる．しかし
ながら，本論文が対象とする地中送電線においては，長距離に敷設されたケーブルのどこで発生するかわから
ないため，人が定期的に検査・監視するだけでは不十分でありコストもかかってしまう．このため遠隔から送
電線の状態を常時測定できるように，電力ケーブル接続部に高周波 CTをクランプすることで φ-q-nマップを
測定し，その変化をオンラインで監視することが検討されている [115].

絶縁破壊につながる可能性のある PDが発生もしくはその予兆が確認できた際は，送電線の交換などの対応
をとることになるが，地中送電線の監視においては，まだデータの蓄積が十分ではなく，問題があると考えら
れる PDがどのような φ-q-nマップを表すのか，すなわち典型的な PDのみが絶縁破壊につながるのかといっ
た知見は確立されていない．また，人間が判別できないリスクとなりうる PD，もしくは，典型的な PDの予
兆がノイズと思われる φ-q-nマップの中に隠れている可能性も考慮する必要がある．
仮に，検出の対象を典型的な PDに限定したとしても，先に述べた通り，地中送電線の劣化度合や検出位相
により φの値が，PDの発生原因や発生場所により qの値が，観測時間間隔や劣化度合により nの値がそれぞ
れ変化することから，観測地点やその環境により φ-q-nマップは大きく異なる．これはノイズにおいても同様
であることが知られており，ノイズを表す既知パターンの φ-q-nマップだけでなく，現場特有のノイズパター
ンも存在する．深層学習のような大量の教師ありデータを用いるためには，非常に多くの φ-q-nパターンに加
え，そのノイズパターンも合わせた教師つきの訓練データを使用しないと学習・判定は出来ない．したがっ
て，人工的なデータを拡張・追加することによるアプローチにより，特定のパターンに限定されずかつ現実に
意味を持つようなデータの作成は困難である．
さらに，これまでの研究において用いられたデータは公開されておらず，利用することができない．このた
め，ドメイン知識を特徴量として導入するための設計なども困難である．
以上を本論文が取り組むべき課題として整理する．
1. 時系列に与えられた φ-q-nパターンのデータセットに対し，PDパターンを分類したい．
2. φ-q-nパターンは測定した環境依存であり，ドメイン知識は限定的にしか活用できず，一般的な教師あ
りの手法では困難である．

3. データ量が十分でないため，将来的な劣化や絶縁破壊のリスクを見極めるために，抽出したパターンの
収集及び分類に加え，いつ現れたかを中長期に渡って蓄積していく必要がある．

4. その際，既知の（安全な）パターンであるか，未知のパターンであるかがリスク判断に必要となる可能
性も考えられるため，過去のパターンを元にパターンの追加の是非を判断したい．
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そこで本論文では，これらの課題に取り組むために，非負値行列因子分解（Nonnegative Matrix Factor-

ization, NMF）[116]を用いた部分放電の検出方法を提案する．以下，それぞれの課題に対する提案手法のア
プローチを述べる．各番号が上記の課題と主に対応する．

1. NMFは非負のデータ行列X を，非負の行列W とH の積で近似するように分解する. 分解した行列
H はデータの特徴をうまく代表した φ-q-nマップの基底ベクトル (すなわち PDパターン)を与えると
考えられる. また，W は各基底ベクトルの結合係数であるため，φ-q-nマップに対する基底ベクトルの
寄与度を表す時系列特徴として利用できる.

2. NMFは教師なし学習で動作するため，既知の教師データの数と種類が少ない，もしくはデータ生成環
境が変化した場合においても適応できる.

3. NMF は深層学習のような大規模データを必要とせず小規模なデータ行列の学習にも適用できる. NMF

により分解された行列は元のデータよりも小さくなるため，基底ベクトルのみを保持することにより，
定常的にデータ収集・蓄積する監視システムにおいて，データを圧縮して保持することが可能となる.

4. 新規データに対し，既存の基底を用いて再構成誤差を計算し，その誤差がしきい値を超えた場合に，未
知の PD信号が発生したと考えることで，再学習により基底画像を新たに追加することを可能にする.

以上により，NMFは地中内送電線の φ-q-nマップを常時監視し，新しい状況に対して基底の追加により状況
を把握・ 追随することに適した手法であると考えられる. 加えて，現状は上記課題で述べたように教師データ
が蓄積されていないため，提案手法を用いてモニタリングをす るとともに，ドメイン知識を更新し，将来的
には教師あり学習に適用するための教師データを蓄積することも主たる目的の 1つである.

現状調査した限りにおいて，部分放電検出に NMFを適用した事例は，本研究が初めてである．
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第 4章
オフライン PD検出
本章では，はじめに NMFの概略を説明した後，φ-q-nマップに対し NMFを適用し，PDパターンを抽出
する方法について述べる．この際，NMFのハイパーパラメータである基底ベクトルの数を再構成誤差に基づ
いて決定する方針を説明する．

4.1 NMF(非負値行列因子分解)

はじめに NMFの概略について述べる．
観測データとして，非負の要素を持つ p次元のベクトル x = (x1, x2, ..., xp)T , xi ≥ 0が m個与えられた
とき，その全体を (m, p)行列X = [x1, ...,xm]T で表し，データ行列と呼ぶ．ここで T はベクトルもしくは
行列の転置を表す．また，データ行列X の要素がすべて非負値であることをX ≥ 0と書く．NMFはデータ
行列X を，非負の (m, r)行列W と (r, p)行列H の積

X ! WH , W ,H ≥ 0 (4.1)

により近似することを目的とする．ただし，r はハイパーパラメータであり m > r とする．ここでW の
(i, j) 成分を wij，H の j 番目の行ベクトルを hT

j で表すと，各々の観測データ xi は hj を基底ベクトルと
みなすことで，その 1次結合 xi =

∑r
j=1 wijhj で表現される．このとき，wij は各基底の結合係数，r は xi

を表現するのに必要な基底ベクトルの数と考えることができる．幾何学的には，NMFでは観測データによく
フィットするような r 次元凸錐を見つけることと解釈できる．以後，W を係数行列，H を基底行列と呼ぶ．
NMFでは一般に (4.1)式の等号は成り立たない．そこで，X とWH の乖離度

DEU (W ,H)
def
= ∥X −WH∥2F (4.2)

を目的関数として最小化するようなWH を求める．ここで，∥·∥2F は行列の Frobeniusノルム（行列の要素
の二乗和）である．この目的関数を解析的に解くことはできないが，以下の更新式によりX ! WH となる
W とH を効率的に得る反復アルゴリズムが知られている [117]．

W ←W ⊙ XHT

WHHT
(4.3)

H ←H ⊙ W TX

W TWH
(4.4)

ここで，⊙は行列の要素同士の積を，除算は要素同士の除算をそれぞれ意味する．W とH をランダムな非
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負値で初期化し，上式により各行列の要素を更新していくことで，目的関数は局所最適解に収束することが知
られている．
また，乖離度を Iダイバージェンス

DKL(y|x) = y log
y

x
− y + x (4.5)

板倉斎藤擬距離
DIS(y|x) =

y

x
− log yx− 1 (4.6)

として定義することで，それぞれの更新式も計算することができる．ここで y と xは，それぞれ元の行列X

と分解後の行列の積WH の各要素である．なお本論文では，計算の簡便性から DEU を用いた．
4.1.1 NMFの初期値
NMFには係数行列W と基底行列H について初期値依存性があり，初期値によって 4.3式，4.4式の収束
の速さや，得られる解が変わることがある．これらの行列は，通常何らかの乱数により初期化することも多い
が，データ行列X の特異値分解を利用した初期化の収束が早いことが知られている [118]．実験結果の解の一
意性を担保するため，本論文ではこの初期化を利用している．
4.1.2 NMFの応用例
NMFの応用例は非常に広範である．画像処理 [119]や，音声信号処理 [120]など信号処理の分野で多く研
究されている．また，テキスト分類 [121]や顧客分類 [122]ようなWeb上のデータのクラスタリングにも利用
される．NMFを時系列データに適用した研究としては，グラフのリンク予測を行った研究 [123]やソーシャ
ルメディアにおけるトピック分類を時系列に発展させた研究 [124]などがある．いずれの場合もデータの特性
や構造上，すべての要素が非負となっていることが重要である．
本論文でも，φ-q-nマップの非負性に着目し，データを分解することで，PDパターンの抽出と将来的なク
ラスタリングを目的としている．また時系列に与えられた φ-q-nマップに NMFを適用することで，得られた
行列を時系列の特徴ベクトルとみなす方法について次節で説明する．

4.2 φ-q-nマップへの NMFの適用と特徴ベクトルの生成
ここでは，前節で述べた NMFを φ-q-nマップに適用する方法を述べる．また，NMFにより計算された係
数行列W を φ-q-nマップの時系列推移を表現する特徴ベクトルとして定義するアイデアについて述べる．
まず，ある時刻 t における φ-q-n マップを平坦化して p 次元のベクトル xT

t とし，これを φ-q-n ベクトル
と呼ぶことにする．なお pは φ-q-nマップにマッピングする際の位相 φと電荷量 q の bin数の積であり，ベ
クトルの各成分の値が PDの頻度 nとなる．一定期間計測，蓄積された φ-q-nベクトル xT

t を時系列に並べ，
データ行列X を作成する．以下では行列の行成分を時間方向として考える．xt およびwj，hj の関係をまと
めると図 4.1のようになる．
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図 4.1 φ-q-nマップへの NMF適用

データ行列X に対し，NMFを適用することで係数行列W と基底行列H が得られる．φ-q-nベクトル xt

は，H の各行ベクトル hT
j を基底ベクトルとする一次結合で表される．すなわち，φ-q-nマップが持つ個々の

ノイズや PDが，この基底ベクトルとして分離，表現される．図 4.2は，φ-q-nマップが基底画像の一次結合
として表されるイメージを図示したものである．

図 4.2 基底画像の一次結合による φ-q-nマップの表現

次に，係数行列W の各列ベクトルwj を考える．wj の各成分 wtj は，ある時刻 tにおける φ-q-nベクトル
xt を表現するための，基底ベクトル hj に対する寄与度と考えることができる．例えば，X がノイズを表す
基底ベクトル hnoise，PDを表す基底ベクトル hPD の 2種類からそれぞれ構成されているとし，ある時刻の
φ-q-nベクトル xt が xt = wt,noisehnoise + wt,PDhPD で表されたとする．NMFが基底ベクトルの張る凸錐
を生成することを思い出すと，wt,noise > wt,PD であれば，xt はノイズを表す基底ベクトル hnoise に近い点
であるのでノイズパターンを表した φ-q-nベクトルであるとみなすことができる．同様に，wt,noise < wt,PD

であれば，PDを表す φ-q-nベクトルであるとみなすことができる．関連研究で述べた通り，実際の実験環境
においても複数の放電パターンが混在することが知られており [32], [48]，また実際の φ-q-nマップは測定時
間内のすべての信号がカウントされているため，ノイズや PDが各 wtj の割合で混合した状態となっている．
したがって，wj を，各基底ベクトル hj がどの程度 φ-q-nベクトルに寄与しているかを表す時系列の特徴ベ
クトルとして利用する．
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4.3 新規データへの適用と基底ベクトルの追加
前節では，φ-q-nマップから作成したデータ行列が与えられたときに，NMFを適用し時系列特徴と基底ベ
クトルを求める方法について述べた．しかし実際の環境下においては φ-q-nマップは常に更新されるため，得
られたデータに対して都度新たに NMFを行うと基底ベクトルも上書きされてしまい，それまでに得られた基
底ベクトルの情報を活用することができなくなる．得られた基底ベクトルが既知の（安全な）パターンである
か，未知のパターンであるかを都度判断しないためにも，学習済みの基底ベクトルは記憶したまま利用するこ
とが望ましい．そこで，本節では学習済みの基底ベクトルを，新しい φ-q-nマップに適応し係数行列を取得す
ることで，φ-q-nマップの状態を推定する方法について説明する．
新規データへの基底ベクトルの適用
いま，学習によりあるデータ行列X から基底行列H が得られているとする．この基底行列を固定し，新
規のデータ行列Xnew に対して，NMFを適用し対応する係数行列Wnew を求める．具体的には，H を固定
したままで (4.3)式を利用し係数行列Wnew のみ更新を行えばよい．

Wnew ←Wnew ⊙
XnewHT

WnewHHT
(4.7)

これは実際の環境において，新しい測定機器に対し，同様の別環境で測定・学習された基底の情報を用いて
分析するケースを想定している．
新しい基底ベクトルを追加する場合
一方，新しく得られたデータ行列Xnew の中に，今までと異なる φ-q-nパターンが現れた場合，既存の基底
ベクトルではこのパターンをうまく表現できない．このような場合には，既存の基底行列に新しく基底を追加
し，再学習することでデータの変化に対応する. 具体的には，基底行列H に,何らかの初期化を行った新しい
(k,p) 行列Hnew を追加して NMF を実行する. いま，図 4.3 のように，H+ def

= [HT ,HT
new]

T と定義する．
ただしmnew はXnew のデータ数を表す．

図 4.3 新しい φ-q-nマップに対し，既知の基底H に新しくHnew を加えて NMFを適用する．
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このとき，NMFの更新式は
Wnew ←Wnew ⊙

XnewH+T

WnewH+H+T
(4.8)

H+ ← H+ ⊙ W T
newXnew

W T
newWnewH+

∣∣∣∣
Hnew

(4.9)

と表せる．ただし，(4.9)式の |Hnew はH+ の更新時において，H を固定しHnew の部分だけを更新するこ
とを意味する．
これは実際の環境において，全く新しい環境で測定・学習をスタートするコールドスタートのケースを想定
している．

4.4 基底数の決定について
NFMにおいて，基底数 r は外部から与える必要があり，データの特性や目的に合わせて決定される．しか
しながら，関連研究で述べた通り，測定環境や経時変化などに応じて常に未知の φ-q-nマップが現れる可能性
があることから，ドメイン知識を用いて事前に基底数を決定することは困難であり，また現実的ではない．こ
のため，定常監視を行う場合に PDパターンを扱うための指針となるよう，基底数を決定する基準となる指標
を予め与えておき，その決定基準を満たす基底数のパターンが抽出されたと考えることが望ましい．本節で
は，以下で述べる再構成誤差に基づく最小化基準を用いて基底数を決定するアイデアについて説明する．
PD検出を目的とした場合，基底数を考慮するフェーズは，
1. 最初の学習においてデータ行列X が与えられたとき
2. 未知のデータ行列Xnew に対し既存の基底行列H に新しい基底Hnew を追加するかを判断するとき

の 2つがあげられる．特にフェーズ (2)のケースは，送電線のある地点で計測された φ-q-nマップを，他の地
点で新たにデータを取得する場合の初期値として適用することなどを想定している．
いま，ある基底の元で NMF の学習が終了，すなわち反復アルゴリズムが停止条件を満たして終了した後
の，各 φ-q-nベクトルの再構成誤差

et = ∥(X)[t, :]− (WH)[t, :]∥2 (4.10)

を考える．ここで (·)[t, :]は，行列 (·)の t行目を，∥·∥2 は 2乗ノルムをそれぞれ表す．また，et はm次元の
ベクトルであり，m個のデータそれぞれの再構成誤差を表していることに注意する．et の平均を µ，標準偏
差を σ として，再構成誤差 et がはずれ値れ値となる個数，すなわち，あるしきい値 τ を用いて，et > τ とな
る個数 ξ を考える．本論文では，しきい値を以下で定義する．

τ
def
= µ+ ασ (4.11)

ここで，µは et の平均，σ は標準偏差を表す．αは定数であり，ハイパーパラメータである．一般に，基底の
数を増やすと再構成誤差，すなわちその平均と標準偏差である µと σ は減少するが，これらの値が小さくな
ることで外れ値の個数 ξ は増加することが予想される．そこで本論文では，ξ をデータ数で除算した割合 η が
最小となる基底数のときに，NMFが最もよく元のデータを表現していると考え，このときの基底数 r̂ を採用
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することとする．以上の再構成誤差に基づく基底数決定に利用する η を，本論文では以降，再構成誤差最小化
基準 (Reconstruction Error Minimization Criterion，REMC)と呼ぶことにする．
フェーズ (1)の場合は，基底数 r を 1から rmax まで変えながら，基底行列H を再学習する. 手順を以下
の Procedure 1に記載する．ただし，表中において # {·}は {}内の条件を満たす集合の要素数とする．
Procedure 1 Search basis number
Input: X,α, rmax

Output: r̂

1: initialize W , H

2: for r = 0 to rmax do

3: while stop condition holds do

4: update W and H using eq.(4.3) and eq.(4.4).

5: end while

6: calculate et, µ and σ

7: τ ← et > µ+ ασ

8: ξ ← # {et; et > τ}
9: ηr ← ξ/m

10: end for

11: return r̂ = argminr ηr

フェーズ (2)の場合は既知の基底を上書きしないよう，前節で述べたように新しい基底行列Hnew を追加し
て最適な基底数を探索する．基底を追加するかどうかの判断基準は，η が事前に設定されたしきい値を超えた
場合とし，ηはXnew の再構成誤差 enew,t とフェーズ (1)で計算した τ から計算する．ηがしきい値を下回っ
たとき，もしくは基底反復回数が終了したときの最小の値によって追加する基底数を決定する．以上の手順を
Procedure 2に記載する．
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Procedure 2 Update basis matrix

Input: Xnew,H, τ, η, r+max

Output: H+

1: r ← the number of rows in H

2: H+ ←H

3: for r+ = r to r+max do

4: initialize hT
new

5: H+ ← [HT ,hT
new]

T

6: while stop condition holds do

7: update W and H+ using eq.(4.8) and eq.(4.9).

8: end while

9: calculate enew,t

10: calculate ξ ← # {enew,t; enew,t > τ}
11: η+ ← ξ/mnew

12: if η > η+ then

13: H+ ← [HT ,hT
new]

T

14: η ← η+

15: recaluculate τ

16: else

17: H+ ←H

18: end if

19: end for

20: return H+
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第 5章
オンライン PD検出
前章まで，φ-q-nマップから作成したデータ行列X が与えられたときに NMFを適用する方法，再構成誤
差最小化基準（REMC）に基づいて NMFの基底数を決定する方法について述べた．しかし実際の測定環境
下においては φ-q-nマップは逐次的に追加されるため，その都度 PDパターンが発生していないかを常時判定
する必要がある．この要件を満たすためには，過去に得られた基底ベクトルの情報を活用すること，活用でき
ない場合（未知のパターンが現れた場合）に基底を追加することが求められる．
オンライン監視の必要性は主に以下の理由による．
1. 現状のシステムはデータを蓄積して判定し警報を発するものであるが，アルゴリズムの条件に合わな
かった場合は警報が発報されず，後日事故に至った経緯がある．

2. 一度 PDが発生してしまうと，絶縁破壊までは非可逆かつ，加速度的に劣化が発生する．したがって，
電圧階級が高くなる（すなわち重要線路）ほど，PDが発生してから事故にいたるまでの時間が短い．

そこで微小な PDであっても，その発生をいち早く検出し，その後の監視を少しでも長く継続して実施するこ
とで事故の発生を未然に防ぐことが重要となる．
そこで，本章では逐次的にデータが追加された場合の基底追加方法として，複数パターンの方針を提案す
る．またその際，REMCによる基底追加判定基準についても述べる．

5.1 逐次的にデータが追加される場合の基底追加方針
学習によりあるデータ行列X から基底行列H が得られており，ここに新しく計測された φ-q-nベクトル

xnew が追加されたる場合を考える．予防保全の観点から，実際の PDモニタリング環境において避けるべき
は，絶縁破壊につながりうる PDの検出に失敗することである．特にどのような PDパターンが発生するかわ
からない新しい環境においては，可能なかぎり多くの PDパターンを取得・蓄積してドメイン知識を更新する
必要がある．そこで以下では REMCに基づく基底追加ロジックをベースに，追加の可否を判定するための方
針について述べる．
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5.1.1 基底追加方針 1

新しくデータが追加されたデータ行列Xnew
def
= [XT ,xT

new]
T に対し，既存の基底行列H を用いて NMF

を実行する．また，適当な値で初期化した基底ベクトル hT
new を追加した H+ def

= [HT ,hT
new]

T に対して
NMFを実行する．このとき，更新式は (4.3)式を利用することで，HT 部分は固定して値を更新しないこと
に注意する．それぞれの結果に対し，REMC を比較し，値が小さい方の基底数を採用する．Procedure 3

は xnew が追加されたときの，基底更新の手順である．
Procedure 3 Basis addition policy 1
Input: X, xnew,H, τ, η

Output: H+

1: r ← the number of rows in H + 1

2: Xnew ← [XT ,xT
new]

T

3: H+ ←H

4: initialize hT
new

5: H+ ← [HT ,hT
new]

T

6: while stop condition holds do

7: update W and H+ using eq.(4.8) and eq.(4.9).

8: end while

9: calculate enew,t

10: calculate ξ ← # {enew,t; enew,t > τ}
11: η+ ← ξ/(m+ 1)

12: if η > η+ then

13: H+ ← [HT ,hT
new]

T

14: η ← η+

15: recaluculate τ

16: else

17: H+ ←H

18: end if

19: return H+

5.1.2 基底追加方針 2

追加された φ-q-nベクトル xT
new に対して，基底行列H を固定して NMFを実行する．通常の NMFは元

データの次元数数より基底の次元数が小さくなるが，ここでは基底行列の次元数の方が大きくなることに注意
する．この場合の更新式は

W ←W ⊙ xT
newH

WHTH
(5.1)

となる．これは xT
new を各基底の一次結合で表したときの基底の係数を求めていることに相当する．追加さ

れた xT
new と NMF の結果との再構成誤差が，初期の再構成誤差に基づくしきい値を超えた場合，追加さ
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れた xT
new を基底として追加する．しきい値を超えるということは，追加された xT

new は今までの基底の線
形和で表現できないと考えられるためである．ただし，過学習を防ぐため，再度データ行列 Xnew に対し
H+ = [HT ,xT

new]
T を基底として NMF を実行し基底行列の追加部分について再学習する．Procedure 4

は xnew が追加されたときの，基底更新の手順である．
Procedure 4 Basis addition policy 2
Input: X, xnew,H, τ, η

Output: H

1: initialize W

2: decompose xnew into a linear sum of W and H using eq.(5.1)

3: e+ ← ∥enew −WH∥2F
4: if e+ > τ then

5: H ← [HT ,xT
new]

T

6: while stop condition holds do

7: update W and H using eq.(4.8) and eq.(4.9).

8: end while

9: update τ and η

10: end if

11: X ← [XT ,xT
new]

T

12: return H

5.1.3 基底追加方針 3

前述までの基底追加方針では基本的に基底を 1ずつ追加していた．しかし，REMCがあまり大きくない場
合に，これまでの追加方針でははずれ値の割合が減らず，むしろ増加していくことがある．そこで最後の基底
追加方針として，REMCが一定の値 ηth を超えた場合に，基底行列H の基底数を r ∼ r + r′（ただし r′ は
適当な正数）まで変化させてそれぞれ NMFを実行するようにする．このとき実際に追加する基底の数は，こ
れまで同様に，REMCが一番小さくなった基底数を採用する．
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Procedure 5 Basis addition policy 3

Input: X,xnew,H, τ, ηth, r′

Output: r̂

1: initialize W , H

2: Xnew ← [XT ,xT
new]

T

3: while stop condition holds do

4: update W and H using eq.(4.3) and eq.(4.4).

5: end while

6: calculate et, µ and σ

7: τ ← et > µ+ ασ

8: ξ ← # {et; et > τ}
9: η ← ξ/(m+ 1)

10: if η > ηth then

11: for r = r to r + r′ do

12: while stop condition holds do

13: update W and H using eq.(4.3) and eq.(4.4).

14: end while

15: calculate et, µ and σ

16: τ ← et > µ+ ασ

17: ξ ← # {et; et > τ}
18: ηr ← ξ/m

19: end for

20: end if

21: return r̂ = argminr ηr

5.1.4 オンライン PD検出のアルゴリズム
前節までの手順 1∼3 をまとめて，オンライン PD 検出のアルゴリズムは以下でまとめられる．すなわち，
新規に φ-q-n ベクトルが与えられたときに，手順 1∼3 により基底追加の可否を都度判定する．これにより，
PDの検出漏れを可能な限り減らすことができる．
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Procedure 6 Online PD detection
Input: X0, xnew

Output: H

1: initialize hnew

2: Determine basis addition using Procedure 3

3: if Does add basis then

4: bmH ← [HT ,hT
new]

T

5: bmX ← [XT ,xT
new]

T

6: continue

7: end if

8: Determine basis addition using Procedure 4

9: if Does add basis then

10: bmH ← [HT ,hT
new]

T

11: bmX ← [XT ,xT
new]

T

12: continue

13: end if

14: Determine basis addition using Procedure 6

15: bmH ← [HT ,hT
new]

T

16: bmX ← [XT ,xT
new]

T

17: return H

5.2 基底のマージ
前節では，予防保全の観点から，基底の検出漏れをなるべく減らすことを目的とした基底追加方針について
述べた．この追加方針は，発生位相や電荷の微小なずれといった，通常は同一視したい PDについても，別の
異なる基底として新しく追加される可能性がある．一方，システム統合の観点では，送電線の各所に設置され
た検出装置から PDに関係する情報を集約し，必要に応じて各検出装置に対しその結果を共有することが求め
られる．メモリ効率や，送受信のコスト，効率的な情報管理などを鑑みると基底が増えすぎることは望ましく
ない場合もありうる．そこで本節では，得られた基底をマージするアイデアについて述べる．
いま l個の異なる検出装置から，NMFによってそれぞれ基底行列H1,H2, ...,Hl が得られたとする．この
とき，各基底行列には，同一視可能な基底が含まれている可能性も高い．目視やドメイン知識を元にこれらの
基底を統一することも可能であるが，検出箇所が増える程その作業は膨大となってしまう．そこで，これらを
ひとまとめにデータ行列 Hfull = [HT

1 ,H
T
2 , ...,H

T
l ]

T を作成し，このデータ行列に対し再度 NMFを実行す
ることで基底行列を圧縮する．

Hfull ! WHmerge, W ,Hmerge ≥ 0 (5.2)

ここで，Hmerge の基底数は REMCに基づいて決定する．ただし，メモリの制約など実際のモニタリング環
境に応じて基底数を変更することも可能である．
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第 6章
実験
本章では，NMFを用いた PDパターンの有効性を検証するため，人工データ及び実データを用いて実験を
行った結果について述べる．

6.1 確認すべき項目の整理
具体的には，大きく以下の 2項目について検証する．

Q1 PDパターン抽出に関する提案手法の有効性
Q2 逐次的にデータを追加した場合の検出可能性
それぞれの場合において，確認すべき項目を整理すると以下のようになる．

Q 確認項目
1 φ-q-nマップから PDパターンが抽出できているか
1 係数行列が PDパターンの分類に適用できるか
2 既知の基底は別データでも利用可能か
1 RSMEのしきい値設定は問題ないか
1 RSME以外の評価基準以外の基底数決定方法と比べて問題ないか
2 基底マージ後の結果に問題はないか
2 逐次的にデータを追加した場合に PDパターンが抽出できているか
1,2 実データに適用して正しく動作するか

表 6.1 実験において確認する項目のリスト

また，今回の実験において検出結果の評価・解釈は，現状のドメイン知識に基づいて行う.
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6.2 人工データを用いた実験
6.2.1 データセット
ある地点でサンプリングされた地中送電線の φ-q-nマップから特徴的なパターンと考えられるものを抽出し
人工データを作成した．今回のデータでは，放電パルスを 72× 64個のメッシュ内にマッピングしている．作
成した φ-q-nマップには図 6.1の各パターンが含まれる．

図 6.1 人工データ

Noiseパターン以外の Patternについて簡単に述べる．Pattern1∼3に代表される φ-q-nマップはコロナ放
電や内部放電の特徴を模したものである．本論文では，これらを漏れなく検出することが目的となる．また，
Pattern4∼6は，本論文中で対象としている地中送電線の中で過去に確認された特徴的なノイズである．これ
らは送電線の欠陥ではなく，位相のゆらぎやその他の雑音などの影響により発生すると考えられている．リス
クのある PDを検出する目的に鑑み，本論文ではこれらの検出は必須とはしない．
各パターンの φ-q-nマップは完全に同じではなく，それぞれ φ, q, nの各値が異なったものを作成し，これ
らを組み合わせて以下の時系列データセットを作成した．
dataset 1: Noise + Pattern1∼3のどれか 1つ

type1: Noise(85個) + Pattern1(5個)

type2: Noise(85個) + Pattern2(5個)

type3: Noise(85個) + Pattern3(5個)

dataset 2: Noise + Pattern1∼3のどれか 1つ + Pattern4∼6
type1: Noise(70個) + Pattern1(5個) + Pattern4∼6(5個 ×3)
type2: Noise(70個) + Pattern2(5個) + Pattern4∼6(5個 ×3)
type3: Noise(70個) + Pattern3(5個) + Pattern4∼6(5個 ×3)
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dataset 3: Noise + Pattern1∼3のどれか 2つ，もしくは全て + Pattern4∼6
type1: Noise(60個) + Pattern1∼3(5個 ×3) + Pattern4∼6(5個 ×3)
type2: Noise(65個) + Pattern1,2(5個 ×2) + Pattern4∼6(5個 ×3)
type3: Noise(65個) + Pattern1,3(5個 ×2) + Pattern4∼6(5個 ×3)
type4: Noise(65個) + Pattern2,3(5個 ×2) + Pattern4∼6(5個 ×2)

各セットは 90個で 1周期とし，これを 11周期分繰り返した後，最後に再び Noiseパターンを 10サンプル
加えた合計 1,000サンプルとした. 1セットの内訳を上記の構成にしたのは，現実のデータにおいて正常系で
ある Noiseパターンが長期に続き，瞬間的に Pattern1などが現れ，再び Noiseパターンが続くことが一般に
多く見られるためである.

6.2.2 φ-q-nマップからの PDパターンの抽出
はじめに，データ全体に対して本手法を適用する. これは，逐次的にデータを監視できないような孤立した
観測系に対し，定期的にデータを回収して異常がないかを確認する運用を想定したものである.

φ-q-nマップに NMFを適用することで PDパターンがうまく検出できるかを確認する．以下では得られた
基底ベクトルを基底画像と呼ぶ．
図 6.2の左は前節で述べた dataset3,type1のすべてを所与として，NMFを適用したときの基底ベクトルを

φ-q-nマップで表したものである．また基底画像の右のグラフは各基底ベクトルに対応する係数行列の値を縦
軸に，時系列を横軸にプロットしたものである．
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図 6.2 dataset3,type1の基底画像と対応する係数行列

今回の実験では，再構成誤差に基づくの基底数探索手順（Procedure 1）に従って rの値を決定した．なお，
しきい値に関するパラメータ ξ を再構成誤差 et の標準偏差の 1.5 倍と設定した．r を 1 ∼ 20 まで変化させ
たとき，再構成誤差がしきい値を超えた割合は r = 13で最小となった．図 6.2からわかる通り，Pattern1の
φ-q-nマップは，基底画像 1，8，10に，Pattern2は基底画像 1，9に，Pattern3は基底画像 3と 6にそれぞ
れ分離されていることがわかる．ここで，同一パターンの φ-q-nマップに対し複数パターンの基底画像が存在
する理由は，例えば基底画像 3と 6から分かる通り，基底画像 3で表現しきれなかった（はみ出した）信号
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を基底画像 6により補完しているためと考えられる．また，Pattern4の φ-q-nマップは基底画像 4，11，12

に，Pattern6は基底画像 5としてそれぞれ抽出できていることが確認できる．Pattern5は抽出できなかった
のは，このタイプの φ-q-nマップは，特定周波数成分のみにわずかにノイズがのっているだけなので，Noise

に対応する基底画像の中に包含した方が別基底として分離させるより再構成誤差が小さくなったためと考えら
れる．図右の係数行列について，実験データで Pattern1∼3が出現しているところで，対応する係数の値が大
きくなっていることが確認できる．
実験のまとめ
今回の実験では，その他のデータセットに対して，Pattern1∼3の検出漏れが発生することはなかった．表

6.2は，データセットに対して，再構成誤差基準により決定された基底数をまとめたものである．すべてにお
いてしきい値の係数は 1.5とした．

dataset-type 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 3-4

r 19 7 4 10 18 19 13 3 16 8

表 6.2 データセットと再構成誤差基準により選択された基底数

6.2.3 φ-q-nマップの分類
次に，データセットの各 φ-q-n マップが，どの基底画像に対応するかを確認した．NMF により各 φ-q-n

マップは，基底画像の一次結合に分解できる．そこで，φ-q-nマップは一次結合の係数が最大となる基底画像
に最も近いものとして分類する．
分類に成功した事例
図 6.3は dataset3, type1のデータセットについて，横軸に時間，縦軸に係数行列が最大値をとなった基底
画像の番号をプロットしたものである．基底画像の番号は，前節の図 6.2に対応している．各点の色は，実際
のデータセットがどの基底画像からの寄与が一番大きかったたかを表している．
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図 6.3 最大値をとる係数行列に対応する基底（dataset3, type1）

例えば，基底画像（縦軸）2を見るとオレンジの点が等間隔に並んでいることがわかる．これは，基底画像 2

に対する係数が最大となったのは，Pattern1の φ-q-nマップが現れたときだけであることを意味する．また，
基底画像 0を見ると青と茶色の点が確認できるが，これは Noise以外に，Pattern5の φ-q-nマップがあらわ
れたときにも，係数が最大となっていることを意味する．今回，検出対象である Pattern1∼3の φ-q-nマップ
（すなわちオレンジ，緑，赤の各点）は，特定の基底画像のみにあらわれており，逆にその基底画像においては
他の Pattern（色）が現れていないことが確認できる．このことから，係数行列の大小によって PDパターン
を分類可能であることがわかった．なお，この実験におけるミスラベルは Pattern5に属する φ-q-nマップを
Noiseと判定したもの 5枚のみであった．
分類に失敗した事例
図 6.4は dataset3, type2のデータセットについて，一部で分類に失敗している例である．

37



図 6.4 最大値をとる係数行列に対応する基底（dataset3, type2）

このデータセットでは，再構成誤差基準によって，最適な基底数として r = 3が決定されたが，図から分か
る通り，基底画像 1について Pattern4の場合もこの基底画像に対応する φ-q-nマップと判断されている．こ
の実験におけるミスラベルは Pattern4と 5に属する φ-q-nマップを Noiseと判定したもの 132枚，Pattern4
に属するものを Pattern1と判定したもの 33枚であった．
検出された基底画像を図 6.5に示す．基底画像 1と 2を見ると，Pattern4のノイズが薄く合成されているこ
とが確認できることから，ノイズも合わせて学習してしまったことがわかる．ただし，Pattern1と 2の画像
は Noiseとは別に検出されており，検出漏れを少なくするという本論文の目的は達成していると考えられる．
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図 6.5 dataset3, type2の基底画像と対応する係数行列

実験のまとめ
すべてのデータセットに対し，分類を行った結果を表 6.3 に示す．ここでは Pattern1∼3 の基底画像を陽
性，残りの基底画像を陰性とし，Precision，Recall，F1 スコアを計算した．また比較のために，陽性の画
像を正常データと仮定して，AutoEncoder による異常検知を行ったスコアも同時に記載している（詳細は
Appendixに記載）．ここから分かる通り，NMFではすべてのデータセットにおいて PD信号の検出漏れはな
く，Noiseを PDと判定したものは前節で示した dataset3, type2のみであった．また AutoEncoderの精度
も NMFと比較して Recallの値に大きく差はない．Precisionの値が AutoEncoderで小さくなっているのは
主に Pattern4を誤検出してしまったことに起因する．
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dataset-type 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 3-4

NMF

Precision 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.77 1.0 1.0

Recall 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F-measure 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.87 1.0 1.0

AutoEncoder

Precision 0.69 0.67 0.71 0.83 0.87 0.87 0.95 0.93 0.93 0.93

Recall 1.0 1.0 1.0 1.0 0.93 1.0 0.99 1.0 1.0 1.0

F-measure 0.81 0.80 0.83 0.91 0.90 0.93 0.97 0.96 0.96 0.96

表 6.3 本手法と AutoEncoderによる基底画像分類の精度比較

一方で，ノイズ自体の分類，すなわち attern4∼6の分類はその多くが失敗している．表 6.4は Pattern4∼6
のそれぞれのデータ数に対する NMF と AutEncoder の誤判別率である．表からわかるとおり NMF では
Pattern5についてはすべてが Noiseと判定され分類できなかった．また，AutoEncoderでは Pattern5と 6

のすべてが Noiseと判定されていたが，これは学習データとして Pattern4∼6のデータを含んでいた事に起因
する．これらは先述した通り，ノイズ出現箇所が小さすぎたため，別パターンとして分離するよりも Noiseと
判定した方が再構成誤差が小さくなるためと考えられる．これらのノイズは，ドメイン知識として問題ないも
のであることが知られているため，本論文の目的である故障につながる PDの検出に影響はないが，ノイズに
紛れてしまうような微小な PDが故障に影響するといった可能性は完全には否定できない．将来的にこれらの
微小な信号を検出する必要が生じた場合には，本手法で対象とした φ-q-nマップのような位相分解データでは
なく，時間方向にパルス波形をそのまま記録した時間分解データ [18], [19]を用いる方が有効であると考える．

dataset-type 2-1 2-2 2-3 3-1 3-2 3-3 3-4

NMF

Pattern4 0 10.9 1.81 0 40 60 0

Pattern5 100 100 100 100 100 100 100

Pattern6 0 0 100 0 100 100 0

AutoEncoder

Pattern4 0 0 0 0 0 0 0

Pattern5 100 100 100 100 100 100 100

Pattern6 100 100 100 100 100 100 100

表 6.4 ノイズの判別誤判別率（%）

6.2.4 新規データへの既存基底の適用に関する実験
4.3節で述べた通り，新規の観測に対し，別地点で観測されたデータの知見を転用したい場合を考える．実
運用においては，主に以下の 2つの状況が想定される．

1. 同じ測定機器を用い別地点で監視を行う：既知の基底が転用可能
2. 異なる測定機器もしくは劣化度合いが異なる環境などで監視を行う：既知の基底とは異なる可能性が
高い
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既知の基底が転用可能な場合
dataset2, type2 について基底を学習し，このときの基底行列を dataset3, type4 の初期値として適用，

Procedure 2に基づき学習を行った．なお，最初の基底数は r = 5とした．最初の dataset2には Pattern2

の φ-q-nマップが，新たに学習する dataset3には Pattern2と 3の φ-q-nマップが含まれている．図 6.6は，
結果得られた基底画像とその時の係数行列を表している．基底 0∼4が既知の基底画像，基底 5以降が新たに
追加された基底画像である．図からわかる通り，新しい基底として Pattern3の φ-q-nマップが追加されてい
ることがわかる．また係数行列の推移をみると，既知の基底 1 に対する時系列パターンも定期的に現れてお
り，既知の基底画像が新しいデータセットに対して利用可能であることが確認できる．

図 6.6 dataset2, type2の基底を初期値として dataset3, type4の基底を追加学習

図 6.7は，係数行列が最大となった基底とそのときの Patternを表示したものである．dataset3で新たに現
れた Pattern3の φ-q-nマップが新しく学習された基底 5に分類されていることがわかる．ただし，最後の 1

枚だけは元の基底 1として分類されていた．
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図 6.7 最大値をとる係数行列に対応する基底（dataset3, type4）

既知の基底とは異なる可能性が高い場合
次に dataset2，type2について基底を学習し，このときの基底行列を dataset3，Pattern3の初期値として適
用，Procedure 2に基づき学習を行った．なお，最初の基底数は前回同様，r = 5とした．最初の dataset1

には Pattern2の φ-q-nマップが，新たに学習する dataset3には Pattern1と 3の φ-q-nマップが含まれてい
る．図 6.8は，結果得られた基底画像とその時の係数行列を表している．基底 0∼4が既知の基底画像，基底 5

以降が新たに追加された基底画像である．図からわかる通り，基底 5以降に新しい基底画像が追加されている
こと，時系列パターンとして既知の基底 1が他の Patternの基底画像に比して相対的に小さな値となっている
ことが確認できる．
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図 6.8 dataset2, type2の基底を初期値として dataset3, type3の基底を追加学習

図 6.9 は，係数行列が最大となった基底とそのときの Pattern を表示したものである．dataset3 で新たに
現れた Pattern1, 3 の φ-q-n マップが新しく学習された基底 5 以降に分類されていることがわかる．また
dataset3には含まれていない基底 1については，図 6.8で確認した通り，最後の 1枚を除き利用されていない
ことがわかる．
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図 6.9 最大値をとる係数行列に対応する基底（dataset3, type3）

6.2.5 再構成誤差最小化基準のしきい値に関する実験
本論文で提案する再構成誤差最小化基準，すなわち，はずれ値の数が最小となるように既定数を決定するた
めには，しきい値に関するパラメータを設定する必要がある．3.4節で説明した通り，各 φ-q-nマップについ
て，学習に用いたデータ行列X と NMFによって得られた行列の積WH の差を取り，その平均 µと標準偏
差 σ を用いて，しきい値 τ を τ = µ+ ασ と定義している．ここで，αがハイパーパラメータとなる．
本節では dataset3，type1に対して α = 1.0, 1.5, 2.0と変えたときに，REMCによって求められた基底数
の変化について調査した．図 6.10は，しきい値を変えたときにしきい値を超えた φ-q-nマップの割合（はずれ
値率）をプロットしたものである．図中の丸は r を 20まで変化させた場合に，はずれ値率が最も小さくなっ
た基底数である．
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図 6.10 しきい値を変えたときのはずれ値率の変化（dataset3, type1）

しきい値が大きく（αが大きく）なるにつれ，はずれ値となるデータの数が少なくなることから誤差率は小
さくなり，したがって基底数も小さくなる傾向がある．図 6.11（dataset3, type1）は，α = 2.0としたときの
基底画像である．図を見れば分かる通り，Pattern2と 3の基底が同一視されて学習されている．

図 6.11 dataset3,type1の基底画像と対応する係数行列 (α = 2.0)

逆にしきい値が小さすぎると，φ-q-nマップの小さな変化であってもはずれ値であると判定されてしまうた
め，基底数は増えていき，結果として過学習が起きる可能性も高くなる．実際，図 6.12（dataset3, type1）に
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おいて，α = 1.0 としたときの基底画像を見れば分かる通り，基底 11 以降は Pattern4 の微小な違いをそれ
ぞれ異なる基底として学習していることがわかる．8，10，12，13，19などの係数行列をみても分かる通り，
特定の φ-q-n マップにおいてのみ値が大きくなっていることからも，結果的に過学習していることが確認で
きる．
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図 6.12 dataset3,type1の基底画像と対応する係数行列 (α = 1.0)
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以上から，本節以外の実験においては，特に断りがない限りすべて α = 1.5を採用している．
6.2.6 基底数の決定について
本論文では再構成誤差最小化基準（REMC）に基づいて基底数を決定する方法を提案しているが，他の決
定方法として，情報量基準を最小化する方法も考えられる．表 6.5 はすべてのデータセットに対し，AIC，
BIC [125]および再構成誤差最小化基準を用いて決定された基底数を表したものである．今回のデータセット
では BICが最小の基底数を，AICが最大の基底数を選択する傾向があった．

dataset-type 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 3-4

AIC 18 6 13 12 6 16 20 12 19 19

BIC 2 5 8 2 4 7 6 6 10 11

REMC 19 7 4 10 18 19 13 3 16 8

表 6.5 情報量基準を用いた基底数との比較

基底数を決定するにあたり，AIC，BICはハイパーパラメータを指定する必要がない点が優れている．一方
で，本論文で提案する REMCは，前節で述べた通りしきい値を決定する αがハイパーパラメータとして残っ
ている．このことから，オッカムの剃刀に従い最も基底数が小さいものを選択するという方針に従って，BIC

による基底数を選択する方法も考えられる．しかし，はずれ値の割合を最も小さくする，すなわち NMFの分
解がもっとも説明力が高くなるような基底数を求めるという意味において，REMCは直感的であり，実運用
を考えた際に現場で調査を行うエンジニアなどへの説明も容易である点において利用しやすいと考える．ま
た，αの値を調整することで，検出感度を調査する側で調整できるメリットも存在する．例えば，全く未知の
送電線に対してはしきい値を小さくして，検出される基底数を多く検出するようにし，データの傾向を早期に
把握する．一方，基底画像がある程度蓄積され放電の傾向が明らかになっている送電線に対しては，しきい値
を大きく設定することでリスクの可能性が高い φ-q-nマップのみを検出するといった利用法が考えられる．
6.2.7 基底数のマージについて
冗長な基底表現を獲得している場合に，基底画像をマージする実験を行った．基底数を r = 20として学習
し，5.1節の方法でマージ処理を実施した．
図 6.2（dataset3, type1）において，基底数は 13であったが例えば基底 2, 8, 10などは同じ基底画像を学
習しており冗長な表現となっている．この基底画像に対し，4.2節で説明した基底画像のマージを行った．
図 6.13はマージ後の基底画像とその係数行列を表示したものである．マージ後の基底数は 6となった．結
果から分かる通り，冗長であった Pattern4の画像などはすべてマージされ，簡潔な基底表現が得られること
が確認できる．
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図 6.13 マージ後の基底画像（dataset3，type1）

また，図 6.14 は，マージ後に係数行列が最大となった基底とそのときの Pattern を表示したものである．
図 6.3と比べて，簡潔に分類できていることが確認できる．

図 6.14 最大値をとる係数行列に対応する基底（dataset3, type1）

実験のまとめ
すべてのデータセットに対し，マージ処理を行った結果を表 6.6 表 6.6と比べると，マージ処理によって冗
長な基底が圧縮されていることが確認できる．またマージ後の基底において，Pattern5を Noiseと判定して
しまうこと以外は，分類結果にも問題は発生しなかった．特に dataset3, type2においては，Pattern2と 3の
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基底が同一視されて学習されいた（6.2.3節）が，基底数を多くとって学習した後でマージすると適正な分類
が行われたことが確認された．このことからも 5.1節で述べた，なるべく漏れなく基底を追加する方針は妥当
であると考えることができる．

dataset-type 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 3-4

merged r 5 2 2 5 4 4 6 5 4 5

表 6.6 データセットとマージ後の基底数

6.2.8 逐次的にデータを追加した実験
前節と同じ人工データに対し，逐次的にデータを追加した場合の基底追加について検証した．
なお，基底の初期値として系列の最初の 3 サンプルを基底として追加し，基底数探索手順（Procedure

1）に従って初期基底画像を生成した．このとき作成された初期基底画像は 1枚であった．今回は複数枚から
REMC に基づき 3サンプルから初期基底画像を作成したが，最初に追加するサンプルの数は任意であり，1

サンプルでも動作に問題はない．複数サンプルを用いた理由は，実際の運用時には一定期間，正常時に現れる
Noiseパターンが蓄積されるであろうことを想定したものである．加えて本節では，より現実的な場合を想定
し，前処理として簡易的なノイズ除去をおこなった場合の結果も示す．また，4.2節のマージ処理を追加した
結果も示す．
前処理なし
dataset3, type1のデータに対して，オンライン処理を実施した．結果，最終的に追加された基底画像は 186

枚となった．図 6.15は，φ-q-nマップを逐次的に追加したときの既定数の増加を示したものである．横軸が追
加したデータ数，縦軸が基底の数を表している．また，図中の縦線は noize以外の pattern1∼6が出現した箇
所を表している．図からわかる通り，noizeが追加された部分では基底が増えておらず，pattern1∼6が追加
されたときに基底が追加されていることが確認できる．
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図 6.15 逐次データから学習された基底画像

この処理において，前章でのべた基底追加方針 1∼3つのうち，どの手順で追加されたかを集計したところ，
方針 1が 22回，方針 2が 164回であった．方針 2ははずれ値が出現した場合に，常に基底を追加するロジッ
クのため，今までと異なる微小なパターンが出現した際に，すべてを新規の基底として追加した結果であると
考えられる．
前処理あり
実際のデータには Noiseパターンや Pattern4のようなノイズが発生することが多い．システムを用いて定
常的に監視する場合，ほとんどがノイズであり，計算リソースやメモリを圧迫することになる．そこで，簡易
的なノイズ除去を行った上で，同様の実験を行った．ノイズ除去は以下の 2つを実施した．
(1) 環境由来のノイズ除去：図 6.1の Noiseパターンからわかる通り，計測環境由来の固有ノイズは中央部
分に線分となって現れる．そこで今回は，φ-q-nマップの中央部分から 5行分をすべて 0とする Noise除去を
行った．
(2) 孤立点の除去：図 6.1，Patterm4のように，行列の 1要素のみにパルスが立つ系について，リスクの高
い放電ではないという知見から，これらも除去する．具体的には，画像処理でもちいられる収縮（erode）処
理を実施した．これはある行列の要素に着目したときに，その上下左右に隣合う要素の値がすべて 0のとき，
自身の要素も 0とする処理である．この処理によって，孤立点の除去が可能となり，何らか意味があると考え
られる固まりをもつ φ-q-nマップのみに NMFを適用できる．
さらに，これらの除去を行った後，最終的に φ-q-nマップ上にのこった 0以外の要素の個数が 10個未満と
なる場合は，すべて分析の対象から除外した．これは，φ-q-nマップ上に数点だけ残る要素があったとしても，
おそらくノイズであり，分析対象として解釈不能であることによる．
ノイズ除去を人工データに適用した結果，図 6.1のうち，Pattern1∼3のみが分析対象として残った．
図 6.16は，dataset3，type1のデータセットに対して，オンライン処理を実施した際の，基底画像と Pattern

の関係をプロットしたものである．対象となった 165個の φ-q-nマップに対し，追加された基底は 137枚で
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あった．図からわかる通り，データが追加されると基底が追加されていることがわかる．基底の誤判別はな
かった．また基底追加方針 1∼3つのうち，どの手順で追加されたかを集計したところ，初期基底 1枚を除き，
方針 1が 94回，方針 2が 42回であった．

図 6.16 逐次データから学習された基底画像（dataset3，type1）

基底のマージ
基底画像が追加される際に，全データ数の 20%を超えた場合に基底画像をマージする処理を追加した．結
果，最終的な基底は 12となった．図 6.17に結果を示す．基底 0が 2サンプル，分類に失敗しているが，他の
基底画像は各 Patternにうまく対応できていることが確認できる．
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図 6.17 逐次データから学習された基底画像（dataset3，type1，マージ処理あり）

6.3 実データを用いた実験
6.3.1 データセット
る地点においてサンプリングされ，φ-q-nマップを作成するにあたり 10秒間隔でカウントされたデータ約

1カ月分，合計 8,689サンプルを実験に用いた. このデータは，リスクとなりうる PDの予兆が見られたデー
タであると考えられている.

実データに対し本手法を適用するにあたり，データのほとんどが Noiseパターンであることから，計算コス
トを軽減するため，前節同様ノイズ除去を行った. 環境由来ノイズと孤立点除去の両処理を行った結果，14サ
ンプルとなってしまったため，ここでは環境由来ノイズのみを除去した 93サンプルを対象としている．
6.3.2 バッチ処理
図 6.18は，ノイズ除去後の φ-q-nマップ 93サンプル全体に対して，NMFを適用し REMCによって基底
数を決定したときの基底画像と対応する係数行列を表す．REMC により決定した基底数は 16 であった．例
えば，基底 0∼2などに見られるように PDと見られる形状の基底画像が抽出されていることがわかる．また，
これらの基底画像は位相成分が時間とともに移動しており，別の研究においても報告された事象 [38]である
と考えられる．
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図 6.18 実データの基底画像と対応する係数行列
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6.3.3 オンライン処理
次に，同じ 93サンプルのデータセットを逐次的に追加することで基底追加の様子を確認した．学習された
基底画像は 54であった．図 6.19はこれらすべての基底を表示したものである．図からわかる通り，バッチ処
理のときに見られた基底画像に加え，孤立点と考えられるノイズも基底として抽出されていることがわかる．
本論文では基底の抽出を目的としており，漏れなく抽出したという点で最低限の要件を満たしてはいるが，最
終的にはモニタリングシステムの監視者による何らかのラベリングが必要であり，基底数が多い状況は運用観
点から望ましくない．
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図 6.19 実データの基底画像と対応する係数行列
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基底の検出が多すぎる上記の問題を抑制するため，基底画像が全データの 20%を超えた場合に，4.2節で説
明したアルゴリズムにより基底画像をマージする処理を追加した．図 6.20は最終的に 93サンプルの逐次処理
を終えたあとの，基底画像と対応する係数行列を描画したものである．基底数は 16となり，マージ処理を行
わない場合と比べて大きく抑制されていることがわかる．またバッチ処理により学習した基底画像（図 6.18）
とほぼ同じ形状の基底が抽出されていることが確認できる．
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図 6.20 逐次処理による基底追加に加えマージ処理を行った場合の基底画像と対応する係数行列
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第 7章
まとめと今後の課題
7.1 まとめ
本論文では，社会インフラに対する予防保守の観点から，電力設備，特に地中送電線に関して NMFを用い
た異常検知を初めて行った．φ-q-nマップの形式でデータが与えられた場合に，NMFによって部分放電の特
徴とその時系列パターンが取得できることを説明した．加えて，NMFではハイパーパラメータとなる基底数
を自動で決定するための再構成誤差最小化基準を提案した．人工データおよび実データを用いた実験におい
て，提案手法により基底画像として PDパターンが取得，分類できることが確認できた．またより実際の環境
に近い，オンライン処理において，新しい基底を追加で学習する方法を提案し，実験によりその有効性を確認
することができた．最後に，データ圧縮の観点から，得られた基底画像を集約方法について提案し，実験によ
り効率的な集約が行われることを確認した．提案手法は，教師なしで動作することから，実験環境，実環境，
測定方法などが変わっても汎用的に適用できる手法であり，今後 PDを検知し知見を蓄積していく過程におい
て，有効な手段であると考えられる．

7.2 今後の課題
NMFにより PD信号の検知を行うことができることは確認できたが，実際のデータでの実験は十分とは言
えず，今後追加のデータでさらなる検証が必要と考える．また，再構成誤差最小化基準の理論的な解析なども
行っていく必要がある．実際の監視システムにおいては，部分放電につながる可能性のある予兆を発見するこ
とが最も重要となる．このため本論文では，偽陰性の信号，すなわち PDの可能性がある φ-q-nマップを見落
としてしまうリスクを以下に小さくするかに主眼をおいた．しかしながら，得られた結果に対して，故障につ
ながる部分放電であるかどうかはドメイン知識が必須となるため，現場の熟練者による判定は最終的には必要
となってくる．将来的に十分な知見が得られている環境においては深層学習などの利用も検討可能であろう．
本研究で利用した NMFはそれ自体のパラメータについて十分に考慮していないので，高速化やスパース化な
ども行っていきたい．データを蓄積していく過程で，PDの発生やそれに伴う故障の予測ができるようになれ
ば，大きな社会貢献につながると考えられる．そのためには，本研究により提案した手法を用いて，PDの発
生を確率過程などのモデルに当てはめた解析などが有効である可能性がある．その際，φ-q-nマップは周期的
なデータであるため，通常の確率分布ではなく円筒座標での分布（シリンダー分布）[126]でのモデル化が望
ましいが，まだ理論的な研究が十分なされているとは言い難く今後の発展が望まれる．システム構築上のメモ
リ制約などが，観測地点でどこまで詳細な分析をするかなどを決定することも起こりうるため，本研究で提案
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したデータのマージ方法についても改良の余地があると考える．また，十分なデータがたまった後は，係数行
列を時系列データとして扱うことで故障予測 [127]の実施も検討したい．
7.2.1 想定している処理フロー
予防保守の観点から言えば，観測された PD信号や基底画像を集約し，モニタリングするような統合システ
ムの構築も必要となる．最後に，監視現場への適用が検討されている想定フローの概略を述べる．図 7.1は，
φ-q-nマップが入力として与えられたあとの測定機器内での処理フローを表したものである．緑の線で囲まれ
ている部分が測定機器を表し，各送電線の CTクランプに設置されることを想定している．また，送電線全体
を統合的に監視し，他の測定地点における情報を有効活用し各測定機器はクラウドなどで基底画像を蓄積する
DBに接続されていることが望ましい．
以下，フローの概要を述べる．φ-q-nマップは，定時的（本論文では 10秒毎）に作成され，その大部分が

Noise画像であるため，はじめにこれらのノイズを除去した後，何らかの情報が残った φ-q-nマップのみを次
の処理に渡す．次に，既知の φ-q-n マップと同じであるかを DB に問い合わせ判定処理を行う．仮に未知の
φ-q-nマップの可能性が高い場合には，再構成誤差最小化基準（REMC）に基づき，追加すべき基底か，その
他の基底で表現されうるものかを判定する．基底が追加され，一定のボリュームに達した場合はマージ処理を
実施し，基底画像を更新する．更新された基底画像を用いて再度係数行列を計算し，次回以降の判定及び DB

への登録が行われる．PDが検出されたときのアラートをどこで通知するかは，運用上の仕様によって変わる
が，既知の φ-q-nマップとの照会が行われたとき，REMCにより新しい基底が追加されたとき，基底画像の
マージが行われたときなどがあげられる．十分に基底画像とドメイン知識が蓄積することで，将来的にはすべ
てを自動化し自律的に監視するシステムの構築を目標としたい．

図 7.1 処理フロー概念図
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[43] C. Hudon, M. Bélec, and M. Lévesque. Study of Slot Partial Discharges in Air-cooled Generators.

IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, No. 6, pp. 1675–1690, 2008.

[44] A. Kang, M. Tian, C. Li, J. Song, S. Vincenzo Suraci, W. Li, L. Lin, Z. Lei, and D. Fabiani. De-

velopment and Pattern Identification of End-winding Discharge Under Effect of Relative Humidity

and Temperature for HV Motors. High Voltage, Vol. 5, No. 4, pp. 434–443, 2020.

[45] T. Joyo, T. Okuda, N. Kadota, R. Miyatake, S. Okada, and K. Mio. Phase Resolved Partial

Discharge Patterns for Various Damage of Winding Insulation Detected with Different Measuring

Devices. In 2017 IEEE Electrical Insulation Conference (EIC), pp. 344–347, 2017.
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Appendix

A3 統計量を用いた簡易的な検出
NMF以外の，最も単純な異常検知として，統計量を用いた簡易的な検出を実施した．統計量として φ-q-n

マップの nが 0でない要素の総和を取り，その時系列の差分をプロットした．これは，一般にノイズの形状は
定常的であるため，それ以外の φ-q-nマップが現れたときにはノイズと比べた総和の差が大きくなることを想
定している．
図A3.2はこれを dataset3, type1の φ-q-nマップに対してプロットしたものである．図の横軸が時間，縦
軸が差分になる．図の上は，時系列全体，図の下はその中の t = [50 : 100]を拡大したものである．ここから
わかるとおり，Noise以外のパターンが現れているときに差分が大きくなっていることは確認できる．しかし
ながら，また同じタイプの φ-q-nマップが続くときには差分が小さくなってしまうという問題があることに加
え，PDとみなすしきい値の設定をする必要などがある．加えて差分が大きくなったときにどのタイプの PD

が発生していたかは別の方法で確認・検証する必要がある．今回は，差分特徴というシンプルな特徴量を用い
ているので，分散や自己相関など特徴量を増やすことで精度は改善する可能性はある．しかし，精度を担保す
るためにはドメイン知識などを加えた特徴量設計が必要となり，関連研究で見た通りさまざまな PDパターン
に対応して特徴量を作成することは困難となる可能性が高い．このことから，特段の特徴量設計などを必要と
せず，PDパターンと時系列の特徴を同時に抽出できる NMFに基づく本論文の手法の代替とはなり得ないと
考える．
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図 A3.2 φ-q-nマップの差分特徴を時系列にプロットしたもの（dataset3, type1）

A4 AutoEncoderを用いた異常検知
正常な φ-q-nマップが定義できる場合には，AutoEncoderを用いた異常検知を行うことができる．ここで
は φ-q-nマップの Noiseおよび Pattern4∼6を正常系と仮定し，AutoEncoderによる異常検知を実施した．
これら正常と仮定した φ-q-nマップの 80%をランダムに抽出し訓練データとし，3層の AutoEncoderで学
習をおこなった．なお，各層の活性化関数は ReLuを用いた．AutoEncoderによる異常検知は，学習済みモデ
ルの再構成誤差を用いて正常/異常の判定を実施する．今回は本論文と同様の設定を用いるため，訓練データ
の再構成誤差の平均 µと標準偏差 σ を用い，µ± 1.5σ をしきい値とした．データセットの残りの φ-q-nマッ
プ，Noise, Pattern1∼6 について，再構成誤差がしきい値を超えたものを異常と定義した．また，Precision

などの値は，各データセットにおいて 5回の試行による平均により算出した．この結果は 6.2.3節に示した通
り，NMFと遜色のない結果となった．これは前述の統計量を用いた検出と同様，Noiseとそれ以外では非 0

の要素（画素）が明らかに異なるため，正常系とそれ以外のパターンの差がわかりやすいデータセットである
ことに起因する．
一方で，AutoEncoder を用いた異常検知では，正常系以外をすべて異常と判定する以外の処理は行われ
ない．図A4.3は dataset3, type1 での再構成誤差の分布をヒストグラムで表示したものである．図から分か
る通り，Noise の分布とそれ以外のパターンはうまく分離できていることが確認できるが，Pattern2 と 3，
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Pattern1と 4では分布が重なっており，このままではそれぞれのパターンを分類することができない．この
ことからも，基底画像の情報をパターンの分類の代表元とする NMFに基づく本論文の手法は未知のデータに
対して優れていると考える．ただし，本論文はあくまで PDの検出とパターンの抽出までを実施するものであ
るため，NMFを用いたパターン抽出の後，蓄積されたデータがドメイン知識により適切にラベリングできた
後であれば，AutoEncoderなどを用いた検出，分類を並行して実施することでより精度の高い監視システム
を構築することができる．

図 A4.3 各パターンの再構成誤差の分布（dataset3, type1）

A5 すべてのデータセットに対する基底画像と係数行列
6.2.2節で示した dataset3, type1及び type2以外の結果を以下に示す．
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図 A5.4 dataset1,type1の基底画像と対応する係数行列
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図 A5.5 dataset1,type2の基底画像と対応する係数行列

図 A5.6 dataset1,type3の基底画像と対応する係数行列
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図 A5.7 dataset2,type1の基底画像と対応する係数行列
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図 A5.8 dataset2,type2の基底画像と対応する係数行列
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図 A5.9 dataset2,type3の基底画像と対応する係数行列
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図 A5.10 dataset3,type3の基底画像と対応する係数行列
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図 A5.11 dataset3,type4の基底画像と対応する係数行列

■すべてのデータセットに対する分類結果 6.2.3節で示した dataset3, type1 及び type2以外の結果を以下
に示す．

図 A5.12 最大値をとる係数行列に対応する基底（dataset1, type1）
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図 A5.13 最大値をとる係数行列に対応する基底（dataset1, type2）

図 A5.14 最大値をとる係数行列に対応する基底（dataset1, type3）

図 A5.15 最大値をとる係数行列に対応する基底（dataset2, type1）
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図 A5.16 最大値をとる係数行列に対応する基底（dataset2, type2）

図 A5.17 最大値をとる係数行列に対応する基底（dataset2, type3）

図 A5.18 最大値をとる係数行列に対応する基底（dataset3, type3）
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図 A5.19 最大値をとる係数行列に対応する基底（dataset3, type4）
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