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On se place dans un modele non standard de Γanalyse. On utilisera le
vocabulaire et les notations de la theorie 1ST de Nelson tels qu'ils sont presentes
dans le livre [l] de F. Diener et G. Reeb. Le vocabulaire introduit dans la
definition 1 est a rapprocher de celui utilise par M. Oberguggenberger dans [6] et
K. D. Stroyan dans [8].

Les notations S) ensemble des functions C°° a support compact, 3)' dual
topologique de <S0, <§ ensemble des functions C°°, <?' dual topologique de 8, si
ensemble des functions C°° qui pour tout entier p>0 tendent vers 0 ainsi que toutes
leurs derivees plus vite que \\x\\~p lorsque \\x\\ tend vers +°o, si' le dual topologique
de si sont les notations habituellement utilisees dans la theorie des distributions
voir par exemple Schwartz [7].

1. Notations

Soit n un entier naturel standard. On note (#i, £2, •••, en) la base canonique
n

de Rn. Soit un element x = (xi, X2, *, xn)^Rn, sa norme Σ|#»| est notee \x\ sa
l

Γn

norme euclidienne J Σ^? est notee \x\. Pour tout reel positif k, on pose ( |x|<#)

= {χ(ΞRn\\x\<k} et (\\x\\<k) = {x^Rn\\\x\\<k}. Soit / : Rn >C une applica-
n

tion interne et a=(ai, 2̂, •••, an) un multi-entier on note |αr| = Σ ^ (longueur de
ί = l

daιda2-"dan

a) la notation daf designe, (si elle existe), la derivee: ,9 go a^...f) <*nf

On considere:

Un entier illimite pair ω et on pose ε=—.
n

Le reseau de maille ε : L={'Σxiεei\xi^Z}, et la partie hyperfinie
1 = 1
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= 1txiSei et—7)—<εXi<-Fτ, V z ^ { l , 2, •••, n}}.

On remarque que X s'identifie naturellement au groupe fini (Z/co2Z)n et que Card

X=ω2n. L'ensemble R(X) = {f: X >C\f est interne} on prolonge les fonc-

tions de R(X) a L par periodicite.

Soit f^R(x). Pour z<E{l, 2, •••, n}9 on pose:

et

On voit que Di-f(x)=Di+f(x — εei).

Lorsqu'il n'y aura pas de risque de confusion, on notera plus simplement Dif au

lieu de Di+f. Par recurrence, on definit pour tout entier /,

Dί+ιf(x)=Di(Dίf(x)) (resp. D^1f(x)-Di-(Dί-f(x))).

II est facile de voir que pour tous entiers naturels i, /, on a : Di°Dj=Dj°Di (resp.
Di-°Dj- = Dj-°Di-), de sorte que la difference successive Dil+

oDi2+

o~'°Dim+ ne
depend pas de Γordre des entiers zΊ, z'2, •••, im de Γintervalle {1, 2 , . . . , n) pour tout
multi-entier tf=(tfi, a2, •••, flrΛ), on pourra done definir Daf(x)=DiloD22° ~°D%n

(resp. Da-=D?loDξlo-ΌD^n_) L e s a p p i i c a t i o n s / , >£>«/ e t / , >£>*/ s o n t des

endomorphismes de R(x). Lorsque g est une application interne de Rn dans C,

pour tout multi-entier ύf, on ecrira Dag au lieu de Da(g\χ).

Pour tout reel positif k et tout n-entier a, on pose | Z ) e / | * { | ( ) | | | |

Regie de differentiation d'un produit.

Soient / et g deux fonctions de R(X) pour tout /£Ξ{1, 2, •••, w}, on a :

DEFINITION 1. Pour toute fonction f^R(X), on dira^que

(1) / est a support limite lorsque 3stk^N, \x\>k=*f(x) = 0.

(2) / est a differences limitees lorsque Vstk<ΞN, \/sta<=Nn,- \Daf\k est limite.

(3) / est a differences infinitesimales lorsque \/stk^N, \/sta£ΞN\ \D*f\h~0.

(4) / est une fonction de Schwartz lorsque \/sta^Nn, \/stp^N, (1

+ \\x\\2)pDaf(x) est limite sur X.

(40 / est une fonction de Schwartz infinitesimal lorsque \/sta^Nn, \/stp^N,

DEFINITION 2. On dit qu'une application f^R(X) est:

une fonction-test limitee lorsqu'elle satisfait les conditions (1) et (2).

une fonction-test infinitesimale lorsqu'elle satisfait les conditions (1) et (3).

On notera:
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D Γensemble des fonction-test limitees.

/ Γensemble des fonction-test infinitesimales.

E Γensemble des functions a differences limitees.

S Γensemble des functions de Schwartz.

/ Γensemble des functions de Schwartz infinitesimales.

Pour /, g^R(X), on ecrira /~τ> g pour dire que f—g^I et f~~s g pour dire

que / - # < = / . On a les inclusions I^DaSciEC.R{X) et / C / C S .

Remarquons que dans la definition d'une fonction-test limitee (resp.

infinitesimale) ou d'une fonction de Schwartz, on peut remplacer Daf par D-f.

D'autre part, Γensemble des fonctions de Schwartz n'est autre que S = {f^E\\/sta

eJV\ Vstp<ΞN, \\x\\pDaf est limite sur X).

Formule de Leibniz. Soient /, g^E (resp. /, g^S) pour tout multi-entier

standard a et pour tout x^X limite, (resp. pour tout J £ X ) on a la regie de

Leibniz a un infinitesimal pres :

(5) D"(f>g){x)~ Σ (aΛDβf{x)'Da-βg{x).

Pour prouver ce resultat, on verifie par recurrence sur \a\ que

(5') D'(f>g)(x)~ Σ (aΛDβf(x) Da-βg{x) + εP.

oϋ P est un polynome standard a coefficients entiers des (2 | α | + 1)2 + l variables

internes ε et Dβf(x)-Dβ'g(x) oύ 0<\/3\<\a\ et 0<\β'\<\a\.

Lemme 1. Soit g une fonction standard, on a les assertions suivantes :

(i) Si g^S alors g\χ^E, de plus pour tout multi-entier a standard et tout x^

X limite, on a Dag(x)-dag(x).

(ii) Si g^ώ alors g\x^S, de plus pour tout multi-entier a standard, tout entier

p standard et tout x^X, on a \\x\\pDag(x)~\\x\\pdag(x).

(iii) 5/ g^dD alors g\x^D, de plus pour tout multi-entier a standard et tout x

G I , on a Dag(x)~dag(x).

Demonstration. II suffit de montrer le resultat pour g a valeurs reelles.

En appliquant n fois la formule de Taylor avec reste de Lagrange, on montre que

pour tout I E X on a

(6) D!1°Dg*o ..oDZ»g(x)= Qx ζ*% ~~Q

avec 0, e(O, at).

(i) En utilisant la continuite de dag, on obtient \Dag(x)-dag(x)\~0 pour

tout x limite.
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(ii) La fonction standard ||Λrp3α# est continue sur Rn et tend vers 0 a Γinίini,
elle done uniformement continue sur Rn, on en deduit que IM*/)"^*)
-\\x\\pdag(x)\~0 pour tout x<ΞX.

(iii) Si x n'est pas dans le support de g, on a g\x(x) = 0 done g\χ est a support
limite. En utilisant (i) on a \Dag{x) — dag(x)\^0 pour tout x limite. Si x est
illimite, on a Dag(x) = dag(x) = 0.

Lemme 2. Soft f^R(X). Pour tout i^I, on a / <Ξ £)<=>/+z<Ξ£>. Pour
tout j^J, on a f€=S^=ϊf+j€=S. Pour toute fonction i^R(X) a differences
infinite.simales, on a / G £ < = > / + i^E.

Evident...

Lemme 3. Soit g une fonction standard de SO. Pour tout multi-entίer
standard a, Dag est une fonction-test limitee et Dag\χ^Ddag.

Demonstration. Dapres le lemme 1, (dag)\χ^D. Pour tout x G l , posons i(x)
—Dag(x) — dag(x) la fonction i est a support limite. Considerons un multi-entier
standard β et un element x limite de X. On a:

Dβi(x)=Dβ(Dag(x)) - Dβ(dag(x))
= (Dβ+ag(x) - dβ+ag(x)) + (dβ+ag(x) - Dβdag(x))

Or d'apres le lemme 1 applique a g, on a (Dβ+ag(x) — dβ+ag(x))~0 en appliquant
ce meme lemme a dag, on a (dβ+ag(x) — Dβdag(x))~0. Ainsi i^I en appliquant
le lemme 2, on obtient le resultat.

Proposition 1. Soit f^R(X). Une condition necessaire et suffisante pour
que f soit une fonction-test limitee est qu'il exίste g^tD telle que g\x~ϋf.

Demonstration. La suffisance provient de Γassertion (iii) du lemme 1.
Etudions la reciproque. Donnons nous une fonction test limitee / et choisis-

sons Γentier standard k pour que \x\>k — \=$f(x) = ΰ. Pour tout multi-entier
standard a, la fonction Daf est interne et limitee, done il existe des constantes
standard Co, Ci, •••, cm, ••• telles que pour tout entier standard m et tout multi-entier
a, si \a\<m, alors pour tout Λ G X , on a \Daf(x)\<cm.

Commencons par verifier les deux lemmes suivants:

Lemme 4. Soit h^R{X). On suppose qu'il existe un reel c tel que pour tout
z'e{l, 2, -", n) et tout j G l , on a \Dih{x)\<c, alors h est c-Lipschitzienne pour
la norme I I.
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Demonstration.
Pour tout x£=X et tout z£={l, 2, . . . , n}, on a

\f{x + εβi)—f{x)\ = I εDif(x)\ = \x + εei—χ\- \Dif(x)\ < c\x + εei—χ\.

Considerons deux elements x et y de X en allant de x a y en suivant un
chemin parallele aux axes de coordonnees, on voit qu'il existe un chemin

χ==χo, Xi-i ***, Xj, Xj+\, *"> %p:==y

tel que

x,+1 x3 -εet{j)et\y x\ ^\xt+1 xt\

done

ΓΣ/Ui+i)/Ui)iί2i/
j=0 j=0

P-l

2 c\Xi+ι—Xi\ = c\y—x\.

Lemme 5. Considerons une fonction-test f^D et une fonction standard g :
Rn >C continue. Si pour tout x E l , on a f(x)~g(x), alors pour tout z'e
{1, 2, . . . , n}, et tout j G l , d&ix) existe et dig{x)~~Dif(x).

Demonstration. Supposons pour fixer les idees que i=l. Puisque la fonction
Dif appartient a D, elle satisfait les hypotheses du lemme 4, elle est done S-
continue on en deduit qu'il existe une fonction standard h continue telle que
pour tout x^X limite, on a Dif(X) — h(x). De plus, Dif etant a support limite,
h est a support compact d'oϋ pour tout x = (xι, Xz, •••, xn)^X limite la relation :

i xi/ε

h(t, X2, '", Xn)dt~ Σ εh(jε, x2i •••, Xn)

Xι/ε
<^y ^ ' C 7~) "f ( 1C 'V 'V ^

j = — Cι)2/2

=Aχ)~g(χ).

En consequence, dig existe, de plus comme h et dig sont des fonctions standards on
a dιg=h.

Fin la demonstration de la proposition 1 :
Puisque f^D, on peut lui appliquer le lemme 4, on en deduit qu'il existe une

fonction standard g continue telle que Vx^X, g(x)~f(x). En utilisant le lemme
5, on verifie par une recurrence evidente sur \a\ que pour tout multi-entier standard
a, dag existe et dag(x)~Daf(x) pour tout x^X.

Corollaire 1. Soit f^R(X), on a les equivalences :
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(7) /e£<=>3 β ^e<?, Vsta£ΞNn, \/XΪΞX, X limite =*Daf(x)~dag(x).

(7') /EES^^a

/ #) donne par (7),

(8) K

(8') f(=Dt=ϊ(gζΞg) et \/sta^Nn, \/x^Xf Daf(x)-dag(x)).

Demonstration. (7) < = provient des lemmes 1, 2 et 3.
(7) ==>. Considerons f^E. Donnons nous un entier standard k>0 et

D qui vaut 1 sur X ( Ί ( | Λ ; | < & ) (On obtient une telle fonction-test limitee Pk en
prenant la restriction a X d'une fonction-test standard Pk^S) egale a 1 sur un
voisinage du compact (|#|<&)). D'apres la formule de Liebniz, fpk^D, done il
existe une unique fonction standard gu telle que gk\x^o/Pk. Soit x un element
standard de Rn. on pose #00 = la valeur commune des gk(x) lorsque x^(x<k).
La fonction g ainsi definie est C°° elle repond a la question.

(8') est evident car / et g sont nuls en dehors d'une partie limitee de Rn.
(8). Considerons une fonction f€ΞE, la fonction standard g associee a / par

la relation (7), un entier standard p et un multi-entier standard a la condition (1
+ \\x\\2)pDaf(x)~(l + \\x\\2)Pdag(x) est satisfaite pour x limite. D'apres le pricipe de
permanence, il existe un entier k illimite tel que pour x E l o n a Γimplication \x\
<k=^(l^x\\2)pDaf(x)~(l + \\x\\2)pdag(x). Supposons que / 6 S , pour tout
X illimite, on a:

χf)pDaf(x)=

ainsi, (l + \\x\\2)pDaf(x) — 0 comme quotient d'un nombre limite par un nombre
illimite. En consequence (1 + \\x\\2)pdag(x)^0 pour tout x^Rn illimite de norme
inferieure a k, comme g est standard, on en deduit que lim (1 + \\x\\2)pdag(x) = 0,

JlJCl l—oo

ainsi
(7')<^=:r.Si g^si alors le lemme 1 assure que pour tout x^X on a

Dag(x)^(l + \\x\\2)pdag(x). Cette derniere expression est limitee pour tout
done (l + \\x\\2)pDβf(x) est limite sur X.

(7')=>.Soit f^S; en utilisant (8), on voit qu'il existe g^s& qui satisfait
(X + \\xf)pDaf(x)-(l + \\xf)pdag{x) pour x limite. Comme les deux nombres
{l + \xf)pDaf(x) et (l + \\x\\2)pdag(x) sont infinitesimaux pour x illimite, on a
etabli le resultat.
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2. Representation des distributions standards

Forme bilineaire </, g>: formes lineaires 77/, Pf. Soient / et φ deux
elements de R(X), on pose </, φ> — *Σχexεnf(x)φ(x). II est clair que Γapplication
(/» ψ) *-*</, <P) est une forme bilineaire non degeneree.

En consequence, Γapplication interne

77/: R(X) >C

φ •—></, φ>

est lineaire. De plus , pour toute application lineaire interne 77 : R(X) ' > C, il
existe une unique f^R(X) telle que 77 = 77/; (en effet, Γespace 7?(X) est de
dimension hyperfΐnie.)

DEFINITION 4. On dit qu'une application lineaire 77 : R(X) ' > C (resp.
Γunique f^R(X) telle que 77=77/) est une distribution limitee lorsque pour toute
fonction-test limitee φ^D, le nombre Π(φ) = Πf(φ) est limite. On notera 7)r

Γensemble des distributions limitees.

Proposition 2. Soit f^R(X); les assertions suivantes sont equivalentes:
(i) / est une distribution limitee.

(ii) \/φζΞl,ΠΛ<p)-0.

Demonstration. (i)==>(ii). Soit φ^I, considerons un entier standard k tel
que φ(x) = 0 pour | x |>£ — 1; alors

f, tel que c«~0 et \Daφ\k^ca.

Le principe de permanence assure Γexistence d'un infinitesimal c>0 tel que pour

tont multi-entier standard a on a \Daφ\k^c. La fontion φ—— est une fonction-

test limitee (plus precisement \Daφ\k^V), ainsi Πf(φ) est limite, par linearite, on en

deduit que Πf(φ) = cΠf{φ) est infinitesimal.
(i)< (ii) Si φ est une fonction test limitee pour laquelle le nombre complexe

c = Π{φ) est illimite, la fonction φ—— est infinitesimale bien que Π(ψ) = l.

Corollaire 3. L'unique fonction standard P/ definie sur les functions stan-
dards de 3) par la relation \/stφ^3) P/(φ) = 0Π/(φ\x) est une distribution
standard. De plus soit Φ^D et φ Γunique fonction standard de 3) telle que Φ

I, on a Pf(φ)^Π/(φ) = (f, φ}.

Demonstration. Commenςons par montrer le resultat suivant:
Soient f^D\ k un entier standard et η un reel standard strictement positίf
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il existe un entier standard q et un reel standard v strictement posίtif tel que
pour toute φ^D a support dans (\x\<k) on a: (pour tout a^Nn, \a\<q et
\Daφ\k<v)=^\<f, p>\<η.

Si ce resultat est faux, l'ensemble Λ = \q^N\\/a<^Nn, \a\<q=^

supv(φ)c:XΓ\(\x\<k), \Daφ\k<—et |</, ^> |^?[ est une partie interne de N qui

contient tous les entiers q standards L'ensemble A contient un element qo illimite.
A qo est associe une fonction φo^I telle que |</, φo}\>η; ce qui contredit la
proposition 2.

Considerons un reel standard η>0 et un compact standard K de Rn soit k
un entier standard tel que Kd(\χ\<k). Pour toute fonction Φ^S), posons φ—φ\χ,
<p^D et pour tout a, on a Daφ{x)^daφ(x). On applique a φ le resultat precedent:
II existe un entier standard q et un reel standard v strictement positif tel que pour
tout a^Nn, \a\<q et svφ{\daφ\\x^K}<v impliquent PAΦ) = °\<f, P>\<V. Ce
qu'il fallait demontrer.

EXEMPLE 1. Expose dans le cas n — \ par Kinoshita.
Soit g est une fonction standard continue, on pose f=g\x, alors P/ est la

distribution φ ' > I gφdx traditionnellement identifiee a g (voir [4] Theorem 6
J R"

p. 819).
Plus generalement, si g^£\oc et si f^R(X) est une fonction localement

S-integrable (c'est a dire que \/stk^N, Ίlxn{M^k)ε
n\f\ est limite) qui est un releve-

ment de g, alors P/ est la distribution standard φ ' > / gφdx (voir [4] Theorem
J R"

4 p. 815).

Proposition 3. Soit / e i ? ( X ) ; les trois assertions suivantes sont
equivalentes :

(i) VϋeΛi; \/sta^Nn, BstmGN, \Daf\h<ε~m.

(ii) Vsί#ejV, 3 s ίmeiV, \f\h<ε~m.

(iii) Vstk<=N, 3stmeN, Σ εm+n\j{x)\ est limite.

Demonstration. (i)=>(ii) est evident.
Pour montrer (ii)=^>(i), on raisonne par recurrence sur Γentier ί=|ύf|. Pour p=
0, c'est (ii) supposons le resultat demontre a Γordre p et choisissons un entier
standard m tel que \a\=p=*\Daf\h+i<>ε-M. Soit x^(\x\<k)(λX et β^Nn qui
satisfait \β\=p+l il existe z*e{l, 2, •••, n} tel que
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t)-D"f{x)

Si | / U ^ ε m, on a en notant λ la mesure de Lebesgue de Rn :

Σ εm+n\f{x)\< Σ ε-n

\x\£k \x\£k

(ii). Si pour tout entier standard m, il existe Xo^(\x\<k)C)X pour lequel
| / U ) | > ε " ( m + n + 1 ) alors ^\<k)€m+n\f(x)\^6m+V(xo)\^€m+n-m'n-\ done Σ(W**>
εm+n\f(x)\ ne saurait etre limite.

DEFINITION 6. On dit qu'une fonction f^R(X) est une fonction generalisee
forsqu'elle satisfait Γune des trois conditions equivalentes de la proposition 3. On
notera Z(X) Γensemble des functions generalises definies sur X.

Theoreme 1. L 'ensemble (externe) Z(X) des functions generalisees est une
algebre commutative sur Γanneau commutatif {externe) E, il est stable par les
differences Da pour tout multi-entier a standard.

Demonstration. La stabilite du produit provient de la caracterisation (ii),
comme EdZ(X), la multiplication par un element de E est bien une application
de E X Z{X) dans Z(X). La stablilite par difference provient de la caracterisation
(i).

Proposition 4. Soit f^R(X), si f est une distribution limitee, e'est une
fonction generalisee.

Demonstration. Si / n'est pas une fonction generalisee, il existe un entier k
standard tel que pour tout entier standard m, on a \f\k>ε~m.
L'ensemble Λ = {m^N\ 3x^(\x\<k)Γ\X, \f(x)\>e~m) est une partie interne de
N qui contient tous les entiers limites il existe done un entier illimite m et un
element x<^(\x\<k)ΐλX tel que \f(x)\>ε'm. On considere la fonction-test φ
definie par:

0 si
e-' si t=x.

On voit que φ^I bien que
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Proposition 5. Soit f, φ€ΞR(X), on a les assertions suivantes :

(i) \/y^X, Ί±χf(x+y)φ(x)=Ίlχf(x)<p(x-yl

(ii) \fa^Nn, <Dϊf, φ>=(-iyal<f, Da-φ>.

Demonstration, (i) est un calcul classique d'analyse harmonique sur un
groupe fini (formule 2.1 p. 17 [3]).

(ii) est un simple calcul par recurrence sur \a\. Si |ff| = 0, c'est evident.
Supposons le resultat vrai pour a et posons β = a+eι: alors en ecrivant Σ a la
place de Σ on a :

<Dpf, φ> = <Di°D*f, <P>

= Ί}εn-1Daf(x)φ(χ-εeί)φ(x)-Σιε
n-1Daf(x)φ(x)

= -<Dβf(x),Di-φ>
= -(-iyaKf,Da-°Di-φ>
= (-lΓ</, Dtφ>.

Corollaire 4. Si f est une distribution limitee, alors pour tout multί-entier
standard a, Daf est une distribution limitee.

Proposition 6. (due a Kinoshita dans le cas n = l) Soit f une distribution
limitee, pour toute fonction standard ψ^S), on a : PD«AΦ)=z( — iyalPAdaφ). En
d'autres termes, les distributions standards PD«/ et daP/ (derivee au sens distribu-
tions) sont egales.

Demonstration. Soit <p=Φ\x\ d'apres le lemme 3, pour tout muli-entier
standard a, on a Daφ —D(daψ)\χ. En consequence, on a:

PD°Λψ)-ΠDaf(φ) = <Daf, φ>
- ( - l ) | α | < / , Daφ>

Theoreme 2. Pour toute distribution T standard a support compact, il existe
une distribution limitee f telle que T = Pf.

Demonstration. Soit i f=supp T le support de T le theoreme de Schwartz
(Voir [7] Theoreme XXI chap. Ill n°6) nous affirme qu'il existe une fonction
standard continue g et un multi-entier standard a tels que T = dag (derivee au sens
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distributions). On deίinit la fonction / par la relation: Vx^X, f(x) =
Da(g\x(x)). Puisque g est continue, g\x est une distribution limitee. D'apres
Γexemple 1, on a Γegalite (au sens distributions) P9ιx=g d'apres la proposition 6,
on a Pf = PD°g = daPg{X = dag=T. Comme la fonction g\X est une distribution
limitee, / est aussi une distribution limitee (corollaire 4).

En reprenant (et en adaptant a la dimension n) la demonstration du theorem
8. p. 822 de Kinoshita [4] on montre le :

Theoreme T. Pour toute distribution standard T sur Rn, il existe une
distribution limitee f^Π telle que T — Pf.

REMARQUE. L'algebre Z(X) n'est pas la plus petite jB-algebre (au sens externe)
stable par difference et contenant les functions S-continue.
Exemple: prenons n = l; la fonction f^R(X) definie par f(x) = 0 si x&N et
f(p) = ε~p si p^NΠX n'est pas dans cette algebre.

Plus precisement, on a:

Theoreme 3. La plus petite E algebre {externe) stable par difference et
contenant les functions S-continues est Γalgebre ZF(X) des functions generalίsees
d'ordre fini definie comme suit:

(f<EΞZF(X))^^(3st<m^N, V i e X , x est limite =*\f(x)\<ε-m).

Demonstration. On remarque tout d'abord que ZF(X) est une algebre stable
par differences et contenant les functions S-continues. Soit Zo la plus petite E
algebre stable par difference et contenant les functions S-continues: on a
ZF{X).

Lemme 6. Soit la fonction S-continue go suivante :

#o: X > C

(xi, X2, '", Xn) ίvT si Xi/ε est pair

I — <fε si Xi/ε est impair

par une simple recurrence, on verifie que pour tout entier standard k, on a:

TΛk ( \ ί(-2)ky/Jε~k si Xι/ε est pair

I — ( — 2) v ε ε si Xi/ε est impair.

En consequence, la fonction gk^R(X) definie par gk(x) = ( — l/2)kgo(x)Dιgo(x)
appartient a Zo. Pour tout x^X, on a gk(x) = ε~k+1.

Fin de la demonstration du Theoreme 3:
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Considerons une fonction f^Zr(X) choisissons m^N standard tel que pour
tout x limite de X on ait \f(x)\<ε~m. On cosidere la fonction gm+2 du ϊemme 6,
il vient f(x) = (f(x)εm+ι) gm+2(x), ce qui montre que f^Zo.

3. Analyse de Fourier des fonctions generalises

Fixons tout d'abord les notations (elles generalised celles de Kinoshita).
Soient x et y deux elements de Rn. on note xy leur produit scalaire. Pour tout

element f€ΞR(X), on definit les transformees de Fourier:

Ff: X > C Ff: X > C
x >Σxε

ne-2ixxyf(y), x >Hχεne2ίπxyf(y).

II est clair que F et F sont des endomorphismes de R(X). Par un simple calcul,
on verifie que pour tout /, φ^R(X) {Ff, $?> = </, Fφ}, et FF = FF=1R(X)

(application identique de R(X) sur lui meme) done F et F sont des isometries
de R(X) inverses Γune de l'autre.

EXEMPLE 2. Pour tout y^X, definissons Γappication δy: X >C par la
relation δy(x) = ε~n si x = y et δy(x) = Q sinon. On a (Fδy)(x) = e~2iπxy.

Application λ. Pout tout j^{l, 2, . . . , n}9 on definit λj£=R(X) par la

relation :

2iπεxej_-i

v e πε

n

et pour tout multi-entier a—{au "\ cen}, on definit: λa(x) = ΐl(λj(x))aj. Par un

calcul algebrique simple, on verifie que pour toute fonction φ€ΞR(X), on a les
formules:

DaFφ = /^( λ aφ) D-Fφ = F(λaφ)
F(Daφ) = λaFφ F(D-<p) = ( — λ)aFφ.

DEFINITION 7. On dit que f£=R(X) est une fonction a croissance moderee
(resp. a croissance lente) lorsqu'il existe un entier standard m tel que
(1 + H|2)~m/O0 est limitee sur X (resp. lorsque pour tout multi-entier standard β,
il existe un entier standard m tel que (l + ||;t;||2)~>n.D*/ est limitee sur X. On notera
Os Γensemble des fonctions a croissance lente.

Proposition 7.
(i) Pour tout xϊΞX, et tout a^Nn

f on a: ^\xa\<\λa(x)\<{2π)^\xa\.
(ii) Les fonctions x *-^>(λa(x)) et x •—•( λ a(x)) sont a croissance lente.

Demonstration.
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(i) Soit x = (xi, X29 •••, xn)^X, d'apres la proposition 3 p. 846 de Kinoshita [5],
pour tout ;<Ξ{1, 2, . . . , n}, on a : 4UJ|<UX^)|<27r|x<7|. Par definition de xa et de
λa, on a:

.7 = 1

U(2π\xj\YJ=(2π)lal\xa\.

(ii) II suffit de le verfier pour λj. Par un simple calcul, on voit que si l^j\ on a

Dιλj=0 et Djλj= e iπε

£2~l e2ίπεxes dont le module est equivalent a 2 j ;

Pour βj>2 on a Dfsλj= e ,,+7 e

2iπεxe* dont le module est infinitesimal.

Par recurrence sur \β\, on verifie que Dβλa est un polynome standard a
coefficients enitiers dans les variables ε et Dβiλj\ ce qui permet de conclure.

Lemme 7. Os est un anneau stable par differences et S est une algebre sur
Vanneau Os.

Demonstration. II suffit d'utiliser la formule de Leibniz (5')

Lemme 8. Soient φ^S et a, β deux multi-entiers standards. La fonction
xβDaFφ est limitee sur X.

Demonstration. Pour a=β=0, on a Fφ(x)= Σ εne~2illxyφ(y) d'oϋ \Fφ(x)\<

Hen\φ(y)\. On choisit m>n\ posons c=sup{(l + |H|2)m|£>(#)||;teX}. Pour

tout y<ΞX, on a Γinegalite 1^(^)1^ (1 + M|2)W» d ' o ύ I ^ M I ^ J ^ g W (l + | ^ | | 2 ) w

Comme la fonction (1 + W 2) 7"!^^)! est interne et limitee, le reel c est limite. La

fonction standard y •—> (i-μ II \\2)m e s t c o n t ^ n u e e t Lebesgue-integrable sur Rn,

done on a Σ^e7 2 ( l + ll Ψ)m—JB* ( l + llvll2)m ^y ' 0 Γ c e d e r n i e r n o m b r e e s t limite.

Pour β = 0, on utilise la formule 9 : DaF(φ) = F(λaφ) qui permet de conclure car

/ ί > G S (lemme 7). Pour a et β quelconques, on utilise les formules (9) et la

proposition 7.
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\xβ(DaF(φ))\ = \xβF{ λaφ)\ <A~lβl\λβF( λaφ)\ =A~^\F(Dfi( λaφ))\

or λ aφ^S et 5 est stable par differences.

Lemme 9. Soit φ^S alors pour tout multi-entier standard a et tout entier

standard m, la fonction (1 + \\xf)mDa(Fφ)(x) est limitee sur X.

Demonstration. Comme (1 + |M|2)W = (1 + Σ£=i#i)m est un polynome standard

des variables Xi, X2, , •**, Xn, il suffit de verifier que pour tout multi-entieres

standards a et /?, et toute fonction g^S la fonction xβDaFg est limitee sur X. Ce

qui a ete etabli au lemme 8.

Proposition 8. Uensemble S des functions de Schwartz est une Os-algebre

stable par differences et par les transformees de Fourier F et F.

Demonstration. C'est une consequence des lemmes precedents.

DEFINITION 8. On dit qu'une application lineaire 77: R(X) >C (resp.

Γunique fonction f^R(X) telle que 77 = 77/) est une distribution limitee temperee

(TLD) lorsque pour toute fonction ^ ^ 5 , Π{φ) = if, φ> est limite.

On notera que Γensemble S' des TLD est externe et contenu dans Γensemble

Π des distributions limitees.

Proposition 9. Soit f^R(X) les assertions suivantes sont equivalentes :

(i) / est une TLD.

(ii) Λ)

Demonstration. On raisonne comme dans la proposition 2.

Proposition 10. Si f est une TLD, alors Ff et Ff sont des TLD.

Demonstration. Soit φ^S\ on a <F/, φ> = <f, Fφ> qui est limite puisque

DEFINITION 9. On dira qu'une fonction f^R(X) est une fonction generalisee

temperee lorsqu'elle satisfait la relation :

(10) 3stm(ΞN, VxeX, \f(x)\<ε~m.

On notera ZT Γensemble (externe) des functions generalisees temperees.

EXEMPLES 3. a) L'ensemble U = {f<ΞR(X)\f(0) est limite et V U
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, ., des fonctions de R(X) qui sont 5-uniformement con-
tinues est contenu dans Zτ. En eίfet pour tout y ^ l o n a \f(y±εej)—f(y)\<l et
f(Q)<ε~1. Soit x^X et 0=Xo, Xi, •••. Λ:m=Λ: un chemin tel que o+i—Xj = εeiu) et
m - l

Σ Ui+i — Xj\ = \χ — 0 =|ΛΓ| . On a

|/(^)| < 1/(0)1 + ΣV(^ +i) -/te) | < ε-1 + m< ε~ι +^< ε~2.

b) L'ensemble Os des fonctions a croissance lente est contenu dans ZT.
L'ensemble des fonctions a croissance modeΐβe est contenu dans ZT.
c) L'application x <—>ex n'est pas dans ZT.

Proposition 11. Soit f^R(X) les assertions suivantes sont equivalentes :

(i)
(ii) VstaGNn, 3 s tm0eJV; \/χ^X, \Daf{x)\<ε-

(iii) 3 s tmieiV; Σίχε-(mi+n)\f(x)\ est limite.

(iv) 3 5 f m 2 e^ 3s72eiV, Σ g"12^ n ffilL est limite.

(v) ^ e Z r .

Demonstration.
(ii) comme dans la proposition 3.
(iii) prendre Mi>m + n.

(i)<=(iii) pour tout i G l , on a εmi+7Z|^(Λ:)|<ε"1, de sorte que \φ(x)\
-(mi+n+l)

) on prend ni2 = mi et /2
(iii)<=(iv) on prend mi > 7̂ 2 + 2/2.

est evident.

Proposition 12. 5/ / &sΐ une TLD, f est un element de Zτ.

Demonstration. On raisonne comme dans la proposition 4.

Theoreme 4. Le plus petit anneau (externe) contenant U et stable par
differences n'est autre que ZT. Uanneau ZT est stable par les transformees de
Fourier F et F. L'ensemble Zτ est une algebre sur Vanneau Os des fonctions a
croissance lente Os est une sous-algebre de ZT stable par differences.

Demonstration. L'ensemble ZT est stable par addition et pour le produit. De
plus U^ZT et OS^ZT, ainsi Zτ est une Os-algebre qui contient U. La caracterisa-
tion (ii) de la proposition 11 prouve que ZT est stable par differences. En
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consequence, le plus petit sous anneau Zo de R(X) contenant U et stable par

differences est contenu dans Zτ. Soit / un element de ZT et m un entier standard

tel que V i E l \f{x)\<.e~m on remarque que f(x) = (f(x)εm+1)ε-{m+1\ Or on

voit que f(x)εm+1^Zo et on sait que la fonction ε~{m+1) s'obtient a partir d'une

fonction de U par differences et produit (lemme 6). En consequence, /€ΞZo.

Soit /£=Zr et m un entier standard tel que pour tout x^X \f(x)\<ε~m on

a la suite d'inegalites :

|F/(*)|< Σ \εne-2iπxy\'\f(y)\<ε-nsuv{\f(y)\\y^X}<ε-{m+n\
yt=X

Ainsi Ff^Zτ on procede de m§me pour Ff.

Les autres points sont evidents.

Theoreme 5. Si f une TLD, alors elle definit une unique distribution

temperee standard P/ par la relation

(ID V s V e J PΛΦ)=°ΠΛΦιx).

Si T est une distribution temperee standard // existe une TLD f pour laquelle

on a :

Demonstration. Pour montrer que P/ est une distribution temperee standard,

on raisonne comme dans le corollaire 3.

Reciproquement, si T est une distribution standard temperee, il existe une

fonction standard continue a croissance moderee h telle que T = dah (voir par

exemple Schwartz [7], Theoreme VI, ch. VI n°4). On note Th la distribution

temperee φ ' > / hφ. Posons f=Dah\x h appartient a Zτ. Considerons une

fonction φ^sλ et <p=φ\x. En utilisant la proposition 5, on obtient: </, <p> =

<Dahιx, <p> = (-iyaϊ<kιx, Da-ψ> d'oύ

La fonction continue h(x)daφ(x) est integrable sur Rn et \/x^X, h(x)daφ(x)

h(x)D-<p(x) done on a

Σ εnh\XD
a-φ(x)- f h(x)daφ(x)dx

X(=X J Rn

C'est a dire que T{ψ) = Pf{ψ).
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