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Chapter 1

Introduction

1.1 Overview
The Min-Plus semiring is a semiring in which the sum of any two elements is defined as
their minimum, and their product is defined as their sum. When the minimum operation
is replaced by the maximum, the result is an isomorphic semiring known as the Max-
Plus semiring. In 1978, Imre Simon introduced the semiring (N ∪ {∞}, min, +) and
later summarized several early results related to semirings in [IS88] where the Min-Plus
semiring is characterized as the tropical semiring. J.-É.Pin discussed the development
of problems related to tropical semirings in [P98]. In this framework, from well-known
rings such as R,Q,Z, one can define their tropical counterparts–tropical reals, tropical
rationals, and tropical integers–by augmenting the set with {∞}.

J.Richter-Gebert, B.Sturmfels, and T.Theobald elaborated on the geometry over trop-
ical semirings in [RST05]. They defined the tropical hypersurface of a tropical polynomial
function. The tropical hypersurface of a two-variable tropical polynomial is referred to
as a tropical curve. Furthermore, they also proved the tropical version of Bézout’s Theo-
rem. G. Mikhalkin, in [M05], showed a remarkable connection between tropical geometry
and classical geometry, specifically related to the number of curves of a given degree and
genus.

Valuation maps allow us to tropicalize algebraic geometry objects, such as functions
and hypersurfaces. For the field of p-adic numbers, the p-adic valuation can serve as the
valuation map. Meanwhile, when working with the field of formal Laurent series, the
order of an element can be used as the valuation map. M.Einsiedler, M.Kapranov, and
D.Lind, in [EKL06], considered the Log function as the valuation map for the base field
and showed that the tropicalization of the hypersurface of f and the tropical hypersurface
of the tropical f are equal after compactification.

By employing the field of Puiseux series as the base field, E.Katz, H.Markwig, and
T.Markwig demonstrated the relationship between the j-invariant of a cubic polynomial
and the cycle length of its tropical hypersurface in [KMM08]. In [M10], T.Markwig argued
that the field of generalized Puiseux series serves as an ideal base field for concurrently
working with algebraic and tropical geometry.
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M.D.Vigeland established a connection to the group law on plane cubic curves by
defining a group law on smooth plane tropical cubic curves in [V09]. Various works in
tropical geometry have focused on specific two-variable polynomials and explored their
tropical geometric properties. In [CS13], M.Chan and B.Sturmfels identified the plane
cubic curves whose tropicalizations feature a hexagonal cycle and provided a detailed
analysis of the tropical group law on these curves. Additionally, A.Nobe demonstrated in
[N08] that the cycles of the tropical curves of a cubic share shapes with the uQRT maps,
and further showed how point addition on a tropical curve can be understood through
the uQRT map.

K.Kajiwara, M.Kaneko, A.Nobe, and T.Tsuda studied the tropicalization of the Hesse
cubic curve and presented a duplication map of points on a specific nonsmooth tropical
cubic curve in [KKNT09]. They constructed the level-three theta functions parametriza-
tion of the Hesse cubic curve and applied the ultradiscretization procedure to reveal its
connection with the tropical duplication process. Furthermore, Nobe, in [N11], provided
the addition formula for points on the tropical Hesse cubic curve, examining the tropical
addition via intersection points. In [N16], Nobe investigated the tropical analogue of the
group of linear automorphisms acting on the Hessian cubic curve.

This study concentrates on the tropical curves derived from symmetric Laurent poly-
nomials of degree three, specifically those in which the terms x3 and y3 are truncated. We
examine the conditions under which these tropical curves are either smooth or nonsmooth,
as discussed in [T23]. As an application, we investigate the criteria for a symmetric trun-
cated cubic curve to satisfy the honeycomb form and to align with the invariant curves
of uQRT maps. In [NT23], H.Nakamura and R.S.Tarmidi showed that the symmetric
truncated cubic is birationally equivalent to a form of elliptic curves introduced in [E07]
by H.M.Edwards. Furthermore, we also delineate the addition-group structure on these
tropical curves. The theta parametrization of the Edwards elliptic curves enables us to
observe point addition through the ultradiscretization procedure. Lastly, we looked into
a cryptographic aspect utilizing this cubic curve.

1.2 Main results
In this thesis, we consider a symmetric truncated cubic polynomial

f(x, y) = c12(xy2 + x2y) + c34(x2 + y2) + c5(xy) + c67(x + y) + c8 ∈ K[x, y] (1.1)

and its tropical polynomial

trop(f)(X, Y ) = min(v12 + X + 2Y, v12 + 2X + Y, v34 + 2X, v34 + 2Y,

v5 + X + Y, v67 + X, v67 + Y, v8)
(1.2)

where vk = val(ck) ∈ Q for k ∈ {12, 34, 5, 67, 8}.
After reviewing basic notions in Chapter 2, we have the connections between the

tropical curve and the Newton polygon of a tropical polynomial. We let ∆f shown in



Figure 1.1 be the Newton polygon of trop(f)(X, Y ). When ∆f is divided into several
cells, we call it as a subdivision of ∆f . We can also map the value (v12, v34, v5, v67, v8) to a
subdivision of ∆f . We call such subdivisions as regular subdivisions of ∆f (see Definition
2.0.5 for the precise definition). A unimodular subdivision is one of the examples of a
regular subdivision. It partitions ∆f into a collection of the finest cells, i.e. triangular
cells of area 1

2 .
In Chapter 3, we see that Proposition 3.1.1 enables us to characterize tropical smooth

curves by unimodular subdivisions of the Newton polygon of trop(f)(X, Y ). Since tropical
polynomial (1.2) is symmetric with respect to the interchange of its variables X and Y ,
any regular subdivisions of the Newton polygon ∆f exhibits symmetry with respect to
the dashed line on Figure 1.1. Thus, the unimodular subdivisions are limited to the five
cases in Theorem 1.2.1.
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Figure 1.1: Newton polygon ∆f .
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Figure 1.2: The unimodular subdivisions of ∆f .

Theorem 1.2.1 (= Theorem 3.1.2). Let f(x, y) be the symmetric truncated cubic in equa-
tion (1.1). Then the possible cycles appearing in the tropical curves of trop(f)(X, Y ) are
triangles, squares, pentagons, hexagons and heptagons. All possible unimodular subdivi-
sions are as shown in Figure 1.2, respectively. Each of these cycles occurs if and only if
(v12, v34, v5, v67, v8) satisfies inequalities listed in Table 1.1.

We also discuss thoroughly about the conditions of (v12, v34, v5, v67, v8) for the 17 non-
smooth tropical curves of trop(f)(X, Y ). There are 23 other subdivisions of ∆f as listed
in Table 1.2. Among these subdivisions, 6 subdivisions are not related to the tropical
curve C(trop(f)) for any (v12, v34, v5, v67, v8).



Conditions of (v12, v34, v5, v67, v8)
(I) −v34 + 2v67 − v8 < 0 v12 − v5 − v67 + v8 < 0 −2v12 + 3v5 − v8 < 0
(II) −v5 + 2v67 − v8 < 0 −v12 + 2v5 − v67 < 0 v12 − v34 − v5 + v67 < 0
(III) v5 − 2v67 + v8 < 0 −v12 + v5 + v67 − v8 < 0 v12 − v34 − v5 + v67 < 0
(IV) −v5 + 2v67 − v8 < 0 −v34 + v5 < 0 −v12 + v34 + v5 − v67 < 0
(V) v5 − 2v67 + v8 < 0 −v34 + 2v67 − v8 < 0 −v12 + v34 + v5 − v67 < 0

Table 1.1: Conditions of (v12, v34, v5, v67, v8) for all smooth tropical curves C(trop(f)).

1 cell

1.1

2 cells

2.1 2.2

3 cells

3.1 3.2 3.3 3.4

4 cells

4.1 4.2

5 cells

5.1 5.2 5.3 5.4 5.5 5.6

6 cells

6.1 6.2

Table 1.2: Other subdivisions of ∆f .

Theorem 1.2.2 (= Theorem 3.2.1). Let trop(f)(X, Y ) be as defined in equation (1.2)
and ∆f be its Newton polygon. Then, the subdivisions on the right column of Table 1.2
never occur as the regular subdivisions of ∆f for any (v12, v34, v5, v67, v8).

Theorem 1.2.3 (= Theorem 3.2.2). The conditions of (v12, v34, v5, v67, v8) for non-unimodular
regular subdivisions in Table 1.2 are shown in Table 1.3.

In Chapter 4, we provide some simple examples as applications of the characteriza-
tion. We elaborated when truncated symmetric cubic forms satisfy the honeycomb form.
We also analyzed the possible invariant curves of ultradiscrete QRT maps for various
parameters. In Chapter 5, we observe the family of two-parameter Edwards curves fr,s

by applying a unimodular transformation to the symmetric truncated cubic. In Chapter
6, we discussed the tropical group law of points on the curves of a symmetric truncated
cubic polynomial.



Conditions of (v12, v34, v5, v67, v8)
1.1 2v12 − 3v34 + v8 = 0 −v12 + 2v34 − v67 ≤ 0 v34 − v5 ≤ 0
2.1 v12 − 2v34 + v67 = 0 v34 − v5 ≤ 0 −v34 + 2v67 − v8 < 0
2.2 v34 − 2v67 + v8 ≤ 0 v34 − v5 ≤ 0 −2v12 + 3v34 − v8 < 0
3.1 v34 − v5 ≤ 0 −v12 + 2v34 − v67 < 0 −v34 + 2v67 − v8 < 0
3.2 −2v12 + v34 + 2v5 − v8 = 0 v34 − 2v67 + v8 ≤ 0 2v12 − 3v34 + v8 < 0
3.3 v34 − 2v67 + v8 ≤ 0 2v12 − 3v5 + v8 ≤ 0 2v12 − 3v34 + v8 < 0
3.4 v12 − 3v67 + 2v8 = 0 v12 − 2v5 + v67 ≤ 0 v12 − 2v34 + v67 < 0
4.1 v12 − v34 − v67 + v8 = 0 −v12 + v34 + v5 − v67 = 0 v12 − 2v34 + v67 < 0
4.2 v12 − 2v5 + v67 ≤ 0 v12 − 2v34 + v67 < 0 −v12 + 3v67 − 2v8 < 0
5.1 −v12 + v34 + v5 − v67 = 0 −v34 + 2v67 − v8 < 0 v12 − v34 − v67 + v8 < 0
5.2 −v12 + v34 + v5 − v67 = 0 v12 − 2v34 + v67 < 0 −v12 + v34 + v67 − v8 < 0
5.3 v34 − 2v67 + v8 ≤ 0 −2v12 + v34 + 2v5 − v8 < 0 −v34 + v5 < 0
5.4 −v12 + v5 + v67 − v8 = 0 −v34 + 2v67 − v8 < 0 v12 − 3v67 + 2v8 < 0
5.5 v34 − 2v67 − v8 ≤ 0 2v12 − v34 − 2v5 + v8 < 0 −2v12 + 3v5 − v8 < 0
5.6 2v12 − 3v5 + v8 ≤ 0 −v34 + 2v67 − v8 < 0 v12 − 3v67 + 2v8 < 0
6.1 v5 − 2v67 + v8 = 0 −v12 + 3v67 − 2v8 < 0 v12 − v34 − v67 + v8 < 0
6.2 v5 − 2v67 + v8 = 0 −v12 + v34 + v67 − v8 < 0 −v34 + 2v67 − v8 < 0

Table 1.3: Conditions of v for subdivisions in Table 1.2.



Chapter 2

Tropical curves and symmetric
truncated cubic forms

Let K be a field. A valuation map of K is a map val : K → R ∪ {∞} that for a, b ∈ K, it
satisfies properties

1. val(a) = ∞ if and only if a = 0,

2. val(ab) = val(a) + val(b), and

3. val(a + b) ≥ min(val(a), val(b)).

Remark 2.0.1. For a, b ∈ K, a valuation map satisfies the following statements.

1. If a2 = a, then val(a) = 0.

2. val(a) = val(−a).

3. If val(a) ̸= val(b), then val(a + b) = min(val(a), val(b)).

Proof. If a2 = a, we have val(a2) = val(a) that implies 2val(a) = val(a) and the first
statement follows. Moreover, since a2 = (−a)2, we have 2val(a) = 2val(−a) and the
second statement follows.

Lastly, assume val(a) > val(b). From the third property, we have val(a + b) ≥ val(b).
Moreover,

val(b) =val(a + b − a)
≥ min(val(a + b), val(−a)) = min(val(a + b), val(a)) = val(a + b).

The last line is an implication of the second statement and the assumption. Thus, the
third claim follows.

Set K∗ denotes the nonzero elements of K. In practical applications, as discussed in [M10],
it is convenient to let K be the field of Puiseux series

C{{t}} =
{ ∞∑

k=m

akt
k
N : m ∈ Z, N ∈ N, ak ∈ C

}
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with valuation

val :C{{t}}∗ → Q
∞∑

k=m

akt
k
N 7→ min

(
k

N
: ak ̸= 0

)
.

Let I ⊂ Z2 be a non-empty subset and

f(x, y) =
∑

(i,j)∈I
aijx

iyj ∈ K[x±1, y±1]

be a Laurent polynomial.

Definition 2.0.2. The tropical polynomial of f(x, y) is the piecewise linear function

trop(f)(X, Y ) = min(val(aij) + i · X + j · Y : (i, j) ∈ I).

Tropical curve C(trop(f)) is the collection of coordinates (X, Y ) ∈ R2 where trop(f)(X, Y )
is nondifferentiable, i.e. the minimum value is attained at least twice.

A tropical curve forms a graph in R2. It contains bounded and unbounded edges.
Some tropical curves have cycles formed by some bounded edges.

Remark 2.0.3. It is common to find other sources in the literature that express the
tropicalization of a polynomial by using operations (+, max). The curve of a tropical
polynomial in the form

trop(f ′)(X, Y ) = max(−val(aij) + i · X + j · Y )

and C(trop(f)) are point-symmetric with respect to the origin O.

Proof. Let (X, Y ) be a point on C(trop(f)). Then there exist (i1, j1) and (i2, j2) such
that

val(ai1j1) + i1X + j1Y = val(ai2j2) + i2X + j2Y

and less than other terms of val(aij) + iX + jY . Thus, we have

−val(ai1j1) + i1(−X) + j1(−Y ) = −val(ai2j2) + i2(−X) + j2(−Y )

and greater than other terms of −val(aij) + i(−X) + j(−Y ). In other words, (X, Y ) is a
point on C(trop(f)) if and only if (−X, −Y ) is a point on C(trop(f ′)). Thus, the tropical
curves are point-symmetric with respect to the origin O.

Expressions of the form val(aij)+i·X +j ·Y can be disregarded when val(aij) is ∞ or −∞,
depending on the operations we use for defining the tropical polynomial. Consequently,
we define the following set for a tropical polynomial.



Definition 2.0.4. The support of f(x, y), or alternatively the support of trop(f)(X, Y ),
is the set

Supp(f) = {(i, j) ∈ Z2 : aij ̸= 0}
and the Newton polygon of trop(f)(X, Y ), denoted by ∆f , is the convex hull of Supp(f).
Let Γd be the triangle with vertices (0, 0), (0, d), (d, 0). If ∆f fits inside Γd but not inside
Γd+1, then we say C(trop(f)) has degree d. If ∆f = Γd, we say C(trop(f)) has a full
support.

The structure of tropical curve C(trop(f)), including its vertex count and the presence
of cycles, exhibits a connection with the regular subdivision of ∆f as defined below. The
definition of subdivisions can be summarized in the diagram in Figure 2.1.

Definition 2.0.5. Let v = (val(aij) : aij ̸= 0) ∈ QSupp(f). Furthermore, let ∆f be the
Newton polygon of trop(f)(X, Y ) and ∆f be the convex hull of

{(i, j, val(aij)) : (i, j) ∈ Supp(f)} ⊆ Z2 × R.

The regular subdivision Subdivv is the image of corner edges of the upper part of ∆f under
the projection to Z2 that subdivide ∆f into smaller polygons. Each small polygon is called
a cell. A cell is primitive when all of its lattice points are its vertices. It is unimodular if
it is a triangle of area half. A regular subdivision is primitive (resp. unimodular) when
all of its cells are primitive (resp. unimodular).

Subdivisions of ∆f

Regular subdivisions

Non-primitive
subdivisions

Primitive
subdivisions

Unimodular
subdivisions

Figure 2.1: Subdivisions of a Newton polygon.

In this thesis, the points on ∆f are numbered according to the position of the term
corresponding to it in the tropical polynomial trop(f)(X, Y ). Furthermore, we will name
the cells of a regular subdivision of ∆f by using these numbers.

Example 2.0.6. Assume tropical polynomial

trop(f)(X, Y ) = min(v1 + X + 2Y, v2 + 2X + Y, v3 + 2X, v4 + 2Y,

v5 + X + Y, v6 + X, v7 + Y, v8).

For vector (v1, . . . , v8) = (0, 0, 0, 0, −1, 0, 0, 0), the regular subdivision Subdivv is shown
in Figure 2.2. We can write this subdivision as [[1, 2, 5], [1, 4, 5], [2, 3, 5], [4, 5, 8], [3, 5, 8]].
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5
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7

8

Figure 2.2: The regular subdivision that is dual to
trop(f)(X, Y ) = min(X + 2Y, 2X + Y, 2X, 2Y, −1 + X + Y, X, Y, 0).

Additionally, we may notice that we have the same regular subdivision for a different
vector (v1, . . . , v8) = (0, 0, 0, 0, −2, 0, 0, 0).

Definition 2.0.7. Let v ∈ QSupp(f). The collection of vectors v that yield the same
regular subdivision forms a polyhedral cone in RSupp(f). The collection of these cones
defines the secondary fan of the Newton polygon ∆f .

Furthermore, the polyhedral cones corresponding to unimodular subdivisions are top-
dimensional cones, see [KMM08].

Definition 2.0.8. Let i ∈ N and p be a cell of a regular subdivision. The ith term of
tropical polynomial trop(f)(X, Y ) is denoted by trop(f)(X, Y )i. If the name of cell p
contains i, then we write i ∈ p. If i ∈ p but i is contained inside cell p, we say p covers i.

Remark 2.0.9. [V10, Lemma 3.2] Let f = ∑
(i,j)∈I aijx

iyj be a polynomial and let v =
(val(aij) : aij ̸= 0). For any edge E that is pointing outward from vertex V on the tropical
curve C(trop(f)), there is a cell p in the subdivision Subdivv bounded by edge D where E
is the inward normal vector of D. The opposite holds as well. This dualism is illustrated
in Figure 2.3.

V

E1

E2

E3

trop(f)(X, Y )p1

trop(f)(X, Y )p2

trop(f)(X, Y )p3

D1

p2

D2

p3

D3

p1

cell p

Figure 2.3: The dualism of vertex V of a tropical curve and cell p of a subdivision.



Remark 2.0.10. Let trop(f)(X, Y ) be a tropical polynomial and p be a cell of its regular
subdivision. Let (Xp, Yp) be a vertex on a tropical curve C(trop(f)) that corresponds to
cell p. Then (Xp, Yp) is the solution of the system of linear equations

{trop(f)(X, Y )i = trop(f)(X, Y )j : i, j ∈ p and i ̸= j}.

Let i ∈ p and we have cell p corresponds to inequalities

trop(f)(Xp, Yp)i

≤ trop(f)(Xp, Yp)j : j /∈ p, p covers j

< trop(f)(Xp, Yp)j : j /∈ p, p doesn’t cover j
. (2.1)

Proof. Let p = [p1, . . . , pt] where for i = 1, . . . , t, pi ∈ N are points on the regular
subdivision that form the vertices of cell p. Cell p is a t sides polygon. It is dual to vertex
(Xp, Yp) whose t emerging edges separate t regions (see Figure 2.3). Each region is the
collection of (X, Y ) where trop(f)(X, Y ) = trop(f)(X, Y )pi

, (i = 1, . . . , t). Thus, (Xp, Yp)
is the intersection point between t terms trop(f)(X, Y )pi

, (i = 1, . . . , t).
Furthermore, from the definition of a tropical curve, we know that vertex (Xp, Yp) is

a point where the minimum value trop(f)(X, Y ) is attained t times by

trop(f)(X, Y )p1 = · · · = trop(f)(X, Y )pt .

Hence, for j ̸= p1, . . . , pt, we have trop(f)(X, Y )p1 ≤ trop(f)(X, Y )j when j is covered by
cell p and trop(f)(X, Y )p1 < trop(f)(X, Y )j for other j.

The edges of a tropical curve connect vertices that lie on Q2. Meanwhile, the edges of
a regular subdivision connect lattice vertices Z2.

Definition 2.0.11. Let E be an edge in a tropical curve and D be the corresponding
edge in its dual subdivision. If n is the number of lattice points on D, then the weight
of E, denoted by ωE, is defined to be n − 1. If E is a bounded edge, let |E| and |D| be
the Euclidean lengths of E and D, respectively. The lattice length of E, denoted by lE,
is given by lE = |E|

|D| . If P and Q are two points on E, the lattice length between P and
Q is

lP Q = |PQ|
|E|

lE.

The relationship between tropical curves and regular subdivisions establishes a coherent
mapping between various elements of the two entities. Specifically, there is a one-to-
one correspondence between edges of a tropical curve and edges of a regular subdivision,
between vertices of a tropical curve and cells of a regular subdivision, and between regions
of a tropical curve and vertices of a subdivision.

Remark 2.0.12. For a polynomial f(x, y) = ∑
(i,j)∈I aijx

iyj, let v = (val(aij) : aij ̸= 0).

Let u =
(

u1
u2

)
and u′ =

(
u′

1
u′

2

)
be primitive integer vectors that satisfy

u1 − u′
2 = 0 u2 + u′

1 = 0. (2.2)



Suppose V is a vertex on C(trop(f)) and edges E1, . . . , Et emerge from it following a
clockwise orientation. Let u1, . . . , ut be their primitive integer directions, respectively.
We have u1 + · · · + ut = 0. Furthermore, vertex V is dual to cell p in Subdivv that is
bounded by edges D1, . . . , Dt that can be written as vectors ω1u

′
1, . . . , ωtu

′
t, following a

clockwise orientation.

Proof. The first claim that says u1 + · · · + ut = 0 is the direct corollary of Remark
2.0.9. If cell p of Subdivv is dual to vertex V , it is bounded by t edges D1, . . . , Dt. For
i = 1, . . . , t, we can assume the primitive integer directions of Di is u′

i since vectors ui and
u′

i are perpendicular to each other. Moreover, from the definition of the weight of Ei, the
Euclidean length of edges Di is |Di| = ωi|u′

i|. Thus, the result follows.

Triangular cells have a special role because it allows us to define the multiplicity of
trivalent vertices that are dual to it.

Definition 2.0.13. Let V be a trivalent vertex on a tropical curve with edges E1, E2, E3
emerging from it. Let ω1, ω2, ω3 be the weights and v1, v2, v3 be the primitive integer
directions of these edges, respectively. The multiplicity of V , denoted by multV , is defined
by the absolute values of

ω1ω2

∣∣∣v1 v2
∣∣∣ = ω1ω3

∣∣∣v1 v3
∣∣∣ = ω2ω3

∣∣∣v2 v3
∣∣∣ .

In [V09], Vigeland focused on a tropical curve whose vertices are all trivalent and of
multiplicity one.

Definition 2.0.14. A tropical curve is defined to be smooth if each vertex is trivalent
and has multiplicity one.

We can also notice that a tropical curve whose vertices are all trivalent of multiplicity one
is dual to a unimodular subdivision. Step by step proof is is given in Proposition 3.1.1.



Chapter 3

Explicit criteria for various types of
subdivisions

The dualism between a regular subdivision and a tropical curve tells that we can identify
all tropical curves from the families of regular subdivisions. In this chapter, we will
describe all combinatorial possibilities of the subdivisions of ∆f and determine the values
of (v12, v34, v5, v67, v8) for each subdivision, [T23].

3.1 Smooth tropical curves
First, we want to identify the subdivisions that are dual to smooth tropical curves.

Proposition 3.1.1. Let C(trop(f)) be a tropical curve and Subdivv be a subdivision that
are dual. Tropical curve C(trop(f)) is smooth if and only if Subdivv is a unimodular
triangulation.

Proof. Suppose Subdivv is a unimodular triangulation. Let p be a triangular cell in
Subdivv and its borders be vectors a′, b′, c′. Since the area of p is half, there is no lattice
point contained in p except its vertices, and vectors a′, b′, c′ are primitive integer directions.
It implies ωa = ωb = ωc = 1. Furthermore,

1
2 = area of p = 1

2(a′
1b

′
2 − a′

2b
′
1) = 1

2(b′
1c

′
2 − b′

2c
′
1) = 1

2(c′
1a

′
2 − c′

2a
′
1).

Let V be the vertex on C(trop(f)) that is dual to cell p. The direction of three emerging
edges from V will have primitive integer vectors a, b, c satisfying Remark 2.0.12. Due
to the equations (2.2), the absolute values of determinants

∣∣∣a b
∣∣∣ , ∣∣∣a c

∣∣∣ , ∣∣∣b c
∣∣∣ are one.

Thus we have the absolute value of ωaωb

∣∣∣a b
∣∣∣ is one, which establishes multV = 1. For

a treatment of general tropical curves, we refer the reader to [MS15].
Conversely, suppose that C(trop(f)) is smooth. Let V be a vertex and the three

emerging edges have primitive integer directions a, b, c. Let p be the triangular cell in
the subdivision that is dual to V . If a′, b′, c′ are primitive integer vectors as mentioned in
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Remark 2.0.12, the boundaries of p are vectors ωaa′, ωbb
′, ωcc

′. Since we have multV = 1,
the weights of a, b, c are ωa = ωb = ωc = 1 and the absolute values of

∣∣∣a b
∣∣∣, ∣∣∣a c

∣∣∣, and∣∣∣b c
∣∣∣ are one. Furthermore, applying the relation (2.2) of Remark 2.0.12 yields

area of p = 1
2
∣∣∣a b

∣∣∣ = 1
2
∣∣∣b c

∣∣∣ = 1
2
∣∣∣c a

∣∣∣ .
Therefore, we can assert that the subdivision Subdivv is a unimodular triangulation.

Theorem 3.1.2 (= Theorem 1.2.1). Let f(x, y) be the symmetric truncated cubic in equa-
tion (1.1). Then the possible cycles appearing in the tropical curves of trop(f)(X, Y ) are
triangles, squares, pentagons, hexagons and heptagons. All possible unimodular subdivi-
sions are as shown in Figure 1.2, respectively. Each of these cycles occurs if and only if
(v12, v34, v5, v67, v8) satisfies inequalities listed in Table 3.1.

Conditions of (v12, v34, v5, v67, v8)
(I) −v34 + 2v67 − v8 < 0 v12 − v5 − v67 + v8 < 0 −2v12 + 3v5 − v8 < 0
(II) −v5 + 2v67 − v8 < 0 −v12 + 2v5 − v67 < 0 v12 − v34 − v5 + v67 < 0
(III) v5 − 2v67 + v8 < 0 −v12 + v5 + v67 − v8 < 0 v12 − v34 − v5 + v67 < 0
(IV) −v5 + 2v67 − v8 < 0 −v34 + v5 < 0 −v12 + v34 + v5 − v67 < 0
(V) v5 − 2v67 + v8 < 0 −v34 + 2v67 − v8 < 0 −v12 + v34 + v5 − v67 < 0

Table 3.1: Conditions of v12, v34, v5, v67, v8 for all smooth tropical curves C(trop(f)).

Proof. We will simultaneously prove the five cases since their proofs share similarities.
There are three main steps involved in determining the conditions of (v12, v34, v5, v67, v8)
for each subdivision in Figure 1.2. We will apply Remark 2.0.10. First, we calculate the
coordinates of the vertices of a smooth tropical curve. Since a vertex in a tropical curve
corresponds to a cell in a subdivision, each smooth tropical curve has seven vertices. The
second step involves finding the inequalities that determine each cell of the subdivision.
Lastly, we assemble a collection of inequalities that is equivalent to the union of all
inequalities obtained in the second step.

The five subdivisions on Figure 1.2 can be written as

1. SI = [[1, 2, 5], [1, 5, 8], [2, 5, 8], [1, 7, 8], [2, 6, 8], [1, 4, 7], [2, 3, 6]],

2. SII = [[1, 2, 5], [1, 5, 7], [2, 5, 6], [1, 4, 7], [2, 3, 6], [5, 6, 7], [6, 7, 8]],

3. SIII = [[1, 2, 5], [1, 5, 7], [2, 5, 6], [1, 4, 7], [2, 3, 6], [5, 7, 8], [5, 6, 8]],

4. SIV = [[1, 2, 5], [1, 4, 5], [2, 3, 5], [4, 5, 7], [3, 5, 6], [5, 6, 7], [6, 7, 8]], and

5. SV = [[1, 2, 5], [1, 4, 5], [2, 3, 5], [4, 5, 7], [3, 5, 6], [5, 7, 8], [5, 6, 8]].

By using Remark 2.0.10, the coordinates (X, Y ) corresponding to all cells of the subdivi-
sions are



1. SI,(X,Y ) = [(−v12 + v5, −v12 + v5), (−2v5 + v12 + v8, −v12 + v5),
(−v12 + v5, −2v5 + v12 + v8), (−v12 + 2v67 − v8, −v67 + v8),
(−v67 + v8, −v12 + 2v67 − v8), (−v12 + v34, −v34 + v67), (−v34 + v67, −v12 + v34)],

2. SII,(X,Y ) = [(−v12 + v5, −v12 + v5), (−v5 + v67, −v12 + v5), (−v12 + v5, −v5 + v67),
(−v12 + v34, −v34 + v67), (−v34 + v67, −v12 + v34), (−v5 + v67, −v5 + v67),
(−v67 + v8, −v67 + v8)],

3. SIII,(X,Y ) = [(−v12 + v5, −v12 + v5), (−v5 + v67, −v12 + v5), (−v12 + v5, −v5 + v67),
(−v12 + v34, −v34 + v67), (−v34 + v67, −v12 + v34), (−v67 + v8, −v5 + v67),
(−v5 + v67, −v67 + v8)],

4. SIV,(X,Y ) = [(−v12 + v5, −v12 + v5), (−v12 + v34, −v12 + v5), (−v12 + v5, −v12 + v34),
(−v34 + v67, −v5 + v67), (−v5 + v67, −v34 + v67), (−v5 + v67, −v5 + v67),
(−v67 + v8, −v67 + v8)], and

5. SV,(X,Y ) = [(−v12 + v5, −v12 + v5), (−v12 + v34, −v12 + v5), (−v12 + v5, −v12 + v34),
(−v34 + v67, −v5 + v67), (−v5 + v67, −v34 + v67), (−v5 + v67, −v67 + v8),
(−v67 + v8, −v5 + v67)].

Meanwhile, the union of inequalities that determine all cells are

1. SI,inequalities = {v5 < v34, 2v5 < v12 + v67, 3v5 < 2v12 + v8, 4v5 < v8 + v34 + 2v12,

2v8 < −v12 + (3v67), 3v8 < v34 − (2v12) + (4v67), v12 < 2v34 − v67, −v34 + 2v67 < v8,

v8 + v12 − v67 < v5, −v34 + v12 + v67 < v5, −v34 + 2v12 + v8 < 2v5},

2. SII,inequalities = {v5 < v34, 2v5 < v12 + v67, 3v5 < 2v12 + v8, v5 < v8 + v12 − v67,

3v5 < v67 + v12 + v34, v12 < 2v34 − v67, −v8 + 2v67 < v5, −v34 + 2v67 < v8,

− v12 + 3v67 < 2v8, −v34 + v12 + v67 < v5},

3. SIII,inequalities = {v5 < v34, v5 < −v8 + 2v67, 2v5 < v12 + v67, 3v5 < 2v12 + v8,

v5 < v8 + v12 − v67, 2v5 < −v8 + v34 + 2v67, 3v5 < v67 + v12 + v34, v12 < 2v34 − v67,

− v34 + 2v67 < v8, −v34 + v12 + v67 < v5},

4. SIV,inequalities = {v5 < v34, 2v5 < v12 + v67, 3v5 < 2v12 + v8, v5 < −v34 + v12 + v67,

2v5 < −v34 + 2v12 + v8, −v8 + 2v67 < v5,

− v34 + 2v67 < v8, −v12 + 3v67 < 2v8}, and

5. SV,inequalities = {v5 < v34, v5 < −v8 + 2v67, 2v5 < v12 + v67, 3v5 < 2v12 + v8,

v5 < v8 + v12 − v67, v5 < −v34 + v12 + v67, 2v5 < −v8 + v34 + 2v67,

2v5 < −v34 + 2v12 + v8, −v34 + 2v67 < v8}.



Finally, we will proceed to simplify the five sets of inequalities that are mentioned
above. This reduction can be accomplished through Maple calculations, as demonstrated
in Section 3.3. As a result, we obtain the final conditions for (v12, v34, v5, v67, v8) that
determine each subdivision, which are as follows.

1. SI,v = {−v8 − v34 + 2v67 < 0, −v5 + v8 + v12 − v67 < 0, 3v5 − v8 − 2v12 < 0},

2. SII,v = {−v5 − v8 + 2v67 < 0, −v5 + v12 − v34 + v67 < 0, 2v5 − v12 − v67 < 0},

3. SIII,v = {−v5 + v12 − v34 + v67 < 0, v5 − v8 − v12 + v67 < 0, v5 + v8 − 2v67 < 0},

4. SIV,v = {−v5 − v8 + 2v67 < 0, v5 − v12 + v34 − v67 < 0, v5 − v34 < 0}, and

5. SV,v = {−v8 − v34 + 2v67 < 0, v5 − v12 + v34 − v67 < 0, v5 + v8 − 2v67 < 0}.

3.2 Non-smooth tropical curves
Due to Proposition 3.1.1, we know that all regular subdivisions that are non-unimodular
correspond to nonsmooth tropical curves of cubic polynomial f(x, y) in equation (1.1).
Table 1.2 shows all subdivisions of Newton polygon ∆f that have some non-unimodular
cells. Now, we will determine which subdivisions in Table 1.2 are regular subdivisions of
∆f .

Theorem 3.2.1 (= Theorem 1.2.2). Let trop(f)(X, Y ) be as defined in equation (1.2)
and ∆f be its Newton polygon. Then, the subdivisions in the right column of Table 1.2
never occur as the regular subdivisions of ∆f for any (v12, v34, v5, v67, v8).

Proof. The proof can be accomplished by examining the shape of the subdivision. By
contradiction, assume that the subdivisions are viable. In doing so, we observe that the
interior point (1, 1) forms a vertex of the Newton polygon ∆f . However, it is evident that
its dual does not form a closed cycle in a tropical curve.

We can see that the regular subdivisions in Table 1.2 can be derived through a coars-
ening process from the unimodular subdivisions shown in Figure 1.2. This implies that
the linear expressions representing the polyhedral cones for subdivisions in Table 1.2 may
not all be strict inequalities, unlike those in Table 3.1. Moreover, we can arrange all of
the non-unimodular and unimodular subdivisions as shown in Figure 3.1.

Theorem 3.2.2 (= Theorem 1.2.3). The conditions of (v12, v34, v5, v67, v8) for non-unimodular
regular subdivisions in Table 1.2 are shown in Table 3.2.

Proof. We will do the proof in three separate steps. The first step is replicating the
three steps in the proof of Theorem 3.1.2 and achieving the sets of linear expressions in
(v12, v34, v5, v67, v8). Unlike the proof of Theorem 3.1.2, we may notice linear equality due



1.1

3.22.22.1 3.3 3.4 4.1

5.35.25.14.23.1 5.4 5.5 5.6 6.1 6.2

Figure 3.1: A poset of all regular subdivisions of ∆f from the coarsest to the finest.

to the cells that are formed by four vertices or more. At this step, we let all inequalities
(3.2) produced by the Maple calculation in Section 3.3 be strict inequalities to create
similarity with the proof of Theorem 3.1.2. The linear expressions of (v12, v34, v5, v67, v8)
for each non-unimodular subdivision obtained by this first step are written in Table 3.3.

In the second step, we separate the non-unimodular subdivisions into the primitive
and the non-primitive. Since a primitive cell does not cover any point of ∆f , the inequal-
ity expressions in Table 3.3 for the primitive subdivisions will remain strict inequalities
according to Remark 2.0.10. Thus, the conditions of (v12, v34, v5, v67, v8) for the subdivi-
sions 4.1, 5.1, 5.2, 5.4, 6.1, 6.2 are as shown in Table 3.3.

The third step is changing the sign of some strict inequalities to non-strict inequalities
on the conditions of (v12, v34, v5, v67, v8) for the non-primitive subdivisions. We do this
by applying Remark 2.0.10. In subdivision 1.1, all inequalities are non-strict because all
points are covered by the single cell [1, 2, 3, 4, 8].

Lastly, we see the finer regular subdivisions on the second and third lines of Figure
3.1. We want to see which inequalities are non-strict by evaluating the non-primitive cells.
Due to the symmetrical property of trop(f)(X, Y ), we can reduce the observation to Table
3.4. Furthermore, we change the inequalities of subdivisions containing the non-primitive
cells accordingly. Thus, the result follows.



Conditions of (v12, v34, v5, v67, v8)
1.1 2v12 − 3v34 + v8 = 0 −v12 + 2v34 − v67 ≤ 0 v34 − v5 ≤ 0
2.1 v12 − 2v34 + v67 = 0 v34 − v5 ≤ 0 −v34 + 2v67 − v8 < 0
2.2 v34 − 2v67 + v8 ≤ 0 v34 − v5 ≤ 0 −2v12 + 3v34 − v8 < 0
3.1 v34 − v5 ≤ 0 −v12 + 2v34 − v67 < 0 −v34 + 2v67 − v8 < 0
3.2 −2v12 + v34 + 2v5 − v8 = 0 v34 − 2v67 + v8 ≤ 0 2v12 − 3v34 + v8 < 0
3.3 v34 − 2v67 + v8 ≤ 0 2v12 − 3v5 + v8 ≤ 0 2v12 − 3v34 + v8 < 0
3.4 v12 − 3v67 + 2v8 = 0 v12 − 2v5 + v67 ≤ 0 v12 − 2v34 + v67 < 0
4.1 v12 − v34 − v67 + v8 = 0 −v12 + v34 + v5 − v67 = 0 v12 − 2v34 + v67 < 0
4.2 v12 − 2v5 + v67 ≤ 0 v12 − 2v34 + v67 < 0 −v12 + 3v67 − 2v8 < 0
5.1 −v12 + v34 + v5 − v67 = 0 −v34 + 2v67 − v8 < 0 v12 − v34 − v67 + v8 < 0
5.2 −v12 + v34 + v5 − v67 = 0 v12 − 2v34 + v67 < 0 −v12 + v34 + v67 − v8 < 0
5.3 v34 − 2v67 + v8 ≤ 0 −2v12 + v34 + 2v5 − v8 < 0 −v34 + v5 < 0
5.4 −v12 + v5 + v67 − v8 = 0 −v34 + 2v67 − v8 < 0 v12 − 3v67 + 2v8 < 0
5.5 v34 − 2v67 − v8 ≤ 0 2v12 − v34 − 2v5 + v8 < 0 −2v12 + 3v5 − v8 < 0
5.6 2v12 − 3v5 + v8 ≤ 0 −v34 + 2v67 − v8 < 0 v12 − 3v67 + 2v8 < 0
6.1 v5 − 2v67 + v8 = 0 −v12 + 3v67 − 2v8 < 0 v12 − v34 − v67 + v8 < 0
6.2 v5 − 2v67 + v8 = 0 −v12 + v34 + v67 − v8 < 0 −v34 + 2v67 − v8 < 0

Table 3.2: Conditions of (v12, v34, v5, v67, v8) for subdivisions in Table 1.2.

Conditions of (v12, v34, v5, v67, v8)
1.1 2v12 − 3v34 + v8 = 0 −v12 + 2v34 − v67 < 0 v34 − v5 < 0
2.1 v12 − 2v34 + v67 = 0 v34 − v5 < 0 −v34 + 2v67 − v8 < 0
2.2 v34 − 2v67 + v8 < 0 v34 − v5 < 0 −2v12 + 3v34 − v8 < 0
3.1 v34 − v5 < 0 −v12 + 2v34 − v67 < 0 −v34 + 2v67 − v8 < 0
3.2 −2v12 + v34 + 2v5 − v8 = 0 v34 − 2v67 + v8 < 0 2v12 − 3v34 + v8 < 0
3.3 v34 − 2v67 + v8 < 0 2v12 − 3v5 + v8 < 0 2v12 − 3v34 + v8 < 0
3.4 v12 − 3v67 + 2v8 = 0 v12 − 2v5 + v67 < 0 v12 − 2v34 + v67 < 0
4.1 v12 − v34 − v67 + v8 = 0 −v12 + v34 + v5 − v67 = 0 v12 − 2v34 + v67 < 0
4.2 v12 − 2v5 + v67 < 0 v12 − 2v34 + v67 < 0 −v12 + 3v67 − 2v8 < 0
5.1 −v12 + v34 + v5 − v67 = 0 −v34 + 2v67 − v8 < 0 v12 − v34 − v67 + v8 < 0
5.2 −v12 + v34 + v5 − v67 = 0 v12 − 2v34 + v67 < 0 −v12 + v34 + v67 − v8 < 0
5.3 v34 − 2v67 + v8 < 0 −2v12 + v34 + 2v5 − v8 < 0 −v34 + v5 < 0
5.4 −v12 + v5 + v67 − v8 = 0 −v34 + 2v67 − v8 < 0 v12 − 3v67 + 2v8 < 0
5.5 v34 − 2v67 − v8 < 0 2v12 − v34 − 2v5 + v8 < 0 −2v12 + 3v5 − v8 < 0
5.6 2v12 − 3v5 + v8 < 0 −v34 + 2v67 − v8 < 0 v12 − 3v67 + 2v8 < 0
6.1 v5 − 2v67 + v8 = 0 −v12 + 3v67 − 2v8 < 0 v12 − v34 − v67 + v8 < 0
6.2 v5 − 2v67 + v8 = 0 −v12 + v34 + v67 − v8 < 0 −v34 + 2v67 − v8 < 0

Table 3.3: The linear expressions of (v12, v34, v5, v67, v8) after the first step.



Cell p Coordinate (Xp, Yp) Inequalities Subdivisions
[1, 2, 3, 4, 6, 7] (−v34 + v67, −v34 + v67) v12 − v34 − v5 + v67 ≤ 0 2.1

v12 = 2v34 − v67
[1, 2, 3, 4] (−v12 + v34, −v12 + v34) v34 − v5 ≤ 0 2.2, 3.1
[3, 4, 8] (−v34

2 + v8
2 , −v34

2 + v8
2 ) v34 − v5 ≤ 0 2.2

v34 − 2v67 + v8 ≤ 0
[3, 4, 6, 7] (−v34 + v67, −v34 + v67) v34 − v5 ≤ 0 3.1
[1, 4, 5, 8] (−v12 + v34, −v12 + v5) −v12 + v34 + v5 − v67 ≤ 0 3.2
[1, 4, 8] (−v12 + v34, −v34

2 + v8
2 ) v34 − 2v67 + v8 ≤ 0 3.3

[1, 2, 8] (−v12
3 + v8

3 , −v12
3 + v8

3 ) 2v12 − 3v5 + v8 ≤ 0 3.3, 5.6
[1, 2, 6, 7, 8] (−v67 + v8, −v67 + v8) v12 − 2v5 + v67 ≤ 0 3.4

v12 − 3v67 + 2v8 = 0
[1, 2, 6, 7] (−v12

2 + v67
2 , −v12

2 + v67
2 ) v12 − 2v5 + v67 ≤ 0 4.2

[3, 5, 8] (−v34
2 + v8

2 , −v5 + v8
2 + v34

2 ) v34 − 2v67 + v8 ≤ 0 5.3

Table 3.4: Non-strict inequalities correspond to non-primitive cells.

3.3 Maple code
In the proof of Theorem 3.1.2, we can narrow down several inequalities to three by checking
the equivalence of the two sets of inequalities. We can also do this calculation in Maple
by using its PolyhedralSets package. We employ the following commands to calculate
the conditions for (v12, v34, v5, v67, v8) in the case of smooth tropical curves in the proof of
Theorem 3.1.2.
I_ineqs:= {v[5] <= v[34], v[5] <= v[12]/2 + v[67]/2, v[5] <= (2*v[12])/3

+ v[8]/3, v[5] <= v[8]/4 + v[34]/4 + v[12]/2, v[8] <= -v[12]/2 + (3*v
[67])/2, v[8] <= v[34]/3 - (2*v[12])/3 + (4*v[67])/3, v[12] <= 2*v[34]
- v[67], -v[34] + 2*v[67] <= v[8], v[8] + v[12] - v[67] <= v[5], -v

[34] + v[12] + v[67] <= v[5], -v[34]/2 + v[12] + v[8]/2 <= v[5]}:
I_pseudo_polyhedral:= PolyhedralSets:-PolyhedralSet(I_ineqs);

II_ineqs:= {v[5] <= v[34], v[5] <= v[12]/2 + v[67]/2, v[5] <= (2*v[12])/3
+ v[8]/3, v[5] <= v[8] + v[12] - v[67], v[5] <= v[67]/3 + v[12]/3 + v

[34]/3, v[12] <= 2*v[34] - v[67], -v[8] + 2*v[67] <= v[5], -v[34] + 2*
v[67] <= v[8], -v[12]/2 + (3*v[67])/2 <= v[8], -v[34] + v[12] + v[67]
<= v[5]}:

II_pseudo_polyhedral:= PolyhedralSets:-PolyhedralSet(II_ineqs);

III_ineqs:= {v[5] <= v[34], v[5] <= -v[8] + 2*v[67], v[5] <= v[12]/2 + v
[67]/2, v[5] <= (2*v[12])/3 + v[8]/3, v[5] <= v[8] + v[12] - v[67], v
[5] <= -v[8]/2 + v[34]/2 + v[67], v[5] <= v[67]/3 + v[12]/3 + v[34]/3,
v[12] <= 2*v[34] - v[67], -v[34] + 2*v[67] <= v[8], -v[34] + v[12] +



v[67] <= v[5]}:
III_pseudo_polyhedral:= PolyhedralSets:-PolyhedralSet(III_ineqs);

IV_ineqs:= {v[5] <= v[34], v[5] <= v[12]/2 + v[67]/2, v[5] <= (2*v[12])/3
+ v[8]/3, v[5] <= -v[34] + v[12] + v[67], v[5] <= -v[34]/2 + v[12] +

v[8]/2, -v[8] + 2*v[67] <= v[5], -v[34] + 2*v[67] <= v[8], -v[12]/2 +
(3*v[67])/2 <= v[8]}:

IV_pseudo_polyhedral:= PolyhedralSets:-PolyhedralSet(IV_ineqs);

V_ineqs:= {v[5] <= v[34], v[5] <= -v[8] + 2*v[67], v[5] <= v[12]/2 + v
[67]/2, v[5] <= (2*v[12])/3 + v[8]/3, v[5] <= v[8] + v[12] - v[67], v
[5] <= -v[34] + v[12] + v[67], v[5] <= -v[8]/2 + v[34]/2 + v[67], v[5]
<= -v[34]/2 + v[12] + v[8]/2, -v[34] + 2*v[67] <= v[8]}:

V_pseudo_polyhedral:= PolyhedralSets:-PolyhedralSet(V_ineqs);

This gives polyhedra (3.1).

I pseudo polyhedral :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [−v8 − v34 + 2v67 ≤ 0,

−v5 + v8 + v12 − v67 ≤ 0, v5 − v8
3 − 2v12

3 ≤ 0]

II pseudo polyhedral :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [−v5 − v8 + 2v67 ≤ 0,

−v5 + v12 − v34 + v67 ≤ 0, v5 − v12
2 − v67

2 ≤ 0]

III pseudo polyhedral :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [−v5 + v12 − v34 + v67 ≤ 0,

v5 − v8 − v12 + v67 ≤ 0, v5 + v8 − 2v67 ≤ 0]

IV pseudo polyhedral :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [−v5 − v8 + 2v67 ≤ 0,

v5 − v12 + v34 − v67 ≤ 0, v5 − v34 ≤ 0]

V pseudo polyhedral :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [−v8 − v34 + 2v67 ≤ 0,

v5 − v12 + v34 − v67 ≤ 0, v5 + v8 − 2v67 ≤ 0]

(3.1)

The command PolyhedralSets:-PolyhedralSet() calculates a set of non-strict inequal-
ities. However, we know that a unimodular subdivision corresponds to a top-dimensional
cone of the secondary fan of ∆f . Thus, we simply change all inequality expressions in
(3.1) to strict inequalities to achieve a five-dimensional polyhedral cone.

For non-unimodular regular subdivisions, we employ the following commands to get
preliminary inequality expressions (3.2) that correspond to the non-unimodular subdivi-
sions.



ineqs_11:= {u[8] = -2*u[12] + 3*u[34], u[34] <= u[5], 2*u[34] - u[67] <=
u[12]}:

pseudo_polyhedral_11:= PolyhedralSets:-PolyhedralSet(ineqs_11);

ineqs_21:= {u[12] = 2*u[34] - u[67], -u[8] + 2*u[67] <= u[5], -u[34] + 2*
u[67] <= u[8], -u[12]/2 + (3*u[67])/2 <= u[8], u[12] - 3*u[34] + 3*u
[67] <= u[8], u[12] - u[34] + u[67] <= u[5]}:

pseudo_polyhedral_21:= PolyhedralSets:-PolyhedralSet(ineqs_21);

ineqs_22:= {u[8] <= -u[34] + 2*u[67], u[34] <= u[5], -2*u[12] + 3*u[34]
<= u[8], 2*u[34] - u[67] <= u[12]}:

pseudo_polyhedral_22:= PolyhedralSets:-PolyhedralSet(ineqs_22);

ineqs_31:= {u[34] <= u[5], -u[8] + 2*u[67] <= u[5], -2*u[12] + 3*u[34] <=
u[8], -u[34] + 2*u[67] <= u[8], 2*u[34] - u[67] <= u[12], -u[12]/2 +

(3*u[67])/2 <= u[8]}:
pseudo_polyhedral_31:= PolyhedralSets:-PolyhedralSet(ineqs_31);

ineqs_32:= {u[8] = u[34] - 2*u[12] + 2*u[5], u[5] <= u[34], u[5] <= u
[12]/2 + u[67]/2, u[5] <= (2*u[12])/3 + u[8]/3, u[5] <= u[12] - u[34]
+ u[67]}:

pseudo_polyhedral_32:= PolyhedralSets:-PolyhedralSet(ineqs_32);

ineqs_33:= {u[8] <= -2*u[12] + 3*u[34], u[8] <= -u[34] + 2*u[67], u[8] <=
-u[12]/2 + (3*u[67])/2, u[8] <= u[67] - u[12] + u[34], (2*u[12])/3 +

u[8]/3 <= u[5], u[8]/2 - u[34]/2 + u[12] <= u[5]}:
pseudo_polyhedral_33:= PolyhedralSets:-PolyhedralSet(ineqs_33);

ineqs_34:= {u[12] = 3*u[67] - 2*u[8], u[8] <= u[67] - u[12] + u[34], u
[12] <= 2*u[34] - u[67], -u[34] + 2*u[67] <= u[8], u[12] - u[34] + u
[67] <= u[5], u[12] - u[67] + u[8] <= u[5]}:

pseudo_polyhedral_34:= PolyhedralSets:-PolyhedralSet(ineqs_34);

ineqs_41:= {u[5] = -u[8] + 2*u[67], u[5] = u[12] - u[34] + u[67], u[5] <=
u[34], u[5] <= u[12]/2 + u[67]/2, u[5] <= (2*u[12])/3 + u[8]/3, u[5]

<= u[12] - u[67] + u[8], u[12] <= 2*u[34] - u[67], -u[34] + 2*u[67] <=
u[8]}:

pseudo_polyhedral_41:= PolyhedralSets:-PolyhedralSet(ineqs_41);

ineqs_42:= {u[12] <= 2*u[34] - u[67], -u[8] + 2*u[67] <= u[5], -u[34] +
2*u[67] <= u[8], -u[12]/2 + (3*u[67])/2 <= u[8], u[12]/2 + u[67]/2 <=
u[5], u[12] - u[34] + u[67] <= u[5]}:

pseudo_polyhedral_42:= PolyhedralSets:-PolyhedralSet(ineqs_42);



ineqs_51:= {u[5] = u[12] - u[34] + u[67], u[5] <= u[34], u[5] <= -u[8] +
2*u[67], u[5] <= u[12]/2 + u[67]/2, u[5] <= (2*u[12])/3 + u[8]/3, u[5]
<= u[12] - u[67] + u[8], u[5] <= -u[8]/2 + u[34]/2 + u[67], u[12] <=

2*u[34] - u[67], -u[34] + 2*u[67] <= u[8]}:
pseudo_polyhedral_51:= PolyhedralSets:-PolyhedralSet(ineqs_51);

ineqs_52:= {u[5] = u[12] - u[34] + u[67], u[5] <= u[34], u[5] <= u[12]/2
+ u[67]/2, u[5] <= (2*u[12])/3 + u[8]/3, u[12] <= 2*u[34] - u[67], -u
[8] + 2*u[67] <= u[5], -u[34] + 2*u[67] <= u[8], -u[12]/2 + (3*u[67])
/2 <= u[8]}:

pseudo_polyhedral_52:= PolyhedralSets:-PolyhedralSet(ineqs_52);

ineqs_53:= {u[5] <= u[34], u[5] <= u[12]/2 + u[67]/2, u[5] <= (2*u[12])/3
+ u[8]/3, u[5] <= u[12] - u[34] + u[67], u[5] <= -u[8]/2 + u[34]/2 +

u[67], u[5] <= u[8]/2 - u[34]/2 + u[12], u[5] <= u[8]/4 + u[12]/2 + u
[34]/4, u[8] <= -u[34] + 2*u[67]}:

pseudo_polyhedral_53:= PolyhedralSets:-PolyhedralSet(ineqs_53);

ineqs_54:= {u[5] = u[12] - u[67] + u[8], u[5] <= u[34], u[5] <= u[12]/2 +
u[67]/2, u[5] <= (2*u[12])/3 + u[8]/3, u[8] <= -u[12]/2 + (3*u[67])

/2, u[8] <= u[34]/3 + (4*u[67])/3 - (2*u[12])/3, u[12] <= 2*u[34] - u
[67], -u[34] + 2*u[67] <= u[8], u[12] - u[34] + u[67] <= u[5]}:

pseudo_polyhedral_54:= PolyhedralSets:-PolyhedralSet(ineqs_54);

ineqs_55:= {u[5] <= u[34], u[5] <= u[12]/2 + u[67]/2, u[5] <= (2*u[12])/3
+ u[8]/3, u[5] <= u[8]/4 + u[12]/2 + u[34]/4, u[8] <= -2*u[12] + 3*u

[34], u[8] <= -u[34] + 2*u[67], u[8] <= u[67] - u[12] + u[34], u[12] -
u[67] + u[8] <= u[5], u[8]/2 - u[34]/2 + u[12] <= u[5]}:

pseudo_polyhedral_55:= PolyhedralSets:-PolyhedralSet(ineqs_55);

ineqs_56:= {u[8] <= -2*u[12] + 3*u[34], u[8] <= -u[12]/2 + (3*u[67])/2, u
[8] <= u[34]/3 + (4*u[67])/3 - (2*u[12])/3, u[12] <= 2*u[34] - u[67],
-u[34] + 2*u[67] <= u[8], (2*u[12])/3 + u[8]/3 <= u[5], u[12] - u[34]
+ u[67] <= u[5], u[12] - u[67] + u[8] <= u[5]}:

pseudo_polyhedral_56:= PolyhedralSets:-PolyhedralSet(ineqs_56);

ineqs_61:= {u[5] = -u[8] + 2*u[67], u[5] <= u[34], u[5] <= u[12]/2 + u
[67]/2, u[5] <= (2*u[12])/3 + u[8]/3, u[5] <= u[12] - u[67] + u[8], u
[5] <= u[67]/3 + u[12]/3 + u[34]/3, u[12] <= 2*u[34] - u[67], -u[34] +
2*u[67] <= u[8], u[12] - u[34] + u[67] <= u[5]}:

pseudo_polyhedral_61:= PolyhedralSets:-PolyhedralSet(ineqs_61);



ineqs_62:= {u[5] = -u[8] + 2*u[67], u[5] <= u[34], u[5] <= u[12]/2 + u
[67]/2, u[5] <= (2*u[12])/3 + u[8]/3, u[5] <= u[12] - u[34] + u[67], u
[5] <= u[12] - u[67] + u[8], u[5] <= u[8]/2 - u[34]/2 + u[12], -u[34]
+ 2*u[67] <= u[8]}:

pseudo_polyhedral_62:= PolyhedralSets:-PolyhedralSet(ineqs_62);

pseudo polyhedral 11 :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [2v12 − 3v34 + v8 = 0,

−v12 + 2v34 − v67 ≤ 0, v34 − v5 ≤ 0]

pseudo polyhedral 21 :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [v12 − 2v34 + v67 = 0,

v34 − v5 ≤ 0, −v34 + 2v67 − v8 ≤ 0]

pseudo polyhedral 22 :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [v34 − 2v67 + v8 ≤ 0,

v34 − v5 ≤ 0, −2v12 + 3v34 − v8 ≤ 0]

pseudo polyhedral 31 :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [v34 − v5 ≤ 0,

−v12 + 2v34 − v67 ≤ 0, −v34 + 2v67 − v8 ≤ 0]

pseudo polyhedral 32 :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [−2v12 + v34 + 2v5 − v8 = 0,

v34 − 2v67 + v8 ≤ 0, 2v12 − 3v34 + v8 ≤ 0]

pseudo polyhedral 33 :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [v34 − 2v67 + v8 ≤ 0,

2v12 − 3v5 + v8 ≤ 0, 2v12 − 3v34 + v8 ≤ 0]

pseudo polyhedral 34 :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [v12 − 3v67 + 2v8 = 0,

v12 − 2v5 + v67 ≤ 0, v12 − 2v34 + v67 ≤ 0]

pseudo polyhedral 41 :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [v12 − v34 − v67 + v8 = 0,

−v12 + v34 + v5 − v67 = 0, v12 − 2v34 + v67 ≤ 0]

pseudo polyhedral 42 :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [v12 − 2v5 + v67 ≤ 0,

v12 − 2v34 + v67 ≤ 0, −v12 + 3v67 − 2v8 ≤ 0]
(3.2)



pseudo polyhedral 51 :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [−v12 + v34 + v5 − v67 = 0,

−v34 + 2v67 − v8 ≤ 0, v12 − v34 − v67 + v8 ≤ 0]

pseudo polyhedral 52 :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [−v12 + v34 + v5 − v67 = 0,

v12 − 2v34 + v67 ≤ 0, −v12 + v34 + v67 − v8 ≤ 0]

pseudo polyhedral 53 :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [v34 − 2v67 + v8 ≤ 0,

−2v12 + v34 + 2v5 − v8 ≤ 0, −v34 + v5 ≤ 0]

pseudo polyhedral 54 :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [−v12 + v5 + v67 − v8 = 0,

−v34 + 2v67 − v8 ≤ 0, vv12 − 3v67 + 2v8 ≤ 0]

pseudo polyhedral 55 :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [v34 − 2v67 − v8 ≤ 0,

2v12 − v34 − 2v5 + v8 ≤ 0, −2v12 + 3v5 − v8 ≤ 0]

pseudo polyhedral 56 :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [2v12 − 3v5 + v8 ≤ 0,

−v34 + 2v67 − v8 ≤ 0, v12 − 3v67 + 2v8 ≤ 0]

pseudo polyhedral 61 :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [v5 − 2v67 + v8 = 0,

−v12 + 3v67 − 2v8 ≤ 0, v12 − v34 − v67 + v8 ≤ 0]

pseudo polyhedral 62 :=


Coordinates : [v5, v8, v12, v34, v67]
Relations : [v5 − 2v67 + v8 = 0,

−v12 + v34 + v67 − v8 ≤ 0, −v34 + 2v67 − v8 ≤ 0]

We simply change the non-strict inequalities in (3.2) that are related to the primitive
subdivisions. On the other hand, for a non-primitive subdivision, we observed the non-
primitive cells one by one to determine the non-strict inequalities in the proof of Propo-
sition 3.2.2.



Chapter 4

Examples

4.1 Symmetric honeycomb
For a cubic polynomial g(x, y), Chan-Sturmfels [CS13] defined the tropical curve C(trop(g))
to be in honeycomb form if it contains a trivalent hexagonal cycle. Furthermore, a hon-
eycomb tropical curve is called symmetric when the hexagonal cycle has six edges with
the same lattice length and the three bounded edges emerging from the cycle also have
the same lattice length. It is mentioned that a cubic in the form

g(x, y) = a(x3 + y3 + 1) + b(x2y + x2 + xy2 + x + y2 + y) + xy

is a symmetric honeycomb if and only if val(a) > 2val(b) > 0. In this section, we want to
examine the conditions for our truncated symmetric cubic

f(x, y) = c12(xy2 + x2y) + c34(x2 + y2) + c5xy + c67(x + y) + c8 (4.1)

to be in honeycomb form.

Corollary 4.1.1. Let f(x, y) be the cubic in equation (4.1). The tropical curve of trop(f)(X, Y )
is in honeycomb form if and only if

−v5 + 2v67 − v8 < 0 − v34 + v5 < 0 − v12 + v34 + v5 − v67 < 0.

Proof. Tropical curve C(trop(f)) contains a trivalent hexagonal cycle if and only if it is
dual to the regular subdivision in Figure 4.1. Thus, this is the case (IV) of Table 3.1.

Proposition 4.1.2 (Two types of truncated honeycomb). Let f(x, y) be as defined in
equation (4.1), and suppose tropical polynomial trop(f)(X, Y ) satisfies the conditions in
Corollary 4.1.1. In this case, the six edges emanating from the hexagonal cycle can be
classified as either:

(a) five rays and one bounded edge (called the tail), or
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1
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4

5

6

7

8

Figure 4.1: The regular subdivision of ∆f corresponding to C(trop(f)) with a trivalent
hexagonal cycle.

Edges emerging from the cycle Subdivision Tropical curve

(a) Five rays and one bounded edge

1

2

3

4

5

6

7

8

D1

D2

D3

D4

D5

D6

E1 E6

E5

E3

E2

E4 (tail)

(b) Six rays

1

2

3

4

5

6

7

D1

D2

D3

D4

D5

D6

E1 E6

E5

E3

E2

E4

Table 4.1: Two types of truncated honeycomb.

(b) six rays,

as illustrated in Table 4.1. The cases (a),(b) occur according to whether c8 ̸= 0, c8 = 0,
respectively.

Proof. For i = 1, 2, 3, 5, 6, edges Ei of the tropical curves correspond to edges Di of the
subdivisions. When c8 ̸= 0, the Newton polygon ∆f takes the form shown in case (a). In
this scenario, edge D4 does not lie on the border of ∆f , resulting in its correspondence
edge, E4, being a bounded edge. If c8 = 0, ∆f exhibits the shape depicted in case (b). In
this case, edge D4 takes part as the border of ∆f , causing E4 to form a ray.

We shall say a truncated honeycomb C(trop(f)) is quasi-symmetric if the six sides of
the hexagon have the same lattice length. A quasi-symmetric truncated honeycomb is
symmetric (following the definition in [CS13]) if and only if the hexagon has six emanating
rays and does not possess a tail, that is of type (b) of Proposition 4.1.2.

Proposition 4.1.3 (Quasi-symmetric truncated honeycombs). Let f(x, y) be as in equa-
tion (4.1) and suppose C(trop(f)) is a truncated honeycomb. Then C(trop(f)) is quasi-
symmetric if and only if

2v34 = v12 + v67 and − v5 + 2v67 < v8.



The lattice length of the hexagon’s side is |v34 − v5| and the tail is equal to |v5 − 2v67 + v8|.
Additionally, C(trop(f)) is symmetric if and only if

2v34 = v12 + v67 and v8 = ∞.

Proof. A truncated honeycomb tropical curve is illustrated in Figure 4.2. The lattice

(−v12 + v5, −v12 + v5) (−v12 + v34, −v12 + v5)

(−v5 + v67, −v34 + v67)

(−v5 + v67, −v5 + v67)
(−v34 + v67, −v5 + v67)

(−v12 + v5, −v12 + v34)

(−v67 + v8, −v67 + v8)

Figure 4.2: A quasi-symmetric truncated honeycomb tropical curve.

lengths of the bounded edges can be determined by the differences of coordinates X or
Y in Figure 4.2. Thus, a truncated honeycomb tropical curve is quasi-symmetric if and
only if |v34 − v5| = |v12 − v34 − v5 + v67|. From the last two inequalities of Corollary 4.1.1,
we have v34 − v5 = v12 − v34 − v5 + v67, thus 2v34 = v12 + v67. Together with the first
inequality of Corollary 4.1.1, the result follows. Hence, the lattice lengths of the edges on
the hexagonal cycle are |v34 − v5|, while the tail has lattice length |v5 − 2v67 + v8|.

Meanwhile, truncated honeycomb C(trop(f)) is symmetric if and only if the tail has
infinite lattice length. That is |v5 − 2v67 + v8| = v5 − 2v67 + v8 = ∞. Hence, v5 = ∞ or
v8 = ∞. If v5 = ∞, the edges [5, i], where i = 1, 2, 3, 4, 6, 7, of the regular subdivisions on
Table 4.1 do not exist. Thus, v8 = ∞.

Example 4.1.4. Let (v12, v34, v5, v67) = (3, 2, 0, 1). If v8 = 3, C(trop(f)) is a quasi-
symmetric truncated honeycomb where the hexagon’s sides have length 2 and the tail has
length 1 as shown in Figure 4.3(I). If v8 = ∞, tropical curve C(trop(f)) is a symmetric
truncated honeycomb as illustrated in Figure 4.3(II).

(I) (v12, v34, v5, v67, v8) = (3, 2, 0, 1, 3) (II) (v12, v34, v5, v67, v8) = (3, 2, 0, 1, ∞)

Figure 4.3: Quasi-symmetric and symmetric truncated honeycombs in Example 4.1.4.



4.2 Nobe’s one-parameter family fk

Nobe studied the relation between the invariant curves of a certain piecewise linear dy-
namical system called the ultradiscrete QRT map and the cycle of a tropical elliptic
curve in [N08]. For a fixed (v12, v34, v67, v8) ∈ R4, we modify our tropical polynomial
trop(f)(X, Y ) and consider a one-parameter family of tropical curves {C(trop(fk))}k∈R
of tropical polynomial

trop(fk)(X, Y ) = min(v12 + X + 2Y, v12 + 2X + Y, v34 + 2X, v34 + 2Y,

k + X + Y, v67 + X, v67 + Y, v8).

According to [N08, Lemma 1], there is a one-parameter family of ultradiscrete QRT maps
whose invariant curve Ik coincides with the cycle part of C(trop(fk)) for each k ∈ R.

Example 4.2.1 ([N08, Example 1]). Since we are dealing with operations (+, min) instead
of (+, max) like [N08], we apply Remark 2.0.3. Therefore, we substitute the following
negative values of Nobe’s parameters,

v12 = −10 v34 = 0 v67 = −5 v8 = 0,

to Table 3.1 and we obtain Table 4.2. We see that the invariant curves Ik(k ∈ R) are

Cycle shape Conditions of k

(I) Triangle
−10 < 0
−5 < k

k < −20
3

(II) Square
−10 < k

k < −7.5
−15 < k

(III) Pentagon
k < −10
k < −5

−15 < k

(IV) Hexagon
−10 < k

k < 0
k < −15

(V) Heptagon
k < −10
−10 < 0
k < −15

Table 4.2: The conditions of C(trop(fk)) for (v12, v34, v67, v8) = (−10, 0, −5, 0).

classified into heptagon for k ∈ (−∞, −15), pentagon for k ∈ [−15, −10), and square for
k ∈ [−10, −7.5). The values (−10, 0, k, −5, 0) when k = −15, k = −10, and k ≥ −7.5 lie
in the polyhedral cones of cases (5.1), (6.1), (4.2) of Proposition 3.2.2, respectively.



We want to give one more example of a family of invariant curves Ik that contains a tri-
angular shape. Furthermore, it seems natural to ask if there exist a fixed (v12, v34, v67, v8)
so the family {C(trop(fk))}k∈R varies from a triangular shape to a heptagonal shape. We
will discuss this in Proposition 4.2.3.

Example 4.2.2. Let us present the case (v12, v34, v67, v8) = (0, 14, 4, 0) and substitute it
to the Table 3.1 in Theorem 3.1.2. Thus, we have Table 4.3. Then we have the cycle

Cycle shape Conditions of k

(I) Triangle
−6 < 0
−4 < k

k < 0

(II) Square
8 < k

k < 2
−10 < k

(III) Pentagon
k < 8
k < −4

−10 < k

(IV) Hexagon
8 < k

k < 14
k < −10

(V) Heptagon
k < 8
−6 < 0
k < −10

Table 4.3: Conditions of C(trop(fk)) for (v12, v34, v67, v8) = (0, 14, 4, 0).

part of C(trop(fk)) forms a heptagon for k < −10, a pentagon for −10 ≤ k < −4, and
a triangle for −4 ≤ k < 0. The nonsmooth tropical curves for k = −10, k = −4, and
k ≥ 0 are the cases (5.1), (5.4), and (5.6) of Proposition 3.2.2, respectively. Figure 4.4
illustrates the family {C(trop(fk))}k∈R for the given (v12, v34, v67, v8).

f−1

f−5

f−11

Figure 4.4: C(trop(fk)) for k = −1, −5, −11 in Example 4.2.2.



Proposition 4.2.3. For any fixed (v12, v34, v67, v8), invariant curves Ik with triangle and
square shapes are not possible to coexist in the family {C(trop(fk))}k∈R.

Proof. For a fixed (v12, v34, v67, v8), the invariant curve Ik is the cycle of a smooth tropical
curve C(trop(fk)) for most of k ∈ R. Suppose we have (v12, v34, v67, v8) = (a, b, c, d) such
that Ik1 is a triangle and Ik2 is a square for some k1, k2 ∈ R. Thus, from Table 3.1, we have
(v12, v34, v5, v67, v8) = (a, b, k1, c, d) satisfies case (I) and (v12, v34, v5, v67, v8) = (a, b, k2, c, d)
satisfies case (II). In other words, we have

a − c + d < k1 <
2a + d

3 and 2c − d < k2 <
a + c

2 .

This implies a − 3c + 2d < 0 and −a + 3c − 2d < 0, which are contradiction.



Chapter 5

Two-parameter family of Edwards
curves fr,s

5.1 Unimodular transformation
Let ϕ be an integral unimodular affine transformation

ϕ :Z2 → Z2

(i, j) 7→ (i, j)A + τ

where A ∈ GL2(Z) and τ ∈ Z2. For (i, j) ∈ Z2, let (xy)(i,j) denote monomial xiyj and
(i, j) · (X, Y ) denote iX + jY .

Definition 5.1.1. For a non-empty set I ⊂ Z2, let

f(x, y) =
∑

(i,j)∈I
aij(xy)(i,j) ∈ K[x±1, y±1]

be a Laurent polynomial and

trop(f)(X, Y ) = min(val(aij) + (i, j) · (X, Y ) : (i, j) ∈ I)

be its tropicalization. Map ϕ acts on f(x, y) to form

fϕ(x, y) =
∑

(i,j)∈I
aij(xy)ϕ(i,j)

and acts on trop(f)(X, Y ) to form

trop(f)ϕ(X, Y ) = min(val(aij) + ϕ(i, j) · (X, Y ) : (i, j) ∈ I).

This definition implies that we have

trop(f)ϕ(X, Y ) = trop(fϕ)(X, Y ).
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In [KMM09], Katz-Markwig-Markwig mentioned that integral unimodular affine trans-
formations preserve the lattice length of edges on a tropical curve.

In this section, we consider a specific transformation by letting

A =
[
−1 0
0 −1

]
, τ = (2, 2)

and let g(x, y) = fϕ(x, y) where f(x, y) is the symmetric truncated cubic polynomial in
(1.1). Thus, we have

g(x, y) =c12(x + y) + c34(x2 + y2) + c5xy + c67(x2y + y2x) + c8x
2y2

=f

(
1
x

,
1
y

)
· x2y2

The tropicalization of g is

trop(g)(X, Y ) = min(v12 + X, v12 + Y, v34 + 2X, v34 + 2Y, v5 + X + Y,

v67 + 2X + Y, v67 + X + 2Y, v8 + 2X + 2Y ).

Next we want to show the exact relation between the tropical curves of trop(g)(X, Y ) and
trop(f)(X, Y ).

Lemma 5.1.2. Let f(x, y) and g(x, y) be the Laurent polynomials that satisfy

g(x, y) = f

(
1
x

,
1
y

)
· x2y2.

Then we have C(trop(f)) = −1 · C(trop(g)) holds. In other words, these two tropical
curves are symmetric about the center O.

Proof. From the tropicalization of

g(x, y) = f

(
1
x

,
1
y

)
· x2y2,

we have
trop(g)(X, Y ) = trop(f)(−X, −Y ) + 2X + 2Y.

Note that 2X + 2Y does not exhibit any singularities for any (X, Y ). Therefore, we have
(X, Y ) is a point on C(trop(g)) if and only if (−X, −Y ) is a point on C(trop(f)). In other
words,

C(trop(g)) = −1 · C(trop(f))
holds.

Furthermore, Lemma 5.1.2 implies that the two tropical curves share the same structure
for the same (v12, v34, v5, v67, v8).



5.2 Tropical curves of fr,s

Let K be a valuated field and q ∈ K such that val(q) > 0. For Euler functions

ϵ =
∞∏

n=1
(1 + qn) = 1 + q + q2 + 2q3 + . . . ,

ϵ̄ =
∞∏

n=1
(1 + (−q)n) = 1 − q + q2 − 2q3 + . . . , and

r, s ∈ K such that ϵr ̸= ϵ̄s , define coefficients

d12 = 2ϵϵ̄(ϵ4 − ϵ̄4)(ϵ̄s − ϵr),
d34 = (ϵ4 − ϵ̄4)(ϵ̄2s2 − ϵ2r2),
d5 = 8ϵϵ̄(ϵr − ϵ̄s)(ϵ̄3r − ϵ3s),

d67 = 2(ϵr − ϵ̄s){(ϵ̄4 − ϵ4)rs + 2ϵϵ̄(ϵ̄2r2 − ϵ2s2)}, and
d8 = 2(ϵ2s2 − ϵ̄2r2)(ϵ̄2s2 − ϵ2r2).

(5.1)

For i ∈ {12, 34, 5, 67, 8}, let ui = val(di). In [NT23], it is shown that

fr,s(x, y) = d12(x + y) + d34(x2 + y2) + d5xy + d67(x2y + y2x) + d8x
2y2

is birationally equivalent to an Edwards elliptic curve that can be parameterized by theta
functions, [E07]. We will discuss it in the next section. We can see that Laurent polyno-
mial

gr,s(x, y) := fr,s

(
1
x

,
1
y

)
· x2y2

= d12(xy2 + x2y) + d34(x2 + y2) + d5xy + d67(x + y) + d8

shares the same Newton polygon with our symmetric truncated cubic in (1.1). By Lemma
5.1.2, the tropical curve of tropical polynomial

trop(fr,s)(X, Y ) = min(u12 + X, u12 + Y, u34 + 2X, u34 + 2Y, u5 + X + Y,

u67 + 2X + Y, u67 + 2Y + X, u8 + 2X + 2Y )

and the tropical curve C(trop(gr,s)) are point-symmetric with respect to the origin O.
In this section, we want to discuss the possible tropical curves of trop(fr,s). We have

val(ϵ) =
∞∑

n=1
val(1 + qn)

= 0
and

val(ϵ̄) =
∞∑

n=1
val(1 + (−q)n)

= 0

due to Remark 2.0.1. Furthermore, we have val(ϵ4 − ϵ̄4) = 1. For a big N ∈ N, let

r = r0 + r1q
1
N + · · · + rNq + rN+1q

1+ 1
N + . . . and



s = s0 + s1q
1
N + · · · + sNq + sN+1q

1+ 1
N + . . .

where ri, si ∈ K and r0, s0 are nonzero. Assume

f1 = ϵ̄s − ϵr, f2 = ϵ̄2s2 − ϵ2r2, f3 = ϵ2s2 − ϵ̄2r2, f4 = ϵ̄3r − ϵ3s, f5 = (ϵ̄4 − ϵ4)rs − 2ϵϵ̄f3,

and Fi = val(fi) for i = 1, . . . , 5. We can know the values of Fi by expanding fi. Further-
more, we have

u12 = 1 + F1, u34 = 1 + F2, u5 = F1 + F4, u67 = F1 + F5, and u8 = F2 + F3. (5.2)

Proposition 5.2.1. Table 5.1 shows the conditions for (F1, F2, F3, F4, F5) of the regular
subdivisions related to trop(fr,s)(X, Y ).

(a)
2F1 − 2F2 + F5 − 1 < 0

F3 − F5 = 0
F1 − F2 − F4 + F5 = 0

(b)
2F1 − 2F2 − F3 + 2F5 − 1 < 0

−F1 + F2 − F4 + 1 ≤ 0
2F1 − 2F2 + F5 − 1 = 0

(c)
2F1 − 2F2 + F3 − 1 = 0

−2F1 + 2F2 − F5 + 1 ≤ 0
−F1 + F2 − F4 + 1 ≤ 0

(d)
2F1 − 2F2 + F5 − 1 < 0

−F3 + F5 < 0
−F1 + F2 + F4 − F5 = 0

(e)
F1 − F2 + F4 − 1 < 0

−F3 + 2F4 − 1 < 0
−2F1 + 2F2 + F3 − 2F5 + 1 ≤ 0

(f)
F1 − F2 − F3 − F4 + 2F5 < 0

F4 − F5 < 0
F1 − F2 − F4 + F5 < 0

(g)
−F1 + F2 + F3 + F4 − 2F5 < 0
2F1 − 2F2 − F3 + 2F5 − 1 < 0

−F1 + F2 + F4 − F5 < 0

Table 5.1: Summaries of the regular subdivisions related to trop(fr,s)(X, Y ).

Proof. Table 5.1 can be obtained by substituting equations (5.2) to Table 3.2 of Propo-
sition 3.2.2 and Table 3.1 of Theorem 3.1.2. Cases (a) - (e) are cases (4.1), (2.1), (1.1),
(5.2), (5.3) of Proposition 3.2.2, respectively. Meanwhile, cases (f) and (g) are the square
and heptagon cases of Theorem 3.1.2.

Proposition 5.2.2. The tropical curves trop(fr,s)(X, Y ) are limited to the cases in Table
5.2.



Cases Regular subdivisions

1. s2
0 − r2

0 ̸= 0.
2. s0 − r0 = · · · = st−1 − rt−1 = 0 and st − rt ̸= 0 for some

1 ≤ t ≤ N − 1.
3. s0 + r0 = · · · = st−1 + rt−1 = 0 and st + rt ̸= 0 for some

1 ≤ t ≤ N − 1.
4. s0 + r0 = · · · = sN−1 + rN−1 = 0 and sN + rN ̸= ±2r0, 0.

5. s0 − r0 = · · · = sN−1 − rN−1 = 0 and sN − rN = −2r0

6. s0 − r0 = · · · = sN−1 − rN−1 = 0 and sN − rN ̸= −2r0

7. s0 + r0 = · · · = sN−1 + rN−1 = 0 and sN + rN = −2r0

8. s0 + r0 = · · · = sN−1 + rN−1 = 0 and sN + rN = 2r0

9. s0 + r0 = · · · = sN + rN = 0 and st + rt ̸= 0 for some
N + 1 ≤ t ≤ 2N − 1.

10. s0 + r0 = · · · = sN + rN = · · · = s2N−1 + r2N−1 = 0

Table 5.2: The regular subdivisions that are dual to C(trop(fr,s)(X, Y )).

Proof. For i = 1, . . . , 5, the value of Fi is determined by the leading term of fi. Expressions
fi can be seen as functions of q with coefficients r0, r1, . . . , s0, s1, . . . that follow certain
patterns. Their expansions are

f1 =(s0 − r0) + (s1 − r1)q
1
N + · · · + (sN−1 − rN−1)q

N−1
N + (sN − rN − s0 − r0)q + . . . ,

f2 =(s2
0 − r2

0) + (2s0s1 − 2r0r1)q
1
N + (2s0s2 + s2

1 − 2r0r2 − r2
1)q 2

N + . . .

+ (2s0sN + 2s1sN−1 + · · · − 2r0rN − 2r1rN−1 − · · · − 2s2
0 − 2r2

0)q
+ (2s0sN+1 + 2s1sN + · · · − 2r0rN+1 − 2r1rN − · · · − 4s0s1 − 4r0r1)q1+ 1

N

+ . . . ,

f3 =(s2
0 − r2

0) + (2s0s1 − 2r0r1)q
1
N + (2s0s2 + s2

1 − 2r0r2 − r2
1)q 2

N + . . .

+ (2s0sN + 2s1sN−1 + · · · − 2r0rN − 2r1rN−1 − · · · + 2s2
0 + 2r2

0)q



+ (2s0sN+1 + 2s1sN + · · · − 2r0rN+1 − 2r1rN − · · · + 4s0s1 + 4r0r1)q1+ 1
N

+ . . . ,

f4 =(r0 − s0) + (r1 − s1)q
1
N + · · · + (rN−1 − sN1)q

N−1
N + (rN − sN − 3r0 − 3s0)q + . . . ,

f5 =(2r2
0 − 2s2

0) + (4r0r1 − 4s0s1)q
1
N + (4r0r2 + 2r2

1 − 4s0s2 − 2s2
1)q

2
N + . . .

+ (4r0rN + 4r1rN−1 + · · · − 4s0sN − 4s1sN−1 − · · · − 4r2
0 − 4s2

0 − 8r0s0)q
+ (4r0rN+1 + 4r1rN + · · · − 4s0sN+1 − 4s1sN − · · · − 8r0r1 − 8s0s1 − 8r0s1 − 8s0r1)q1+ 1

N

+ . . . .

Table 5.3 shows the values of (F1, . . . , F5) for all of the ten cases. We can check that each

F1 F2 F3 F4 F5
Case 1 0 0 0 0 0
Case 2 t

N
t

N
t

N
t

N
t

N

Case 3 0 t
N

t
N

0 t
N

Case 4 0 1 1 0 1
Case 5 1 1 F3 > 1 1 1
Case 6 F1 ≥ 1 F2 = F1 1 F4 ≥ 1 F5 ≥ 1
Case 7 0 F2 > 1 1 0 1
Case 8 0 1 F3 > 1 0 1
Case 9 0 1 1 0 1 < F5 < 2
Case 10 0 1 1 0 F5 ≥ 2

Table 5.3: The values of (F1, . . . , F5) for the ten cases.

value of (F1, . . . , F5) satisfies the condition of the corresponding regular subdivision as
mentioned in Proposition 5.2.1.

5.3 The parametrization of the cycle by ultradiscrete
theta functions

Edwards in [E07] showed that the elliptic curves of form

Ea := x2 + y2 = a2(1 + x2y2)

can be parameterized by theta functions

θ1(z|τ) = − i
∑
n∈Z

(−1)n exp
(

πiτ
(1

2 + n
)2)

exp(πiz(2n + 1)),

θ2(z|τ) =
∑
n∈Z

exp
(

πiτ
(1

2 + n
)2)

exp(πiz(2n + 1)),



θ3(z|τ) =
∑
n∈Z

exp(πiτn2) exp(πiz2n),

θ4(z|τ) =
∑
n∈Z

(−1)n exp(πiτn2) exp(πiz2n)

where z, τ ∈ C and im(τ) > 0.
Remark 5.3.1. [E07, Theorem 15.1] Let τ ∈ C where im(τ) > 0 and

a = θ2(0|2τ)
θ3(0|2τ) .

Then elliptic curves Ea can be parameterized by

x(z) = θ1(z|2τ)
θ4(z|2τ) , y(z) = θ2(z|2τ)

θ3(z|2τ)
for z ∈ C.

Through rational substitutions

x = rx + ϵ̄

sx + ϵ
, y = ry + ϵ̄

sy + ϵ

we see that fr,s(x, y) is the numerator of the rational function. Thus, we can parametrized
fr,s(x, y) by utilizing the theta parametrization of Ea as demonstrated in [NT23]. The
ultradiscretization of these theta parametrizations allows us to express the cycle part of
C(trop(fr,s)) as two periodic functions. For t ∈ R, let

Θodd(t) = −2(2
⌊

t

2

⌋
+ 1 − t)2

Θeven(t) = −2(2
⌊

t + 1
2

⌋
− t)2.

Remark 5.3.2. [NT23, Theorem 1.2] For t ∈ R, expressions

X(t) =Y (t − 1
2)

Y (t) = max(Θodd(t), −1 + Θeven(t))
− max(valK(r − s) + Θeven(t), −valK(r + s) + Θodd(t))

trace the cycle part of C(trop(fr,s)) as {(−X(t), −Y (t)) : t ∈ R}.
By assuming δ = valK(r + s) − valK(r − s) and

Yδ(u) = max(Θodd(t), −1 + Θeven(t)) − max(δ + Θeven(t), Θodd(t)), (5.3)

we have (
−X(t)
−Y (t)

)
=
(

−Yδ(t − 1
2)

−Yδ(t)

)
+ valK(r + s)

(
1
1

)
. (5.4)

Since the last term does not play a role in determining the shape of (−X(t), −Y (t)), we
have that the value of δ determines the shape of the cycle part of C(trop(fr,s)).



Remark 5.3.3. [NT23, Corollary 1.3] The cycle part of C(trop(fr,s)) is determined by
the value δ with the following rules.

1. Curve C(trop(fr,s)) has no cycle if and only if δ ≤ −1.

2. Curve C(trop(fr,s)) has a square cycle if and only if −1 < δ ≤ 1.

3. Curve C(trop(fr,s)) has a heptagonal cycle if and only if 1 < δ < 2.

4. Curve C(trop(fr,s)) has a pentagonal cycle if and only if 2 ≤ δ.

Figure 5.1: From left top: Curves (−Yδ(t − 1
2), −Yδ(t)) for δ = −1, δ = 1, δ = 1.5, and

δ = 2.



Chapter 6

Tropical group of points

6.1 Intersection points on tropical curves
A group of points has been defined on various tropical curves in [V10], [N16], and [N11].
In this section, we adopt the definitions related to the group of points on smooth tropical
curves of degree three, also known as tropical elliptic curves, [V10]. We particularly
emphasize the tropical elliptic curve associated with the tropical polynomial (1.2). In this
section, we will introduce two kinds of intersections involving a tropical curve. The first
one is the intersection between two tropical curves. The second one is the intersection
between a tropical curve and another piecewise linear expression.

Definition 6.1.1. Let C1 and C2 be two tropical curves. The two curves intersect
transversally when they do not intersect at any of the vertices of the two curves. The
set of intersection points are denoted as C1 ∩ C2. When the two curves do not inter-
sect transversally, we wiggle the two curves as far as ϵ to Cϵ

1 and Cϵ
2 until they intersect

transversally. Then we define the stable intersection

C1 ∩st C2 = lim
ϵ→0

Cϵ
1 ∩ Cϵ

2.

For i = 1, 2, let P ∈ C1 ∩st C2 be a point on edges Ei of Ci. Let ui be the primitive integer
directions and ωi be the weights of Ei. The multiplicity of P , denoted by mult(P ), is the
absolute value of

ω1ω2

∣∣∣u1u2
∣∣∣ .

In classical algebra, we know that two curves of degree d1 and d2 intersect at d1d2 points
in projective space by counting multiplicities. Similarly, we encounter a similar number
of intersection points of two tropical curves.

Theorem 6.1.2 (Tropical Bezout-Bernstein). Let C1 and C2 be two tropical curves of
degree d1 and d2, respectively. Assume one of the tropical curves have full support. By
counting multiplicities, the stable intersection contains d1d2 points.

Next, we will consider the intersection of a tropical curve with the variety of a tropical
rational function.
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Definition 6.1.3. A tropical rational function is a piecewise linear function of the form

h(X, Y ) = trop(f)(X, Y ) − trop(g)(X, Y )

where f(x, y) and g(x, y) are polynomials with ∆f = ∆g. The variety V (h) of h(X, Y ) is
the collection of coordinates (X, Y ) where the function is not linear.

When dealing with the intersection of a tropical curve C and V (h), we observe the re-
striction of h(X, Y ) to C that is piecewise linear on each edge of C with integer slopes.

Definition 6.1.4. Let h̄ be the restriction of h(X, Y ) to C. Note that for any point P
on a tropical curve C, we have P is either a vertex or a 2-valent vertex. The order of a
point P with respect to h̄, denoted by ordh̄(P ), is the sum of the outgoing slopes of h̄
along the edges adjacent to P .

Example 6.1.5. Let trop(f)(X, Y ) = min(1+X, Y, 4), trop(g)(X, Y ) = min(X, 1+Y, 4),
and h(X, Y ) = trop(f)(X, Y ) − trop(g)(X, Y ). Let C be a tropical curve that is situated
with V (h) as shown in Figure 6.1. The orders of some points P1, P2 ∈ C with respect to
h̄ are

ordh̄(P1) =(0, 1) · (−1, 1) + (1, 0) · (−1, 1) + (−1, −1) · (−1, 1) = 0,

ordh̄(P2) =(−1, 0) · (−1, 1) + (1, 0) · (0, 0) = 1.

C(f )
C(g)

P1
P2

Figure 6.1: Tropical curve C and variety V (h) of Example 6.1.5.

It is worth noting that for points P on a tropical curve that are not contained in V (h),
their order is zero.

The collection of points on a tropical curve C forms a group that is called the group
of divisors. The intersection points play an important role in this group.

Definition 6.1.6. A divisor D on C is a finite sum D = ∑
µP P where µP ∈ Z and

P are points on C. The collection of these divisors forms the group of divisors Div(C).
The degree of D is ∑µP . An important subgroup of Div(C) is the group of degree-zero
divisors that is denoted by Div0(C).



The most important divisors on a tropical curve C are ones that are related to a polynomial
f(x, y) or to a tropical rational polynomial h(X, Y ).

Definition 6.1.7. Let C be a tropical curve. For a polynomial f(x, y), let P = C ∩st
C(trop(f)). The divisor related to f(x, y) is

div(f) =
∑
P ∈P

mult(P )P.

For a tropical rational polynomial h(X, Y ), the divisor related to h(X, Y ) is

div(h) =
∑
P ∈C

ordh̄(P )P

and is called a principal divisor. When h(X, Y ) = trop(f)(X, Y ) − trop(g)(X, Y ), [V09]
shows that div(h) = div(f) − div(g). Two divisors D1 and D2 are equivalent, denoted by
D1 ∼ D2, if D1 − D2 is a principal divisor. The group Div0(C)/ ∼ is called the Jacobian
of C, denoted by Jac(C).

Example 6.1.8. Consider a tropical curve C, tropical line L1, and tropical line L2 in
Figure 6.2. We have D(L1) = P1 + P2 + P3 and D(L2) = Q1 + Q2 + Q3. Thus, we can say
P1 + P2 + P3 ∼ Q1 + Q2 + Q3.

L1

P1

P2

P3

L2

Q1

Q2

Q3

Figure 6.2: Equivalent divisors.

6.2 Point addition by intersection points
From this point, we let C be a tropical elliptic curve. Thus, it has a unique cycle that is
denoted by C. We can attach a metric on C as follows.

Definition 6.2.1. Fix a point O on C and name the vertices of C with V1, . . . , Vn in
counter-clockwise direction so that either O = V1 or O is between V1 and Vn. For i =
1, . . . , n, let Ei be the edge connecting Vi and Vi+1 where V1 = Vn+1. Let L be the sum of
the lattice length (see Definition 2.0.11) of the edges of cycle C and we define the bijection
map α : C → R/LZ as follows.



1. α(O) = 0,

2. α(V1) = lOV1 ,

3. α(Vi) = α(Vi−1) + lEi−1 , and

4. for P on Ei, α(P ) = α(Vi) + lViP .

Furthermore, for any two points P and Q on C, the sign displacement of these two points
is

dC(P, Q) = α(Q) − α(P ).

The sign displacement has several properties, discussed next.

Remark 6.2.2 ([V09, Lemma 6.3]). For any three points P, Q, and R on C, the sign
displacement satisfies the following properties.

1. dC(P, Q) + dC(Q, P ) = 0.

2. dC(P, Q) + dC(Q, R) = dC(P, R).

3. For points P ′ and Q′, divisors P +Q ∼ P ′+Q′ if and only if dC(P, P ′) = −dC(Q, Q′).

The group of point addition on C is algebraically defined as follows.

Definition 6.2.3. Due to the properties of dC , for a fixed O ∈ C, the map

τO : C → Jac(C)
P 7→ P − O

is bijection. For points P, Q ∈ C, the point P + Q is the preimage τ−1
O (P + Q − 2O).

We can identify the point P + Q by using the sign displacement.

Proposition 6.2.4. For P, Q ∈ C, a point T ∈ C is the point P + Q if and only if

dC(O, T ) = dC(O, P ) + dC(O, Q). (6.1)

Proof. Let T ∈ C satisfy equation (6.1). By adding dC(Q, O) to both sides, we have
dC(Q, T ) = dC(O, P ). Remark 6.2.2 implies

T + O ∼ P + Q

T − O ∼ P + Q − 2O.

From the definition of τO, we have Tτ−1
O (T −O) = τ−1

O (P +Q−2O) = P +Q. Conversely,
it is shown in [V09, Theorem 6.6] that the point P + Q satisfies (6.1).

For some pairs of points on C, the addition can be achieved geometrically in the following
manner.



Remark 6.2.5. Let (P, Q) be a pair of points on C. It is defined as a good pair when
a tropical line LP Q such that P, Q ∈ LP Q ∩st C is present. For a good pair (P, Q), let
R be the third intersection point in LP Q ∩st C. If (O, R) is a good pair, let LOR be the
tropical line such that O, R ∈ LOR ∩st C. The point P + Q is the third intersection point
in LOR ∩st C.

Next, we are going to provide an addition calculation related to the smooth tropical
curves mentioned in Theorem 3.1.2. Let C be the cycle of the smooth tropical curves of

trop(f)(X, Y ) = min(v12 + X + 2Y, v12 + 2X + Y, v34 + 2X, v34 + 2Y

v5 + X + Y, v67 + X, v67 + Y, v8)

that is a symmetrical triangle, square, pentagon, hexagon, or heptagon. Let P (X1, Y1) and
Q(X2, Y2) be two points on C. Occasions may arise wherein numerous tropical lines pass-
ing through points P and Q are discernible, such as when X1 = X2. In these occurrences,
a singular tropical line is rigorously defined, originating from the tropical determinant of
a matrix.

Definition 6.2.6. For any two points P (X1, Y1) and Q(X2, Y2) on C, let

LP Q(X, Y ) =

∣∣∣∣∣∣∣
0 X Y
0 X1 Y1
0 X2 Y2

∣∣∣∣∣∣∣
trop

= min(X1 + Y2, X2 + Y1, X + min(Y1, Y2), Y + min(X1, X2))

be the unique tropical line passing P and Q.

Line LP Q has one vertex (VX , VY ) that is always within the cycle C. Furthermore, we
have

VX = min(X1 + Y2, X2 + Y1) − min(Y1, Y2),
VY = min(X1 + Y2, X2 + Y1) − min(X1, X2).

Inspired by some calculations in [O06], we have the following coordinate-wise expres-
sion of point addition.

Proposition 6.2.7. The intersection points of LP Q ∩st C are

P1 =(v5 − v12 + max(0, VX − VY ), v5 − v12 + max(−(VX − VY ), 0)),
P2 =(VX , min(v8 − VX , v67, v34 + VX) − v5),
P3 =(min(v8 − VY , v67, v34 + VY ) − v5, VY ).

The pair of points (P, Q) is a good pair if and only if {P, Q} ⊆ {P1, P2, P3}. Furthermore,
when (P, Q) is a good pair of points, the coordinate of the third intersection point R in
LP Q ∩st C is

R = P1 + P2 + P3 − P − Q,

that is the sum of coordinates in R2.



Proof. Assume the intersection points LP Q∩stC are situated as shown in Figure 6.3. When
VY > VX , we have coordinate P1 is the solution of X − Y = VX − VY and X = v5 − v12.
Meanwhile, when VX > VY , coordinate P1 is the solution of X − Y = VX − VY and
Y = v5 − v12. The coordinate of P2 is the solution of X = VX and the smallest value
of Y = v8 − v5 − VX , Y = v67 − v5, or Y = v34 − v5 + VX . Similarly, coordinate P3 is
the solution of Y = VY and the smallest value of X = v8 − v5 − VY , X = v67 − v5, or
X = v34 − v5 + VY .

The second claim follows from the definition of a good pair of points. Furthermore,
it is clear that the coordinate of the third intersection of LP Q ∩st C is the sum of all the
three intersection points minus the pair of good points.

(VX , VY )

P1

P2

P3

Figure 6.3: Intersection points LP Q ∩st C.

When working with the symmetric truncated cubic, we can choose a point O so that
line LOR in Remark 6.2.5 is not needed.

Proposition 6.2.8. Let C be the cycle of the tropical curves mentioned in Theorem
3.1.2 and O be the vertex that is dual to cell [1, 2, 5]. For any tropical line L such that
L ∩st C = {P1, P2, P3}, we have

dC(O, P1) + dC(O, P2) + dC(O, P3) = 0.

Proof. Assume the intersection points L ∩st C are situated as shown in Figure 6.3. If
P1 = O, the result follows due to the symmetric property of C. If P1 is somewhere on
the horizontal (or vertical) edge emerging from O, we translate line L horizontally (or
vertically) until P1 becomes P ′

1 = O and P2 becomes P ′
2 (or P3 becomes P ′

3) and the sum
of the sign displacement from O to the new points is zero.

In counter-clockwise direction from point O, the edges of C have the integer primitive
directions limited to (1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1, −1), or (0, −1). Thus, we
have dC(P1, P ′

1) = dC(P ′
2, P2) (or dC(P1, P ′

1) = dC(P ′
3, P3)) holds. By considering

dC(O, P1) = dC(O, P ′
1) − dC(P1, P ′

1) and dC(O, P2) = dC(O, P ′
2) + dC(P ′

2, P2)

(or dC(O, P3) = dC(O, P ′
3) + dC(P ′

3, P3)), we have

dC(O, P1) + dC(O, P2) + dC(O, P3) = 0.



Corollary 6.2.9. Let C be the cycle of the tropical curves mentioned in Theorem 3.1.2.
Fix the point that is dual to cell [1, 2, 5] as the point O. Let (P, Q) be a good pair of points
on C and let R be the third intersection point in LP Q ∩st C. Then the coordinate of P +Q
can be obtained by flipping the coordinate of R.

Proof. From Proposition 6.2.8, we have the points P, Q, R satisfy

dC(O, P ) + dC(O, Q) + dC(O, R) = 0

and Proposition 6.2.4 implies

dC(O, P + Q) + dC(O, R) = 0.

It tells us that the displacements of point P +Q and point R from point O have the same
magnitude but opposite direction. Hence, the point P + Q is the image of point R with
respect to X = Y .

Next, we want to show how to deal with a bad pair (P, Q). It is shown in [V09] that
we can transform a bad pair (P, Q) to a good pair (P ′, Q′) as follows. Choose tropical
lines LP and LQ such that LP ∩st C = {P, P1, P2}, LQ ∩st C = {Q, Q1, Q2}, and we have
two good pairs (P1, Q1) and (P2, Q2). Next, we can have two tropical lines L1 and L2 such
that L1 ∩st C = {P1, Q1, P ′} and L2 ∩st C = {P2, Q2, Q′}. Under this procedure, we have
P + Q ∼ P ′ + Q′. Figure 6.4 illustrates this procedure for a bad pair on various cycles C.

P
P2

Q
Q2

P1, Q1, P ′

Q′

P
P1

P2

Q Q1

Q2

P ′

Q′

Figure 6.4: Moving a bad pair of points.

6.3 Edwards case by ultradiscrete functions parametriza-
tion

Now we want to discuss the possibility of performing point addition through theta parametriza-
tion of a curve. This technique is simpler because we do not need to check if the given
points are a good pair. However, [CM17] argued that point addition on tropical Hesse
curves is better done through intersection points because it involves less calculation.

In order to make a parallel connection with point addition, we modify the parametriza-
tion in Remark 5.3.3 so its period is the cycle length of the cycle.



Corollary 6.3.1. Let Yδ(t) be as defined at (5.3) and assume 1 ≤ δ. Let the points (X, Y )
of the cycle of C(trop(fr,s)) be parameterized by(

X(t)
Y (t)

)
=
(

−Yδ( t
4 − 1

2)
−Yδ( t

4)

)
+ valK(r + s)

(
1
1

)
.

Thus, for two points A = (X(a), Y (a)) and B = (X(b), Y (b)) where a, b ∈ R/LZ, we have

A + B = (X(a + b), Y (a + b)).

Proof. Notice that for 1 ≤ δ, we have constant cycle length L = 8. Since the period
of the cycle parametrization in (5.4) is 2, substituting t 7→ t

4 to equation (5.4) makes
(X(t), Y (t)) : R/LZ → C̄ a bijection map. Thus, we can apply Proposition 6.2.4.

6.4 Cryptographic applications
In this section we apply a cipher construction that is a modification of the one proposed
in [CM17]. Assume Alice and Bob share the tropical polynomial function trop(f)(X, Y )
where its unique cycle C̄ is of length L ∈ R and is parametrized by (X(t), Y (t) : t ∈
R/LZ). Let O = (X(0), Y (0)) be the identity of the point addition on C̄.

Suppose Alice wants to send a message of 500 alphanumeric characters to Bob. We
assume that each character is represented by 7-bit data. So we have that Alice’s message
is an element of {0, 1}3500. Assume we partition the message into 350 blocks where each
block is an element of {0, 1}10. Let m0 ∈ {0, 1}10 be a part of the message that Alice wants
to send to Bob. Alice maps m0 to point M0 ∈ C̄ through the following procedure. First,
Alice converts m0 to m̄0 ∈ N that will be in the interval [0, 210 −1]. Let t0 = m̄0

L
210 ∈ L

210Z.
Lastly, Alice defines M0 = (X(t0), Y (t0)).

Let r ∈ N be a public property denoting the number of iterations during the ciphering
process. Through the Diffie-Hellman Key Exchange procedure, Alice and Bob share u0 =
L

210 n0 ∈ L
210Z such that 0 < n0 < 210 − 1 and k̄ ∈ N such that 0 < k̄ < 2r − 1. Let

S0 = (X(u0), Y (u0)) ∈ C̄ be a secret point and k ∈ {0, 1}r–that is the binary form of
k̄–be a secret key.

Define the two halving functions

h0(X(t), Y (t)) =
(

X
(

t

2

)
, Y

(
t

2

))
and

h1(X(t), Y (t)) =
(

X
(

t + L
2

)
, Y

(
t + L

2

))
.

During the ciphering process, Alice obtains the points Mi = (X(ti), Y (ti)) with ti ∈ L
210+iZ

(i = 1, . . . , r) in Table 6.1. Then Alice eventually obtains the ciphered coordinate Mr =
(X(tr), Y (tr)) ∈ C̄. Alice calculates m̄r = tr

210+r

L and convert it into the ciphered binary
message mr ∈ {0, 1}10+r to be sent to Bob.

Meanwhile, Bob receives the ciphered binary message mr. By using the secret point S0
and the secret key k, Bob can determine secret points S1, S2, . . . , Sr. Now, Bob deciphers



Iteration Ciphered points Secret points
1 M1 = hk1(M0 + S0) S1 = hk1(S0)
2 M2 = hk2(M1 + S1) S2 = hk2(S1)
... ... ...
r Mr = hkr(Mr−1 + Sr−1) Sr = hkr(Sr−1)

Table 6.1: Alice’s encryption process.

the message by converting mr to m̄r ∈ N. Then, Bob calculates tr = m̄r
L

210+r and obtains
Mr = (X(tr), Y (tr)) ∈ C̄. During the r iterations, Bob obtains the following points on C̄,
see Table 6.2. Now Bob has M0 = (X(t0), Y (t0)) where t0 ∈ R/LZ. Thus, Bob can get

Iteration Secret points Points on C̄
1 Sr−1 Mr−1 = 2Mr − Sr−1
2 Sr−2 Mr−2 = 2Mr−1 − Sr−2
... ... ...
r S0 M0 = 2M1 − S0

Table 6.2: Bob’s decryption process.

m̄0 = t0
210

L ∈ N that is in the interval [0, 210 − 1]. Lastly, Bob can obtain the decrypted
message m0 ∈ {0, 1}10 that is the binary form of m̄0.

Below is an example when working with a nonsmooth pentagonal cycle of

trop(f)(X, Y ) = min(5 + X + 2Y, 5 + 2X + Y, 3 + 2X, 3 + 2Y,

− 5 + X + Y, 5 + X, 5 + Y, −1).

In this case, we have L = 40. Let r = 10, u0 = 625
128 , and k = [1, 0, 1, 1, 1, 1, 1, 0, 0, 0].

Assume m0 = [1, 1, 0, 0, 1, 1, 1, 1, 0, 0] is the message Alice wants to send. We have m̄0 =
35. Figure 6.5 shows the plots of (i, X(ti)) and (i, Y (ti)) for i = 0, . . . , 10. Additionally,
we can see the randomness of points M0, . . . , M10 in Figure 6.6. The ciphered coordinate
is

M10 =
(539945

131072 , −508631
131072

)
=
(

X
(1850665

131072

)
, Y

(1850665
131072

))
(6.2)

and the ciphered binary message is

m10 = [1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0].

Furthermore, we want to measure decorrelation and diffusion properties of this ci-
phering procedure. For observing the decorrelation property, pick 400 random mes-
sages m0,1, m0,2, . . . , m0,400. We compare them with the first 10 bits of ciphered messages
mr,1, mr,2, . . . , mr,400 and see how many bits are changed. For the same trop(f)(X, Y ),



Figure 6.5: The X and Y coordinates during the 10 iterations.

Figure 6.6: The coordinates (X(ti), Y (ti)) for i = 1, . . . , 10.

r, u, and k, Figure 6.7 shows the percentage of bit-changes. Even though the first bit
typically stays the same and the second bit tends to change, the average probability of a
bit change is approximately 47.9%. This indicates there is a good decorrelation between
the original message m0 and its encrypted counterpart mr.

For observing the diffusion property, we pick 40 random messages m0,1, m0,2, . . . , m0,40.
For each sample m0,i, where i = 1, . . . , 40, let m1

0,i, m2
0,i, . . . , m10

0,i be the messages that
differ from m0,i only on its 1st, 2nd, . . . , 10th bits, respectively. For h = 1, . . . , 10, let Hh be
the set of 40 Hamming distances between mr,i and mh

r,i (for i = 1, . . . , 40). The horizontal
axis of Figure 6.8 indicates the location of the bit that is changed. The vertical axis
shows the possible Hamming distance between two ciphered messages. For our settings
of trop(f)(X, Y ), r, u, and k, the length of the ciphered message is 10 + r = 20 bits.
Each column of Hh in Figure 6.8 (for h = 1, . . . , 10) has 40 points of Hamming distances
between mr,i and mh

r,i (for i = 1, . . . , 40). The average of each column shows a stability
of the Hamming distances regardless the location of the bit that is changed.



Figure 6.7: Percentages of bit-changes on 400 random messages.

Figure 6.8: The graph of Hamming distances H1, H2, . . . , H10.
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[CM17] J.M.Chauvet and E.Mahé. Cryptography from the tropical Hessian pencil.
Groups Complexity Cryptology, De Gruyter 9(1) (2017), 19–29.

[CS13] M.Chan and B.Sturmfels. Elliptic curves in honeycomb form. Contemp. Math.,
Amer. Math. Soc. 589 (2013), 87–107.

[E07] H.M.Edwards. A normal form for elliptic curves. Bull. Amer. Math. Soc., Amer.
Math. Soc. 44(3) (2007), 393–422.

[EKL06] M.Einsiedler, M.Kapranov, and D.Lind. Non-archimedean amoebas and tropical
varieties. J. Reine Angew. Math., De Gruyter 601 (2006), 139–157.

[IS88] I.Simon Recognizable sets with multiplicities in the tropical semiring. Mathe-
matical Foundations of Computer Science, Lecture Notes in Computer Science,
Springer 324 (1988), 107–120 J. Reine Angew. Math., De Gruyter 601 (2006),
139–157.

[KKNT09] K.Kajiwara, M.Kaneko, A.Nobe, and T.Tsuda. Ultradiscretization of a solv-
able two-dimensional chaotic map associated with the Hesse cubic curve. Kyushu
J. Math. 63 (2009), 315–338.

[KMM08] E.Katz, H.Markwig, and T.Markwig. The j-invariant of a plane tropical cubic.
Journal of Algebra 320 (2008), 3832–3848.

[KMM09] E.Katz, H.Markwig, and T.Markwig. The tropical j-invariant, LMS J. Comput.
Math. 12 (2009), 275–294.

[M05] G.Mikhalkin Enumerative tropical algebraic geometry in R2, J. Amer. Math.
Soc., 18(2) (2005), 313–377.

[M10] T.Markwig. A field of generalised puiseux series for tropical geometry. Rend.
Sem. Mat. Univ. Politec. Torino 1 (2010), 79–92.

[MS15] D.Maclagan and B.Sturmfels. Introduction to Tropical Geometry. American
Mathematical Society, 2015.

[N08] A.Nobe. Ultradiscrete QRT maps and tropical elliptic curves. J. Phys. A: Math.
Theor. 41 (2008) 125205 (12pp).

51



[N11] A.Nobe. On the addition formula for the tropical Hesse pencil. RIMS Kokyuroku
1765 (2011), 188–208.

[N16] A.Nobe. Group actions on the tropical Hesse pencil. Japan J. Indust. Appl.
Math. 33 (2016), 537-–556.

[NT23] H.Nakamura and R.S.Tarmidi. On a two-parameter family of tropical Edwards
curves. Kyushu J. Math. (to appear).

[O06] C.Ormerod. An ultradiscrete QRT mapping from tropical elliptic curves,
arXiv:math-ph/0609060.
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