
Title Fast Secure Federated Learning against Semi-
honest and Dishonest Adversaries

Author(s) 増田, 大輝

Citation 大阪大学, 2024, 博士論文

Version Type VoR

URL https://doi.org/10.18910/98692

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Fast Secure Federated Learning against

Semi-honest and Dishonest Adversaries

Submitted to
Graduate School of Information Science and Technology

Osaka University

July 2024

Hiroki MASUDA

List of Publications

Journal Papers

1. Hiroki Masuda, Kentaro Kita, Yuki Koizumi, Junji Takemasa and Toru Hasegawa, “Byzantine-
Resilient Secure Federated Learning on Low-Bandwidth Networks,” IEEE Access, vol.11, pp.
51754–51766, May 2023.

Refereed Conference Papers

1. Hiroki Masuda, Kentaro Kita, Yuki Koizumi, Junji Takemasa and Toru Hasegawa, “Model
Fragmentation, Shuffle and Aggregation to Mitigate Model Inversion in Federated Learning,”
in Proceedings of IEEE International Symposium on Local and Metropolitan Area Networks
(LANMAN), pp. 1–6, July 2021.

Non-Refereed Technical Papers

1. Hiroki Masuda, Kentaro Kita, Yuki Koizumi, Junji Takemasa and Toru Hasegawa,‘A study
on designing learning protocol to protect privacy of training data in federated learning ,” in
IEICE Communication Society Conference, B-6-29, Sep. 20213 (in Japanese).

2. Hiroki Masuda, Kentaro Kita, Yuki Koizumi, Junji Takemasa and Toru Hasegawa,‘A Study on
Mitigation of Model Leakage by Model Fragmentation, Shuffle, and Aggregation for Federated
Learning,” in Computer Security Symposium, Information Processing Society of Japan., pp.
260–267, 2023 (in Japanese).

3. Hiroki Masuda, Kentaro Kita, Yuki Koizumi, Junji Takemasa and Toru Hasegawa,‘A study
on Designing Byzantine-Resilient Secure Federated Learning on a Unicast-Based Distributed
System,” in Computer Security Group, Information Processing Society of Japan., no.15, pp.

. i .

1–8, Feb. 2023 (in Japanese).

. ii .

Preface

In machine learning systems, which are widely used in various fields, there is growing interest in
utilizing training data collected from multiple edge devices (called users), such as smartphones
and IoT devices. Since the training data collected by multiple users is vast and diverse, there is
potential for providing high-quality machine learning services. However, privacy leakage hinders the
widespread adoption of these services. For example, if training data contains sensitive information
like medical information or location information, users do not wish to share such information. With
the increasing momentum for regulations such as the General Data Protection Regulation (GDPR)
and the California Consumer Privacy Act (CCPA), which restrict the handling of sensitive data, more
users are concerned about privacy leakage.

To address the above issue, privacy-preserving machine learning systems have been proposed.
Among these systems, the author focuses on federated learning, which achieves high model accuracy
and low overhead simultaneously. Federated learning protects the privacy of training data by users
sharing machine learning models that are trained locally on their training data, rather than training
data. In federated learning, each user downloads a machine learning model (called a global model)
from a node that maintains the global model (called a server). The user then trains the global model
with their local data and sends back the trained model (called the local model). The server aggregates
(adds) the users’ local models and updates the global model using the aggregation result. Since
federated learning does not add noise to the data or the model, it ensures high model accuracy. In
addition, by not using heavy encryption operations for model training, it achieves low overhead.

Although the promise of federated learning has been acknowledged, federated learning is
vulnerable to semi-honest adversaries and dishonest adversaries. Semi-honest adversaries include a
semi-honest server and semi-honest users who perform privacy attacks to infer users’ training data
from the collected local models. Dishonest adversaries include not only semi-honest adversaries but
also dishonest users (Byzantine users) who perform security attacks (Byzantine attacks) to degrade the
accuracy of the global model by sending contaminated information pieces such as contaminated local

. iii .

models (called contaminated models). Depending on the scenario, either semi-honest adversaries or
dishonest adversaries are assumed.

To mitigate the attacks against the two types of adversaries, countermeasures have been proposed.
To mitigate the attacks against semi-honest adversaries, methods called secure aggregation have been
proposed, allowing the aggregation of users’ local models while hiding (masking) individual local
models. To mitigate the attacks against dishonest adversaries, methods called Byzantine-resilient
secure aggregation have been proposed. These methods detect and remove such contaminated
information pieces while performing secure aggregation. However, the seminal works on secure
aggregation and Byzantine-resilient secure aggregation are heavy in terms of computation and
communication.

The goal of this thesis is to make federated learning more accessible as a privacy-preserving
machine learning system by improving performance while maintaining security. Through the analysis
of existing secure aggregation protocols and Byzantine-resilient secure aggregation protocols, the
author identifies the number of transfers of data equivalent in size to a model as a communication
bottleneck, and intensive computations involving data equivalent in size to a model at a single node
as a computation bottleneck. The authors’ strategy for alleviating these bottlenecks is to reduce the
number of transfers of model-sized data and optimize intensive computations involving model-sized
data at a single node at the algorithm level.

In the first half of this thesis, the author designs a fast secure aggregation protocol for federated
learning that mitigates the attacks by semi-honest adversaries. Existing secure aggregation protocols
sacrifice either computation cost or communication cost for user dropout tolerance. A naive secure
aggregation protocol called SecAgg achieves a small communication cost by secretly sharing random
seeds instead of random masks (called shares) for local model masking. However, it necessitates that
a server incurs a substantial computation cost to reconstruct the random masks from the dropout
users’ random seeds. To avoid such a reconstruction, a state-of-the-art secure aggregation protocol
called LightSecAgg secretly shares random masks themselves. Although this approach avoids the
computation cost of mask reconstruction, it incurs a large communication cost due to secretly sharing
random masks. In summary, no secure aggregation protocol achieves a good balance between
computation and communication costs. This thesis designs a secure aggregation protocol to achieve
a good balance by complementing both types of secure aggregation protocols with each other. In the
author’s experiments, the author’s protocol achieves up to 11.41× faster while achieving the same
level of privacy preservation and dropout tolerance as the existing secure aggregation protocols.

In the second half of this thesis, the author designs a fast Byzantine-resilient secure aggregation

. iv .

protocol for federated learning that mitigates the attacks against dishonest adversaries. An existing
Byzantine-resilient secure aggregation protocol called BREA incurs a significant communication cost
due to the verification of shares generated from local models, aimed at mitigating Byzantine attacks.
This thesis designs a communication-efficient share verification method for BREA to offload some
parts of the share verification process from users to the semi-honest server, which avoids broadcasting
large-size commitments to shares. In addition, to mitigate the increase in computation time due to
computations offloaded to the server, the author’s method makes the verification algorithm running
on the server efficient and executes the server and user computations in parallel. In the author’s
experiments, the author’s protocol provides a speedup of up to 15× on low-bandwidth networks like
mobile networks. the author’s protocol also preserves BREA’s resilience against both privacy and
Byzantine attacks.

. v .

Acknowledgments

This thesis could not have been completed without the support of many people. I express my gratitude
here.

Firstly, I would like to express my greatest appreciation to my supervisor, Professor Toru Hasegawa.
I am deeply grateful for his long-standing mentorship in research discussions and paper writing. In
addition to the many valuable pieces of advice I received from him, his consistent commitment to
thoroughly understanding every aspect of things has provided me with a solid foundation for my own
research.

I would like to express my gratitude to the members of my committee, Professor Masayuki Murata,
Professor Takashi Watanabe, Professor Hirozumi Yamaguchi, and Professor Hideyuki Shimonishi,
for their thorough review of my thesis and their valuable comments. I am also grateful to Associate
Professor Yuki Koizumi and Assistant Professor Junji Takemasa, my other mentors. Their deep
insights have provided me with valuable knowledge.

In addition to my mentors, my research life was supported by all the members of the Information
Sharing Platform Laboratory. In particular, I am deeply grateful to Nozomi Oda and Rie Maeda
for their support in my daily life, and to Kentaro Kita, Yoji Yamamoto, Yasunaga Murai, Ryosuke
Sasanuma, Ryo Koyama, Shimin Jing, and Yutaro Yoshinaka for enjoyable and valuable discussions.
Among them, I am especially thankful to Kentaro Kita for a wealth of research advice. Through my
interactions with them, I have developed diverse and flexible thinking.

I was also supported by my friends in important aspects outside of my research. Among them,
I am especially grateful to Tsukasa Tajima, Kaho Fujikura, and Chihiro Harada for their active
interaction and support.

Finally, I am deeply grateful to my family for their dedicated support throughout my life. Without
the support from my father, mother, older brother, little brother, grandfather, and grandmother, my
research activities would never have been possible. I am thankful that they have allowed me to lead
the life I desired.

. vii .

Contents

List of Publications i

Preface iii

Acknowledgments vii

1 Introduction 1
1.1 Fast Secure Federated Learning against Semi-honest Adversaries 4

1.1.1 Background . 4
1.1.2 Approach . 6

1.2 Fast Secure Federated Learning against Dishonest Adversaries 7
1.2.1 Background . 7
1.2.2 Approach . 8

2 Related Work 11
2.1 Computation and Communication Efficient Secure Aggregation 11
2.2 Computation and Communication Efficient Byzantine-resilient Secure Aggregation 13

3 Threat Models and Goals in Federated Learning 17
3.1 Federated Learning . 17
3.2 Threat Models and Attacks . 19

3.2.1 Threat Model1: Semi-honest Model . 19
3.2.2 Threat Model2: Dishonest Model . 20

3.3 Goals . 21
3.3.1 Goal for Mitigating Threats in Semi-Honest Model 21
3.3.2 Goal for Mitigating Threats in Dishonest Model 22

. ix .

4 Fast Secure Aggregation against Semi-honest Adversaries 23
4.1 Preliminaries . 24

4.1.1 Key Agreement . 24
4.1.2 Pseudorandom Generator . 24
4.1.3 Authenticated Encryption . 24
4.1.4 Shamir’s Secret Sharing . 24
4.1.5 Reed-Solomon Erasure Codes . 25

4.2 Existing Secure Model Aggregation: SecAgg and LightSecAgg 26
4.2.1 Rationale for Attack Mitigation of Semi-Honest Model 26
4.2.2 SecAgg . 28
4.2.3 LightSecAgg . 31

4.3 BalancedSecAgg . 32
4.3.1 Overview . 32
4.3.2 Rationale . 33
4.3.3 Technical Intuition . 34
4.3.4 Protocol . 35

4.4 Security Analysis . 38
4.5 Performance Analysis . 41

4.5.1 Measurement Method . 42
4.5.2 Result . 43

4.6 Conclusion . 46

5 Fast Secure Aggregation against Dishonest Adversaries 49
5.1 Existing Protocol: BREA . 49

5.1.1 Rationale for Attack Mitigation in Dishonest Model 49
5.1.2 Protocol . 51

5.2 Communication Complexity Reduction . 55
5.2.1 BREA without Share Verification . 56
5.2.2 Communication Complexity Reduction of Share Verification: BREA-SV . 57

5.3 Security Analysis . 61
5.4 Performance Analysis . 62

5.4.1 Measurement Method . 63
5.4.2 Learning Time . 64

. x .

5.5 Conclusion . 70

6 Conclusion 71

Bibliography 73

. xi .

List of Tables

1.1 A cost analysis of SecAgg, LightSecAgg, and BalancedSecAgg. 𝑛 is the number of
all users and 𝑟 is the number of dropout users. The defines a unit of communication
cost as one transfer of an element of 𝑚-dimensional vector, such as a model or mask,
and a unit of computation cost as the generation of an element of a mask. For a fair
comparison, the author assumes the communication model of LightSecAgg is the
same as that of SecAgg and BalancedSecAgg. 5

1.2 A cost analysis of BREA and BREA-SV. 𝑛, 𝑡, 𝑚, and 𝑝 are the number of all users,
the number of semi-honest users, the size of models, and the order of finite field,
respectively. 8

2.1 Comparison of our protocol (BalancedSecAgg) with other related works. 𝑛′ is the
number of selected users. 𝜖 , 𝜇, 𝛾, and 𝛿 are system parameters. 12

2.2 Comparison of our protocol (BREA-SV) with other related works. 14

3.1 Summary of Symbols . 18

4.1 Summary of Symbols . 23

4.2 Computation time of SecAgg, LightSecAgg, and BalancedSecAgg with parameters
the number of all users 𝑛, the size of models 𝑚, and the number of dropout users 𝑟 . 42

4.3 Communication time of SecAgg, LightSecAgg, and BalancedSecAgg with parameters
the number of all users 𝑛, the size of models 𝑚, the number of dropout users 𝑟, and
end-to-end throughput 𝑎. In each cell, values outside parentheses correspond to
cases where 𝑎 = 98M, while values inside parentheses represent cases with 𝑎 = 802M. 43

. xiii .

4.4 Protocol running time of SecAgg, LightSecAgg, and BalancedSecAgg with parame-
ters the number of all users 𝑛, the size of models 𝑚, the number of dropout users 𝑟,
and end-to-end throughput 𝑎. In each cell, values outside parentheses correspond to
cases where 𝑎 = 98M, while values inside parentheses represent cases with 𝑎 = 802M. 44

5.1 Summary of Symbols . 50
5.2 Summary of major computation time of share verification in BREA-SV (sec). The

symbols in the second column correspond to the symbols in Fig. 5.5 and a formula
number: (b-1) is training. (c) is computations of (c-1), (c-2) and (c-3). (d) is
computations of (d-1) and (d-2). (e) is computation of (e-1) and (e-2). (f) is checking
if (5.5) holds for all received shares by each user in naive BREA. 62

. xiv .

List of Figures

4.1 An example of SecAgg with 𝑛 = 4 users, where user 2 is a semi-honest user (𝑡 = 1)
and user 3 and user 4 are dropout users (𝑟 = 2,D = {3}). Thin and thick lines
indicate scalars and vectors, respectively. 27

4.2 An example of LightSecAgg with 𝑛 = 4 users, where user 2 is a semi-honest user
(𝑡 = 1) and user 3 and user 4 are dropout users (𝑟 = 2,D = {3}). Thin and thick
lines indicate scalars and vectors, respectively. 30

4.3 An example of BalancedSecAgg with 𝑛 = 4 users, where user 2 is a semi-honest user
(𝑡 = 1) and user 3 and user 4 are dropout users (𝑟 = 2,D = {3}). Thin and thick
lines indicate scalars and vectors, respectively. 34

4.4 Detailed description of our protocol. Notably, |U1 | ≥ 𝑡 + 2, |U2 | ≥ 𝑡 + 2, and
|U3 | ≥ 𝑡 + 2 avoid the situation where there is only one honest user and all other
users are semi-honest. 47

5.1 First type of Byzantine attacks and mitigation methods 51

5.2 Second type of Byzantine attacks and mitigation methods 52

5.3 Second type of security attacks of Byzantine users to three phases and mitigation
methods. 53

5.4 Colluding contaminated model injection attack under the condition 𝑛 = 15, ℓ = 5,
𝑡 = 2, 𝑟 = 0, 𝑐 = 2 . 55

5.5 Share verification of BREA-SV . 59

5.6 Total computation time of naive BREA and BREA-SV with the increase in 𝑚. . . . 64

5.7 Total computation time of naive BREA and BREA-SV with the increase in 𝑛. In this
figure, the computation time is plotted for cases where the server has 1, 2, and 4 cores. 65

5.8 Total communication time of naive BREA and BREA-SV with the increase in 𝑚. . 66

. xv .

5.9 Total communication time of naive BREA and BREA-SV with the increase in 𝑛. . . 67
5.10 Learning time of naive BREA and BREA-SV with the increase in 𝑒. 68
5.11 Learning time of naive BREA and BREA-SV with the increase in 𝑛. The server is

equipped with GPU. 69

. xvi .

Chapter 1

Introduction

Machine learning systems are being applied across a wide range of fields, such as medical and
industrial fields [1]. The main reason for this is that the training data collected by edge devices
(called users) like smartphones and IoT devices in these systems is diverse and abundant, allowing
machine learning models (called models) that learn from this data to provide good services for people.
However, data privacy become a barrier to the proliferation of these services. If the training data
collected by users includes sensitive information, such as medical records or vehicle location data,
users may be reluctant to provide this training data due to the risk of privacy leakage. Furthermore,
there is a growing trend to restrict the handling of sensitive information through regulations, such as
the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA).
Protecting the privacy of training data is a crucial ethical requirement [2].

To address the above privacy issue, many privacy-preserving centralized machine learning
methods have been proposed where the server trains a model in a way that the server cannot see
the user’s training data. These methods include methods based on data processing [3–5], Secure
Multi-Party Computation (MPC) [6, 7], and Trusted Execution Environment (TEE) [8–10]. The
advantage of these methods is that when the number of training data provided by each user is small,
the computation overhead for each user is low. However, it is hard for these methods to simultaneously
achieve the server’s low computation overhead and high model accuracy.

In the data processing-based methods, each user adds noise to its training data or anonymizes it
before sending it to the server, and the server trains the model with noise-applied data or anonymized
data. Although this approach prevents the server from seeing the users’ original training data, the
noise-added or anonymized data degrades the model’s accuracy. In the methods based on Secure
Multi-Party Computation (MPC), each user encrypts its training data before sending it to the server,

– 1 –

Chapter 1. Introduction

and the server trains the model using the encrypted data. This prevents the server from seeing the
training data in plaintext, but the computation involved in training on encrypted data incurs heavy
computation overhead. In the methods based on TEE, such as those provided by secure chips like
Intel SGX [11–13], each user encrypts its training data before sending it to the server. The server
then stores and processes the training data within a secure memory space in plaintext, such as an
enclave, and trains the model using it. Although the (semi-honest) server cannot see the training
data in plaintext stored in the secure memory, the data in the secure memory cannot utilize devices
typically used for accelerating training, such as GPUs. Even worse, if the server is dishonest, it may
obtain the contents of the secure memory through cache attacks or side-channel attacks [14–16].

In contrast, federated learning [17,18], which is a privacy-preserving distributed machine learning
system, achieves the aforementioned goals, without revealing users’ training data. In this system, a
semi-honest server and users jointly train a model (called global model) with users’ training data
through iterative processes. At each iteration, each user trains the global model with its training data
and sends a resulting local model (called local model) to the server. The server aggregates (adds) the
received local models to the new global model.

However, federated learning is vulnerable to semi-honest adversaries and dishonest adversaries.
Semi-honest adversaries include a semi-honest server and semi-honest users who perform privacy
attacks [19–22]. In these attacks, the semi-honest server and semi-honest users, which receive
individual users’ local models, infer the training data from these local models. For example, Wang et
al. [20] demonstrated a privacy attack called a model inversion attack where the server uses a state-
of-the-art Generative Adversarial Network (GAN) [23], which generates fake data indistinguishable
from real data (i.e., training data). The key idea behind the attack is that the local model of a user
strongly reflects the training data of the user, and hence a GAN can generate fake data similar to the
user’s training data. In contrast, dishonest adversaries include not only semi-honest adversaries but
also dishonest users (Byzantine users) who perform security attacks (Byzantine attacks) [24–26].
In these attacks, the Byzantine users who send arbitrary messages modify the aggregate result, i.e.,
the sum of local models, thereby degrading the accuracy of the model. Byzantine users inject
contaminated information pieces, such as contaminated local models (called contaminated models).
For example, Blanchard et al. [24] demonstrated that even a single Byzantine user can alter the
aggregated result by modifying its contaminated model’s parameters. The idea behind this method is
that the Byzantine user scales up each parameter of its contaminated model so that these parameters
persist after the server’s aggregation.

The assumed threat corresponds to either semi-honest adversaries or dishonest adversaries

– 2 –

Chapter 1. Introduction

depending on the application scenario. Semi-honest adversaries are assumed in applications where
global models are used to enhance service quality, such as service provider-oriented applications
(e.g., Google’s Google Keyboard Query Suggestion [27]) and financial transaction applications (e.g.,
fraud detection models by banks). In these cases, while users such as Google keyboard users or
banks may attempt to infer sensitive training data, they have no incentive to corrupt the global models
themselves. In contrast, dishonest adversaries are assumed in highly competitive environments and
security-enhanced applications. For example, in competitive environments, employees of a chat
service provider may perform Byzantine attacks to sabotage rival service providers’ model training.
In security applications like phishing detection, adversaries may attempt to degrade the global
model’s performance to evade detection. Please note that in these applications, not only Byzantine
users tamper with aggregation results, but also semi-honest users or the server are motivated to obtain
the sensitive training data.

To enhance the security of federated learning, many studies to mitigate the attacks by semi-honest
adversaries and dishonest adversaries have been proposed. To mitigate the attacks of semi-honest
adversaries, methods called secure aggregation have been proposed [28–41]. Secure aggregation
allows the users and server to collaboratively compute the sum of the local models while hiding
the individual local models. In these methods, each user divides its local model into shares using
cryptographic techniques such as Shamir’s secret sharing [42] or additive secret sharing. This process
of division is referred to as masking. Each user then sends these shares to other users and/or the
server, aggregates the received shares, and sends the aggregated share to the server. Finally, the
server aggregates all the shares and aggregated shares it received to obtain the sum of all the local
models. Here, an important point is that the effect of masking is canceled by the server’s aggregation.
The server and users and cannot reconstruct other users’ local models from exchanged information
such as received shares or aggregated shares.

To mitigate the attacks of dishonest adversaries, methods called Byzantine-resilient secure
aggregation have been proposed [25, 43] to detect and remove contaminated information pieces
such as contaminated shares, contaminated aggregated shares, and contaminated models while
performing secure aggregation. These methods detect and remove such contaminated information
pieces as follows: First, each user generates and exchanges a commitment [44], which allows other
users to verify if a share is generated from its local model corresponding to this commitment. If a
contaminated share is detected, the server removes all the shares of the Byzantine user. Second, the
server corrects contaminated aggregated shares by treating Shamir’s secret sharing as a Reed-Solomon
error correcting code [45]. Third, the users and the server jointly remove contaminated models by

– 3 –

1.1 Fast Secure Federated Learning against Semi-honest Adversaries

securely checking local models using shares [24].
Towards the realization of federated learning, many studies that extend seminal works on secure

aggregation or Byzantine-resistant secure aggregation have improved computational efficiency,
communication efficiency, or both [32, 33, 37, 46–51]. However, these existing methods have
compromised security, that is, privacy strength, Byzantine-resilient strength, or both (these studies
are reviewed in the Related Work chapter).

The goal of this thesis is to make federated learning more accessible as a privacy-preserving
machine learning system by improving performance while maintaining privacy strength and Byzantine-
resilient strength. The communication bottleneck in existing protocols is due to the frequent transfer
of shares and commitments, which are comparable in size to the model or even larger. Additionally,
the computation bottleneck in existing protocols lies in the server’s intensive computations related
to shares from dropout users who leave the protocol and Byzantine users. The author reduces the
communication cost by reducing the number of transfers of shares and commitments, and reduces
the computation cost by optimizing computations at the algorithm level on the server. In the first
half of this thesis, the author designs a fast secure aggregation protocol for secure federated learning
against semi-honest adversaries, and in the second half of this thesis, the author designs a fast
Byzanitne-resilient secure aggregation for secure federated learning against dishonest adversaries.

1.1 Fast Secure Federated Learning against Semi-honest Adversaries

1.1.1 Background

The goal of secure aggregation protocols for secure federated learning against semi-honest adversaries
is to satisfy 1) privacy preservation, which means that individual local models are not revealed even
if the server and/or users are semi-honest adversaries, and 2) dropout tolerance, which means that a
sum of local models is computed even if some users drop out.

The key ideas of the secure aggregation protocols to satisfy privacy preservation and dropout
tolerance are two-fold: First, users mask their local models with random vectors (random masks)
before sending these local models to the server. (Here, the random masks and the masked local
model correspond to the shares). Second, the server adds the masked local models of live users and
subtracts the random masks of the live users and dropout users to compute the sum of the live users’
local models (the series of processes at the server is the server’s aggregation). An important point is
that the users exchange information such as shares for the above methods.

There are two approaches to exchanging information pieces, depending on which improves

– 4 –

Chapter 1. Introduction

Protocol Computation cost Communication cost
User Server User Server

SecAgg [29] O(𝑛𝑚) O((𝑛 − 𝑟)𝑚 + 𝑟 (𝑛 − 𝑟)𝑚) O(𝑚) O(𝑛𝑚)
LightSecAgg [47] O(𝑛𝑚) O(𝑚) O(𝑛𝑚) O(𝑛2𝑚)
BalancedSecAgg O(𝑛𝑚) O(𝑟𝑚) O(𝑟𝑚) O(𝑟𝑛𝑚)

Table 1.1: A cost analysis of SecAgg, LightSecAgg, and BalancedSecAgg. 𝑛 is the number of all
users and 𝑟 is the number of dropout users. The defines a unit of communication cost as one transfer
of an element of 𝑚-dimensional vector, such as a model or mask, and a unit of computation cost as the
generation of an element of a mask. For a fair comparison, the author assumes the communication
model of LightSecAgg is the same as that of SecAgg and BalancedSecAgg.

either communication or computation costs as shown in Table 1.1. The author defines a unit of
communication cost as one transfer of an element of a model or mask with dimension 𝑚, and define
a unit of computation cost as the generation of an element of a mask.

The first approach, proposed by Bonawitz et al. [29] and called SecAgg, has a low communication
cost for each user. For privacy preservation, each user agrees on a pairwise random seed with every
other user and generates a self-random seed. Then, each user generates the pairwise random masks
and the self-random mask from these seeds. Then, each user adds these masks to its local model so
that all the pairwise random masks of live users are canceled out during aggregation and then sends
its masked local model to the server. For dropout tolerance, each user secretly shares information to
recover the pairwise random seeds of the dropout users and the self-random seeds of the live users
through Shamir’s secret sharing [42]. The server collects their shares, reconstructs these seeds and
masks for both dropout and live users, and subtracts these masks from the sum of the live users’
masked local models to compute the sum of their local models. Since seeds and shares are much
smaller than random masks, each user only sends its masked local model as 𝑚-dimensional vectors
to the server. Therefore, the communication cost for each user is O(𝑚). At this expense, SecAgg has
a disadvantage in terms of the computation cost for the server’s mask reconstruction. Precisely, the
server performs the reconstruction of one self-random mask for each live user and the reconstruction
of 𝑛 − 𝑟 pairwise random masks for each dropout user, where 𝑛 and 𝑟 are the numbers of all users and
dropout users, respectively. Therefore, the computation cost for the server is O((𝑛−𝑟)𝑚 +𝑟 (𝑛−𝑟)𝑚).
Bonawitz et al. claim that the server’s mask reconstruction is time-consuming [29].

The second approach, proposed by So et al. [47] and called LightSecAgg, reduces the computation
cost of the server’s mask reconstruction by having users exchange and aggregate their masks. In
LightSecAgg, each user masks its local model with a (self-) random mask and sends its masked

– 5 –

1.1 Fast Secure Federated Learning against Semi-honest Adversaries

local model to the server. To compute the sum of live users’ local models, the random masks of
the live users are securely subtracted through a process of secretly sharing and aggregating them as
follows: First, each user generates multiple encoded masks (shares) from its random mask through
𝑡-private Maximum Distance Separable (MDS) codes [42, 52]. Then, each user sends such encoded
masks to the other users, and aggregates the received encoded masks. Finally, the server collects the
aggregated encoded masks of the live users and decodes the sum of the live users’ random masks.
The 𝑡-private MDS codes prevent the server and any group of fewer than 𝑡 + 1 semi-honest users
in collusion from obtaining individual random masks of the other users. Additionally, these codes
enable the server to reconstruct the aggregated random mask as long as the number of dropout
users 𝑟 is less than or equal to 𝑟 = 𝑛 − (𝑡 + 1). Since the server reconstructs only the aggregated
random mask, the computation cost for the server reduces to O(𝑚) compared to SecAgg. However,
LightSecAgg incurs a high communication cost for each user. Each user sends an encoded mask as
an 𝑚-dimensional vector to each other user, in addition to sending its masked local model and its
aggregated encoded mask to the server. Unlike SecAgg, it is not possible to generate the encoded
mask from a seed. Therefore, the communication cost for each user is O(𝑛𝑚).

1.1.2 Approach

The author proposes a new approach, called BalancedSecAgg, to achieve a better balance between
communication and computation costs than that of SecAgg and LightSecAgg by complementing
both SecAgg and LightSecAgg. Assuming a total of 𝑛 users, the author divides them into two groups:
𝑡 + 1 users and 𝑟 = 𝑛 − (𝑡 + 1) users. Each user generates 𝑡 + 1 random masks and then generates 𝑟
redundant masks from these random masks through Reed-Solomon erasure codes [53,54]. Each user
adds all the random masks and redundant masks to its local model and sends this masked local model
to the server. To compute the sum of live users’ local models, all the random masks and redundant
masks of the live users are subtracted from the sum of the live users’ masked local models. To this
end, both the random masks and redundant masks are exchanged and aggregated among the 𝑛 users.
At this time, each user uses random seeds to exchange the 𝑡 + 1 random masks. Then, the server
collects the aggregated masks of the live users and, using these masks, reconstructs the aggregated
masks attributed to the dropout users, as long as the number of dropout users is less than or equal
to 𝑟. A key contribution is that the author demonstrates that using Reed-Solomon codes makes it
unnecessary to prepare redundant masks for all users.

The contributions of this thesis are summarized below:
• The author designs the secure aggregation protocol, BalancedSecAgg, to achieve a better

– 6 –

Chapter 1. Introduction

balance between computation and communication costs. Compared to LightSecAgg, the
communication cost for each user reduces to O(𝑟𝑚). This is because each user sends a random
seed to each of 𝑡 + 1 other users, a redundant mask to each of 𝑟 − 1 other users, its masked
local model, and its aggregated mask to the server. In addition, compared to SecAgg, the
computation cost for the server reduces to O(𝑟𝑚). This is because the server reconstructs only
one aggregated mask for each dropout user.

• To speed up actual protocol running time, the author adopts an efficient mask coding algorithm
different from LightSecAgg. The 𝑡-private MDS code adopted by LightSecAgg typically
involves Lagrange interpolation, which becomes inefficient for increasing 𝑡 and is a computation
bottleneck in LightSecAgg [47]. In contrast, the author adopts the Reed-Solomon erasure
code for mask coding, leveraging its optimized implementation for rapid computation. In
our experiment, BalancedSecAgg achieves up to 10.74× faster than LightSecAgg, and up to
11.41× faster than SecAgg.

• The author formally proves that BalancedSecAgg ensures privacy preservation and dropout
tolerance in the condition 𝑡 ≤ 𝑛− 𝑟 −1. This condition is the same level of privacy preservation
and dropout tolerance as SecAgg and LightSecAgg. Although many secure aggregation
protocols [32, 33, 37, 46–49] follow the principles of either SecAgg or LightSecAgg and
aim to achieve communication and computation efficiency, these protocols sacrifice privacy
preservation and dropout tolerance.

1.2 Fast Secure Federated Learning against Dishonest Adversaries

1.2.1 Background

In addition to privacy preservation and dropout tolerance, another goal of Byzantine-resilient secure
aggregation for secure federated learning against dishonest adversaries is to satisfy Byzantine-
Resilience, which means that if some users are Byzantine users, the sum of the local model is
computed, excluding the Byzantine users’ contaminated models. Among existing secure aggregations,
The author focuses on BREA because the method can tolerate the largest number of Byzantine users
(Please refer to the Related Work chapter for comparisons with other studies). BREA requires that
each user broadcasts a commitment for share verification. In a naive method, a semi-honest server is
responsible for broadcasting all users’ commitments. Specifically, each user sends its commitment to
the server and the server sends all the other users’ commitments to each user using unicast channels.
Since the server is semi-honest, the commitments are correctly delivered.

– 7 –

1.2 Fast Secure Federated Learning against Dishonest Adversaries

Protocol Computation cost Communication cost
User Server User Server

BREA O(𝑚𝑛 log 𝑝 + 𝑑𝑛2 log 𝑛) - O(𝑛𝑡𝑚) O(𝑛2𝑡𝑚)
BREA-SV O(𝑚𝑛 log 𝑝) O(𝑚𝑛2 log2 𝑛) O(𝑡𝑚) O(𝑛𝑡𝑚)

Table 1.2: A cost analysis of BREA and BREA-SV. 𝑛, 𝑡, 𝑚, and 𝑝 are the number of all users, the
number of semi-honest users, the size of models, and the order of finite field, respectively.

However, in return for the strong resilience, BREA incurs a negative feature that the sizes of
commitments are large (in bytes). In the naive method, each user uploads data of size 𝑡𝑚, and
downloads data of size (𝑛 − 1)𝑡𝑚 because the size of each commitment is 𝑡𝑚 (𝑡 is the number of
semi-honest users). Therefore, the communication cost for each user and the server is O(𝑛𝑡𝑚) and
O(𝑛2𝑡𝑚), respectively.

1.2.2 Approach

The aim of this thesis is to achieve faster learning by eliminating the communication bottleneck
without relying on broadcasting. The author achieves the goal in two steps. In the first step, the
author raises the question of how resilience is preserved without share verification. The motivation,
here, is that Reed-Solomon code decoding [45] for correcting contaminated aggregated shares plays
partially a role in share verification. In the second step, the author designs an algorithm for the share
verification so that the computation of verification is performed by a semi-honest server, whereas
each user performs the computation in BREA. A key contribution is that the author demonstrates that
users can delegate share verification processes with commitments to the server without disclosing
their secret information (shares) and that users need to send the commitments to only the server.

The contributions of this for the two steps are summarized below:

• THe author clarifies that Byzantine resilience is degraded when the share verification is omitted.
Although the Reed-Solomon decoding detects contaminated shares of an attack of a Byzantine
user, BREA without share verification is vulnerable to collusion between Byzantine users. The
author designs a colluding contaminated model injection attack, where colluding Byzantine
users use different shares for contaminated model removal and local model aggregation. This
attack reduces the maximum number of Byzantine users from ℓ ≤ (𝑛−1−max{𝑐+2, 𝑟 +2𝑡})/2
to ℓ < ⌈𝑛/3⌉, where ℓ, 𝑐, and 𝑟 are the number of Byzantine users, users with local models
selected for aggregation, and dropping users, respectively.

• The author designs an algorithm where some parts of the computation for the share verification

– 8 –

Chapter 1. Introduction

are offloaded from users to a server. The algorithm, which the author calls BREA with Server’s
share Verification (BREA-SV), avoids each user downloading commitments from all the other
users. Instead of downloading its commitment, each user just uploads its commitment to the
server and the server is responsible for executing computation with users’ commitments. This
reduces the communication cost to O(𝑛𝑡𝑚), compared to BREA whose communication cost
is O(𝑛2𝑡𝑚), where 𝑚 represents the size of vectors (models). Moreover, the author reduces
computation time to achieve fast learning in the following two ways: First, the author reduces
the number of multiplication operations of the server’s computation to make the verification
efficient. Second, the author enables users’ model training and the server’s computation in
parallel. Since the server’s computation can be offloaded to GPU, BREA-SV can be performed
on the scale of hundreds of users.

• The author proves that BREA-SV satisfies the privacy preservation and Byzantine resilience
simultaneously defined by BREA, under the same constraints as BREA, i.e., ℓ ≤ (𝑛 − 1 −
max{𝑐 + 2, 𝑟 + 2𝑡})/2.

– 9 –

Chapter 2

Related Work

This thesis adopts Byzantine-resilient and secure aggregation protocols for federated learning
among many types of methods rather than centralized learning methods: the methods based on
data processing like data anonymization [3] and differential privacy [4, 5], Secure Multi-Party
Computation [6] and TEE [8–10]. The reason for not choosing these methods is that accuracy and
low computation cost are not easy to be simultaneously achieved. This discussion is described in
Chapter 1.

To reduce the computation and communication costs of Byzantine-resilient and secure aggregation
for federated learning, many computation and communication-efficient approaches have been proposed.
However, these existing approaches sacrifice the strength of privacy preservation, dropout tolerance,
and Byzantine resilience. Specifically, these existing approaches 1) maintain the privacy preservation,
dropout tolerance, and Byzantine resilience conditions, but reduce the probability of satisfying the
conditions, or 2) weaken the conditions as shown in Table 2.1 and Table 2.2. The author shows
that few studies improve efficiency without sacrificing the strength of privacy preservation, dropout
tolerance, and Byzantine resilience.

2.1 Computation and Communication Efficient Secure Aggregation

In this section, the author reviews computation and/or communication efficient approaches to reduce
the computation and communication costs of SecAgg and LightSecAgg.

SecAgg+ [32] and Lisa [46] are re seed exchange-based protocols that extend SecAgg to reduce
both computation and communication costs. The main idea behind these protocols is that each user
shares pairwise random seeds and secretly shared information pieces only with a subset of selected

– 11 –

2.1 Computation and Communication Efficient Secure Aggregation

Protocol Privacy Preservation Dropout Tolerance
Condition Probability Condition Probability

SecAgg [29]
LightSecAgg [47]
BalancedSecAgg

𝑡 ≤ 𝑛 − 𝑟 − 1 1 𝑟 ≤ 𝑛 − 𝑡 − 1 1

SecAgg+ [32]
Lisa [46] 𝑡 ≤ 𝑛 − 𝑟 − 1 2−𝜖 𝑟 ≤ 𝑛 − 𝑡 − 1 2−𝜇

TurboAgg [33] 𝑡 ≤ 𝑛 − 𝑟 − 1 𝑛
𝑛′ 𝑒
−(𝛾𝑛′) 𝑟 ≤ 𝑛 − 𝑡 − 1 𝑛

𝑛′ 𝑒
−(𝛿𝑛′)

SwiftAgg [48] 𝑡 ≤ 𝑛′ − 𝑟 − 1 1 𝑟 ≤ 𝑛′ − 𝑡 − 1 1
SwiftAgg+ [49] 𝑡 ≤ 𝑛′ − 𝑟 − ℎ 1 𝑟 ≤ 𝑛′ − 𝑡 − ℎ 1
FastSecAgg [37]

LightSecAgg (Extended version) 𝑡 ≤ 𝑛 − 𝑟 − ℎ 1 𝑟 ≤ 𝑛 − 𝑡 − ℎ 1

Table 2.1: Comparison of our protocol (BalancedSecAgg) with other related works. 𝑛′ is the number
of selected users. 𝜖 , 𝜇, 𝛾, and 𝛿 are system parameters.

users, rather than with all other users. This idea reduces communication costs because each user
communicates only with the selected users. It also reduces computation costs by decreasing the
number of pairwise random masks that the server needs to reconstruct in the mask subtraction phase.
However, these protocols require that, among the selected users for each user, there are no more than
𝑡 + 1 semi-honest users and that no more than 𝑛′ − (𝑡 + 1) dropout users where 𝑛′ is the number
of selected users. SecAgg satisfies these conditions with probability 1 because the selected users
for each user include all the other users. In contrast, the above-mentioned protocols satisfy these
conditions with a probability less than 1, these protocol involve a trade-off between efficiency and
security. When the probabilities of satisfying conditions privacy preservation and dropout tolerance
are 2−𝜖 and 2−𝜇, respectively, SecAgg+ and Lisa set 𝑛′ to O(log 𝑛+ 𝜖 + 𝜇) and O(𝜖 + 𝜇), respectively.

TurboAgg [33] and SwiftAgg [48] are mask exchange-based protocols like LightSecAgg. These
methods reduce the communication costs and the computation costs by using ideas similar to the
above approaches [32, 38, 40, 41, 46]. Specifically, each user secretly shares its local model only with
a subset of selected users. Consequently, these methods satisfy privacy preservation and dropout
tolerance with a probability of less than 1 for reasons similar to those explained above. Jahani-Nezhad
et al. [48] claims that setting the number of selected users to 𝑡 + 𝑟 allows the probability of satisfying
security to be 1. However, this method reduces the number of acceptable semi-honest users to
𝑡 ≤ 𝑛′ − 𝑟 − 1.

SwiftAgg+ [49] is the extended version of SwiftAgg. It additionally reduces the communication
cost by reducing the amount of data in each share from an 𝑚-dimensional vector to an 𝑚

ℎ
-dimensional

– 12 –

Chapter 2. Related Work

vector (1 ≤ ℎ ≤ 𝑛 − 𝑟). The secure aggregation with this approach is performed as follows. First,
each user splits its local model into ℎ sub-models(vectors), each of which dimension 𝑚

ℎ
, generates a

polynomial of degree 𝑡 + ℎ from these sub-models and 𝑡 random vectors of the same dimension, and
sends an evaluation of this polynomial, i.e., a share, also of dimension 𝑚

ℎ
, to each other user. Then,

the users aggregate the received shares and send the aggregated shares to the server. The server then
reconstructs a polynomial, of degree 𝑡 + ℎ, that represents the sum of all users’ polynomials and
computes the sum of local models by combining the coefficients of model parts from this polynomial.
However, this model-split approach incurs the problem that it requires 𝑡 + ℎ = 𝑛 − 𝑟 aggregated
shares for the server to reconstruct the server’s polynomial. The larger the number of sub-vectors ℎ
becomes, the smaller the number of semi-honest users 𝑡 becomes. Precisely, SwiftAgg+ achieves
privacy preservation and dropout tolerance under the condition 𝑡 ≤ 𝑛 − 𝑟 − ℎ.

FastSecAgg [37] adopts a communication-efficient approach similar to the model-split approach
of SwiftAgg+ [49]. That is, each user splits its local model and then generates 𝑛 shares, each of which
is an 𝑚

ℎ
-dimensional vector, thereby reducing the communication cost. Furthermore, it reduces the

computation cost involved in share generation using Fast Fourier Transform. However, FastSecAgg
achieves privacy preservation and dropout tolerance under the condition 𝑡 ≤ 𝑛 − 𝑟 − ℎ, which is the
same as SwiftAgg+ [49].

Finally, LightSecAgg [47] also adopts a communication-efficient approach similar to the model-
split approach [49]. In LightSecAgg, each user splits its random mask and then generates 𝑛 encoded
masks, each encoded mask is an 𝑚

ℎ
-dimensional vector, thereby reducing the communication cost.

LightSecAgg achieves privacy preservation and dropout tolerance under the condition 𝑡 ≤ 𝑛 − 𝑟 − ℎ
for the same reason as SwiftAgg+ [49].

2.2 Computation and Communication Efficient Byzantine-resilient
Secure Aggregation

In this section, the author reviews computation and communication efficient approaches to reduce the
computation and communication costs of BREA.

Rofl [50] is a Byzantine-resilient secure aggregation protocol that improves computation and
communication efficiency by avoiding share verification. Since Multi-Krum in BREA cannot be used
without share verification, Rofl introduces a mechanism of checking local model of each user and the
aggregation result using commitments to users’ local models. In addition to providing the aggregation
result of the server through a secure aggregation protocol, users generate the commitments of their

– 13 –

2.2 Computation and Communication Efficient Byzantine-resilient Secure Aggregation

Protocol
Privacy Preservation Dropout Tolerance

Byzantine Resilience

Remove
Contaminated model

Remove
Contaminated

computation result
Condition Probability Condition Probability Condition Probability Condition Probability

Rofl [50] 𝑡 ≤ 𝑛 − 𝑟 − ℓ − 1 1 𝑟 ≤ 𝑛 − 𝑡 − ℓ − 1 1 ℓ ≤ 𝑛 1 - -

BynSecAgg [51] 𝑡 ≤ 𝑛 − (𝑟 + 2ℓ + ℎ) 1 𝑟 ≤ 𝑛 − (2𝑡 + ℎ) − 2ℓ 1 ℓ < 𝑛−𝑐−2
2 1 - -

BREA [25]
BREA-SV 𝑡 ≤ 𝑛 − (𝑟 + 2ℓ + 1) 1 𝑟 ≤ 𝑛 − (2𝑡 + 1) − 2ℓ 1 ℓ < 𝑛−𝑐−2

2 1 ℓ ≤
⌊
𝑛−(2𝑡+1)−𝑟

2

⌋
1

Table 2.2: Comparison of our protocol (BREA-SV) with other related works.

local models and sends them to the server. The server verifies whether the local models are outliers
using the norm of the commitments. Furthermore, the server aggregates all the users’ commitments
and compares the resulting commitment with the aggregation result of all users’ local models. This
allows the server to confirm that the verified local models are included in the aggregation. However,
Rofl lacks the ability to correct contaminated computation results like Reed-Solomon error correcting
methods. Therefore, even if the server detects that the verified local models are not included in the
aggregation result, it cannot remove them. If Reed-Solomon error correcting codes are introduced,
Byzantine resilience still decreases, as shown in Chapter 5.

ByzSecAgg [51], which extends BREA to improve the communication efficiency of the share
verification of BREA. BynSecAgg similarly performs the share verification, but reduces the size of each
commitment. Here, let the commitment of a user 𝑖 be denoted as C 𝑓𝑖 (𝜃,w𝑖) = (𝑔w𝑖 , 𝑔r𝑖1 , 𝑔r𝑖2 , . . . , 𝑔r𝑖𝑡),
where 𝑓 is a polynomial for generating shares, (w𝑖 , r𝑖1, r𝑖2, . . . , r𝑖𝑡) are its coefficients, and 𝑔 is a
generator selected from a finite field F𝑝. The idea of reduction is to verify the elements in each share
collectively, without verifying each element one by one like BREA. This idea is achieved by verifying
whether a sum of elements of each exchanged share equals a sum of elements of a correct share
or not. Specifically, each user 𝑖 sends the sum of the elements in each column in the commitment
C 𝑓𝑖 (𝜃,w𝑖) = (𝑔w𝑖 , 𝑔r𝑖1 , 𝑔r𝑖2 , . . . , 𝑔r𝑖𝑡) with a share sh𝑖, 𝑗 to each verifying user 𝑗 . For example,
𝑔w𝑖 = [𝑔𝑣01 , 𝑔𝑣02 , . . . , 𝑔𝑣0𝑑], 𝑔r𝑖1 = [𝑔𝑣11 , 𝑔𝑣12 , · · · , 𝑔𝑣1𝑑], . . . , 𝑔r𝑖𝑡 = [𝑔𝑣𝑡1 , 𝑔𝑣𝑡2 , . . . , 𝑔𝑣𝑡𝑑], 𝑖 sends
(𝑔𝑣0 , 𝑔𝑣1 , . . . , 𝑔𝑣𝑡) with sh𝑖, 𝑗 = [𝑠𝑖1, 𝑠𝑖2, . . . , 𝑠𝑖𝑑] to each verifying user 𝑗 , where 𝑔𝑣𝑘 = 𝑔

∑𝑑
𝑖=1 𝑣𝑘𝑖 .

User 𝑗 verifies whether the sum of all elements of sh𝑖, 𝑗 , 𝑔
∑𝑑

𝑘=1,𝑠𝑖𝑘 , equals to 𝑔𝑣0+
∑𝑡

𝑘=1 𝑣𝑘 𝜃 𝑗
𝑘 . Whereas

the communication cost is reduced from O(𝑛2𝑡𝑚) to O(𝑡𝑛2), any Byzantine user 𝑏 can send a
contaminated share a𝑏 𝑗 = [𝑥𝑏1, 𝑥𝑏2, . . . , 𝑥𝑏𝑑] (≠ sh𝑏 𝑗 = [𝑠𝑏1, 𝑠𝑏2, . . . , 𝑠𝑏 𝑗]) without being detected
by this share verification because 𝑏 can rewrite sh𝑏, 𝑗 so that the sum of all the elements of the
sending share,

∑𝑑
𝑘=1 𝑥𝑘 , equals to

∑𝑑
𝑘=1 𝑠𝑘 . For example, for 𝑚 = 2 and sh𝑏, 𝑗 = [1, 2], 𝑏 can send

– 14 –

Chapter 2. Related Work

a𝑏, 𝑗 = [0, 3] to user 𝑗 . The random numbers (𝑔𝛽1
, 𝑔𝛽

2
, . . . , 𝑔𝛽

𝑑) (𝛽 ∈ F𝑝) introduced by [51] prevent
this attack, but require a trusted entity to generate them. This attack weakens the Byzantine resistance
of BynSecAgg to the same level as RoFL without the trusted entity. BREA-SV, on the other hand,
has the same Byzantine resilience as BREA and achieves communication efficiency.

– 15 –

Chapter 3

Threat Models and Goals in Federated
Learning

In this chapter, the author explains the two types of threats in federated learning and the goals for
mitigating each threat. Chapter 4 focuses on how to achieve the first goal, while Chapter 5 focuses on
how to achieve the second goal. In Section 3.1, the author first explains a federated learning system.
Next, in Section 3.2, the author describes the two types of threat models and attacks, along with the
application scenarios corresponding to each threat model. In Section 3.3, the author explains the
goals for each of the two threat models.

The main symbols used in this thesis are listed in Table 3.1. The author uses bold and uppercase
letters to denote vectors and sets, respectively, and lowercase letters for other purposes such as scalar
variables.

3.1 Federated Learning

The author considers a federated learning system coordinated by a server, in which a set of 𝑛 usersU
trains a global model collaboratively. At each iteration, each user 𝑖 (∀𝑖 ∈ U) downloads the current
global model w with dimension 𝑚 from the server. The author assumes that the system uses a neural
network, of which model w consists of several weight and bias vectors depending on the layering
structure of the neural network. Next, each user 𝑖 locally trains w with its training data 𝐷𝑖 and obtains
the individual model Δw𝑖 = L (w, 𝐷𝑖), where L is a learning algorithm used in this system. Then,
each user 𝑖 sends Δw𝑖 in the form of w𝑖 = Δw𝑖 − w to the server. The author refers to w𝑖 as a local
model. The server aggregates (adds) their collected local models and updates the global model using

– 17 –

3.1 Federated Learning

Table 3.1: Summary of Symbols

Symbol Description
𝑛 Number of all users
𝑐 Number of users selected by Multi-Krum
𝑡 Number of semi-honest users
𝑟 Number of dropout users
ℓ Number of Byzantine users
𝑚 Size of a model (vector)
w Global model
w𝑖 Local model of a user 𝑖
w𝐶
𝑏

Contaminated model of a Byzantine user 𝑏
sh𝑖, 𝑗 Share of a user 𝑖 for a user 𝑗
𝐷𝑖 Training data of a user 𝑖
U Set of all users
T Set of semi-honest users
D Set of dropout users who leave before sending their (masked) local models
B Set of Byzantine users
Usel Set of users selected by Multi-Krum
L Learning algorithm

the sum of local models as follows:

w′ = w + 𝜂
∑︁
𝑖∈U

w𝑖 , (3.1)

where 𝜂 is the learning rate to determine how much w is updated at every iteration.

A certain number (𝑟) of users may leave the federated learning before sending its local models
due to fluctuations in communication conditions such as network congestion or low battery. These
users refer to those who do not send their masked local model in local model aggregation protocol in
Chapter 4 and Chapter 5. The author refers to the leaving users as dropout users, and in particular, let
D be the set of dropout users who do not send their masked local models to the server. The author
assumes the same communication model as that of Bonawitz et al. [55] where the communication
between users is mediated by the server.

The author assumes a trusted authority that assigns public key certificates to all the users and the
server. These keys are used to establish a private and authenticated channel among a pair of parties
like users and the server.

– 18 –

Chapter 3. Threat Models and Goals in Federated Learning

3.2 Threat Models and Attacks

The author assumes two types of threats depending on the application scenarios.

3.2.1 Threat Model1: Semi-honest Model

In semi-honest model, all adversaries are semi-honest, which means that they follow the protocol but
perform privacy attacks. These adversaries include the server and some users (up to 𝑡 users), and
their goal is to obtain the local models of any honest user. The author denotes the set of 𝑡 semi-honest
users as T . When semi-honest adversaries collude, they share the information received through the
protocol to obtain honest users’ local models. If adversaries obtain any honest user’s local model,
they can infer the honest user’s training data from the local model by performing privacy attacks
described in the following section. In the naive federated learning system explained in Section 3.1,
the server obtains the local models of all honest users, leading to privacy violations.

Privacy Attack

In this subsection, the author describes a specific privacy attack in which a semi-honest adversary,
who obtains any honest user’s local model, infers the honest user’s training data.
Attack Example. Wang et al. [20] demonstrate that the semi-honest server successfully extracts
training data from a local model by a model inversion attack.

Wang et al use GAN (Generative Adversarial Networks) for a privacy attack. GAN is an ensemble
learning model that generates data similar to the input data. The server trains the ensemble learning
model with data similar to each user’s training data and then infers each user’s training data using the
trained ensemble learning model.

In federated learning, the server cannot obtain the training data of each user, but it can reconstruct
data similar to the users’ training data through the following iterative process using local models. 1)
the server generates random noise as training data and trains the global model locally. 2) the server
adjusts the random noise so that the local model generated by the server approximates the values of
the local models received from each user.

Application Scenarios

The Semi-honest models described in the previous section are assumed in the following applications.
The first is service provider-oriented applications where the global model is used to improve their

– 19 –

3.2 Threat Models and Attacks

service quality. An example service is Google’s Google Keyboard Query Suggestion [27], a machine
learning service that provides search suggestions to Google Keyboard users. In this case, the training
data is the search query text, which may contain sensitive information. The providers may perform
privacy attacks but do not any motivation to contaminate the models. The second is financial
transaction applications, where banks and financial institutions cooperate with each other. For
example, they create a machine learning model for fraud detection. In this case, each institute may
try to reveal others’ training data, but they do not have any motivation to contaminate the models.

3.2.2 Threat Model2: Dishonest Model

In dishonest model, in addition to the semi-honest adversaries described in Section 3.2.1, Byzantine
adversaries who conduct security attacks (Byzantine attacks) appear as well. These Byzantine
adversaries include some users (up to ℓ users), and the goal of the Byzantine users is to tamper with
a sum of the local models. The author denotes the set of ℓ semi-honest users as B. If contaminated
messages sent by Byzantine users are not detected and removed, the sum of local models may be
compromised. In the naive federated learning system described in Section 3.1, it is possible to alter
the aggregation result to arbitrary values by sending malicious models(called contaminated models),
as discussed in the next subsection.

Byzantine Attack (Security attack)

The two types of Byzantine attacks are assumed: The first type is to inject a local model that a
Byzantine user obtains by training a global model with contaminated training data. Hereafter, the
author calls this model the contaminated model. In this attack, the Byzantine user does follow a
protocol, i.e., sends benign shares and an aggregated share, but the contaminated model is injected
into the aggregation result. The second type is to inject contaminated shares and contaminated
share computation results, by not following the protocol. Byzantine users send such contaminated
information pieces to the other users or the server.

Attack Example. Blanchard et al. [24] demonstrate a Byzantine attack where a single Byzantine
user can alter the aggregation result to any desired value by sending a contaminated model to the
server. The main idea is that when the Byzantine user 𝑏 aims for the aggregation result to be a
specific value 𝑉 , it scales up the parameters of its contaminated model w𝐶

𝑏
to ensure 𝑉 remains. In

– 20 –

Chapter 3. Threat Models and Goals in Federated Learning

the naive approach, the Byzantine user 𝑏 sends a contaminated model

w𝐶𝑏 = 𝑉 −
∑︁

𝑖∈U\{𝑏}
w𝑖 (3.2)

to the server. As a result, the server obtains the aggregation result 𝑉 . In realistic settings, since
Byzantine users do not know the exact value of the local models of honest users, they use the
estimated local models of the honest users.

Application Scenarios

The dishonest models described in the previous section are assumed in the following applications.
The first is an application in highly competitive environments. For example, assume that several
interactive chat service providers develop machine learning models for improving their service quality.
Employees of some providers have a motivation to contaminate the models of other providers by
performing Byzantine attacks as users of the other providers. The second is in machine learning
applications that enhance security. For example. phishing detection services, a security service
provider aims to develop a machine learning model that detects phishing methods, using data such as
email metadata, link patterns, and visited URLs of individuals’ smartphones. In this scenario, an
adversary may participate in federated learning with a motive to degrade the detection capabilities of
the machine learning model to evade phishing detection. Please note that in these applications, not
only Byzantine users tamper with aggregation results, but also semi-honest users or the server are
motivated to obtain the sensitive training data.

3.3 Goals

3.3.1 Goal for Mitigating Threats in Semi-Honest Model

The goal is to protect the privacy of honest users’ local models. Specifically, the goal is to prevent
the server and 𝑡 semi-honest users who collude from obtaining the local model of any honest user
ℎ ∈ U \ T from information received during the protocol. In Chapter 4, the author introduces secure
aggregation based on local model masking, where semi-honest adversaries cannot obtain the local
model of any honest user, but the server computes the sum of all users’ local models.

Note that the author does not consider the leakage of training data from a sum of local models as
a privacy issue in many application scenarios. This is because even if the server can infer training

– 21 –

3.3 Goals

data from the sum of local models, it cannot determine which user’s training data it is.

3.3.2 Goal for Mitigating Threats in Dishonest Model

There are two goals: The first goal is to prevent the server and 𝑡 semi-honest users who collude
from obtaining the local model of any honest user ℎ ∈ U \ T from information received during the
protocol. The second goal is to aggregate the local models of all honest users inU \ B. In other
words, contaminated models are excluded and only other local models are aggregated. In Chapter 5,
the author introduces Byzantine-resilient secure aggregation based on the verification and division
of local models, which ensures secure computation of the sum of local models while detecting and
eliminating malicious messages.

– 22 –

Chapter 4

Fast Secure Aggregation against
Semi-honest Adversaries

In this chapter, the author addresses threats in the semi-honest model and designs a faster secure
aggregation protocol called BalancedSecAgg than the existing ones. The rest of the chapter is
organized as follows: Section 4.1 describes the preliminaries used in this chapter. Section 4.2
describes the existing secure aggregation protocols, SecAgg and LightSecAgg, and then Section 4.3
describes our protocol, BalancedSecAgg. Section 4.4 analyzes BalancedSecAgg in terms of security
and performance. Section 4.6 concludes this chapter.

In addition to Table 3.1, the main symbols used in this chapter are listed in Table 4.1. The author
uses bold and uppercase letters to denote vectors and sets, respectively, and lowercase letters for other
purposes such as scalar variables.

Table 4.1: Summary of Symbols

Symbol Description
w̃𝑖 Masked local model of a user 𝑖
PRG Pseudorandom generator
PRG(𝑠𝑖, 𝑗) Random mask generated by PRG from a seed 𝑠𝑖, 𝑗 of a user 𝑖 for a user 𝑗
e𝑖, 𝑗 Encoded mask of a user 𝑖 for a user 𝑗
d𝑖, 𝑗 Redundant mask of a user 𝑖 for a user 𝑗
RS.correct Erasure correction function

– 23 –

4.1 Preliminaries

4.1 Preliminaries

4.1.1 Key Agreement

A key agreement consists of a tuple of algorithms (KA.param,KA.gen,KA.agree). Given a security
parameter 𝜅, KA.param(𝜅) → 𝑝𝑝 generates some public parameters (over which our protocol will
be parameterized). KA.gen(𝑝𝑝) → (𝑝𝑘𝑖 , 𝑠𝑘𝑖) allows any user 𝑖 to generate a public-private key pair.
KA.agree(𝑠𝑘𝑖 , 𝑝𝑘 𝑗) → 𝑎𝑖, 𝑗 allows any user 𝑖 to agree on a private pairwise key 𝑎𝑖, 𝑗 with another
user 𝑗 by combining 𝑖’s private key 𝑠𝑘𝑖 with 𝑗’s public key 𝑝𝑘 𝑗 .

Correctness requires that, for any pair of user 𝑖 and 𝑗 , KA.agree(𝑠𝑘𝑖 , 𝑝𝑘 𝑗) = KA.agree(𝑠𝑘 𝑗 , 𝑝𝑘𝑖) =
𝑎𝑖, 𝑗 . Security requires that, in the honest-but-curious model, 𝑎𝑖, 𝑗 is indistinguishable from a uniformly
random string for an adversary who is given the public keys of 𝑖 and 𝑗 . Since the author uses
Diffie-Hellman key agreement [56] as the specific key agreement scheme, the author relys on the
Decisional Diffie-Hellman (DDH) assumption.

4.1.2 Pseudorandom Generator

A secure pseudorandom generator [57, 58] PRG takes a uniformly random seed of fixed length as an
input and produces a sequence of numbers where each number is in the range [0, 𝑝). Security requires
that the output is computationally indistinguishable from a sequence of truly random numbers drawn
uniformly from the same range, given that the seed is hidden from the distinguisher.

4.1.3 Authenticated Encryption

Authenticated encryption provides messages exchanged between two parties with confidentiality and
integrity guarantees. It consists of an encryption algorithm AE.enc that encrypts a message using a
key to produce a ciphertext, and a decryption algorithm AE.dec that decrypts the ciphertext with the
key to either reveal the original plaintext or output a special error symbol(⊥).

Correctness requires that for all keys 𝑘 ∈ {0, 1}𝜅 and all messages 𝑥, AE.dec(𝑘,AE.enc(𝑘, 𝑥)) =
𝑥. Security requires indistinguishability under a chosen plaintext attack (IND-CPA) and ciphertext
integrity (IND-CTXT) [59].

4.1.4 Shamir’s Secret Sharing

Shamir’s (𝑡 + 1)-out-of-𝑛 secret sharing [42] allows a user to divide a secret 𝑠 into 𝑛 shares so that
any 𝑡 + 1 shares can be used to reconstruct 𝑠, but any 𝑡 or fewer shares reveal no information about

– 24 –

Chapter 4. Fast Secure Aggregation against Semi-honest Adversaries

𝑠. This scheme is parameterized over a finite field F and consists of the two algorithms SS.share
and SS.recon. SS.share(𝑠, 𝑡 + 1,U) → {(𝑖, 𝑠ℎ𝑠𝑖)}𝑖∈U takes as inputs a secret 𝑠, a threshold 𝑡 + 1,
and a set U of 𝑛 field elements, and outputs a set of 𝑛 shares. The algorithm chooses a random
polynomial 𝑓 ∈ F[𝑋] such that 𝑓 (0) = 𝑠 and generates the shares as {(𝑖, 𝑓 (𝑖))}𝑖∈U = {(𝑖, 𝑠ℎ𝑠𝑖)}𝑖∈U .
SS.recon({(𝑖, 𝑠ℎ𝑠𝑖)}𝑖∈V , 𝑡 + 1) = 𝑠 takes as inputs the shares corresponding to a subsetV ⊆ U such
that |V| ≥ 𝑡 + 1 and the threshold 𝑡 + 1, outputs 𝑠.

Correctness requires that ∀𝑠 ∈ F, ∀𝑡 + 1, 𝑛 with 1 ≤ 𝑡 + 1 ≤ 𝑛, U ⊆ F where |U| = 𝑛, if
SS.share(𝑠, 𝑡 + 1,U) → {(𝑖, 𝑠ℎ𝑠𝑖)}𝑖∈U ,V ⊆ U and |V| ≥ 𝑡 + 1, then SS.recon({(𝑖, 𝑠ℎ𝑠𝑖)}𝑖∈V , 𝑡 +
1) = 𝑠. Security requires that ∀𝑠, 𝑠′ ∈ F and anyV ⊆ U such that |V| < 𝑡 + 1:

{SS.share(𝑠, 𝑡 + 1,U) → {(𝑖, 𝑠ℎ𝑠𝑖)}𝑖∈U : {(𝑖, 𝑠ℎ𝑠𝑖)}𝑖∈V} ≡

{SS.share(𝑠′, 𝑡 + 1,U) → {(𝑖, 𝑠ℎ𝑠′𝑖)}𝑖∈U : {(𝑖, 𝑠ℎ𝑠′𝑖)}𝑖∈V}

where ≡ denotes that two distributions are identical.
Shamir’s Secret Sharing scheme is characterized by the following features. First, this scheme

has linearity with respect to addition: Consider two sets of shares {(𝑖, 𝑠ℎ𝑠𝑎
𝑖
)}𝑖∈U and {(𝑖, 𝑠ℎ𝑠𝑏

𝑖
)}𝑖∈U

generated from two secrets 𝑠𝑎 and 𝑠𝑏, respectively. The set {(𝑖, 𝑠ℎ𝑠𝑎
𝑖
+ 𝑠ℎ𝑠𝑏

𝑖
)}𝑖∈U can be considered

as the set of shares generated from the secret 𝑠𝑎 + 𝑠𝑏. Second, this scheme is closely related to a
polynomial-based Reed-Solomon erasure code [53]. This relationship stems from the fact that 𝑛
shares generated by SS.share can be considered equivalent to the 𝑛 symbols composing a codeword
in Reed-Solomon erasure codes [53].

4.1.5 Reed-Solomon Erasure Codes

Reed-Solomon erasure codes provide encoding and decoding processes, which are defined by two
functions: RS.encode and RS.decode. RS.encode(𝑠1, 𝑠2, . . . , 𝑠𝑡+1, 𝑛) → 𝑐1, 𝑐2, . . . , 𝑐𝑛 takes 𝑡 + 1
symbols composing the information word (𝑠1, 𝑠2, . . . , 𝑠𝑡+1) and the length of the codeword (𝑛), and
outputs 𝑛 symbols composing the codeword (𝑐1, 𝑐2, . . . , 𝑐𝑛). In contrast, RS.decode({𝑐𝑖}𝑖∈V , 𝑡+1) =
𝑠1, 𝑠2, . . . , 𝑠𝑡+1 takes as the input a set of symbols in the codeword 𝑐𝑖 for 𝑖 ∈ V, where |V| ≥ 𝑡 + 1,
and outputs the original information word.

The important features are two-folded: The first feature is that RS.decode includes an erasure
correction function, RS.correct, which generates 𝑛− (𝑡 +1) dropout symbols in the codeword. Given

– 25 –

4.2 Existing Secure Model Aggregation: SecAgg and LightSecAgg

𝑛 symbols composing the codeword (𝑐1, 𝑐2, . . . , 𝑐𝑛), RS.correct({𝑐𝑖}𝑖∈V , 𝑡 + 1) → {𝑐 𝑗} 𝑗∈[𝑛]\V
takes as the input any set of 𝑡 + 1 symbols 𝑐𝑖 for 𝑖 ∈ V, where |V| ≥ 𝑡 + 1, and outputs the set of the
remaining 𝑛 − (𝑡 + 1) symbols. This function can be considered to generate additional 𝑛 − (𝑡 + 1)
symbols from 𝑡 +1 symbols. The author refers to the 𝑡 +1 symbols as input symbols and the additional
𝑛 − (𝑡 + 1) symbols as redundant symbols. The second feature is the linearity with respect to addition
like Shamir’s secret sharing. Consider two sets of symbols {𝑐𝑎

𝑖
}𝑖∈V and {𝑐𝑏

𝑖
}𝑖∈V . The addition

of the erasure correction results of these two sets is the same as the erasure correction result of
{𝑐𝑎
𝑖
+ 𝑐𝑏

𝑖
}𝑖∈V .

4.2 Existing Secure Model Aggregation: SecAgg and LightSecAgg

This section analyzes the cost of existing secure aggregation protocols, SecAgg and LightSecAgg.
In Section 4.2.1, the author describes secure aggregation techniques as the rationale for attack
mitigation in the semi-honest model. In Section 4.2.2 and Section 4.2.3, the author overviews existing
secure aggregation protocol of SecAgg and LightSecAgg, respectively. The author describes the
communication and computation costs of these protocols shown in Table 1.1.

4.2.1 Rationale for Attack Mitigation of Semi-Honest Model

To mitigate the privacy attack, secure aggregation techniques based on local model masking have
been proposed. These techniques have two ideas: the local model masking method and the mask
subtraction method. In the local model masking method, users generate random masks (shares), add
them to their local models, and send their masked local models to the server. In the mask subtraction
method, the server aggregates users’ masked local models and subtracts the random masks of some
users to obtain the sum of the users’ local models.
Example1: Pairwise Random Masking Method. A naive secure aggregation adopts a pairwise
masking method. Each pair of users (𝑖, 𝑗) agrees on a random vector (called a random mask) r𝑖, 𝑗 . If
one of them adds r𝑖, 𝑗 to its local model, and the other user subtracts r𝑖, 𝑗 , all the random masks are
canceled out when all the masked local model are added, while all the local models are not revealed
to the server. That is, each user sends its masked local model (its share) w̃𝑖 denoted by

w̃𝑖 = w𝑖 +
∑︁

𝑗∈U:𝑖< 𝑗
r𝑖, 𝑗 −

∑︁
𝑗∈U:𝑖> 𝑗

r𝑖, 𝑗 (mod 𝑝). (4.1)

to the server. Then, the server aggregates the masked local models of the users as follows:

– 26 –

Chapter 4. Fast Secure Aggregation against Semi-honest Adversaries

Local Model Masking Phase

1 3

21

4 3

Preparation Phase

2 4
Mask Subtraction Phase

1 32 4

()

()

(=())

,
,

,
,

() ()
()

Subtraction

Figure 4.1: An example of SecAgg with 𝑛 = 4 users, where user 2 is a semi-honest user (𝑡 = 1)
and user 3 and user 4 are dropout users (𝑟 = 2,D = {3}). Thin and thick lines indicate scalars and
vectors, respectively.

∑︁
𝑖∈U

w̃𝑖 =
∑︁
𝑖∈U

©«w𝑖 +
∑︁

𝑗∈U:𝑖< 𝑗
r𝑖, 𝑗 −

∑︁
𝑗∈U:𝑖> 𝑗

r𝑖, 𝑗
ª®¬ =

∑︁
𝑖∈U

w𝑖 (mod 𝑝). (4.2)

Example2: Self-Random Masking Method. The author adopts a self-random masking method to
reduce the computation cost for the server due to dropout users, as shown in the author’s protocol
called BalancedSecAgg in Chapter 4.

First, each user 𝑖 (∀𝑖 ∈ U) divides its local model w𝑖 into 𝑛 + 1 shares, {sh𝑖,1, sh𝑖,2, . . . , sh𝑖,𝑛+1}.
The first 𝑛 of 𝑛 + 1 shares are random masks ((sh𝑖,1, . . . , sh𝑖,𝑛) = (r𝑖1, . . . , r𝑖𝑛)), and the last share is

– 27 –

4.2 Existing Secure Model Aggregation: SecAgg and LightSecAgg

the masked local model (w𝑖 +
∑
𝑗∈[𝑛] (−r𝑖 𝑗)). Therefore, shares satisfy

w𝑖 =
∑︁

𝑗∈[𝑛+1]
sh𝑖, 𝑗 (mod 𝑝). (4.3)

Then each user exchanges its shares with the other users and the server. Specifically, each user sends
a different random mask to each other user and sends its masked local models to the server. Next,
each user and the server (𝑗 ∈ U ∪ {𝑆}) add the received shares, referred to as an aggregated shares
𝜆 𝑗 . Next, each user sends the aggregated share 𝜆𝑖 to the server. Finally, the server computes the sum
of users’ local models by aggregating all the aggregated shares and the masked local models of users
as follows: ∑︁

𝑗∈U∪{𝑆}
𝜆 𝑗 =

∑︁
𝑗∈U

w 𝑗 (mod 𝑝). (4.4)

4.2.2 SecAgg

Technical Intuition

SecAgg uses two types of random seeds for generating masks. First, each pair of users (𝑖, 𝑗) securely
agree on a pairwise random seed 𝑎𝑖, 𝑗 = KA.agree(𝑠𝑘𝑖 , 𝑝𝑘 𝑗) = KA.agree(𝑠𝑘 𝑗 , 𝑝𝑘𝑖) using their
private-public key pairs (𝑠𝑘𝑖 , 𝑝𝑘𝑖), (𝑠𝑘 𝑗 , 𝑝𝑘 𝑗). Both users 𝑖 and 𝑗 generate the same pairwise random
mask PRG(𝑎𝑖, 𝑗) through a secure pseudorandom generator PRG. One of them adds PRG(𝑎𝑖, 𝑗) to
its local model, and the other user subtracts PRG(𝑎𝑖, 𝑗). Second, each user 𝑖 introduces a self-random
seed 𝑏𝑖 for use when it is delayed, which means that 𝑖 sends its masked local model after the server
considers 𝑖 as a dropout user. This 𝑏𝑖 is crucial because all the pairwise masks of 𝑖 are revealed to the
server when 𝑖 is regarded as a dropout user, as explained in the next paragraph. Each user 𝑖 also adds
a self-random mask PRG(𝑏𝑖) to its local model. As a result, each user 𝑖 generates its masked local
model w̃𝑖 denoted by

w̃𝑖 = w𝑖 + PRG(𝑏𝑖)︸ ︷︷ ︸
self-random mask

+
∑︁

𝑗∈U:𝑖< 𝑗
PRG(𝑎𝑖, 𝑗) −

∑︁
𝑗∈U:𝑖> 𝑗

PRG(𝑎 𝑗 ,𝑖)︸ ︷︷ ︸
pairwise random masks

(mod 𝑝). (4.5)

– 28 –

Chapter 4. Fast Secure Aggregation against Semi-honest Adversaries

The server collects and aggregates the masked local models of live users, i.e., the users inU \D.
This aggregate includes the self-random masks of all the live users and the pairwise random masks of
all the dropout users. Therefore, all these masks should be subtracted to compute the sum of the local
models of the live users. To this end, each user 𝑖 secretly shares its random seed 𝑏𝑖 and private key
𝑠𝑘𝑖 with the other users through (𝑡 + 1)-out-of-𝑛 Shamir’s secret sharing [42]. This ensures that an
original value cannot be reconstructed from at most any 𝑡 shares and it can be reconstructed even if
up to 𝑛 − (𝑡 + 1) shares are lost. Then, the server collects the shares of both the private keys of all the
live users and the random seeds of all the dropout users. Using these shares, the server reconstructs
their random seeds and their private keys, and then computes the sum of the local models of all the
live users as follows:

∑︁
𝑖∈U\D

w𝑖 =
∑︁

𝑖∈U\D
w̃𝑖 −

∑︁
𝑖∈U\D

PRG(𝑏𝑖)

−
∑︁
𝑖∈D

©«
∑︁

𝑗∈U\D:𝑖> 𝑗
PRG(𝑎 𝑗 ,𝑖) −

∑︁
𝑗∈U\D:𝑖< 𝑗

PRG(𝑎𝑖, 𝑗)
ª®¬

(mod 𝑝). (4.6)

Protocol Example

The author explains SecAgg through a simple example as illustrated in Fig. 4.1. There are 𝑛 = 4 users,
where user 2 is a semi-honest user (𝑡 = 1) and user 3 and user 4 are dropout users (𝑟 = 2,D = {3}).
In this example, the communication cost for each user, which is the advantage of SecAgg, is 𝑚,
whereas the computation cost for the server, which is the disadvantage of SecAgg, is 6𝑚. SecAgg
consists of the following three phases.

Preparation Phase. In this phase, each pair of users (𝑖, 𝑗) agrees on a pairwise random seed 𝑎𝑖, 𝑗 . In
addition, each user 𝑖 secretly shares its private key 𝑠𝑘𝑖 and its self-random seed 𝑏𝑖 . Specifically, user
𝑖 ∈ {1, 2, 3, 4} generates shares of 𝑠𝑘𝑖 ({(𝑗 , 𝑠ℎ𝑠𝑘𝑖

𝑗
)} 𝑗∈{1,2,3,4}) and 𝑏𝑖 ({(𝑗 , 𝑠ℎ𝑏𝑖

𝑗
)}𝑖∈{1,2,3,4}) through

SS.share of 2-out-of-4 Shamir’s secret sharing and sends 𝑠ℎ𝑖, 𝑗 = (𝑠ℎ𝑠𝑘𝑖𝑗 , 𝑠ℎ
𝑏𝑖
𝑗
) to each user 𝑗 .

Local Model Masking Phase. In this phase, each user 𝑖 masks its local models with the two types of
random masks and sends its masked local model. Specifically, each user 𝑖 ∈ {1, 2, 4} generates its

– 29 –

4.2 Existing Secure Model Aggregation: SecAgg and LightSecAgg

Local Model Masking Phase

1 3

1

Preparation Phase

2 4
Mask Subtraction Phase

1 32 4

2

34

t-private
MDS decode

Subtraction

Figure 4.2: An example of LightSecAgg with 𝑛 = 4 users, where user 2 is a semi-honest user (𝑡 = 1)
and user 3 and user 4 are dropout users (𝑟 = 2,D = {3}). Thin and thick lines indicate scalars and
vectors, respectively.

masked local model w̃𝑖 as follows:

w̃1 = w1 + PRG(𝑏1)

+ PRG(𝑎1,2) + PRG(𝑎1,3) + PRG(𝑎1,4),

w̃2 = w2 + PRG(𝑏2)

− PRG(𝑎1,2) + PRG(𝑎2,3) + PRG(𝑎2,4),

w̃4 = w4 + PRG(𝑏4)

− PRG(𝑎1,4) − PRG(𝑎2,4) − PRG(𝑎3,4).

– 30 –

Chapter 4. Fast Secure Aggregation against Semi-honest Adversaries

Mask Subtraction Phase. In this phase, the server obtains the sum of the live users’ local models in
the following steps.

First, each user 𝑖 ∈ {1, 2} sends the shares of 𝑏1, 𝑏2, 𝑏4, and 𝑠𝑘3 ({𝑠ℎ𝑏 𝑗

𝑖
} 𝑗∈{1,2,4} , 𝑠ℎ𝑠𝑘3

𝑖
) to the

server. Next, the server reconstructs 𝑏1, 𝑏2, 𝑏4, 𝑠𝑘3 through SS.recon, and reconstructs 𝑎1,3, 𝑎2,3, 𝑎3,4

using 𝑝𝑘1, 𝑝𝑘2, 𝑝𝑘4, 𝑠𝑘3 through Key.agree. Then, the server reconstructs PRG(𝑏1), PRG(𝑏2),
PRG(𝑏4), PRG(𝑎1,3), PRG(𝑎2,3), and PRG(𝑎3,4) through PRG. Finally, the server computes∑
𝑖∈{1,2,4} w𝑖 =

∑
𝑖∈{1,2,4} w̃𝑖 −

∑
𝑖∈{1,2,4} PRG(𝑏𝑖) − (

∑
𝑖∈{1,2} PRG(𝑎𝑖,3) − PRG(𝑎3,4)).

4.2.3 LightSecAgg

Rationale

LightSecAgg avoids the need for numerous random mask reconstructions in SecAgg by introducing
two ideas. The first idea is that users solely use self-random masks, unlike SecAgg, which employs
both self-random masks and pairwise random masks. Hereafter, the self-random mask is simply
referred to as the random mask. The second idea is to eliminate the need for the server to individually
reconstruct random masks in the following steps: First, the users secretly share the random masks
rather than random seeds. This sharing is performed through the encoding of a 𝑡-private Maximum
Distance Separable (MDS) code (this code typically refers to Lagrange code [52] and Shamir’s secret
sharing). The role of the MDS encoding is that any random mask cannot be reconstructed from at
most any 𝑡 encoded masks and that it can be reconstructed even if up to 𝑛 − (𝑡 + 1) encoded masks
are lost. Second, each user aggregates the shares locally. This is possible because the MDS codes
have linearity with respect to addition like Shamir’s secret sharing as explained in Section 4.1.4. As
a result, the server reconstructs only one mask, the aggregated random mask.

Technical Intuition

Each user 𝑖 generates a random mask r𝑖 and adds it to its local model as follows:

w̃𝑖 = w𝑖 + r𝑖 (mod 𝑝), (4.7)

and sends w̃𝑖 to the server.

After the server collects the masked local models of all live users, the server subtracts the sum of
the random masks of all the live users (

∑
𝑖∈U\D r𝑖), which is an aggregated random mask, from the

sum of their masked local models.

– 31 –

4.3 BalancedSecAgg

The reconstruction of the aggregated random mask is securely performed as follows. First, each
user 𝑖 generates multiple encoded masks {e𝑖, 𝑗} 𝑗∈U of its random mask r𝑖 through a 𝑡-private MDS
encoding algorithm. The encoding of r𝑖 is performed element-wise. Next, each user 𝑖 sends an
encoded mask e𝑖, 𝑗 to each other user 𝑗 ∈ U \ {𝑖}. Then, each user 𝑖 aggregates the received encoded
masks of all the live users and sends the aggregated encoded mask

∑
𝑗∈U\D e 𝑗 ,𝑖 to the server. Since

each
∑
𝑗∈U\D e 𝑗 ,𝑖 can be regarded as an encoded mask of

∑
𝑖∈U\D r𝑖, the server collects at least

𝑡 + 1 aggregated encoded masks and reconstructs
∑
𝑖∈U\D r𝑖 from the collected aggregated encoded

masks through a 𝑡-private MDS decoding algorithm.
Eventually, the server obtains the sum of the local models of all the live users by computing

∑︁
𝑖∈U\D

w𝑖 =
∑︁

𝑖∈U\D
w̃𝑖 −

∑︁
𝑖∈U\D

r𝑖 (mod 𝑝). (4.8)

Protocol Example

As illustrated in Fig. 4.2, the author explains LightSecAgg through a simple example in the same
setting as SecAgg. In this example, the computation cost for the server, which is the advantage of
LightSecAgg, is 𝑚, whereas the communication cost for each user, which is the disadvantage of
LightSecAgg, is 5𝑚.
Preparation Phase. In this phase, each user 𝑖 ∈ {1, 2, 3, 4} generates its random mask r𝑖, and four
encoded masks {e𝑖, 𝑗} 𝑗∈{1,2,3,4} of r𝑖 through a 𝑡-private MDS encoding. Then, each user 𝑖 sends e𝑖, 𝑗
to each other user 𝑗 ∈ {1, 2, 3, 4} \ {𝑖}.
Local Model Masking Phase. In this phase, each user 𝑖 ∈ {1, 2, 4} generates its masked local model
w̃𝑖 = w𝑖 + r𝑖 and sends it to the server.
Mask Subtraction Phase. In this phase, each user 𝑖 ∈ {1, 2} aggregates the received encoded masks of
all the live users and sends

∑
𝑗∈{1,2,4} e 𝑗 ,𝑖 to the server. Then, the server reconstructs

∑
𝑖∈{1,2,4} r𝑖 from

{∑ 𝑗∈{1,2,4} e 𝑗 ,𝑖}𝑖∈{1,2} through a 𝑡-private MDS decoding, and obtains
∑
𝑖∈{1,2,4} w𝑖 by computing∑

𝑖∈{1,2,4} w𝑖 =
∑
𝑖∈{1,2,4} w̃𝑖 −

∑
𝑖∈{1,2,4} r𝑖 .

4.3 BalancedSecAgg

4.3.1 Overview

SecAgg achieves a low communication cost for each user by exchanging seeds rather than masks at
the expense of a server’s high computation cost of reconstructing masks of dropped users. In contrast,

– 32 –

Chapter 4. Fast Secure Aggregation against Semi-honest Adversaries

LightSecAgg reduces such a server’s mask reconstruction cost by exchanging masks and redundant
masks at the expense of a communication cost. BlancedSecAgg is designed, inspired by the positive
sides of SecAgg and LightSecAgg, that is, seed exchanges and redundant mask exchanges.

The key idea is that seeds are exchanged rather than 𝑡 masks, and that 𝑛 − 𝑡 − 1 redundant random
masks themselves are exchanged. This reduces the communication cost of 𝑡 masks, which is a
problem of LightSecAgg by using the idea of SecAgg, while reducing the reconstruction cost of
𝑛 − 𝑡 − 1 redundant random mask generation. The key contribution of BalancedSecAgg is that the
key idea is achieved by adopting Reed-Solomon codes to prepare redundant random masks.

4.3.2 Rationale

Our motivation is to achieve a better balance between communication and computation costs for faster
protocol execution compared to SecAgg and LightSecAgg. The key idea is to regard the corresponding
elements across 𝑛masks (shares) as 𝑛 symbols composing a codeword in Reed-Solomon erasure code.
Each set of 𝑛 symbols consists of 𝑡 + 1 input symbols and 𝑛 − (𝑡 + 1) redundant symbols. Hereafter,
the author refers to a mask containing input symbols as a random mask and one containing redundant
symbols as a redundant mask. Each user adds 𝑡 + 1 random masks and 𝑛 − (𝑡 + 1) redundant masks
to its local model and sends this masked local model to the server. Then, all the random masks and
redundant masks of the users are exchanged and aggregated among the users. The server collects and
aggregates these masks from the users and subtracts the result from the sum of live users’ masked
local models to compute the sum of the live users’ local models. Dropout tolerance is achieved by
the Reed-Solomon erasure code.

This idea enables BalancedSecAgg to make SecAgg and LightSecAgg complement each other.
BalancedSecAgg has three key advantages. First, the fact that random masks and redundant
masks are exchanged and aggregated among users eliminates the need for the server to reconstruct
these masks individually. This reduces the computation cost of BalancedSecAgg compared to
SecAgg. Second, the users use random seeds for exchanging their random masks. This reduces the
communication cost of BalancedSecAgg compared to LightSecAgg. Third, BalancedSecAgg adopts
Reed-Solomon erasure codes rather than 𝑡-private MDS codes to reduce the actual computation
time of encoding/decoding masks. The 𝑡-private MDS codes involve Lagrange interpolation, which
reconstructs a 𝑡-degree polynomial from 𝑡 + 1 evaluation points, and the execution of Lagrange
interpolation is a computation bottleneck in LightSecAgg [47].

– 33 –

4.3 BalancedSecAgg

Local Model Masking Phase

1 3

21

4 3

Preparation Phase

2 4

Mask Subtraction Phase

1 32 4

Subtraction

 ()

Figure 4.3: An example of BalancedSecAgg with 𝑛 = 4 users, where user 2 is a semi-honest user
(𝑡 = 1) and user 3 and user 4 are dropout users (𝑟 = 2,D = {3}). Thin and thick lines indicate
scalars and vectors, respectively.

4.3.3 Technical Intuition

Each user 𝑖 generates 𝑡 + 1 random masks {PRG(𝑠𝑖, 𝑗)} 𝑗∈S𝑖 (|S𝑖 | = 𝑡 + 1) and 𝑛 − (𝑡 + 1) redundant
masks {d𝑖,𝑘}U\S𝑖 (|U \ S𝑖 | = 𝑛 − (𝑡 + 1)) through RS.correct, denoted by

{d𝑖,𝑘}𝑘∈U\S𝑖 = RS.correct({PRG(𝑠𝑖, 𝑗)} 𝑗∈S𝑖 , 𝑡 + 1), (4.9)

where S𝑖 is a subset of users generated according to Algorithm 1. Each user 𝑗 in S𝑖 receives a
random seed 𝑠𝑖, 𝑗 from 𝑖. Algorithm 1 ensures that users’ redundant mask exchange is equally loaded,
as explained in Section 4.3.4. The generating of each redundant mask is performed element-wise.

– 34 –

Chapter 4. Fast Secure Aggregation against Semi-honest Adversaries

Then, each user 𝑖 generates its masked local model,

w̃𝑖 = w𝑖 +
∑︁
𝑗∈S𝑖

PRG(𝑠𝑖, 𝑗) +
∑︁

𝑗∈U\S𝑖

d𝑖, 𝑗 (mod 𝑝), (4.10)

and sends it to the server.
After the server collects live users’ masked local models, the server subtracts the sum of all the

random masks and redundant masks of the live users, from the sum of their masked local models.
To this end, each user 𝑖 sends the random seed 𝑠𝑖, 𝑗 to each user 𝑗 ∈ (U \ D) ∩ S𝑖 and the

redundant mask d𝑖,𝑘 to each user 𝑘 ∈ (U \D) \ S𝑖 . Then, each user 𝑖 aggregates the received masks
of all the live users and sends the aggregated mask,

𝜆𝑖 =
∑︁

𝑗∈ (U\D)∩{𝑘 |𝑖∈S𝑘 }
PRG(𝑠 𝑗 ,𝑖) +

∑︁
𝑗∈ (U\D)\{𝑘 |𝑖∈S𝑘 }

d 𝑗 ,𝑖

(mod 𝑝), (4.11)

to the server. Since 𝑡 + 1 aggregated masks can be regarded as 𝑡 + 1 random masks out of {𝜆 𝑗} 𝑗∈U ,
the server collects {𝜆 𝑗} 𝑗∈U\D and reconstructs all the dropout users’ aggregated masks through
RS.correct ({𝜆𝑘}𝑘∈D = RS.correct({𝜆 𝑗} 𝑗∈U\D , 𝑡 + 1)). Finally, the server obtains the sum of local
models of the live users v =

∑
𝑖∈U\D w𝑖 by computing

v =
∑︁

𝑖∈U\D
w̃𝑖 −

∑︁
𝑖∈U

𝜆𝑖

=
∑︁

𝑖∈U\D
(w𝑖 +

∑︁
𝑗∈S𝑖

PRG(𝑠𝑖, 𝑗) +
∑︁

𝑗∈U\S𝑖

d𝑖, 𝑗)

−
∑︁
𝑖∈U
(

∑︁
𝑗∈ (U\D)∩{𝑘 |𝑖∈S𝑘 }

PRG(𝑠 𝑗 ,𝑖) +
∑︁

𝑗∈ (U\D)\{𝑘 |𝑖∈S𝑘 }
d 𝑗 ,𝑖)

(mod 𝑝). (4.12)

4.3.4 Protocol

This subsection describes the protocol of BalancedSecAgg in details according to Fig. 4.4. The
protocol involves the setup phase followed by the three phases. The author uses U𝑘 ⊆ U to
denote the set of users who correctly send messages to the server in phase 𝑘 and the author has

– 35 –

4.3 BalancedSecAgg

Algorithm 1 Select algorithm on a user 𝑖
1: procedure Select(𝑖, 𝑛, 𝑡 + 1,U1)
2: S𝑖 ← {} ⊲ Initialize
3: 𝑐 ← 𝑡 + 1
4: for 𝑎 = 1, 2, · · · , 𝑛 − 1 do
5: 𝑏 ← (𝑖 + 𝑎) mod 𝑛;
6: if 𝑏 ∈ U1 then
7: S𝑖 ← S𝑖 ∪ {𝑏}
8: 𝑐 ← 𝑐 − 1
9: if 𝑐 = 0 then

10: break;
11: end if
12: end if
13: end for
14: return S𝑖
15: end procedure

U ⊇ U1 ⊇ U2 ⊇ U3 ⊇ U4. U𝑘 \ U𝑘+1 means that the set of dropout users who correctly send
messages in phase 𝑘 but drop out before sending messages in phase 𝑘 + 1. The author also shows a
simple example in the same setting as SecAgg and LightSecAgg in Fig. 4.3. In this example, the
communication cost for each user reduces to 3𝑚 compared to LightSecAgg, while the computation
cost for the server reduces to 2𝑚 compared to SecAgg.

Setup Phase. In this phase, all the parties are initialized with the system parameters: the security
parameter 𝜅, the number of all users 𝑛, the number of semi-honest users 𝑡, the number of dropout
users 𝑟 (= 𝑛 − (𝑡 + 1)), public parameters for the key agreement protocol 𝑝𝑝 ← KA.param(𝜅), and
a finite field F𝑝 for large prime 𝑝. For notational simplicity, the author assumes that each user is
assigned a unique logical ID, represented as an integer 𝑖 in the range from 0 to 𝑛 − 1. Each user has a
private and authenticated channel with the server.

Furthermore, each user broadcasts its public key to establish private and authenticated channels
with the other users. Specifically, each user 𝑖 generates a key pair (𝑝𝑘𝑖 , 𝑠𝑘𝑖) ← KA.gen(𝑝𝑝) and
sends its public key to the server. The server sends the public keys of all the users inU1 ({𝑝𝑘 𝑗} 𝑗∈U1)
to each user 𝑗 ∈ U1, where U1 is a set of users who send their public keys to the server. In the
subsequent phases, all the messages between any pair of users (𝑖, 𝑗) are sent over the private and
authenticated channel using pairwise keys Key.agree(𝑠𝑘𝑖 , 𝑝𝑘 𝑗) (= Key.agree(𝑠𝑘 𝑗 , 𝑝𝑘𝑖)).

– 36 –

Chapter 4. Fast Secure Aggregation against Semi-honest Adversaries

Preparation Phase. In this phase, each user generates its random masks and redundant masks and
exchanges these masks with other users.

First, each user 𝑖 selects a set of users, denoted by S𝑖 , where each user 𝑗 ∈ S𝑖 receives a random
seed 𝑠𝑖, 𝑗 according to Algorithm 1. Algorithm 1 enables each user 𝑖 to select different sets of users
who receive the random seeds of 𝑖. The input values of Algorithm 1 are 𝑖, 𝑛, 𝑡 + 1, andU1. Each user
𝑖 selects the subsequent 𝑡 + 1 users (line 4– 13). The output value is the set of selected 𝑡 + 1 users. For
example, in the leftmost figure in Fig. 4.3, user 1 inputs 𝑖 = 1, 𝑛 = 4, 𝑡 + 1 = 2, andU1 = {1, 2, 3, 4}
to Select and outputs S1 = {2, 3}.

Next, each user 𝑖 generates random masks {PRG(𝑠𝑖, 𝑗)} 𝑗∈S𝑖 and redundant masks {d𝑖,𝑘}U1\S𝑖

through RS.correct. Then, each user 𝑖 encrypts 𝑠𝑖, 𝑗 of each user 𝑗 ∈ S𝑖 with Key.agree(𝑠𝑘𝑖 , 𝑝𝑘 𝑗)
(𝑐𝑖, 𝑗 ← AE.enc(KA.agree(𝑠𝑘 𝑖 , 𝑝𝑘 𝑗), 𝑖 | | 𝑗 | |𝑠𝑖, 𝑗)) and encrypts d𝑖,𝑘 of each user 𝑘 ∈ U1 \ S𝑖 with
Key.agree(𝑠𝑘𝑖 , 𝑝𝑘𝑘) (𝑐𝑖,𝑘 ← AE.enc(KA.agree(𝑠𝑘 𝑖 , 𝑝𝑘 𝑘), 𝑖 | |𝑘 | |d𝑖,𝑘)). Finally, each user 𝑖 sends
the list of ciphertext {𝑐𝑖, 𝑗} 𝑗∈U1\{𝑖} to the server. The server sends a list of all ciphertexts for 𝑖
({𝑐 𝑗 ,𝑖} 𝑗∈U2) to each user 𝑖 ∈ U2, whereU2 is a set of users who sends the list of ciphertexts to the
server.

Local Model Masking Phase. In this phase, each user sends its masked local model,

w̃𝑖 = w𝑖 +
∑︁
𝑗∈S𝑖

PRG(𝑠𝑖, 𝑗) +
∑︁

𝑗∈U1\S𝑖

d𝑖, 𝑗 (mod 𝑝), (4.13)

to the server. Then, the server sends a list of live users, denoted byU3, to each live user 𝑖 ∈ U3.

Mask Subtraction Phase. In this phase, each user sends its aggregated masks, and the server
eventually computes the sum of the local models of the live users.

First, each user 𝑖 decrypts the ciphertext 𝑐 𝑗 ,𝑖 of each user 𝑗 ∈ U3 ∩ {𝑘 | 𝑖 ∈ S𝑘} with
KA.agree(𝑠𝑘 𝑖 , 𝑝𝑘 𝑗) (𝑗 | |𝑖 | |𝑠 𝑗 ,𝑖 ← AE.dec(KA.agree(𝑠𝑘 𝑖 , 𝑝𝑘 𝑗), 𝑐 𝑗 ,𝑖)) and the ciphertext 𝑐𝑘,𝑖 of each
user 𝑘 ∈ (U3\{ 𝑗 | 𝑖 ∈ S 𝑗})\{𝑖}with KA.agree(𝑠𝑘 𝑖 , 𝑝𝑘 𝑘) (𝑘 | |𝑖 | |d𝑘,𝑖 ← AE.dec(KA.agree(𝑠𝑘 𝑖 , 𝑝𝑘 𝑘), 𝑐𝑘,𝑖)).
Next, each user 𝑖 generates random masks {PRG(𝑠 𝑗 ,𝑖)} 𝑗∈U3∩{𝑘 |𝑖∈S𝑘 } from {𝑠 𝑗 ,𝑖} 𝑗∈U3∩{𝑘 |𝑖∈S𝑘 } . Then,
each user 𝑖 computes its aggregated masks 𝜆𝑖 by aggregating all the received masks as follows:

𝜆𝑖 =
∑︁

𝑗∈U3∩{𝑘 |𝑖∈S𝑘 }
PRG(𝑠 𝑗 ,𝑖) +

∑︁
𝑗∈U3\{𝑘 |𝑖∈S𝑘 }

d 𝑗 ,𝑖 (mod 𝑝). (4.14)

Finally, each user 𝑖 sends 𝜆𝑖 to the server.

After the server collects the aggregated masks of at least 𝑡+1 users, and reconstructs {𝜆𝑘}𝑘∈U1\U4

– 37 –

4.4 Security Analysis

through RS.correct ({𝜆𝑘}𝑘∈U1\U4 = RS.correct({𝜆 𝑗} 𝑗∈U4 , 𝑡 + 1)), whereU4 is a set of users who
send their aggregated masks. Finally, the server computes v =

∑
𝑖∈U3 w𝑖 by computing.

v =
∑︁
𝑖∈U3

w̃𝑖 −
∑︁
𝑖∈U1

𝜆𝑖

=
∑︁
𝑖∈U3

(w𝑖 +
∑︁
𝑗∈S𝑖

PRG(𝑠𝑖, 𝑗) +
∑︁

𝑗∈U1\S𝑖

d𝑖, 𝑗)

−
∑︁
𝑖∈U1

(
∑︁

𝑗∈U3∩{𝑘 |𝑖∈S𝑘 }
PRG(𝑠 𝑗 ,𝑖) +

∑︁
𝑗∈U3\{𝑘 |𝑖∈S𝑘 }

d 𝑗 ,𝑖)

(mod 𝑝). (4.15)

4.4 Security Analysis

In this section, the author proves that our protocol achieves privacy preservation as described in
Section 3.3. The author proves that the information shared by the server and up to 𝑡 semi-honest
users (i.e., their joint view) does not leak any information about the inputs (local models) of other
users, beyond what can be inferred from the output of the computation (a sum of local models). The
author introduces some notations to use for the proof.

In the proposed protocol, the view of a party consists of its internal state (its input, randomness,
and public parameters) and all messages that this party received from other parties. If this party
aborts, it stops receiving messages. The author uses 𝑆 to denote the server and wU′ = {w𝑖}𝑖∈U′ to
denote the set of local models of a subset of usersU′ ⊆ U. Given a subset of users T ⊂ U, The
author uses REALU,𝑡 ,𝜅T (wU ,U1,U2,U3,U4) to denote a random variable representing the joint
view of all parties in T ∪ {𝑆} in our protocol execution, where the randomness is over the internal
randomness of all parties in the setup phase.

In the following theorem, the author proves that the joint view of any group of 𝑡 semi-honest
users and the server can be simulated by using only the inputs of the users in that group, and the sum
of inputs of the remaining users. Intuitively, this means that these users and the server learn nothing
other than the sum of their own inputs and the sum of the inputs of the other users. Additionally,
the author proves that if too many users abort before completing the local model masking phase,
the author can simulate the joint view of that group without any information about the inputs of the
remaining users.

– 38 –

Chapter 4. Fast Secure Aggregation against Semi-honest Adversaries

Theorem 1. There exists a probabilistic polynomial time (PPT) simulator SIM such that for all 𝑡,
wU , U1, U2, U3, U4, and T such that T ⊂ U, |T \ {𝑆}| ≤ 𝑡, U ⊇ U1 ⊇ U2 ⊇ U3 ⊇ U4, the
output of SIM is computationally indistinguishable from the joint view REALU,𝑡 ,𝜅T of the server and
the set of semi-honest users T , i.e.,

REALU,𝑡 ,𝜅T (wU ,U1,U2,U3,U4)

≈SIMU,𝑡 ,𝜅T (wT , v,U1,U2,U3,U4),

where

v =

∑
𝑖∈U3\T w𝑖 if |U3 | ≥ 𝑡 + 2,

⊥ otherwise.

Proof. The author proves Theorem 1 by a standard hybrid argument. The author defines SIM
through a series of modifications from REAL such that the random variables are computationally
indistinguishable.

Hybrid0: This random variable is the same as REAL.

Hybrid1: In this hybrid, for all the honest users 𝑖 ∈ U2 \ T , the author replaces KA.agree(𝑠𝑘𝑖 , 𝑝𝑘 𝑗)
for encrypting and decrypting messages to the other honest users 𝑗 ∈ U1 \T with a uniformly random
key selected by the simulator. The DDH assumption guarantees that this hybrid is indistinguishable
from Hybrid0.

Hybrid2: In this hybrid, for all the honest users 𝑖 ∈ U2 \ T , the author replaces all ciphertexts of
random seeds and redundant masks encrypted by 𝑖 and sent to the other honest users 𝑗 ∈ U1 \ T with
encryptions of random values or random masks (e.g., 0 or 𝑚-dimensional zero vector). However, the
honest users in that set continue to use the correct random seeds and redundant masks in the mask
subtraction phase. IND-CPA security guarantees that this hybrid is indistinguishable from Hybrid1.

Hybrid3: Define

U∗ =

U2 \ T if v = ⊥,

U2 \ U3 \ T otherwise.

In this hybrid, for all the honest users 𝑖 ∈ U∗, the author replaces PRG(𝑠𝑖, 𝑗), shared with the other
honest users 𝑗 ∈ S𝑖 \ T , with a uniformly random mask u𝑖, 𝑗 . Security of PRG ensures that this

– 39 –

4.4 Security Analysis

hybrid is indistinguishable from Hybrid2.

Hybrid4: In this hybrid, for all the honest users 𝑖 ∈ U∗, the author replaces

w̃𝑖 = w𝑖 +
∑︁
𝑗∈S𝑖\T

u𝑖, 𝑗 +
∑︁

𝑗∈S𝑖∩T
PRG(𝑠𝑖, 𝑗) +

∑︁
𝑗∈U1\S𝑖

d𝑖, 𝑗 ,

with
w̃𝑖 =

∑︁
𝑗∈S𝑖\T

u𝑖, 𝑗 +
∑︁

𝑗∈S𝑖∩T
PRG(𝑠𝑖, 𝑗) +

∑︁
𝑗∈U1\S𝑖

d𝑖, 𝑗 .

Since w𝑖 +
∑
𝑗∈S𝑖\T u𝑖, 𝑗 is uniformly random, this hybrid and Hybrid3 are identically distributed.

Furthermore, this hybrid and all the subsequent hybrids do not depend on w𝑖 for 𝑖 ∈ U∗.

If v is ⊥, let SIM be as described in Hybrid4, SIM can simulate REAL without knowing w𝑖 for
all the honest users 𝑖 ∈ U \ T . Therefore, the author assumes v ≠ ⊥ in the following hybrids.

Hybrid5: In this hybrid, for all the honest users 𝑖 ∈ U2 \ T , the author replaces

{d𝑖,𝑘}𝑘∈U1\S𝑖 = RS.correct({PRG(𝑠𝑖, 𝑗)} 𝑗∈S𝑖 , 𝑡 + 1)

with

{q𝑖,𝑘}𝑘∈U1\S𝑖 = RS.correct({u𝑖, 𝑗} 𝑗∈S𝑖\T
∪ {PRG(𝑠𝑖, 𝑗)} 𝑗∈S𝑖∩T , 𝑡 + 1),

where each u𝑖, 𝑗 is a uniformly random mask. Note that both the two sets of |U1 | masks,M1
𝑖
=

{d𝑖,𝑘}𝑘∈U1\S𝑖∪{PRG(𝑠𝑖, 𝑗)} 𝑗∈S𝑖\T∪{PRG(𝑠𝑖, 𝑗)} 𝑗∈S𝑖∩T andM2
𝑖
= {q𝑖,𝑘}𝑘∈U1\S𝑖∪{u𝑖, 𝑗} 𝑗∈S𝑖\T∪

{PRG(𝑠𝑖, 𝑗)} 𝑗∈S𝑖∩T , can be regarded as sets of |U1 | shares of (uniformly random) secrets 𝑦 an 𝑦′,
i.e., the outputs of SS.Share(𝑦, 𝑡 + 1, |U1 |) and SS.Share(𝑦′, 𝑡 + 1, |U1 |). Since the joint view of all
the semi-honest users can contain only any 𝑡 masks, the distribution of any 𝑡 masks inM1

𝑖
is identical

to the distribution of an equivalent number of masks inM2
𝑖
. Therefore, this hybrid is identically

distributed to Hybrid4.

Hybrid6: The author fixes a specific user ℓ ∈ U3 \ T . In this hybrid, all the honest users include the
honest user ℓ in the set of selected users. Specifically, for each honest user 𝑖 who does not send a

– 40 –

Chapter 4. Fast Secure Aggregation against Semi-honest Adversaries

random mask to ℓ, 𝑖 ∈ (U1 \ T) ∩ {𝑘 | ℓ ∉ S𝑘}, the author replaces S𝑖 with S′
𝑖

is denoted by

S′𝑖 = S𝑖 \ {𝑖sel} ∪ {ℓ},

where 𝑖sel is a selected user from S𝑖. This modification allows for all the honest users in U2 \ T
to send their random masks to ℓ instead of their encoded masks. Here, letM3

𝑖
be the resulting set

of masks of user 𝑖, i.e.,M3
𝑖
= {q𝑖,𝑘}𝑘∈U1\S′𝑖 ∪ {u𝑖, 𝑗} 𝑗∈S′𝑖\T ∪ {PRG(𝑠𝑖, 𝑗)} 𝑗∈S′

𝑖
∩T . Since the joint

view of all the semi-honest users can contain only any 𝑡 masks, the distribution of any 𝑡 masks inM2
𝑖

is identical to the distribution of an equivalent number of masks inM3
𝑖
. Therefore, this hybrid is

identically distributed to Hybrid5.

Hybrid7: In this hybrid, for all the honest users 𝑖 ∈ U3 \ T , the author replaces

w̃𝑖 = w𝑖 +
∑︁
𝑗∈S′

𝑖

u𝑖, 𝑗 +
∑︁

𝑗∈U1\S′𝑖

d𝑖, 𝑗

= w𝑖 + u𝑖,ℓ +
∑︁

𝑗∈S′
𝑖
\{ℓ }

u𝑖, 𝑗 +
∑︁

𝑗∈U1\S′𝑖

d𝑖, 𝑗

with
w̃′𝑖 = x𝑖 +

∑︁
𝑗∈S′

𝑖
\{ℓ }

u𝑖, 𝑗 +
∑︁

𝑗∈U1\S′𝑖

d𝑖, 𝑗 ,

where {x𝑖}𝑖∈U3\T are uniformly random, subject to
∑
𝑖∈U3\T x𝑖 =

∑
𝑖∈U3\T (w𝑖 + u𝑖,ℓ). Thus, this

hybrid is identically distributed to Hybrid6. Let SIM be as described in Hybrid7, SIM can simulate
REAL without knowing w𝑖 for all the honest users 𝑖 ∈ U \ T . Since the argument above proves that
the output of SIM is computationally indistinguishable from the output of REAL, completing the
proof. □

4.5 Performance Analysis

The author measures the execution time of the secure aggregation protocol of one round of federated
learning which the author calls the protocol running time. The protocol running time is defined
as the time from when each user, who generates its local model, starts random masks for local
model masking to the time when the server finishes computing the sum of local models. The
protocol running time is the sum of the computation time and the communication time. Since users’
computations are performed in parallel, the computation time is the sum of each user’s computation

– 41 –

4.5 Performance Analysis

Protocol
𝑟

𝑚, 𝑛 𝑚 = 1M 𝑚 = 2M 𝑚 = 3M
𝑛 = 50 𝑛 = 100 𝑛 = 150 𝑛 = 50 𝑛 = 100 𝑛 = 150 𝑛 = 50 𝑛 = 100 𝑛 = 150

SecAgg
𝑟 = 0.1𝑛 10.07 33.99 71.55 19.9 68.35 145.32 30.18 102.67 217.73
𝑟 = 0.2𝑛 15.05 54.89 121.1 30.75 112.23 243.55 46.27 167.47 364.35
𝑟 = 0.3𝑛 18.96 69.75 153.91 38.19 142.84 312.97 57.818 213.52 467.68

LightSecAgg
𝑟 = 0.1𝑛 13.58 50.05 108.52 27.06 98.91 216.48 40.86 149.45 326.08
𝑟 = 0.2𝑛 11.87 43.31 93.54 23.41 86.69 188.7 31.62 114.44 282.26
𝑟 = 0.3𝑛 9.04 32.77 74.95 18.17 65.14 159.03 26.65 95.92 237.08

BalancedSecAgg
𝑟 = 0.1𝑛 3.25 6.7 10.14 6.39 13.13 19.99 9.91 20.41 31.29
𝑟 = 0.2𝑛 3.17 6.45 9.87 5.85 12.8 21.51 9.36 19.22 32.69
𝑟 = 0.3𝑛 2.79 6.01 9.52 5.67 11.81 19.13 8.78 18.47 30.22

Table 4.2: Computation time of SecAgg, LightSecAgg, and BalancedSecAgg with parameters the
number of all users 𝑛, the size of models 𝑚, and the number of dropout users 𝑟 .

time and the server’s computation time. In contrast, the communication time is the time for each
user’s sending and receiving seeds, masks, and redundant masks and sending an aggregated mask
to the server. Since shortening the execution time of secure aggregation leads to a reduction in the
total execution time of one round of federated learning, the author focuses on accelerating secure
aggregation to improve the execution time of one round of federated learning.

The protocol running time is computed by simulating each protocol behavior using the measured
values of computation time and communication time.

4.5.1 Measurement Method

The author implements the code in C/C++ and run the code on a Linux workstation with Intel Core i9
19-10900X CPU (3.70GHz), NVIDIA GeForce RTX 3090 GPU, and 64GB of RAM. Each parameter
in the local model is a 32-bit entry and the field size, 𝑝, is set as a prime with 32 bits. Furthermore,
the author implements Reed-Solomon erasure code in Jerasure library [60] which leverages Simple
Instruction Multiple Data (SIMD) instructions.

Table 4.2, Table 4.3, and Table 4.4 show the computation time, the communication time, and the
total time (protocol running time) of the three protocols, respectively, with varying the following
parameters:

• 𝑛: the number of all users. The number of users is a variable for evaluating the scalability of a
federated learning system.

• 𝑚: the size of vectors(models). For mobile applications, the author assumes using models
such as SqueezeNet [61] and MobileNetV3 [62], which have up to several tens of MB in size.

• 𝑟: the number of dropout users. The author sets 𝑟 = 0.1𝑛, 𝑟 = 0.2𝑛, and 𝑟 = 0.3𝑛. In the
realistic setting, dropout rates range between 0.06 and 0.1 [63], so it is reasonable to assume

– 42 –

Chapter 4. Fast Secure Aggregation against Semi-honest Adversaries

Protocol
𝑟

𝑚, 𝑛 𝑚 = 1M 𝑚 = 2M 𝑚 = 3M
𝑛 = 50 𝑛 = 100 𝑛 = 150 𝑛 = 50 𝑛 = 100 𝑛 = 150 𝑛 = 50 𝑛 = 100 𝑛 = 150

SecAgg

𝑟 = 0.1𝑛 0.32
(0.03)

0.32
(0.03)

0.32
(0.03)

0.65
(0.07)

0.65
(0.07)

0.65
(0.07)

0.97
(0.11)

0.98
(0.11)

0.98
(0.11)

𝑟 = 0.2𝑛 0.32
(0.03)

0.32
(0.03)

0.32
(0.03)

0.65
(0.07)

0.65
(0.07)

0.65
(0.07)

0.97
(0.11)

0.98
(0.11)

0.98
(0.11)

𝑟 = 0.3𝑛 0.32
(0.03)

0.32
(0.03)

0.32
(0.03)

0.65
(0.07)

0.65
(0.07)

0.65
(0.07)

0.97
(0.11)

0.98
(0.11)

0.98
(0.11)

LightSecAgg

𝑟 = 0.1𝑛 32.65
(3.99)

65.3
(7.98)

97.95
(11.97)

65.3
(7.98)

130.61
(15.96)

195.91
(23.94)

97.95
(11.97)

195.91
(23.94)

293.87
(35.91)

𝑟 = 0.2𝑛 32.65
(3.99)

65.3
(7.98)

97.95
(11.97)

65.3
(7.98)

130.61
(15.96)

195.91
(23.94)

97.95
(11.97)

195.91
(23.94)

293.87
(35.91)

𝑟 = 0.3𝑛 32.65
(3.99)

65.3
(7.98)

97.95
(11.97)

65.3
(7.98)

130.61
(15.96)

195.91
(23.94)

97.95
(11.97)

195.91
(23.94)

293.87
(35.91)

BalancedSecAgg

𝑟 = 0.1𝑛 3.26
(0.39)

6.53
(0.79)

9.79
(1.19)

6.53
(0.79)

13.06
(1.59)

19.59
(2.39)

9.79
(1.19)

19.59
(2.39)

29.38
(3.59)

𝑟 = 0.2𝑛 6.53
(0.79)

13.06
(1.59)

19.59
(2.39)

13.06
(1.59)

26.12
(3.19)

39.18
(4.78)

19.59
(2.39)

39.18
(4.78)

58.77
(7.18)

𝑟 = 0.3𝑛 9.79
(1.19)

19.59
(2.39)

29.38
(3.59)

19.59
(2.39)

39.18
(4.78)

58.77
(7.18)

29.38
(3.59)

58.77
(7.18)

88.16
(10.77)

Table 4.3: Communication time of SecAgg, LightSecAgg, and BalancedSecAgg with parameters
the number of all users 𝑛, the size of models 𝑚, the number of dropout users 𝑟, and end-to-end
throughput 𝑎. In each cell, values outside parentheses correspond to cases where 𝑎 = 98M, while
values inside parentheses represent cases with 𝑎 = 802M.

that dropout users are a minority.
• 𝑎: the end-to-end throughput (bps) between each user and a server. Similar to LightSecAgg’s

experiment, the author assumes 4G and 5G networks with throughputs of 98Mbps and 802Mbps,
respectively, based on realistic settings [64]. It is assumed here that the end-to-end throughput
between all users and the server is the same.

4.5.2 Result

In this subsection, the author explains the observations from the experimental results shown in
Table 4.2, Table 4.3, and Table 4.4.

Computation time

As shown in Table 4.2, in SecAgg, the computation time is dominated by PRG for the reconstruction
of (𝑛 − 𝑟) + 𝑟 (𝑛 − 𝑟) random masks on the server. As the values of 𝑚, 𝑛, and 𝑟 increase, the
computation time of SecAgg increases according to the server’s computation cost. In LightSecAgg,
the computation time is dominated by the Lagrange interpolation in 𝑡-private MDS decoding for
mask reconstruction on the server. Since the computation complexity of Lagrange interpolation for
generating each element of the sum of random masks is O(𝑡2), the computation time of LightSecAgg

– 43 –

4.5 Performance Analysis

Protocol
𝑟

𝑚, 𝑛 𝑚 = 1M 𝑚 = 2M 𝑚 = 3M
𝑛 = 50 𝑛 = 100 𝑛 = 150 𝑛 = 50 𝑛 = 100 𝑛 = 150 𝑛 = 50 𝑛 = 100 𝑛 = 150

SecAgg

𝑟 = 0.1𝑛 10.39
(10.10)

34.31
(34.02)

71.87
(71.58)

20.55
(19.97)

69
(68.42)

145.97
(145.39)

31.15
(30.29)

103.65
(102.78)

218.71
(217.84)

𝑟 = 0.2𝑛 15.37
(15.08)

55.21
(54.92)

121.42
(121.13)

31.4
(30.82)

112.88
(112.3)

244.2
(243.62)

47.24
(46.38)

168.45
(167.58)

365.33
(364.46)

𝑟 = 0.3𝑛 19.28
(18.99)

70.07
(69.78)

154.23
(153.94)

38.84
(38.26)

143.49
(142.91)

313.62
(313.04)

58.79
(57.93)

214.5
(213.63)

468.66
(467.79)

LightSecAgg

𝑟 = 0.1𝑛 46.23
(17.57)

115.35
(58.03)

206.47
(120.49)

92.36
(35.04)

229.52
(114.87)

412.39
(240.42)

138.81
(52.83)

345.36
(173.39)

619.95
(361.99)

𝑟 = 0.2𝑛 44.52
(15.86)

108.61
(51.29)

191.49
(105.51)

88.71
(31.39)

217.3
(102.65)

384.61
(212.64)

129.57
(43.59)

310.35
(138.38)

576.13
(318.17)

𝑟 = 0.3𝑛 41.69
(13.03)

98.07
(40.75)

172.9
(86.92)

83.47
(26.15)

195.75
(81.1)

354.94
(182.97)

124.6
(38.62)

291.83
(119.86)

530.95
(272.99)

BalancedSecAgg

𝑟 = 0.1𝑛 6.51
(3.64)

13.23
(7.49)

19.93
(11.33)

12.92
(7.18)

26.19
(14.72)

39.58
(22.38)

19.7
(11.1)

40
(22.8)

60.67
(34.88)

𝑟 = 0.2𝑛 9.7
(3.96)

19.51
(8.04)

29.46
(12.26)

18.91
(7.44)

38.92
(15.99)

60.69
(26.29)

28.95
(11.75)

58.4
(24)

91.46
(39.87)

𝑟 = 0.3𝑛 12.58
(3.98)

25.6
(8.4)

38.9
(13.11)

25.26
(8.06)

50.99
(16.59)

77.9
(26.31)

38.16
(12.37)

77.24
(25.65)

118.38
(40.99)

Table 4.4: Protocol running time of SecAgg, LightSecAgg, and BalancedSecAgg with parameters
the number of all users 𝑛, the size of models 𝑚, the number of dropout users 𝑟, and end-to-end
throughput 𝑎. In each cell, values outside parentheses correspond to cases where 𝑎 = 98M, while
values inside parentheses represent cases with 𝑎 = 802M.

increases with the increase in 𝑚 and 𝑛. On the other hand, as the value of 𝑟 increases, the value of 𝑡
decreases. This results in a decrease in the computation time of LightSecAgg. In BalancedSecAgg,
the computation time is dominated by PRG for the reconstruction of 𝑡 random masks on each user.
While the computation time of BalancedSecAgg increases with the increase in 𝑚 and 𝑛, it decreases
with the increase in 𝑟 .

As shown in Table 4.2, the computation time of BalancedSecAgg is faster than that of SecAgg.
This is because the computation cost for the server in BalancedSecAgg is smaller than that in SecAgg,
as shown in Table 1.1. In contrast, despite the fact that BalancedSecAgg has a higher computation
cost for the server compared to LightSecAgg, BalancedSecAgg outperforms LightSecAgg in terms of
actual computation time. This performance advantage is attributed to the use of SIMD instructions in
the Jerasure library, which enables element-wise encoding/decoding of masks in parallel, significantly
enhancing computational efficiency. Please note that SecAgg cannot use SIMD instructions to execute
element-wise random mask generation through PRG in parallel, because each random number
depends on the previous one. On the other hand, LightSecAgg, similar to BalancedSecAgg, might be
able to use SIMD instructions for element-wise 𝑡-private MDS decoding in parallel. However, as
shown in the next subsection, LightSecAgg incurs longer communication time.

When the server has multiple cores, the computation time for SecAgg and LightSecAgg decreases.

– 44 –

Chapter 4. Fast Secure Aggregation against Semi-honest Adversaries

Specifically, when the server has 𝑒 cores, the computation time for both SecAgg and LightSecAgg
reduces to approximately 1

𝑒
. On the other hand, since the computation time for BalancedSecAgg

depends on the user’s computation, it decreases only slightly even if the server has multiple cores.
Therefore, in Table 4.2 indicating the case for 𝑒 = 1, if the computation time for SecAgg and
LightSecAgg is less than 𝑒 times that of BalancedSecAgg, the computation time for SecAgg and
LightSecAgg is faster when the number of the server’s cores is 𝑒.

Communication time

As shown in Table 4.3, the communication time of BalancedSecAgg is faster than that of LightSecAgg,
but slower than that of SecAgg. Specifically, given the number of dropout users 𝑟 , the communication
time of BalancedSecAgg is approximately 2𝑟 times that of SecAgg and approximately 𝑟

𝑛
times that

of LightSecAgg. This is due to the communication cost for each user as shown in Table 1.1. Please
note that the number of message transfers from each user to every other user effectively doubles in
our communication model where messages between users are mediated through a server. This is
because each message is first sent to the server and then forwarded from the server to the recipient.

Protocol running time

As shown in Table 4.4, the protocol running time of BalancedSecAgg is always faster than that of
LightSecAgg. This is because the computation and communication times of BalancedSecAgg are
always faster than those of LightSecAgg. On the other hand, when values for 𝑛, 𝑚, and 𝑟 are fixed,
whether SecAgg or BalancedSecAgg is faster is determined by the end-to-end throughput. This is
because the computation time of BalancedSecAgg is faster than that of SecAgg, but the communication
time of BalancedSecAgg is slower than that of SecAgg. The higher the throughput, the better the
performance of BalancedSecAgg. Table 4.4 shows that the running time of BalancedSecAgg is
about 11.41× faster than that of SecAgg in the case that 𝑛 = 150, 𝑚 = 3M, 𝑟 = 0.3𝑛, and 𝑎 = 802M,
and about 10.74× faster than that of LightSecAgg in the case that 𝑛 = 150, 𝑚 = 2M, 𝑟 = 0.1𝑛, and
𝑎 = 802M.

However, as explained in 4.5.2, when the server has multiple cores, the computation time of
SecAgg and LightSecAgg may be faster than that of BalancedSecAgg. In this case, since the
communication time of SecAgg is always faster than the communication time of BalancedSecAgg,
the protocol running time of SecAgg is faster than the protocol running time of BalancedSecAgg. On
the other hand, since the communication time of BalancedSecAgg is smaller than the communication

– 45 –

4.6 Conclusion

time of LightSecAgg, which protocol has the faster running time between LightSecAgg and
BalancedSecAgg depends on the end-to-end throughput. In summary, BalancedSecAgg is faster than
SecAgg and LightSecAgg when the server has limited computational resources.

4.6 Conclusion

The author designs a new secure aggregation protocol, called BalancedSecAgg, to achieve a good
balance between computation and communication costs. The key idea is to leverage Reed-Solomon
erasure codes both to hide local models and to achieve tolerance against dropout users. Compared to
LightSecAgg, where each user transfers 𝑛 encoded masks, BalancedSecAgg transfers 𝑛 − (𝑡 + 1)
redundant masks, thus reducing each user’s communication cost. In contrast, compared to SecAgg,
where the server reconstructs 𝑛−𝑟 random masks individually for each dropped user, BalancedSecAgg
reduces the computation cost of the server because the server only reconstructs one aggregate mask
for each dropped user. In addition, the Reed-Solomon erasure codes, which have an optimized
implementation for mask encoding/decoding, reduce the actual computation time.

An interesting future work is to apply the communication cost reduction techniques of Balanced-
SecAgg to Byzantine-resilient secure aggregation protocols. Existing Byzantine-resilient secure
aggregation protocols [25, 43, 51] have a communication cost of O(𝑛2), where 𝑛 is the number of all
users since each user sends one share of its local model to each other users like LightSecAgg. A
major challenge when applying our communication cost reduction techniques to these protocols is
how to verify the information pieces, including shares, sent by Byzantine users.

– 46 –

Chapter 4. Fast Secure Aggregation against Semi-honest Adversaries

• Setup Phase
– All parties are given the security parameter 𝜅, the number of all users 𝑛, the number of semi-honest users 𝑡,

the number of dropout users 𝑟 , key agreement parameter 𝑝𝑝 ← KA.param(𝜅), and a field F𝑝 . Each user
has a private and authenticated channel with the server.

User 𝑖:
– Generate a key pair (𝑝𝑘 𝑖 , 𝑠𝑘 𝑖) ← KA.gen(𝑝𝑝)
– Send 𝑝𝑘 𝑖 to the server.

Server:
– Collect public keys from at least 𝑡 + 2 users (denoted by U1 ⊆ U, where U1 is the set of these users).

Otherwise, abort.
– Send a list { 𝑗 , 𝑝𝑘 𝑗 } 𝑗∈U1 to all the users inU1.

• Preparation Phase:
User 𝑖:

– Receive the list { 𝑗 , 𝑝𝑘 𝑗 } 𝑗∈U1 from the server. Assert that |U1 | ≥ 𝑡 + 2, otherwise abort.
– Generate a subset of users, denoted by S𝑖 , where each user 𝑗 receives a random seed of user 𝑖 (S𝑖 ←

Select(𝑖, 𝑛, 𝑡 + 1,U1)).
– For each user 𝑗 ∈ S𝑖 , generate a random seed 𝑠𝑖, 𝑗 .
– Expand the random seeds {𝑠𝑖, 𝑗 } 𝑗∈S𝑖using a PRG into random masks {PRG(𝑠𝑖, 𝑗)} 𝑗∈S𝑖 .
– For users inU1 \ S𝑖 , compute redundant masks {d𝑖,𝑘 }𝑘∈U1\S𝑖 = RS.correct({PRG(𝑠𝑖, 𝑗)} 𝑗∈S𝑖 , 𝑡 + 1).
– For each user 𝑗 ∈ S𝑖 , generate 𝑐𝑖, 𝑗 ← AE.enc(KA.agree(𝑠𝑘 𝑖 , 𝑝𝑘 𝑗), 𝑖 | | 𝑗 | |𝑠𝑖, 𝑗)
– For each user 𝑘 ∈ U1 \ S𝑖 , generate 𝑐𝑖,𝑘 ← AE.enc(KA.agree(𝑠𝑘 𝑖 , 𝑝𝑘𝑘), 𝑖 | |𝑘 | |d𝑖,𝑘).
– Send all the ciphertexts {𝑐𝑖, 𝑗 } 𝑗∈U1\{𝑖} to the server.

Server:
– Collect lists of ciphertexts from at least 𝑡 + 2 users (denoted byU2 ⊆ U1, where U2 is the set of these

users). Otherwise, abort.
– Send to each user 𝑖 ∈ U2 a list of all ciphertexts encrypted for 𝑗 : {𝑐 𝑗 ,𝑖} 𝑗∈U2 .

• Local Model Masking Phase:
User 𝑖:

– Receive from the server the list {𝑐 𝑗 ,𝑖} 𝑗∈U2 . If |U2 | is less than 𝑡 + 2, abort.
– Compute the masked local model w̃𝑖 = w𝑖 +

∑
𝑗∈S𝑖 PRG(𝑠𝑖, 𝑗) +

∑
𝑗∈U1\S𝑖 d𝑖, 𝑗 .

– Send w̃𝑖 to the server.
Server:

– Collect lists of masked local models from at least 𝑡 + 2 users (denoted byU3 ⊆ U2, whereU3 is the set of
these users). Otherwise, abort.

– Send the list of all the live usersU3 to each user 𝑗 ∈ U3.
• Mask Subtraction Phase:

User 𝑖:
– ReceiveU3 from the server. If |U3 | is less than 𝑡 + 2, abort.
– For each user 𝑗 ∈ U3 ∩ {𝑘 | 𝑖 ∈ S𝑘}, decrypt the ciphertext 𝑗 | |𝑖 | |𝑠 𝑗 ,𝑖 ←

AE.dec(KA.agree(𝑠𝑘 𝑖 , 𝑝𝑘 𝑗), 𝑐 𝑗 ,𝑖).
– For each user 𝑘 ∈ (U3 \ { 𝑗 | 𝑖 ∈ S 𝑗 }) \ {𝑖}, decrypt the ciphertext , 𝑘 | |𝑖 | |d𝑘,𝑖 ←

AE.dec(KA.agree(𝑠𝑘 𝑖 , 𝑝𝑘𝑘), 𝑐𝑘,𝑖).
– Expand the received random seeds {𝑠 𝑗 ,𝑖} 𝑗∈U3∩{𝑘 |𝑖∈S𝑘 } using a PRG into random masks
{PRG(𝑠 𝑗 ,𝑖)} 𝑗∈U3∩{𝑘 |𝑖∈S𝑘 } .

– Compute 𝜆𝑖 =
∑
𝑗∈U3∩{𝑘 |𝑖∈S𝑘 } PRG(𝑠 𝑗 ,𝑖) +

∑
𝑗∈U3\{𝑘 |𝑖∈S𝑘 } d 𝑗 ,𝑖 .

– Send 𝜆𝑖 to the server.
Server:

– Collect aggregated masks from at least 𝑡 + 1 users (denoted by U4 ⊆ U3, where U4 is the set of these
users). Otherwise, abort.

– Reconstruct the aggregated masks of the users in U1 \ U4 by computing {𝜆𝑘}𝑘∈U1\U4 =

RS.correct({𝜆 𝑗 } 𝑗∈U4 , 𝑡 + 1).
– Compute v =

∑
𝑖∈U3 w𝑖 =

∑
𝑖∈U3 w̃𝑖 −

∑
𝑖∈U1 𝜆𝑖

Figure 4.4: Detailed description of our protocol. Notably, |U1 | ≥ 𝑡 +2, |U2 | ≥ 𝑡 +2, and |U3 | ≥ 𝑡 +2
avoid the situation where there is only one honest user and all other users are semi-honest. – 47 –

Chapter 5

Fast Secure Aggregation against
Dishonest Adversaries

In this chapter, the author designs a faster secure aggregation called BREA with Server’s Verification
(BREA-SV) than the existing one called BREA to address the threats in the dishonest model. The
rest of the chapter is organized as follows: Section 5.1 describes BREA, which is an existing
Byzantine-resilient secure aggregation protocol. Section 5.2 describes our protocol, BREA-SV.
Section 5.3 and Section 5.4 analyze BREA-SV in terms of security and performance. Section 5.5
concludes this chapter. In addition to Table 3.1, the main symbols used in this chapter are listed in
Table 5.1. The author uses bold and uppercase letters to denote vectors and sets, respectively, and
lowercase letters for other purposes such as scalar variables.

5.1 Existing Protocol: BREA

5.1.1 Rationale for Attack Mitigation in Dishonest Model

To mitigate privacy attacks, each user randomly divides its local model into multiple masked-
fragments (shares) through cryptographic techniques such as additive secret sharing or Shamir’s
secret sharing [42]. Here, the author calls the process of division masking. Such shares are aggregated
(added) in the following steps: Each user sends such shares to the other users, it aggregates received
shares to an aggregated share, and a server aggregates all the aggregated shares to obtain a sum
of all the local models. Here, an important point is that the effect of masking is cancelled by the
aggregation and so the server only knows the aggregation result. Adversaries cannot recover the

– 49 –

5.1 Existing Protocol: BREA

Table 5.1: Summary of Symbols

Symbol Description
sU
𝑖

Aggregated shares in setU computed by user 𝑖
𝑑
𝑗 ,𝑘

𝑖
Share distance between user 𝑗 and 𝑘 computed by user 𝑖

∥w 𝑗 − w𝑘 ∥2 Model distance between user 𝑗 and 𝑘
C Commitment
H Set of honest users
Multi-Krum() Multi-Krum algorithm

local model of any honest user unless they collect a certain number of shares. For example, when
shares are generated from a local model through (𝑡 + 1, 𝑛)-threshold Shamir’s secret sharing, the
local model cannot be recovered without at least 𝑡 + 1 shares.

To mitigate Byzantine attacks, the following methods detect and remove both types of security
attacks as illustrated in Figure. 5.1 and Figure. 5.2: The method against the first type of attack is that
the server removes outliers as contaminated models using a distance-based outlier removal mechanism
called Multi-Krum [24,65] (Outlier detection in Figure. 5.1 and Figure. 5.2). Users securely compute
pairwise model distances by using share distances (Computing distance in Fig. 5.1). The methods
against the second type of attack are prepared for both contaminated shares and contaminated share
computation results: The former is share verification (Share verification in Fig. 5.2) to prevent
Byzantine users from injecting contaminated shares. All the users generate commitments and
mutually verify that the shares are honestly generated using the commitments. The latter is to remove
contaminated share distances and aggregated shares generated by Byzantine users by leveraging
Reed-Solomon decoding algorithms [45] (Share error-correction in Fig. 5.2). BREA and the author’s
method called BREA-SV satisfy Byzantine-resilience through a Multi-Krum incorporated protocol
that takes users’ local models {w𝑖}𝑖∈U as inputs, executes as follows: The protocol takes the pairwise
model distances as the inputs of Multi-Krum, which is formulated by

Usel = Multi-Krum({∥w 𝑗 − w𝑘 ∥2} 𝑗 ,𝑘∈U), (5.1)

whereUsel(⊂ U) is a set of a certain number 𝑐 (𝑐 ≤ 𝑛 − ℓ) users whose local models that are close
to each other, 𝑐 is a pre-determined parameter for ℓ, and ∥ · ∥2 is the Euclidean distance. As a result,
the protocol computes

∑
𝑖∈Usel w𝑖 as an aggregation result.

– 50 –

Chapter 5. Fast Secure Aggregation against Dishonest Adversaries

Benign shares

Outlier

detection

Exchanged

shares

Byzantine user

Contaminated

model

Masking

Commitment

Benign share

distances

✘Detect

contaminated model

Share

error-correction

Benign

model distances

Computing

distance

Type1

Server

Figure 5.1: First type of Byzantine attacks and mitigation methods

5.1.2 Protocol

BREA consists of three phases as illustrated in Fig. 5.3 and mitigates privacy and security attacks in
individual phases.

Secret Sharing Phase

In this phase, each user 𝑖 distributes shares of its local model w𝑖 to the other users. Precisely, each
user 𝑖 sends a share sh𝑖, 𝑗 , denoted by

sh𝑖, 𝑗 = 𝑓𝑖 (𝜃 𝑗 ,w𝑖), (5.2)

and sends it to each user 𝑗 , where 𝑓𝑖 : F𝑝 → F𝑚𝑝 is a 𝑡-degree polynomial defined by

𝑓𝑖 (𝜃,w𝑖) = w𝑖 +
𝑡∑︁
𝑘=1

r𝑖𝑘𝜃𝑘 , (5.3)

– 51 –

5.1 Existing Protocol: BREA

Benign

local model

Masking

Contaminated shares
Commitment

Exchanged

shares

Contaminated

share distances

Contaminated

aggregated share

Byzantine user Honest or semi-honest user

Share

verification

✘Detect

contaminated shares

Aggregation

✘Error-correct

contaminated distances

✘ Error-correct

contaminated aggregated shares

Server

or

Computing

distance

Share

error-correction

Share

error-correction

Type2

Figure 5.2: Second type of Byzantine attacks and mitigation methods

F𝑝 is a finite field for a large prime 𝑝, r𝑖𝑘 is a random vector chosen from F𝑚𝑝 , and 𝜃 𝑗 is an element
chosen from F𝑝 agreed on in advance by all the users and the server.

Share Verification Each user 𝑖 broadcasts its commitment C 𝑓𝑖 (𝜃,w𝑖) to the coefficients of the
polynomial 𝑓𝑖 , which is one-to-one correspondence with 𝑓𝑖 , given by

C 𝑓𝑖 (𝜃,w𝑖) = (𝑔w𝑖 , 𝑔r𝑖1 , 𝑔r𝑖2 , · · · , 𝑔r𝑖𝑡), (5.4)

where 𝑔 is a generator selected from F𝑝. Broadcasting plays an important role to guarantee that all
honest users receive the same commitments.

Then, each receiver 𝑗 verifies that the received share from each user 𝑖 is the correct function

– 52 –

Chapter 5. Fast Secure Aggregation against Dishonest Adversaries

gg

Secret sharing phase

Secure removal phase Secure aggregation phase

6

7 8
9

10

15
14

13

12

11
Detect

1
2

3

4

5

server

Correct

9
6

4

2

15

13

12

115

7
10

1

3

8

14

Correct

server

9
6

4

2

15

13

12

115

7
10

1

3

8

14

g g g g g

Figure 5.3: Second type of security attacks of Byzantine users to three phases and mitigation methods.

value sh𝑖, 𝑗 (= 𝑓𝑖 (𝜃 𝑗 ,w𝑖)) of 𝑓𝑖 (𝜃,w𝑖) by verifying if the following equation holds:

𝑔sh𝑖, 𝑗 = 𝑔w𝑖+
∑𝑡

𝑘=1 r𝑖𝑘 𝜃 𝑗 𝑘 . (5.5)

If a Byzantine user 𝑏 sends an contaminated share a𝑏, 𝑗 (≠ sh𝑏, 𝑗) to any user 𝑗 , 𝑗 detects the
attack because (5.5) does not hold. Meanwhile, since BREA assumes the intractability of computing
the discrete logarithm, the server and all the users cannot compute w𝑖 from 𝑔w𝑖 .

– 53 –

5.1 Existing Protocol: BREA

Secure Removal Phase

In this phase, all the users and the server securely and jointly perform Multi-Krum.

For each pair of the exchanged shares, each user 𝑖 locally computes a share distance, 𝑑 𝑗 ,𝑘
𝑖
B

∥sh 𝑗 ,𝑖 − sh𝑘,𝑖 ∥2, and send it to the server. The server collects at least 2𝑡 + 1 share distances for
users 𝑗 and 𝑘 , and obtains the model distance between user 𝑗 and 𝑘 , i.e., ∥w 𝑗 − w𝑘 ∥2, through an
[𝑛, 2𝑡 + 1, 𝑛 − 2𝑡] 𝑝 Reed-Solomon decoding algorithm that can correct up to ℓ errors and 𝑟 erasures.
The idea of recovery is that share distances correspond to the evaluation points of a univariate
polynomial ℎ 𝑗 ,𝑘 : F𝑝 → F𝑝 of degree at most 2𝑡, defined by ℎ 𝑗 ,𝑘 (𝜃) B ∥ 𝑓 𝑗 (𝜃,w 𝑗) − 𝑓𝑘 (𝜃,w𝑘)∥2.
ℎ 𝑗 ,𝑘 can be viewed as the encoding polynomial of the [𝑛, 2𝑡 + 1, 𝑛 − 2𝑡] 𝑝 Reed-Solomon decoding
algorithm. Here, any Byzantine user 𝑏’s contaminated share distances {𝑎 𝑗 ,𝑘

𝑏
} 𝑗 ,𝑘∈U (≠ {𝑑 𝑗 ,𝑘𝑖 } 𝑗 ,𝑘∈U)

correspond to errors and dropping users’ missing computations correspond to erasures. Then, the
server obtains the model distance by using the relation ∥ 𝑓 𝑗 (0,w 𝑗) − 𝑓𝑘 (0,w𝑘)∥2 = ∥w 𝑗 − w𝑘 ∥2.

After obtaining {∥w 𝑗 − w𝑘 ∥2} 𝑗 ,𝑘∈U , the server generatesUsel through Multi-Krum and sends it
to all the users.

Secure Aggregation Phase

In this phase, the server and the users securely and jointly compute the aggregation result of the
selected local models. Each user 𝑖 computes the aggregated share sUsel

𝑖
=
∑
𝑗∈Usel sh 𝑗 ,𝑖 and sends it to

the server. The server collects at least 𝑡 + 1 aggregated shares, and recovers an univariate polynomial
ℎU

sel : F𝑝 → F𝑚𝑝 of degree at most 𝑡 defined by ℎUsel (𝜃) B ∑
𝑗∈U 𝑓 𝑗 (𝜃,w 𝑗) using an [𝑛, 𝑡+1, 𝑛− 𝑡] 𝑝

Reed-Solomon code decoding algorithm in a similar manner to that described in the previous section.
Here, any Byzantine user 𝑏’s contaminated aggregated share aUsel

𝑏
(≠ sUsel

𝑏
) corresponds to an error.

Then, the server obtains the aggregation result by using the relation
∑
𝑖∈Usel 𝑓𝑖 (0,w𝑖) =

∑
𝑖∈Usel w𝑖 .

Summary

BREA satisfies three goals as described in section 3.3 as long as (𝑛 − 1 −max{𝑐 + 2, 𝑟 + 2𝑡})/2 ≥ ℓ
because [𝑛, 2𝑡 + 1, 𝑛 − 2𝑡] 𝑝 Reed-Solomon code and Multi-Krum succeeds as long as ⌊(𝑛 − (2𝑡 +
1) − 𝑟)/2⌋ ≥ ℓ and ⌊(𝑛 − 𝑐 − 3)/2⌋ ≥ ℓ, respectively.

– 54 –

Chapter 5. Fast Secure Aggregation against Dishonest Adversaries

Secret sharing phase

5

3

2

4

1

Generate

96 7 108

12

11

13

14

15

Correct

Secure removal phase
9

6

4

2

15

13

12

115

server

7
10

1

3

8

14

Secure aggregation phase

Correct

9
6

4

2

15

13

12

115

server

7
10

1

3

8

14

Figure 5.4: Colluding contaminated model injection attack under the condition 𝑛 = 15, ℓ = 5, 𝑡 = 2,
𝑟 = 0, 𝑐 = 2

5.2 Communication Complexity Reduction

The goal of this section is to extend BREA to reduce communication complexity. Specifically, this
section proposes the extension called BREA-SV after answering the question of how resilience
against Byzantine attacks has been preserved when the share verification is omitted. The motivation
for raising this question is that Reed-Solomon decoding is not enough to be against Byzantine attacks
and the share verification is inevitable. According to this observation, the author designs BREA-SV
so that some parts of share verification from users to the semi-honest server. This eliminates the
need for users’ downloading commitments.

– 55 –

5.2 Communication Complexity Reduction

5.2.1 BREA without Share Verification

The Reed-Solomon decoding detects contaminated shares as well as contaminated share distances
and contaminated aggregated shares. This is because if a Byzantine user injects a contaminated
share, share distances and aggregated shares which include this contaminated share is regarded as
contaminated. However, BREA without share verification cannot remove the contaminated share
distances and contaminated aggregated shares even if there is only one Byzantine user. For example,
if a Byzantine user sends its contaminated shares to all the users, all the users send contaminated
share distances and contaminated aggregated shares to the server, i.e., the number of errors is 𝑛.

The above attack suggests us a vulnerability in that shares of different local models can be sent
by a Byzantine user if share verification is omitted. This sub-section designs an attack of colluding
Byzantine users, which aims to inject the contaminated models of any Byzantine users, using the
vulnerability called colluding contaminated model injection attack. The idea behind this attack
is to create a situation where any Byzantine user uses shares of a benign model and those of a
contaminated model at the secure removal phase and the secure aggregation phase, respectively. This
attack succeeds if the number of Byzantine users satisfies the following condition: ℓ ≥ ⌈𝑛/3⌉.

Colluding Contaminated Model Injection Attack

Fig. 5.4 illustrates the attack procedure, where 𝑛 = 15, ℓ = 5, 𝑡 = 2, 𝑟 = 0 and 𝑚 = 2. Byzantine
user 𝑏 is user 1 and the other colluding Byzantine users are from user 2 to 5. In the secret sharing
phase, user 1 prepares the benign model w1 and contaminated model w𝐶1 . The Byzantine users
carefully interact with honest users so that w1 is used in the secure removal phase to bypass the
Multi-Krum scheme and w𝐶1 is used in the secure aggregation phase to inject w𝐶1 into aggregated
shares of honest users. To this end, user 1 divides all the users inH into two disjoint groupsH1 and
H2 such that |H1 | ≤ ℓ and |H2 | ≤ ℓ hold. User 1 then generates shares sh1,𝑖 and sh𝐶1,𝑖 from w1 and
w𝐶1 , respectively. Here, sh1,𝑖 and sh𝐶1,𝑖 are sent to users in 𝑖 ∈ H1 and 𝑖 ∈ H2, respectively. For each
user in 𝑖 ∈ B \ {1} (i.e., the other Byzantine users), user 1 sends both sh1,𝑖 and sh𝐶1,𝑖 .

In the secure removal phase, for the shares of user 1, honest users in H1 and Byzantine users
compute and send pairwise share distances {𝑑1,𝑘

𝑖
}𝑘∈U = {∥sh1,𝑖 − sh𝑘,𝑖 ∥2}𝑘∈U (𝑖 ∈ H1 ∪ B) and

honest users in H2 compute and send {𝑑1𝐶 ,𝑘
𝑖
}𝑘∈U = ∥sh𝐶1,𝑖 − sh𝑘,𝑖 ∥2}𝑘∈U (𝑖 ∈ H2). As a result,

the server obtains {∥w1 − w𝑘 ∥2}𝑘∈U since the Reed-Solomon code decoding algorithm removes
{𝑑1𝐶 ,𝑘
𝑖
}𝑘∈U,𝑖∈H2 .

In the secure aggregation phase, honest users in H2 and Byzantine users compute and send

– 56 –

Chapter 5. Fast Secure Aggregation against Dishonest Adversaries

aggregated shares s
Usel

1𝐶
𝑖

=
∑
𝑗∈Usel\{1} sh 𝑗 ,𝑖 + sh𝐶1, 𝑗 (𝑖 ∈ H2 ∪ B). The Reed-Solomon code decoding

algorithm removes aggregated shares {sU
sel
1

𝑖
=
∑
𝑗∈Usel\{1} sh 𝑗 ,𝑖 + sh1, 𝑗}𝑖∈H1 , and as a result, the

server obtains the aggregation result
∑
𝑗∈Usel\{1} w 𝑗 + w𝐶1 . Consequently, the contaminated model

w𝐶1 is injected into the aggregation result.

Byzantine Resilience

The colluding contaminated model injection attack succeeds when ℓ ≥ ⌈𝑛/3⌉ because Byzantine
users can generate H1 and H2 such that |H1 | ≤ ℓ and |H2 | ≤ ℓ hold as described in the previous
section. The maximum number of Byzantine users is reduced from ℓ ≤ (𝑛−1−max{𝑐+2, 𝑟 +2𝑡})/2
to ℓ < ⌈𝑛/3⌉. Moreover, if ℓ < ⌈𝑛/3⌉, this attack can be detected, but not be corrected by the server,
because the number of contaminated share distances and aggregated shares exceeds ℓ. Therefore,
BREA without share verification provides a weaker level of resilience than BREA.

5.2.2 Communication Complexity Reduction of Share Verification: BREA-SV

To achieve the same Byzantine resilience as BREA, the author needs share verification. This section
designs a share verification method that eliminates users’ need for downloading commitments to
achieve communication efficiency for fast learning. Section 5.2.2 describes a naive method for
share verification in BREA with a large complexity in communication. Here, the author calls the
naive method naive BREA, which is used as the reference for comparison. Section 5.2.2 designs the
proposed share verification method which is used by BREA-SV.

Naive BREA

In naive BREA, a semi-honest server is responsible for broadcasting all users’ commitments. Each
user 𝑖 sends its commitment to the server. The server sends all the other users’ commitments to
each user 𝑖 using unicast channels. Since the server is semi-honest, the commitments are correctly
delivered.

In naive BREA, each user 𝑖 uploads 𝑡 |w| bytes, and downloads (𝑛 − 1)𝑡 |w| bytes because each
commitment is 𝑡 |w| bytes. Since model/share size |w| is from hundreds of K bytes to hundreds of M
bytes, such download traffic becomes a bottleneck for fast learning if users’ devices are accommodated
by low-bandwidth networks like mobile networks.

– 57 –

5.2 Communication Complexity Reduction

BREA-SV

Overview Naive BREA has a high communication cost for each user to verify shares. Since the
verification of each share is performed by the user who received the share, BREA requires each user
to send a commitment to 𝑛 − 1 users who receive that user’s shares.

In contrast, BREA-SV, the proposed method, splits the verification process between the server
and the users, rather than having the user who receives the share perform all the verification processes.
Since each share cannot be reconstructed from the corresponding commitment, users can delegate
the verification process using the commitment to the server.

With this approach, each user only needs to send the commitment to the server once, instead of
sending it to all other users. Consequently, the number of times each user’s commitment needs to be
transmitted is reduced to just once. This significantly lowers the communication cost for each user
and achieves efficient share verification.

Rationale A candidate solution is that the share verification with users’ commitments is performed
by the server instead of individual users. Precisely, the author carefully considers where three terms
are computed by either a user or a server: 𝑔sh𝑖, 𝑗 , 𝑔w𝑖 and 𝑔

∑𝑡
𝑘=1 r𝑖𝑘 𝜃 𝑗 𝑘 of (5.5). The author decides

that a user computes the first and second terms because the server should not see sh𝑖, 𝑗 and w𝑖 and
that the server computes the third term. This satisfies the privacy requirement that the server should
not obtain information about users’ local models. The server also multiplies 𝑔w𝑖 and 𝑔

∑𝑡
𝑘=1 r𝑖𝑘 𝜃 𝑗 𝑘 ,

and checks if (5.5) holds. This enables each user 𝑖 to send its commitment of random vectors
(𝑔r𝑖1 , 𝑔r𝑖2 , . . . , 𝑔r𝑖𝑡) to only the server, which avoids each user 𝑖 from downloading the commitments
from all the other users. In addition, the verification of (5.5) is performed using hash values of the
computation results to reduce communication costs. Specifically, the user sends the hash value of the
left-hand side of (5.5) to the server, and the server computes the hash value of the right-hand side of
(5.5) and compares it with the hash value received from the user.

This solution, however, has a disadvantage that the server should compute 𝑔
∑𝑡

𝑘=1 r𝑖𝑘 𝜃 𝑗 𝑘 , which
requires 𝑡𝑑 exponentiations for verifying a single share. The author addresses this issue by computing
firstly the exponential part of the right-hand side of (5.5), i.e.,

∑𝑡
𝑘=1 r𝑖𝑘𝜃 𝑗 𝑘 . Our computation method

of 𝑔
∑𝑡

𝑘=1 r𝑖𝑘 𝜃 𝑗 𝑘 is as follows: Each user 𝑖 sends random vectors themselves {r𝑖𝑘}𝑘∈[𝑡] to the server. The
server computes

∑𝑡
𝑘=1 r𝑖𝑘𝜃 𝑗 𝑘 , and then computes 𝑔

∑𝑡
𝑘=1 r𝑖𝑘 𝜃 𝑗 𝑘 . As compared to a seminal work [44]

that requires 𝑡𝑑 exponentiations, BREA-SV requires 𝑑 exponentiations for verifying a single share.

– 58 –

Chapter 5. Fast Secure Aggregation against Dishonest Adversaries

User

(a)

global

Model

(b-1)

(f)

(c-2)

(d-1)

(b-2) (b-3)

(c-1)

(c-4)

(d-2)

Server

(e-1)

(c-3) (e-2)

g

g g

gg

Figure 5.5: Share verification of BREA-SV

Protocol The rest of the subsection describes the share verification procedure of BREA-SV
according to Fig. 5.5. Each user 𝑖 and the server execute the share verification in the following way:

User 𝑖: Computing {r𝑖𝑘}𝑘∈[𝑡] , 𝑔w𝑖 , and {𝑔sh 𝑗,𝑖 } 𝑗∈U\{𝑖}
1. User 𝑖 computes random vectors {r𝑖𝑘}𝑘∈[𝑡] , and sends them to the server. ((a) in Fig. 5.5)
2. User 𝑖 trains the shared model and generates its local model w𝑖. Then, user 𝑖 computes 𝑔w𝑖

and sends it to the server. ((b-1), (b-2) and (b-3) in Fig. 5.5)
3. User 𝑖 generates shares {sh 𝑗 ,𝑖} 𝑗∈U and sends each share to user 𝑗 ∈ U\{𝑖}. After receiving the

shares {sh 𝑗 ,𝑖} 𝑗∈U\{𝑖} of all the other users ((c-1) in Fig. 5.5), user 𝑖 computes {𝑔sh 𝑗,𝑖 } 𝑗∈U\{𝑖} .
To reduce communication costs by sending each masked share 𝑔sh 𝑗,𝑖 , user 𝑖 generates a hash
value 𝜎sh 𝑗,𝑖

𝑖
for each 𝑔sh 𝑗,𝑖 (c-3) in Fig. 5.5), and sends it to the server((c-4) in Fig. 5.5).

Server: Computing right-hand side of (5.5) and checking (5.5)

1. The server recieves {r𝑖𝑘}𝑖∈U,𝑘∈[𝑡] and computes {∑𝑡
𝑘=1 r𝑖𝑘𝜃 𝑗 𝑘}𝑖, 𝑗∈U,𝑖≠ 𝑗 . Then, the server

computes {𝑔
∑𝑡

𝑘=1 r𝑖𝑘 𝜃 𝑗 𝑘 }𝑖, 𝑗∈U,𝑖≠ 𝑗 . ((d-1) and (d-2) in Fig. 5.5.)
2. The server receives {𝑔w𝑖 }𝑖∈U and computes {𝑔w𝑖+

∑𝑡
𝑘=1 r𝑖𝑘 𝜃 𝑗 𝑘 }𝑖, 𝑗∈U,𝑖≠ 𝑗 , and generates hash

values {𝜎𝑖, 𝑗
𝑆
}𝑖, 𝑗∈U,𝑖≠ 𝑗 from the computed values. ((e-1) and (e-2) in Fig. 5.5)

3. The server receives {𝜎sh 𝑗,𝑖

𝑖
}𝑖, 𝑗∈U,𝑖≠ 𝑗 and the server checks (5.5) for all the shares exchanged

among the users. ((f) in Fig. 5.5)

– 59 –

5.2 Communication Complexity Reduction

BREA-SV achieves the privacy preservation described in section 3.3. This is because the server
can know all the coefficients of (5.3) other than the local model of any user, but cannot know either
the local model itself or any share of the local model. As a result, it cannot recover the local model
of any user. Section 5.3 proves the Byzantine-resilience described in section 3.3.

Naive BREA VS BREA-SV

The author analyzes the computational and communication costs of the share verification, as
summarized in Table 1.2. For all the other analyses of computation and communication, please refer
to [25].

Computational Cost A computational cost is represented by the number of multiplications. To
reduce the number of multiplications, an exponentiation operation is computed by exponentiation
of by squaring. Exponentiation by squaring is a calculation method that reduces the number of
multiplications by splitting an exponentiation calculation into smaller exponentiation calculations.
This method is based on the fact that for a calculation of 𝑥𝑦 , 𝑥𝑦 = (𝑥2)𝑦/2 holds if 𝑦 is even, and
𝑥𝑦 = 𝑥(𝑥2) (𝑦−1)/2 holds if 𝑦 is odd. This calculation is called recursively until 𝑦 becomes 0 or 1,
and it returns 1 when it becomes 0 or 𝑥 when it becomes 1. As a result, the exponentiation of by
squaring requires O(log 𝑦) multiplications for calculating 𝑥𝑦 , and the naive exponentiation requires
O(𝑦) multiplications.

In naive BREA, user 𝑖’s computational cost consists of three parts: 1) generating C 𝑓𝑖 (𝜃,w𝑖) , 2)
generating {𝑔sh 𝑗,𝑖 } 𝑗∈U\{𝑖} , 3) verifying if (5.5) holds for all the received shares. Generating C 𝑓𝑖 (𝜃,w𝑖)

and {𝑔sh 𝑗,𝑖 } 𝑗∈U\{𝑖} have a computational cost ofO(𝑚𝑛 log 𝑝) where 𝑝 is a finite field size. Performing
checking (5.5) has a computational cost of O(𝑚𝑛2 log 𝑛) [44]. Therefore, the computational cost is
O(𝑚𝑛 log 𝑝 + 𝑚𝑛2 log 𝑛). On the other hand, the server performs no computations.

In BREA-SV, user 𝑖’s computational cost consists of two parts: 1) generating {𝑔sh 𝑗,𝑖 } 𝑗∈U\{𝑖} ,
2) generating 𝑔w𝑖 . The former has a computational cost of O(𝑚𝑛 log 𝑝) and the latter has that of
O(𝑚 log 𝑝), therefore, user 𝑖’s computational cost is O(𝑚𝑛 log 𝑝). On the other hand, the server’s
computational cost consists of three parts: 1) computing (d-1), 2) computing (d-2), and 3) computing
(e-1). Computing (d-1) for all the shares exchanged among users has a computational cost of
O(𝑚𝑛2 log2 𝑛) [42]. Computing (d-2) for all the shares exchanged among users has a computational
cost of O(𝑚𝑛2 log 𝑝). Computing (e-1) for all the shares exchanged among users has a computational
cost of O(𝑚𝑛2). Therefore, the computational cost is O(𝑚𝑛2 log2 𝑛).

BREA-SV has a disadvantage that the server should sequentially compute {∑𝑡
𝑘=1 r𝑖𝑘𝜃 𝑗 𝑘}𝑖, 𝑗∈U,𝑖≠ 𝑗

– 60 –

Chapter 5. Fast Secure Aggregation against Dishonest Adversaries

if the server has a single CPU, whereas each user 𝑗 computes each {𝑔
∑𝑡

𝑘=1 r𝑖𝑘 𝜃 𝑗 𝑘 }𝑖∈U\{ 𝑗 } in parallel
in naive BREA.

Communication Cost In naive BREA, each user sends its commitment to the server and receives
𝑛 − 1 commitments from the server. Therefore, the communication cost of each user is O(𝑛𝑡𝑚). On
the other hand, the server receives 𝑛 commitments in total from the users and sends 𝑛−1 commitments
to each user. Therefore, the communication cost of the server is O(𝑛2𝑡𝑚). In BREA-SV, each
user sends its commitment to only the server. Therefore, the communication cost of each user is
O(𝑡𝑚). On the other hand, the server receives 𝑛 commitments in total from the users. Therefore, the
communication cost of the server is O(𝑛𝑡𝑚).

As the advantage, BREA-SV reduces the total traffic amount of each user and the server to O(𝑡𝑚)
and O(𝑛𝑡𝑚), respectively.

5.3 Security Analysis

The section proves that BREA-SV satisfies Byzantine resilience as described in section 3.3. the
author introduces some notations to use for the proof. USR and USA denote sets of all the users
that send their messages to the server in the secure removal phase and the secure aggregation phase,
respectively. Here, letHSR andHSA beHSR = USR \ B andHSA = USA \ B, respectively.

Lemma 1. In the secret sharing phase of BREA-SV, any Byzantine user 𝑏 ∈ B is only able to send
the shares generated by a single local model, i.e., w𝑏 𝑜𝑟 w𝐶

𝑏
, to any honest user 𝑗 ∈ H .

Proof. Suppose that any Byzantine user 𝑏 ∈ B sends its commitment (𝑔w𝑏 , r𝑏1, r𝑏2, . . . , r𝑏𝑡) to the
server. At this time, if 𝑏 sends a contaminated share a𝑏, 𝑗 to any honest user 𝑗 ∈ H , the server detects
the attack. This is because 𝑔a𝑏, 𝑗 computed by 𝑗 is not equal to 𝑔w𝑏+

∑𝑡
𝑘=1 r𝑏𝑘 𝜃 𝑗 𝑘 computed by the

server, therefore, (5.5) does not hold. Similarly, if sends its commitment (𝑔w𝐶
𝑏 , r𝑏1, r𝑏2, . . . , r𝑏𝑡) to

the server and sends a contaminated share, which is different from sh𝐶
𝑏, 𝑗

, to any honest user 𝑗 ∈ H ,
the server detects the attack. □

Theorem 2. BREA-SV satisfies Byzantine resilience as described in section 3.3 as long as ⌊(𝑛 −
(2𝑡 + 1) − 𝑟)/2⌋ ≥ ℓ.

Proof. From Lemma 1, the author supposes that any user 𝑖 ∈ U sends the shares sh𝑖, 𝑗 generated by
single local model w𝑖 to each user 𝑗 ∈ H .

– 61 –

5.4 Performance Analysis

First, the author shows that BREA-SV takes {∥w 𝑗 − w𝑘 ∥2} 𝑗 ,𝑘∈U as the inputs of Multi-Krum in
the secure removal phase. In this phase, each 𝑗 ∈ HSR computes and sends 𝑑𝑖,𝑘

𝑗
to the server, and the

server uses a [𝑛, 2𝑡 + 1, 𝑛 − 2𝑡] 𝑝 Reed-Solomon code decoding with 𝑟 erasures that can tolerate a
maximum number of ⌊(𝑛 − (2𝑡 + 1) − 𝑟)/2⌋ errors [45]. Therefore, the server certainly can decode
{∥ 𝑓𝑖 (𝜃,w𝑖) − 𝑓𝑘 (𝜃,w𝑘)∥2}𝑖,𝑘∈U regardless of the contents of the messages sent by the Byzantine
users as long as ⌊(𝑛 − (2𝑡 + 1) − 𝑟)/2⌋ ≥ ℓ. Finally, the server obtains the pairwise model distances
{∥w𝑖 − w𝑘 ∥2}𝑖,𝑘∈U .

Next, the author shows that BREA-SV outputs an aggregation result
∑
𝑖∈Usel w𝑖 in the secure

aggregation phase. In this phase, each 𝑗 ∈ HSA computes and sends sUsel

𝑗
to the server, and the

server uses a [𝑛, 𝑡 + 1, 𝑛 − 𝑡] 𝑝 Reed-Solomon code decoding with 𝑟 erasures that can tolerate a
maximum number of ⌊(𝑛 − (𝑡 + 1) − 𝑟)/2⌋ errors [45]. Therefore, the server certainly can decode∑
𝑗∈Usel 𝑓 𝑗 (𝜃,w 𝑗) regardless of the contents of the messages sent by the Byzantine users as long as
⌊(𝑛 − (𝑡 + 1) − 𝑟)/2⌋ ≥ ℓ. Finally, the server obtains the aggregation result

∑
𝑖∈Usel w𝑖 . □

corollary 1. BREA-SV is said to be (𝛼, ℓ)-Byzantine-resilient [24, 65] as long as (𝑛 − 1 −max{𝑐 +
2, 𝑟 + 2𝑡})/2 ≥ ℓ.

Phase Computation 𝑚 = 100𝐾 𝑚 = 300𝐾 𝑚 = 500𝐾
𝑛 = 10 𝑛 = 30 𝑛 = 50 𝑛 = 10 𝑛 = 30 𝑛 = 50 𝑛 = 10 𝑛 = 30 𝑛 = 50

Training (b-1) 16.08 16.08 16.08 48.20 48.20 48.20 80.35 80.35 80.35

Secret sharing

(c) 0.402 1.444 2.846 1.219 4.392 8.886 1.949 7.720 14.51
(d) 4.124 43.32 142.3 12.19 131.8 456.8 19.99 216.6 725.6
(e) 0.363 2.805 7.350 0.872 7.509 21.20 1.401 12.45 39.30
(f) 0.318 3.248 10.79 0.963 9.863 32.70 1.604 16.17 53.62

Secure removal and
Secure aggregation Total 0.316 2.968 9.062 0.984 9.442 27.38 1.722 15.59 46.31

Table 5.2: Summary of major computation time of share verification in BREA-SV (sec). The symbols
in the second column correspond to the symbols in Fig. 5.5 and a formula number: (b-1) is training.
(c) is computations of (c-1), (c-2) and (c-3). (d) is computations of (d-1) and (d-2). (e) is computation
of (e-1) and (e-2). (f) is checking if (5.5) holds for all received shares by each user in naive BREA.

5.4 Performance Analysis

The author measures the execution time of one round of federated learning which we call the protocol
running time. The protocol running time is defined as the time from when each user starts learning
with its local data to the time when the server finishes updating a global model. The protocol running
time is the sum of the computation time and the communication time. Since local models of users

– 62 –

Chapter 5. Fast Secure Aggregation against Dishonest Adversaries

are computed in parallel, the computation time is the sum of each user’s computation time and the
server’s computation time. In contrast, the communication time is the time for each user’s sending
and receiving shares, commitments, share distances, and aggregated shares to the server.

The protocol running time is computed by simulating each protocol behavior using the measured
values of computation time and communication time.

5.4.1 Measurement Method

Overview

The author measures federated learning time of naive BREA and BREA-SV in environments where
modern CPUs and those with a GPU device are used for users’ devices and the server, respectively,
and where broadband and mobile networks are used to accommodate the devices, in the two steps: In
the first step, the author measures computation time of time-consuming processes such as training,
share verification on a modern computer. In the second step, the author measures learning time using
simulation with changing values of the following parameters:

• 𝑛: the number of users. The number of users is a variable for evaluating the scalability of a
federated learning system.

• 𝑚: the size of vectors. For mobile applications, the author assumes using models such as
SqueezeNet [61] and MobileNetV3 [62], which range from a few hundred KB to a few MB in
size.

• 𝑒: the number of a server’s CPU cores. the author assumes that each user has one CPU core.
• 𝑎: the end-to-end throughput (bps) between each user and a server. The author assumes

the throughput is determined by the bandwidth of access networks: broadband and mobile
networks.

Computation Time Measurement

The author implements the code in C/C++ and runs the code on a Linux workstation with Intel Core
i9 19-10900X CPU (3.70GHz), NVIDIA GeForce RTX 3090 GPU, and 64GB of RAM. The author
measures the computation time of processes of BREA-SV listed in Table 5.2 for the pairs of 𝑛 and 𝑚.
Here, the author uses a simple neural network model consisting of an input layer, a hidden layer, and
an output layer, and the numbers of neurons in the three layers are 90, 𝑚/100, and 10, respectively.
In addition, each parameter in the neural network model is a 32-bit entry. The field size, 𝑝, is set as a
prime with 32 bits.

– 63 –

5.4 Performance Analysis

100K 200K 300K 400K 500K
Size of vectors

50

100

150

200

250

To
ta

l c
om

pu
ta

tio
n

tim
e(

se
c) Naive BREA

Naive BREA(2core)
Naive BREA(4core)
BREA-SV
BREA-SV(2core)
BREA-SV(4core)

Figure 5.6: Total computation time of naive BREA and BREA-SV with the increase in 𝑚.

Simulation Conditions

The author simulates the behaviors of 𝑛 users and the server, using the measurement values of
processes in both cases that the GPU device is used, and that this device is not used. Unless otherwise
specified, the default setting is that 𝑛 = 30, 𝑡 = 0.1𝑛, 𝑚 = 100𝐾, 𝑒 = 1, and the server does not use
the GPU device. The author assumes that all the users have the same computing and communication
capabilities. The author considers two access networks such that the end-to-end throughput between
each user and the server is 1Gbps and 10Mbps, which represent the bandwidths for broadband and
mobile networks, respectively.

5.4.2 Learning Time

Federated learning time is a sum of the computation time and communication time of one iteration if
it is assumed that computation and communication do not overlap. Here, one iteration means the time
from when all the users start training the shared model to when the server obtains the aggregation
result. This subsection evaluates these three types of time in a stepwise manner.

– 64 –

Chapter 5. Fast Secure Aggregation against Dishonest Adversaries

10 20 30 40 50
Number of users

20

40

60

80

100

120

140

160

To
ta

l c
om

pu
ta

tio
n

tim
e(

se
c) Naive BREA

Naive BREA(2core)
Naive BREA(4core)
BREA-SV
BREA-SV(2core)
BREA-SV(4core)

Figure 5.7: Total computation time of naive BREA and BREA-SV with the increase in 𝑛. In this
figure, the computation time is plotted for cases where the server has 1, 2, and 4 cores.

Computation Time

The author first evaluates computation time of naive BREA, 𝑇𝑐𝑜𝑚𝑝
𝑁

, and BREA-SV, 𝑇𝑐𝑜𝑚𝑝
𝑆𝑉

. As
shown in Fig. 5.6 and Fig. 5.7, the computation time increases lineally and quadratically in 𝑚 and
𝑛, respectively. This is due to the computational costs as described in section 5.2.2. Fig. 5.6 and
Fig.5.7 also show that the computation time of BREA-SV is larger than that of naive BREA. This
is because the computation of (5.5) is performed in parallel by users in naive BREA whereas all
the computation is performed by the server in BREA-SV. However, BREA-SV has an advantage in
terms of the efficiency of the computation of share verification. Specifically, the computations of
(d-1) and (d-2) are performed in parallel with model training, and the computations of (e-1) and
(e-2) are performed in parallel with the computations of (c-1) and (c-2) by each user. Based on
these observations, the author roughly models the computation time difference of naive BREA from
BREA-SV as follows:

– 65 –

5.4 Performance Analysis

100K 200K 300K 400K 500K
Size of vectors

25

50

75

100

125

150

175

200

To
ta

l c
om

m
un

ica
tio

n
tim

e(
se

c) Naive BREA (10Mbps)
Naive BREA (1Gbps)
BREA-SV(10Mbps)
BREA-SV(1Gbps)

Figure 5.8: Total communication time of naive BREA and BREA-SV with the increase in 𝑚.

𝑇
𝑐𝑜𝑚𝑝

𝑁
− 𝑇𝑐𝑜𝑚𝑝

𝑆𝑉
B (𝑇 𝑡𝑟 + 𝑇 (5.5)

𝑁
) − (max{𝑇 𝑡𝑟 ,

𝑇
(d)
𝑆𝑉

𝑒
} +max{𝑇 (𝑐) ,

𝑇
(e)
𝑆𝑉

𝑒
}), (5.6)

where 𝑇 𝑡𝑟 , 𝑇 (5.5)
𝑁

, (𝑇 (d)
𝑆𝑉
)/𝑒, 𝑇 (𝑐) , (𝑇 (e)

𝑆𝑉
)/𝑒 and are training time, the share verification time by each

user in naive BREA, the total computation time of (d-1) and (d-2) by the server in BREA-SV, the
total computation time of (c-1) and (c-2) by each user, and total computation time of (e-1) and (e-2)
by the server in BREA-SV, respectively.

Fig. 5.6 and Fig. 5.7 show that the computation time of BREA-SV decreases as the number of
CPU cores. Specifically, when the number of cores is 𝑒, the computation time decreases to 1

𝑒
.

Communication Time

The author then evaluates communication time of naive BREA, 𝑇𝑐𝑜𝑚𝑚
𝑁

, and BREA-SV, 𝑇𝑐𝑜𝑚𝑚
𝑆𝑉

. The
total communication time of naive BREA and BREA-SV increases linearly increase by the increase
in 𝑚, and increases quadratically by the increase in 𝑛, as shown in Fig. 5.8 and Fig 5.9, respectively.

– 66 –

Chapter 5. Fast Secure Aggregation against Dishonest Adversaries

10 20 30 40 50
The number of users

0

20

40

60

80

100
To

ta
l c

om
m

un
ica

tio
n

tim
e(

se
c) Naive BREA (10Mbps)

Naive BREA (1Gbps)
BREA-SV(10Mbps)
BREA-SV(1Gbps)

Figure 5.9: Total communication time of naive BREA and BREA-SV with the increase in 𝑛.

This is due to the communication costs as described in section 5.2.2. Fig. 5.8 and Fig. 5.9 also show
that 𝑇𝑐𝑜𝑚𝑚

𝑁
is always longer than 𝑇𝑐𝑜𝑚𝑚

𝑆𝑉
. This is because naive BREA always has more total traffic

volume than BREA-SV. The traffic volume difference of naive BREA from BREA-SV is (𝑛 − 1)𝑡 |w|,
and therefore, the communication time difference is defined as follows:

𝑇𝑐𝑜𝑚𝑚𝑁 − 𝑇𝑐𝑜𝑚𝑚𝑆𝑉 B
(𝑛 − 1)𝑡 |w|

𝑎
8

. (5.7)

The higher the throughput, the smaller the communication time difference.

Learning Time

1) Learning Time without a GPU device
First, the author evaluates learning times for BREA-SV and naive BREA in the case that the

server does not use a GPU device. Since learning time in naive BREA and BREA-SV is the sum
of computation time and communication time, if (𝑇𝑐𝑜𝑚𝑝

𝑁
− 𝑇𝑐𝑜𝑚𝑝

𝑆𝑉
) + (𝑇𝑐𝑜𝑚𝑚

𝑁
− 𝑇𝑐𝑜𝑚𝑚

𝑆𝑉
) < 0, naive

BREA is faster. Also, if the inequality is reversed, BREA-SV is faster.

– 67 –

5.4 Performance Analysis

1 2 3 4 5 6 7 8
Number of cores

25

50

75

100

125

150

175

Le
ar

ni
ng

 ti
m

e(
se

c)

Naive BREA (10Mbps)
Naive BREA (1Gbps)
BREA-SV(10Mbps)
BREA-SV(1Gbps)

Figure 5.10: Learning time of naive BREA and BREA-SV with the increase in 𝑒.

Once 𝑛 and 𝑚 are fixed, which is faster, naive BREA or BREA-SV, is determined by the
end-to-end throughout and the number of cores of the server. If the bandwidth is abundant and
the server has only one CPU core (𝑒 = 1), the learning time of naive BREA is faster than that of
BREA-SV. This is because 𝑇𝑐𝑜𝑚𝑝

𝑁
− 𝑇𝑐𝑜𝑚𝑝

𝑆𝑉
is a big negative value and 𝑇𝑐𝑜𝑚𝑚

𝑁
− 𝑇𝑐𝑜𝑚𝑚

𝑆𝑉
is a small

positive value. However, the bandwidth is not abundant, learning time difference of naive BREA
from BREA-SV dramatically decreases, even if 𝑒 = 1. This is because 𝑇𝑐𝑜𝑚𝑚

𝑁
− 𝑇𝑐𝑜𝑚𝑚

𝑆𝑉
is a bigger

negative value, the narrower the bandwidth. In addition, as the number of CPU cores of the server
increases, 𝑇𝑐𝑜𝑚𝑝

𝑁
− 𝑇𝑐𝑜𝑚𝑝

𝑆𝑉
dramatically decreases.

Fig. 5.10 shows the learning time of naive BREA and BREA-SV with the increase in 𝑒 in a
setting where 𝑚 = 100𝐾 and 𝑛 = 50. If 𝑒 = 1, the learning time of naive BREA is faster than that
of BREA-SV. On the other hand, if 𝑒 ≥ 2 and 𝑎 = 10M or 𝑒 ≥ 5, 𝑎 = 1G, the learning time of
BREA-SV is faster than that of naive BREA.

2) Leaning Time with multiple cores and a GPU device

Although the previous sub-section shows the BREA-SV shortens the learning time, the learning

– 68 –

Chapter 5. Fast Secure Aggregation against Dishonest Adversaries

40 80 120 160 200
Number of users

200

400

600

800

1000

1200

1400

1600
Le

ar
ni

ng
 ti

m
e(

se
c)

Naive BREA (10Mbps)
Naive BREA (1Gbps)
BREA-SV(10Mbps)
BREA-SV(1Gbps)

Figure 5.11: Learning time of naive BREA and BREA-SV with the increase in 𝑛. The server is
equipped with GPU.

time is still long for many users when the computational power of the server is not rich. For example,
it takes about 175 seconds for 𝑛 = 40, 𝑒 = 1, and 𝑎 = 10M. If the server can offload the computations
of the share verification to a GPU device, BREA-SV can significantly reduce the computation time.
This is because the GPU device can compute each user’s share in parallel, and each element of each
share (vector) in parallel.

Fig. 5.11 shows the learning time of naive BREA and BREA-SV with the increase in 𝑛 when the
server is equipped with GPU. Although the learning time for larger users, i.e., larger 𝑛 values, the
learning time of BREA-SV almost linearly increases. In the case that 𝑛 = 200 and 𝑎 = 10M, the
learning time of BREA-SV is about 100 seconds and BREA-SV is 15× faster than naive BREA. This
validates that BREA-SV has the scalability to a large number of users in mobile networks.

– 69 –

5.5 Conclusion

5.5 Conclusion

This chapter addressed the large communication complexity BREA, caused by broadcasting of
users’ commitments in the two steps. In the first step, the author clarified that the weaker resilience
is preserved due to the error-correcting capability of the Reed-Solomon decoding, when the
share verification is omitted. Thus, in the second step, the author designed BREA-SV to reduce
communication cost while preserving the same level of resilience against Byzantine attacks. BREA-
SV offloads the computation of non-private information pieces to a semi-honest server so that the
server does not obtain information about users’ training data. In addition, BREA-SV reduces the
total learning time by carefully computing multiplications of the share verification. These efforts are
successful at achieving faster learning time than BREA.

The future directions of BREA-SV are summarized below: One promising direction is reducing
the sizes of commitments by preparing commitments for aggregation of individual local models’
vectors similar to the study of Tayyebeh et al [51]. A research issue is how to prevent adversaries
from generating contaminated aggregated vectors of which commitment does not pass the share
verification. Another promising direction is adding resilience against Byzantine servers whereas
most studies assume semi-honest servers. Candidate solutions include leveraging TEE and adding
Byzantine fault tolerance to multiple servers.

– 70 –

Chapter 6

Conclusion

In this thesis, the author designed fast model aggregation protocols for Byzantine-resilient and secure
aggregation in federated learning. Although Byzantine-resilient and secure aggregation for federated
learning enhances the security of federated learning, seminal works have heavy computation and
communication costs. The author designed a secure aggregation protocol and a Byzantine-resilient
secure aggregation protocol that improve the bottlenecks of computation and communication without
compromising privacy strength and Byzantine-resilient strength. The author believes that the author’s
theoretical reduction in computation and communication costs contributes to the acceleration of
federated learning, making federated learning more feasible.

In Chapter 4, the author improves the performance of existing secure aggregation protocols.
The existing secure aggregation protocols sacrifice either computation cost or communication cost.
A naı̈ve secure aggregation protocol called SecAgg achieves low communication costs by having
users send random seeds instead of random masks. However, it requires that a server incurs a
substantial computation cost to reconstruct the random masks from the dropout users’ random seeds.
The state-of-the-art secure aggregation protocol called LightSecAgg reduces computation costs
by having users send the random masks themselves, thus avoiding the need for the server’s mask
reconstruction. However, the exchange of random masks incurs high communication costs. To
address this issue, the author designed a fast secure aggregation protocol called BalancedSecAgg,
which balances computation and communication costs by complementing SecAgg and LightSecAgg.
In BalancedSecAgg, some random masks are sent as seeds instead of the masks themselves to reduce
communication costs. Additionally, users perform some of the random mask reconstructions instead
of the server, thereby reducing the server’s computation cost.

In Chapter 5, the author improves the performance of an existing Byzantine-resilient secure

– 71 –

Chapter 6. Conclusion

aggregation protocol. The existing secure aggregation protocol called BREA requires a high
communication cost duto to the exchange of commitments for share verification. In BREA, users
broadcast commitments to each other to verify shares mutually. To address this issue, the author
offloaded share verification to the server, reducing the number of commitment transfers and,
consequently, the communication costs. Additionally, to handle the increased computation costs
resulting from the server performing centralized share verification, they designed a share verification
algorithm that reduces the number of multiplications.

Future directions for improving performance are as follows. The first is to design a method to
reduce the communication cost of share exchange while maintaining security for Byzantine-resistant
secure aggregation. Many studies adopt the model-split approach explained in the Related Work
section, which reduces the size of each share at the cost of limiting the number of allowable
semi-honest users, dropout users, and Byzantine users. To address this issue, the author may
modify Shamir’s secret sharing algorithm to generate some shares as random masks, similar to
BalancedSecAgg. Specifically, for 𝑡 semi-honest users, each user 1) generates 𝑡 random masks, 2)
generates a polynomial of degree 𝑡 + 1 through Lagrange polynomial using these random masks
and its local model, and 3) generates the remaining 𝑛 − (𝑡 + 1) shares by evaluating the polynomial,
where 𝑛 is the number of all users. The shares generated by this share generation maintain the
same security as those generated by Shamir’s secret sharing. Additionally, each user can send
random masks as random seeds, reducing the communication cost of share exchange. The second
is to focus on optimizations in implementation. Processes that compute independently for each
element of a vector like a model or share, and processes that compute independently for each user’s
vector, might be optimized using parallel computing technology. Examples of the former include the
generation of shares from local models by each user in BREA-SV, and the latter includes the server’s
share verification. Parallelizing these cryptographic processes using SIMD instructions may reduce
computation time significantly. The author believes that federated learning can be further applied to
real-world scenarios.

– 72 –

Bibliography

[1] T. Wuest, D. Weimer, C. Irgens, and K.-D. Thoben, “Machine learning in manufacturing:
advantages, challenges, and applications,” Production & Manufacturing Research, vol. 4, no. 1,
pp. 23–45, 2016.

[2] B. Li, P. Qi, B. Liu, S. Di, J. Liu, J. Pei, J. Yi, and B. Zhou, “Trustworthy ai: From principles to
practices,” ACM Computing Surveys, vol. 55, no. 9, pp. 1–46, 2023.

[3] L. Caruccio, D. Desiato, G. Polese, G. Tortora, and N. Zannone, “A decision-support framework
for data anonymization with application to machine learning processes,” Information Sciences,
vol. 613, pp. 1–32, 2022.

[4] N. Ponomareva, H. Hazimeh, A. Kurakin, Z. Xu, C. Denison, H. B. McMahan, S. Vassilvitskii,
S. Chien, and A. G. Thakurta, “How to dp-fy ml: A practical guide to machine learning with
differential privacy,” Journal of Artificial Intelligence Research, vol. 77, pp. 1113–1201, 2023.

[5] P. Kairouz, S. Oh, and P. Viswanath, “Extremal mechanisms for local differential privacy,”
Advances in neural information processing systems, vol. 27, 2014.

[6] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-preserving machine
learning,” in 2017 IEEE symposium on security and privacy (SP), pp. 19–38, IEEE, 2017.

[7] J. So, B. Guler, and S. Avestimehr, “A scalable approach for privacy-preserving collaborative
machine learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 8054–8066,
2020.

[8] Z. Gu, H. Jamjoom, D. Su, H. Huang, J. Zhang, T. Ma, D. Pendarakis, and I. Molloy, “Reaching
data confidentiality and model accountability on the caltrain,” in 2019 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pp. 336–348, IEEE,
2019.

– 73 –

BIBLIOGRAPHY

[9] R. Kunkel, D. L. Quoc, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer, “Tensorscone: A
secure tensorflow framework using intel sgx,” arXiv preprint arXiv:1902.04413, 2019.

[10] F. Tramer and D. Boneh, “Slalom: Fast, verifiable and private execution of neural networks in
trusted hardware,” arXiv preprint arXiv:1806.03287, 2018.

[11] V. Costan and S. Devadas, “Intel sgx explained,” Cryptology ePrint Archive, 2016.

[12] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue, and U. R.
Savagaonkar, “Innovative instructions and software model for isolated execution.,” Hasp@ isca,
vol. 10, no. 1, 2013.

[13] S. Gueron, “A memory encryption engine suitable for general purpose processors,” Cryptology
ePrint Archive, 2016.

[14] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R. Sadeghi, “Software
grand exposure:{SGX} cache attacks are practical,” in 11th USENIX workshop on offensive
technologies (WOOT 17), 2017.

[15] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on intel sgx,” in Proceedings
of the 10th European Workshop on Systems Security, pp. 1–6, 2017.

[16] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang, and C. A. Gunter,
“Leaky cauldron on the dark land: Understanding memory side-channel hazards in sgx,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 2421–2434, 2017.

[17] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and applications,”
ACM Trans. Intell. Syst. Technol., Jan. 2019.

[18] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated optimization: Distributed
machine learning for on-device intelligence,” arXiv preprint arXiv:1610.02527, 2016.

[19] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit confidence
information and basic countermeasures,” in Proceedings of ACM CCS, 2015.

[20] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond inferring class
representatives: User-level privacy leakage from federated learning,” in Proceedings of IEEE
INFOCOM, 2019.

– 74 –

BIBLIOGRAPHY

[21] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances in neural information
processing systems, vol. 32, 2019.

[22] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting gradients-how easy is it
to break privacy in federated learning?,” Advances in neural information processing systems,
vol. 33, pp. 16937–16947, 2020.

[23] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative adversarial nets,” Advances in neural information processing systems,
vol. 27, 2014.

[24] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine learning with adversaries:
Byzantine tolerant gradient descent,” Advances in neural information processing systems, vol. 30,
2017.

[25] J. So, B. Güler, and A. S. Avestimehr, “Byzantine-resilient secure federated learning,” IEEE
Journal on Selected Areas in Communications, vol. 39, no. 7, pp. 2168–2181, 2020.

[26] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to backdoor federated
learning,” in International conference on artificial intelligence and statistics, pp. 2938–2948,
PMLR, 2020.

[27] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ramage, and F. Beaufays,
“Applied federated learning: Improving google keyboard query suggestions,” arXiv preprint
arXiv:1812.02903, 2018.

[28] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage,
A. Segal, and K. Seth, “Practical secure aggregation for federated learning on user-held data,”
arXiv preprint arXiv:1611.04482, 2016.

[29] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage,
A. Segal, and K. Seth, “Practical secure aggregation for privacy-preserving machine learning,”
in proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1175–1191, 2017.

[30] H. Masuda, K. Kita, Y. Koizumi, J. Takemasa, and T. Hasegawa, “Model fragmentation, shuffle
and aggregation to mitigate model inversion in federated learning,” in 2021 IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN), pp. 1–6, IEEE, 2021.

– 75 –

BIBLIOGRAPHY

[31] Y. Zhao and H. Sun, “Information theoretic secure aggregation with user dropouts,” IEEE
Transactions on Information Theory, vol. 68, no. 11, pp. 7471–7484, 2022.

[32] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova, “Secure single-server
aggregation with (poly) logarithmic overhead,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1253–1269, 2020.

[33] J. So, B. Güler, and A. S. Avestimehr, “Turbo-aggregate: Breaking the quadratic aggregation
barrier in secure federated learning,” IEEE Journal on Selected Areas in Information Theory,
vol. 2, no. 1, pp. 479–489, 2021.

[34] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “Verifynet: Secure and verifiable federated learning,”
IEEE Transactions on Information Forensics and Security, vol. 15, pp. 911–926, 2019.

[35] X. Guo, Z. Liu, J. Li, J. Gao, B. Hou, C. Dong, and T. Baker, “V eri fl: Communication-efficient
and fast verifiable aggregation for federated learning,” IEEE Transactions on Information
Forensics and Security, vol. 16, pp. 1736–1751, 2020.

[36] I. Ergun, H. U. Sami, and B. Guler, “Sparsified secure aggregation for privacy-preserving
federated learning,” arXiv preprint arXiv:2112.12872, 2021.

[37] S. Kadhe, N. Rajaraman, O. O. Koyluoglu, and K. Ramchandran, “Fastsecagg: Scalable secure
aggregation for privacy-preserving federated learning,” arXiv preprint arXiv:2009.11248, 2020.

[38] B. Choi, J.-y. Sohn, D.-J. Han, and J. Moon, “Communication-computation efficient secure
aggregation for federated learning,” arXiv preprint arXiv:2012.05433, 2020.

[39] R. Schlegel, S. Kumar, E. Rosnes, and A. G. i Amat, “Codedpaddedfl and codedsecagg:
Straggler mitigation and secure aggregation in federated learning,” IEEE Transactions on
Communications, 2023.

[40] Y. Ma, J. Woods, S. Angel, A. Polychroniadou, and T. Rabin, “Flamingo: Multi-round
single-server secure aggregation with applications to private federated learning,” in 2023 IEEE
Symposium on Security and Privacy (SP), pp. 477–496, IEEE, 2023.

[41] K. Cui, X. Feng, L. Wang, H. Wu, X. Zhang, and B. Düdder, “Chu-ko-nu: A reliable, efficient,
and anonymously authentication-enabled realization for multi-round secure aggregation in
federated learning,” arXiv preprint arXiv:2402.15111, 2024.

– 76 –

BIBLIOGRAPHY

[42] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11, pp. 612–613,
1979.

[43] A. Roy Chowdhury, C. Guo, S. Jha, and L. van der Maaten, “Eiffel: Ensuring integrity for
federated learning,” in Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2535–2549, 2022.

[44] P. Feldman, “A practical scheme for non-interactive verifiable secret sharing,” in 28th Annual
Symposium on Foundations of Computer Science (sfcs 1987), pp. 427–438, IEEE, 1987.

[45] S. Gao, “A new algorithm for decoding reed-solomon codes,” in Communications, information
and network security, pp. 55–68, Springer, 2003.

[46] E. van Kempen, Q. Li, G. A. Marson, and C. Soriente, “Lisa: Lightweight single-server secure
aggregation with a public source of randomness,” arXiv preprint arXiv:2308.02208, 2023.

[47] J. So, C. He, C.-S. Yang, S. Li, Q. Yu, R. E Ali, B. Guler, and S. Avestimehr, “Lightsecagg: a
lightweight and versatile design for secure aggregation in federated learning,” Proceedings of
Machine Learning and Systems, vol. 4, pp. 694–720, 2022.

[48] T. Jahani-Nezhad, M. A. Maddah-Ali, S. Li, and G. Caire, “Swiftagg: Communication-
efficient and dropout-resistant secure aggregation for federated learning with worst-case security
guarantees,” in 2022 IEEE International Symposium on Information Theory (ISIT), pp. 103–108,
IEEE, 2022.

[49] T. Jahani-Nezhad, M. A. Maddah-Ali, S. Li, and G. Caire, “Swiftagg+: Achieving asymptotically
optimal communication loads in secure aggregation for federated learning,” IEEE Journal on
Selected Areas in Communications, vol. 41, no. 4, pp. 977–989, 2023.

[50] H. Lycklama, L. Burkhalter, A. Viand, N. Küchler, and A. Hithnawi, “Rofl: Robustness of
secure federated learning,” in 2023 IEEE Symposium on Security and Privacy (SP), pp. 453–476,
IEEE, 2023.

[51] T. Jahani-Nezhad, M. A. Maddah-Ali, and G. Caire, “Byzantine-resistant secure aggregation
for federated learning based on coded computing and vector commitment,” arXiv e-prints,
pp. arXiv–2302, 2023.

– 77 –

BIBLIOGRAPHY

[52] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A. Avestimehr, “Lagrange coded
computing: Optimal design for resiliency, security, and privacy,” in The 22nd International
Conference on Artificial Intelligence and Statistics, pp. 1215–1225, PMLR, 2019.

[53] R. J. McEliece and D. V. Sarwate, “On sharing secrets and reed-solomon codes,” Communica-
tions of the ACM, vol. 24, no. 9, pp. 583–584, 1981.

[54] D. J. C. Shu Lin, Error control coding: fundamentals and applications. Pearson/Prentice Hall,
2004.

[55] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage,
A. Segal, and K. Seth, “Practical secure aggregation for privacy-preserving machine learning,”
in Proceedings of ACM CCS, 2017.

[56] W. Diffe, “New direction in cryptography,” IEEE Trans. Information. Theory, vol. 22, pp. 472–
492, 1976.

[57] M. Blum and S. Micali, “How to generate cryptographically strong sequences of pseudo random
bits,” in Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and
Silvio Micali, pp. 227–240, 2019.

[58] A. C. Yao, “Theory and application of trapdoor functions,” in 23rd Annual Symposium on
Foundations of Computer Science (SFCS 1982), pp. 80–91, IEEE, 1982.

[59] M. Bellare and C. Namprempre, “Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm,” in International Conference on the Theory and
Application of Cryptology and Information Security, pp. 531–545, Springer, 2000.

[60] J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A library in c/c++ facilitating erasure
coding for storage applications-version 1.2,” University of Tennessee, Tech. Rep. CS-08-627,
vol. 23, 2008.

[61] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size,” arXiv preprint
arXiv:1602.07360, 2016.

[62] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang,
V. Vasudevan, et al., “Searching for mobilenetv3,” in Proceedings of the IEEE/CVF international
conference on computer vision, pp. 1314–1324, 2019.

– 78 –

BIBLIOGRAPHY

[63] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon,
J. Konečnỳ, S. Mazzocchi, B. McMahan, et al., “Towards federated learning at scale: System
design,” Proceedings of machine learning and systems, vol. 1, pp. 374–388, 2019.

[64] D. Minovski, N. Ögren, K. Mitra, and C. Åhlund, “Throughput prediction using machine
learning in lte and 5g networks,” IEEE Transactions on Mobile Computing, vol. 22, no. 3,
pp. 1825–1840, 2021.

[65] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, “Byzantine-tolerant machine
learning,” arXiv preprint arXiv:1703.02757, 2017.

– 79 –

