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On se place dans un modéle non standard de l’analyse. On utilisera le
vocabulaire et les notations de la théorie IST de Nelson tels qu’ils sont présentés
dans le livre [1] de F. Diener et G. Reeb. Le vocabulaire introduit dans la
définition 1 est 4 rapprocher de celui utilisé par M. Oberguggenberger dans [6] et
K. D. Stroyan dans [8].

Les notations 0 ensemble des fonctions C* & support compact, £’ dual
topologique de O, & ensemble des fonctions C*, &’ dual topologique de &, J
ensemble des fonctions C* qui pour tout entier p >0 tendent vers 0 ainsi que toutes
leurs dérivées plus vite que [x|? lorsque ||x|| tend vers +°, " le dual topologique
de & sont les notations habituellement utilisées dans la théorie des distributions ;
voir par exemple Schwartz [7].

1. Notations

Soit # un entier naturel standard. On note (e, ez, ***, en) la base canonique
n

de R”. Soit un élément x=(x1, xz, ***, x»)E R", sa norme 21|sz est notée |x|; sa
=

n
norme euclidienne ,/ ._lx? est notée ||x|. Pour tout réel positif &, on pose (|x|<k)
={xER"||x|<k} et (|x|<k)={xER"||x|<k}. Soit f: R*——C une applica-
n
tion interne et @=(a1, @, ***, @») un multi-entier ; on note Ia/lzgla,- (longueur de

aalaaz,_.aan
. . a P . . - 1 ge : )
a) ; la notation 0°f désigne, (si elle existe), la dérivée ——“‘ax{naxzazmaxg,,f

On considére :

T . 1
Un entier illimité pair @ et on pose e="

n
Le réseau de maille €: L={Z}1xieei|xiEZ}, et la partie hyperfinie
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n J—
X={x€L|x=§‘,1xieei et —g‘igex&%, Viell, 2, -, nl)
On remarque que X s’identifie naturellement au groupe fini (Z/w?Z)" et que Card
X=w?". Lensemble R(X)={f: X—— C|f est interne} ; on prolonge les fonc-
tions de R(X) a L par périodicité.
Soit f€R(x). Pour i€{1, 2, -+, n}, on pose:

Disf(x)= f(x+seei)—f(x) et Do f(x)= f(x)—féx—eei)'

On voit que Di—f(x)=D..f(x—ee:).
Lorsqu’il n’y aura pas de risque de confusion, on notera plus simplement D;f au
lieu de D:+f. Par récurrence, on définit pour tout entier j,

Di*'f(x)=D«Dif(x)) (resp. Di*'f(x)=D;(Di_f(x))).

Il est facile de voir que pour tous entiers naturels Z, 7, on a: D;oD;=D;°D; (resp.
D;_°oD;-=D;_°D;_), de sorte que la différence successive D;+°Dy1°+°Dyt ne
dépend pas de ’ordre des entiers 71, 22, ***, in de l'intervalle {1, 2, ..., #} ; pour tout
multi-entier @=(a1, @, ***, @»), on pourra donc définir D*f(x)=Df{'o D§?c-+-0 D3"
(resp. D&=D{to Dg?o---0 Di*). Les applications f ——D®f et f —— DZf sont des
endomorphismes de R(x). Lorsque g est une application interne de R" dans C,
pour tout multi-entier @, on &écrira D au lieu de D*(gix).

Pour tout réel positif % et tout #-entier @, on pose |D*f|,=max{|D*f(x)|||x|
<k}.

Régle de différentiation d’un produit.
Soient f et g deux fonctions de R(X); pour tout 7E(1, 2, -, n}, on a:

D{f+g9)=f+Dig+g-D:f +€eD:if+Dyg.

DEFINITION 1. Pour toute fonction f€ R(X), on dira.que
(1) f est a support limité lorsque I¥AE N, |x|>k==f(x)=0.
(2) f est a différences limitées lorsque VA= N, V'a&N".|D*f|s est limité.
(3) f est a différences infinitésimales lorsque V¥2EN, Ve N", |D*f|.~0.
(4) f est une fonction de Schwartz lorsque V°*2EN” V*peEN, (1
+|x|?)?Df(x) est limité sur X.
(4) f est une fonction de Schwartz infinitésimal lorsque V¥ aEN", V*pEN,
VxeX, 1+|x|)?Df(x)~0.

DEFINITION 2. On dit qu’une application fE R(X) est:

une fonction-test limitée lorsqu’elle satisfait les conditions (1) et (2).

une fonction-test infinité€simale lorsqu’elle satisfait les conditions (1) et (3).
On notera :
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D Tl’ensemble des fonction-test limitées.
I Tl’ensemble des fonction-test infinitésimales.
E  T’ensemble des fonctions a différences limitées.
S I’ensemble des fonctions de Schwartz.
J lensemble des fonctions de Schwartz infinitésimales.
Pour f, g€ R(X), on &crira f ~p g pour dire que f—g&<1 et f~5 g pour dire
que f—g€/J. On a les inclusions /CDCSCECR(X) et ICJCS.
Remarquons que dans la définition d’une fonction-test limitée (resp.
infinité€simale) ou d’une fonction de Schwartz, on peut remplacer D°f par DZf.
D’autre part, I’ensemble des fonctions de Schwartz n’est autre que S={fEE|V *a
eN", VSpEN, |x||PD?f est limité sur X7}.
Formule de Leibniz. Soient f, gEF (resp. f, g€ S); pour tout multi-entier
standard @ et pour tout x€X limité, (resp. pour tout xX) on a la régle de
Leibniz a un infinitésimal prés:

5) D(fg)(x)~ 2 (g)Dﬁf(x)-D“-ﬂg(x).
0<B<a
Pour prouver ce résultat, on vérifie par récurrence sur |@| que
(59 DU (f-g)x)~ = (g)D”f(x)-D"“’g(x)JrsP.
0<p<a

ol P est un polynome standard a coefficients entiers des (2'*'*')?+1 variables
internes € et D?f(x)-D? g(x) o 0<|B|<]|al et 0<|8|<]el.

Lemme 1. Soit g une fonction standard, on a les assertions suivantes :
(i) Si gE8& alors gxEE, de plus pour tout multi-entier a standard et tout x<
X limité, on a D%(x)~ d%g(x).
(ii) Si g€ S alors gxES, de plus pour tout multi-entier  standard, tout entier
p standard et tout x€ X, on a |x|?D%(x)~|x|?0%g(x).
(iii) Si g€ D alors gx<E D, de plus pour tout multi-entier @ standard et tout x
€ X, on a D%g(x)~d%(x).

Démonstration. Il suffit de montrer le résultat pour g a valeurs réelles.
En appliquant # fois la formule de Taylor avec reste de Lagrange, on montre que
pour tout XX on a

3(3:1;1 aié:z : ai;ng(x+e(6lel+ezez+"'+Hnen))

(6)  Df*eDf*e--oDyrg(x)=

avec 6:<(0, a:).
(i) En utilisant la continuité de 9°g, on obtient |[D%g(x)—3%g(x)|~0 pour
tout x limité.
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(ii) La fonction standard |x[?d°g est continue sur R” et tend vers 0 a I'infini,
elle donc uniformément continue sur R”, on en déduit que ||x[?D%(x)
—|x[1?8%g(x)|~0 pour tout xE X.

(iii) Si x n’est pas dans le support de g, on a gix(x)=0 donc gix est & support
limité. En utilisant (i) on a |D%g(x)—a°g(x)|~0 pour tout x limité. Si x est
illimité, on a D%(x)=0%g(x)=0.

Lemme 2. Soit fER(X). Pour tout i€l on a fEDf+iED. Pour
tout j€J, on a fES=Ff+;ES. Pour toute fonction i€ R(X) a différences
infinitésimales, on a fEE<f+i€E.

Evident...

Lemme 3. Soit g une fonction standard de . Pour tout multi-entier
standard a, D°g est une fonction-test limitée et D®gx ~ pd°g.

Démonstration. Daprés le lemme 1, (0°9) xED. Pour tout x< X, posons (x)
=D"g(x)—0°g(x) ; la fonction 7 est a support limité. Considérons un multi-entier
standard S et un élément x limité de X. On a:

D?i(x)=D*(D%g(x))— D?(3°g9(x))
=(D**g(x)— 0" **g(x)) +(9***g(x) — D9%g(x))

Or d’aprés le lemme 1 appliqué a g, on a (D**%g(x)—3°*“g(x))~0; en appliquant
ce méme lemme a 0%, on a (8°*%g(x)—D?3°g(x))~0. Ainsi /€I ; en appliquant
le lemme 2, on obtient le résultat.

Proposition 1. Soit f €R(X). Une condition nécéssaire et suffisante pour
que f soit une fonction-test limitée est qu’il existe gE D telle que gix ~ of.

Démonstration. La suffisance provient de I’assertion (iii) du lemme 1.

Etudions la réciproque. Donnons nous une fonction test limitée f et choisis-
sons I’entier standard % pour que |x|=%—1==7(x)=0. Pour tout multi-entier
standard @, la fonction D%f est interne et limitée, donc il existe des constantes
standard co, ¢1, ***, Cm, *** telles que pour tout entier standard 7 et tout multi-entier
a, si |a|<m, alors pour tout x£ X, on a |DF(x)|<cn.

Commencons par vérifier les deux lemmes suivants :
Lemme 4. Soit h€ R(X). On suppose qu'il existe un réel c tel que pour tout

i€(1, 2, -, n} et tout xX, on a |D:i(x)|<c, alors h est c-Lipschitzienne pour
la norme | - |.
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Démonstration.
Pour tout x€ X et tout :E{1, 2, ..., #n}, on a
|/ (x+ee:)— F(x)|=|eDif (x)|=|x +ee:—x

D.f(x)|<clx+ee:—x|.

Considérons deux €léments x et ¥ de X ; en allant de x 3 ¥ en suivant un
chemin parall€le aux axes de coordonnées, on voit qu’il existe un chemin

X =Xo, X1, **°y Xjy Xj+1, **°5 Xp=Y

tel que
=1
xin—x;=Feei et |[y—x|= 26|xz‘+1"‘xi
£
donc

)= F =1 Z fGxs) = F )| < B FGes) = £ )|

p-1
sjg)clxi+1—xf|=c|y—xl.

Lemme 5. Considérons une fonction-test fED et une fonction standard g :
R™—— C continue. Si pour tout x<X, on a f(x)~g(x), alors pour tout i<
{1,2,..., n}, et tout x€X, 0:9(x) existe et 0:9(x)~ D:f(x).

Démonstration. Supposons pour fixer les idées que 7=1. Puisque la fonction
D:f appartient & D, elle satisfait les hypothéses du lemme 4, elle est donc S-
continue ; on en déduit qu’il existe une fonction standard % continue telle que
pour tout x€ X limité, on a Dif(X)~ h(x). De plus, Dif étant a support limitg,
h est 3 support compact d’odl pour tout x=(x1, Xz, ***, )= X limité la relation :

X1 X1/e
[ W(t, %2, -, xn)dt ~ ._:z.:z/zeh(je, Xz, ) %n)

x1/€

~ 3 /zeD,-f(je, X2, ***, Xn)

j=~w?

=f(x)~g(x).

En conséquence, 019 existe, de plus comme % et 01g sont des fonctions standards on
a 61g= h.

Fin la démonstration de la proposition 1:

Puisque fE D, on peut lui appliquer le lemme 4, on en déduit qu’il existe une
fonction standard ¢ continue telle que VxE X, g(x)~ f(x). En utilisant le lemme
5, on vérifie par une récurrence évidente sur |@| que pour tout multi-entier standard
@, 0°g existe et 0°g(x)~ D*f(x) pour tout xE X.

Corollaire 1. Soit fER(X), on a les équivalences :
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(7) fEE=3%geé, VacN" VxcX, x limitée ==D"f(x)~ 3°g(x).

(7/) fESﬁHSthJ, \v/staeNﬂ’ vstpeN
VxEX, (1+[x[?)?D%f (x) ~ 1 +2[*)*0%g(x).

De plus, pour le couple (f, g) donné par (7), on a:

(8) fES—(EJ et
VEpEN, V*aeN", VxEX, (1+]x[*)*D?f(x)~(1+]x[*)*9°g(x)).

(8) fED=(9ED et V*aEN", VxE X, D*(x)~3%(x)).

Démonstration. (7) <= provient des lemmes 1, 2 et 3.

(7) =. Considérons f€E. Donnons nous un entier standard £>0 et 0, E
D qui vaut 1 sur XN(|x|<£k) (On obtient une telle fonction-test limitée o en
prenant la restriction 3 X d’une fonction-test standard &L égale a3 1 sur un
voisinage du compact (lx|<k)). D’aprés la formule de Liebniz, forE D, donc il
existe une unique fonction standard gx telle que gex ~pfOr. Soit x un €lément
standard de R”. on pose g(x)=Ila valeur commune des gx(x) lorsque xE(x <k).
La fonction ¢ ainsi définie est C*; elle répond a la question.

(8") est &vident car f et g sont nuls en dehors d’une partie limitée de R".

(8). Considérons une fonction fE E, la fonction standard g associée a f par
la relation (7), un entier standard p et un multi-entier standard @ ; la condition (1
+|x)?D*f (x) ~ (14| x[*)?0%g(x) est satisfaite pour x limité. D’aprés le pricipe de
permanence, il existe un entier % illimité tel que pour x& X on a I'implication |x|
<k==(1+|x[?)*D*f(x)~(1+|x[*)?0°9(x). Supposons que fE S, pour tout xE
X illimité, on a:

L+ 12D () =+ [ ) D9 () (T +1x||2)

ainsi, (1+]x]*)?D*f(x)~0 comme quotient d’un nombre limité par un nombre

illimité. En conséquence (1+|x[*)?9%g(x)~0 pour tout x< R” illimité de norme

inférieure a £, comme g est standard, on en déduit que |'li”m 1+ |x|*)*o%g(x)=0,
X|| =00

ainsi g€ 4.

(7)==Si g= $ alors le lemme 1 assure que pour tout x& X on a (1+|x|?)?
D%(x)~(1+|x[*)?0%(x). Cette dernigre expression est limitée pour tout xE R”,
donc (1+|x[?)?D*f(x) est limité sur X.

(7y=—=.Soit fES; en utilisant (8), on voit qu’il existe gE 4 qui satisfait
A+ |xI)*D*f(x) ~ (1 +|x[*>)?0%g(x) pour x limité. Comme les deux nombres
A+xIP)?D*f(x) et (1+]lx[*)?0%(x) sont infinitésimaux pour x illimité, on a
€tabli le résultat.
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2. Représentation des distributions standards

Forme bilinéaire <{f, g>: formes linéaires Il;, P;. Soient f et ¢ deux
éléments de R(X), on pose <f, ¢>=2xexe"f(x)@(x). 1l est clair que ’application
(f, ) —<f, ¢> est une forme bilinéaire non dégénérée.

En conséquence, ’application interne

II;: R(X)—C
g —Xf, @
est linéaire. De plus , pour toute application lin&aire interne /7 : R(X) ——C, il

existe une unique fER(X) telle que II=1I;; (en effet, 'espace R(X) est de
dimension hyperfinie.)

DEFINITION 4. On dit qu’une application lingaire /7: R(X) ——C (resp.
I'unique € R(X) telle que IT=1Iy) est une distribution limitée lorsque pour toute
fonction-test limitée @<= D, le nombre I1(¢p)=1II;(¢) est limité. On notera D’
I’ensemble des distributions limitées.

Proposition 2. Soit fER(X); les assertions suivantes sont équivalentes:
(i) f est une distribution limitée.
(ii) Ve&l, II:(p)~0.

Démonstration. (i)==(ii). Soit &I, considérons un entier standard % tel
que ¢(x)=0 pour |x|=%—1; alors

VSaEN", 3 c.ER-, tel que ca~0 et |D@|< co.
Le principe de permanence assure 1’existence d’un infinitésimal ¢ >0 tel que pour
tont multi-entier standard @ on a |D%p|x<c. La fontion ¢=% est une fonction-

test limitée (plus précisément |D?¢|.<1), ainsi I1,(¢) est limité, par linéarité, on en
déduit que IT,(¢)=cll;(¢) est infinitésimal.
(1)&=(ii) Si ¢ est une fonction test limitée pour laquelle le nombre complexe

c=1II(¢) est illimité, la fonction p="""est infinitésimale bien que /7(¢)=1.

Corollaire 3. L’unique fonction standard Py définie sur les fonctions stan-
dards de D par la relation Vo= PA@)="II,(px) est une distribution
standard. De plus soit ¢ED et ¢ l'unique fonction standard de D telle que ¢
— €L on a PHp)~I1($)=<f, .

Démonstration. Commengons par montrer le résultat suivant :
Soient fED’, k un entier standard et n un réel standard strictement positif ;
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il existe un entier standard q et un réel standard v strictement positif tel que
pour toute =D a support dans (|x|<k) on a: (pour tout aEN", |a|<q et
|D*pla<vy==|<f 0>|<n.

Si ce résultat est faux, ’ensemble A={q€N|VaEN”, la| < == 3J pe R(X),

supp(@)C X N(|x|<k), ID“¢|k<% et [<f, @>|= 7)} est une partie interne de N qui

contient tous les entiers ¢ standards ; L’ensemble /1 contient un élément go illimité.
A qo est associé une fonction @1 telle que |[<f, @o>|=7%; ce qui contredit la
proposition 2.

Considérons un réel standard 7 >0 et un compact standard K de R”; soit &
un entier standard tel que K C(|x|<k). Pour toute fonction ¢ =D, posons = ¢ix,
@€ D et pour tout @, on a D%¢p(x)~ 0*p(x). On applique a ¢ le résultat précédent :
Il existe un entier standard ¢ et un réel standard v strictement positif tel que pour
tout aEN", |a|<q et sup{|d°¢|lx€K}<v impliquent Pr(¢)="|<f, o>|<7. Ce
qu’il fallait démontrer.

ExXeEMPLE 1. Exposé dans le cas #=1 par Kinoshita.
Soit g est une fonction standard continue, on pose f=gyx, alors Ps est la

distribution ¢ '——>/mgqoa’x traditionnellement identifiée 4 g (voir (4] Theorem 6

p. 819).

Plus généralement, si g€ Lioc et si FER(X) est une fonction localement
S-intégrable (c’est a dire que V¥REN, X, -p€"|7| est limité) qui est un releve-
ment de g, alors Ps est la distribution standard ¢ '—>/Rng¢dx (voir [4] Theorem

4 p. 815).

Proposition 3. Soit fER(X); les trois assertions suivantes sont
équivalentes :

(i) VSEEN, V%= N" ImeN, |D*f|p<e™™
(ii) VSREN, 3meEN, |flo<e™

(i) VkEEN, 3%meN, (Ilzsk)e"”"lj(x)I est limite.

Démonstration. (i)}==(ii) est évident.
Pour montrer (ii)==(i), on raisonne par récurrence sur l’entier p=|a|. Pour p=
0, c’est (ii) ; supposons le résultat démontré a l'ordre p et choisissons un entier
standard m tel que |a|=p==|Df|s1<e ™. Soit xE(|x|<k)NX et LEN" qui
satisfait |B]|=p+1; il existe i€{1, 2, ***, n} tel que
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\DF()| = | Dio Do ()| =| RL Gt ged — D (%) {

l €
< Df(x+eei)| +| D (x)|
&
2e™™
&

=26—(m+1)£€—(m+2)
(il)==(iii). Si |f|x<e& ™, on a en notant A la mesure de Lebesgue de R":

Z e @< e~ Alx e RIxl< k).

(iii)==(ii). Si pour tout entier standard , il existe x0E(|x|< k)N X pour lequel
p

I£(x0)| > e~ alors Duewn ™ F(2)| = ™| F(x0)| = ™ ™" donc Dwi<n

™" f(x)| ne saurait étre limitg.

DEFINITION 6. On dit qu’une fonction fE R(X) est une fonction généralisée
forsqu’elle satisfait I'une des trois conditions &quivalentes de la proposition 3. On
notera Z(X) ’ensemble des fonctions généralisées définies sur X.

Théoréme 1. L'ensemble (externe) Z(X) des fonctions généralisées est une
algébre commutative sur l'anneau commutatif (externe) E, il est stable par les
différences D° pour tout multi-entier a standard.

Démonstration. La stabilité du produit provient de la caractérisation (ii),
comme ECZ(X), la multiplication par un &lément de E est bien une application
de EXZ(X) dans Z(X). La stablilité par différence provient de la caractérisation
().

Proposition 4. Soit fER(X), si f est une distribution limitée, c'est une
fonction généralisée.

Démonstration. Si f n’est pas une fonction généralisée, il existe un entier &
standard tel que pour tout entier standard #, on a |f [e>e™™.
L’ensemble A={mEN|Ix=(x|<k)NX, |f(x)|>e ™} est une partie interne de
N qui contient tous les entiers limités ; il existe donc un entier illimité 7 et un
glément xE(|x|<£)NX tel que |f(x)]>&™ On considére la fonction-test ¢
définie par:

0 sit=*x
™ sit=x.

o(1)=|

On voit que <1 bien que [<f, ¢>|=1.
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Proposition 5. Soit /, ¢ R(X), on a les assertions suivantes :

(i) VyeX, T fx+y)elx)=Z f(x)e(x—y).
(i) VaeN" (Dif o>=(—1)""Kf D2gp>.

Démonstration. (i) est un calcul classique d’analyse harmonique sur un
groupe fini ; (formule 2.1 p. 17 [3]).

(ii) est un simple calcul par récurrence sur |e|. Si |a|=0, cest &vident.
Supposons le résultat vrai pour a et posons S=a+e;; alors en écrivant 2} a la
place de xgx ona:

(DPf, o>=<{D:° D", @>
S Df(x+ eeé-)—D"f(x) o(x)
=21e""'D (x +eer) p(x)— 2" ' D (x) p(x)
=21e""'D%(x)p(x —ee:) p(x) — X" ' D (x) p(x)
— "D (%) p(x— ee;) —o(x)
=—<D(x), Di-p>
=—(—=1)'Kf, D*D;_¢>
=(—1)"*<f, D?o>.

Corollaire 4. Si f est une distribution limitée, alors pour tout multi-entier
standard @, D°f est une distribution limitée.

Proposition 6. (due a Kinoshita dans le cas #=1) Soit f une distribution
limitée, pour toute fonction standard ¢ D, on a: Ppas($)=(—1)'"'"P(3°¢). En
d’autres termes, les distributions standards Pp«s et 0°Py (dérivée au sens distribu-
tions) sont égales.

Démonstration. Soit ¢=¢x; d’aprés le lemme 3, pour tout muli-entier
standard @, on a D¢ ~p(3°¢)ix. En conséquence, on a:

Poes(¢) ~ Ipes(9)=<D°f, @>
=(=1)""f, D°p>
~(=1)Kf, (0°¢)x>
~(=1D)"Ps((3%9)).

Théoréme 2. Pour toute distribution T standard & support compact, il existe
une distribution limitée f telle que T =P

Démonstration. Soit K=supp 7 le support de T ; le théoréme de Schwartz
(Voir [7] Théoréme XXI chap. III n°6) nous affirme qu’il existe une fonction
standard continue g et un multi-entier standard « tels que 7 =0%g (dérivée au sens
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distributions). On définit la fonction f par la relation: VxEX, f(x)=
D?(gix(x)). Puisque g est continue, gix est une distribution limitée. D’aprés
I’exemple 1, on a ’egalité (au sens distributions) Py ,=g ; d’aprés la proposition 6,
on a Pr=Ppeg=0°Py,=0°=7T. Comme la fonction gx est une distribution
limitée, f est aussi une distribution limitée (corollaire 4).

En reprenant (et en adaptant a la dimension #) la démonstration du theorem
8. p. 822 de Kinoshita [4] on montre le:

Théoréme 2. Pour toute distribution standard T sur R" il existe une
distribution limitée fED’ telle que T = Pr.

REMARQUE. L’algébre Z(X) n’est pas la plus petite E-alggbre (au sens externe)
stable par différence et contenant les fonctions S-continue.
Exemple : prenons #=1; la fonction fE R(X) définie par f(x)=0 si xEN et
f(p)=e"*si p€NNX n’est pas dans cette alggbre.

Plus précis€ment, on a:

Théoréme 3. La plus petite E algébre (externe) stable par différence et
contenant les fonctions S-continues est I'algébre Zr(X) des fonctions généralisées
d’ordre fini définie comme suit :

(fezr(X))=(3meN, VxEX, x est limite =|f(x)|<e™™).

Démonstration. On remarque tout d’abord que Zr(X) est une algebre stable
par différences et contenant les fonctions S-continues. Soit Zo la plus petite E
algebre stable par différence et contenant les fonctions S-continues: on a Z,C

Zr(X).
Lemme 6. Soit la fonction S-continue go suivante :

9o . X —C
(x1, 22, ***, Xn) {JE si x1/€ est pair
—
—Je si xi/€ est impair

par une simple récurrence, on vérifie que pour tout entier standard k, on a:

(—2)*Jee™® si x1/e est pair

k =
Dt go(x) {-(—2)’\/26"‘ si x1/€ est impair.

En conséquence, la fonction g»€ R(X) définie par ga(x)=(—1/2)*go(x)Df go(x)
appartient @ Zo. Pour tout x€X, on a gi(x)=e*".

Fin de la démonstration du Théoréme 3:
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Consideérons une fonction f&Zr(X) ; choisissons mE N standard tel que pour
tout x limité de X on ait |f(x)|<e ™. On cosidére la fonction gm+2 du lemme 6,

il vient f(x)=(f(x)e™*")* gm+2(x), ce qui montre que fE Zo.

3. Analyse de Fourier des fonctions généralisées

Fixons tout d’abord les notations (elles généralisent celles de Kinoshita).
Soient x et y deux éléments de R”. on note xy leur produit scalaire. Pour tout
élément f€ R(X), on définit les transformées de Fourier :

Ff: X—> C Ff: X— C
x '—>2xe”e“2i”"yf(y), x ,_)zxenezmxyf(y).

Il est clair que F et F sont des endomorphismes de R(X). Par un simple calcul,
on vérifie que pour tout f, pER(X) (Ff, ¢>=<f, Fo>, et FF=FF=1zx)
(application identique de R(X) sur lui méme) ; donc F et F sont des isomatries
de R(X) inverses I'une de lautre.

EXEMPLE 2. Pour tout yE X, définissons 'appication Jy: X—— C par la
relation &y(x)=e" " si x=y et 8y(x)=0 sinon. On a (F&y)(x)=e 2™,

Application A. Pout tout jE{1, 2, ..., n}, on définit LER(X) par la
relation :
2imexe; __ : o
A(x) = e 1 — 9 SI0 TEX; g
e
n
et pour tout multi-entier ={a, ***, @»}, on définit : A“(x)II;II(/Ij(x))"’. Par un

calcul alggbrique simple, on vérifie que pour toute fonction ¢ R(X), on a les
formules :

) D°Fo=F(A%) D*Fp=F("p)
F(D%p)=A"Fp F(D%p)=(—A)Fe.

DEFINITION 7. On dit que FER(X) est une fonction a croissance modérée
(resp. a croissance lente) lorsqu’il existe un entier standard = tel que
(14 ]x|?)~™f(x) est limitée sur X ; (resp. lorsque pour tout multi-entier standard £,
il existe un entier standard m tel que (1+|x[*)""D?f est limitée sur X. On notera
Os ’ensemble des fonctions a croissance lente.

Proposition 7.
(i) Pour tout xE€X, et tout a=N", on a: 4'|x°|<|A%(x)|<@2x)"|x°.

(ii) Les fonctions x —(A*(x)) et x —(A%(x)) sont a croissance lente.

Démonstration.
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(i) Soit x=(x1, x2, ***, x»)E X, d’aprés la proposition 3 p. 846 de Kinoshita [5],
pour tout 7E{1, 2, ..., n}, on a: 4|x;|<|A(x)|<2x|x;]. Par définition de x® et de
A% on a:

gelwel= T @)= [ Ao,
Al =l < @alx)e,
11 (27l,)) = (22) 7|

J=1

(ii) 11 suffit de le vérfier pour A;. Par un simple calcul, on voit que si /3, on a

2ime?
e —1 L. -
D=0 et Dj/i,-=—£2——ez”‘"“” dont le module est équivalent a 27 ;
eZinez_l .
Pour 8;=2 on a Df’/lj=—?,+1—emm’ dont le module est infinitésimal.

Par récurrence sur |£|, on vérifie que DA% est un polynome standard 2
coefficients enitiers dans les variables € et D’A’, ce qui permet de conclure.

Lemme 7. Os est un anneau stable par différences et S est une algébre sur
lanneau Os.

Démonstration. 11 suffit d’utiliser la formule de Leibniz (5').

Lemme 8. Soient ¢S et a, 8 deux multi-entiers standards. La fonction
x*D°Fp est limitée sur X.

" Démonstration. Pour @=8=0, on a F;O(x):yg(e"e”zi”"yqo(y) d’on |Fo(x)|<

yg(e”lqo(y)l. On choisit m>#; posons c=sup{(1+[x|*>)"|e(x)||x€X}. Pour

tout yE X, on a l'inégalité |p(y)|< ax cy 7y d’on |F¢(x)|£y§(e”(1—+ﬂ%ﬂ—2)7.

Comme la fonction (1+|x]*)™|@(x)| est interne et limitée, le réel ¢ est limité. La

fonction standard y — ar ly 7y est continue et Lebesgue-intégrable sur R”,

donc on a yg{e" (1_‘_"63)“2),,, me (1+”cy"2),,, dy ; or ce dernier nombre est limité.

Pour =0, on utilise la formule 9 : D°F(¢)=F(A°p) qui permet de conclure car
A%pE S (lemme 7). Pour a et B quelconques, on utilise les formules (9) et la
proposition 7.
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lx*(D*F (@) =|x"F(A*p)| <4~ ¥|¥F(2*p)|=4~"|F(D*(20))|

or A°pES et S est stable par différences.

Lemme 9. Soit =S ; alors pour tout multi-entier standard « et tout entier
standard m, la fonction (1+|x|*)"D*(Fe)(x) est limitée sur X.

Démonstration. Comme (1+x[*)”=(1+ 271x?)™ est un polynome standard
des variables x1, X2, , ***, Xn, il suffit de vérifier que pour tout multi-entieres
standards «@ et §, et toute fonction g S la fonction x?D*Fg est limitée sur X. Ce
qui a été€ établi au lemme 8.

Proposition 8. L’ensemble S des fonctions de Schwartz est une Os-algébre
stable par différences et par les transformées de Fourier F et F.

Démonstration. C’est une conséquence des lemmes précédents.

DEFINITION 8. On dit qu'une application lingaire /T: R(X)——C (resp.
'unique fonction f€ R(X) telle que IT=1I;) est une distribution limitée tempérée
(TLD) lorsque pour toute fonction ¢< S, I1(@)=<f, ¢> est limité.

On notera que ’ensemble S” des 7LD est externe et contenu dans ’ensemble
D’ des distributions limitées.

Proposition 9. Soit fER(X); les assertions suivantes sont équivalentes :
(i) f est une TLD.

(i) Ve<J Il(e)~0.

Démonstration. On raisonne comme dans la proposition 2.
Proposition 10. Si f est une TLD, alors Ff et Ff sont des TLD.

Démonstration. Soit ¢€S ; on a <Ff, ¢>=<f, Fe> qui est limité puisque
FoES.

DEFINITION 9. On dira qu’une fonction fE€ R(X ) est une fonction géneralisée
tempérée lorsqu’elle satisfait la relation :

(10) ItmeN, VxeX, |f(x)|<e™.

On notera Zr ’ensemble (externe) des fonctions généralisées tempérées.

EXeMPLES 3. a) L’ensemble U={f€R(X)|f(0) est limité et V(x, v)E X2
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x—y~0==f(x)~f(y)} des fonctions de R(X) qui sont S-uniformément con-
tinues est contenu dans Zr. En effet pour tout yE X on a |f(ytee;)—f(y)|<1et
F(0)<e™. Soit x€X et 0=xo, x1, ***. X»=2% un chemin tel que x,+1—x;=e€e et

m—1
Z lxn—xl=lx—0/=lxl. Ona

PO+ B o) —f ()l S+ ms e+ e

b) L’ensemble Os des fonctions a croissance lente est contenu dans Zr.
L’ensemble des fonctions a croissance modérée est contenu dans Zr.
¢) Lapplication x —e* n’est pas dans Z7.

Proposition 11. Soit fER(X) ; les assertions suivantes sont équivalentes :

(i) fEZr
(i) V%eEN" IF*mEN, VxEX, |D*f(x)|<e™™.
(ili) I**mEN, xgxs'(”“”)lf(x)l est limité.

(iv) I%m.€N, ILEN, xgxe”’”" (1_{(;6)2)12 est limité.
W fZEZT.

Démonstration.

(i)&(ii) comme dans la proposition 3.

(i)==(iii) prendre m,=m+ n.

(i)&==(iii) pour tout xEX, on a €™*"|p(x)|<e”!, de sorte que |p(x)|<

E_(MIHHI).

(iii)=(iv) on prend m:=m, et /=>0.
(iii)&==(iv) on prend 1 =m2+2/.
(i)=(v) est évident.

Proposition 12. Si f est une TLD, f est un élément de Zr.
Démonstration. On raisonne comme dans la proposition 4.

Théoréme 4. Le plus petit anneau (externe) contenant U et stable par
différences n’est autre que Zr. L’anneau Zr est stable par les transformées de
Fourier F et F. L'ensemble Zr est une algébre sur I'anneau Os des fonctions a
croissance lente ; Os est une sous-algébre de Zr stable par différences.

Démonstration. L’ensemble Z7 est stable par addition et pour le produit. De
plus UCZz et OsC Zr, ainsi Zr est une Os-alggbre qui contient U. La caractérisa-
tion (ii) de la proposition 11 prouve que Zr est stable par différences. En
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conséquence, le plus petit sous anneau Zo de R(X) contenant U et stable par
différences est contenu dans Zr. Soit f un élément de Zr et m un entier standard
tel que VxEX |f(x)|<e™; on remarque que f(x)=(f(x)e"*")e"*P, Or on
voit que f(x)e"'EZ, et on sait que la fonction € ™" sobtient a partir d’une
fonction de U par différences et produit (lemme 6). En conséquence, f € Z,.

Soit fEZr et m un entier standard tel que pour tout x€X |f(x)|<e&™™; on
a la suite d’inégalités :

FF()|< B Jeme | [f(y)] < e sup(l/(»llyE X) < etmem,

Ainsi FfEZr; on procéde de méme pour Ff.
Les autres points sont évidents.

Théoréme 5. Si’f une TLD, alors elle définit une unique distribution
tempérée standard Py par la relation

(11 Vepe S Pr(¢)="I(dx).

Si T est une distribution tempérée standard ; il existe une TLD f pour laquelle
ona:

VepES T()=Pi(¢).

Démonstration. Pour montrer que Pr est une distribution tempérée standard,
on raisonne comme dans le corollaire 3.
Réciproquement, si 7" est une distribution standard tempérée, il existe une

fonction standard continue a croissance modérée % telle que 7°=0°% (voir par
exemple Schwartz [7], Théoréme VI, ch. VI n°4). On note 7% la distribution

tempérée ¢ —— f Rnh(/}. Posons f=D®hx ; h appartient 3 Zr. Considérons une

fonction ¢E .8 et p=¢x. En utilisant la proposition 5, on obtient: <{f, ¢>=
{Dx, p>=(—1)""Yhx, D> d’0o0

S, od=(— 1)'“'xgxs”h|fo§o(x).

La fonction continue 4(x)9°¢(x) est intégrable sur R” et VxE X, h(x)3%¢(x)
~h(x)D%¢(x) donc on a

S Do)~ [ h(x)a9(x)dx

= Th(aasb)
=(=D"(°T»)(¢)
=(=1)'“'T(¢).

Cest a dire que T(¢)=Ps(¢).
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