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Chapter 1

Introduction

1.1 Overview

The Min-Plus semiring is a semiring in which the sum of any two elements is defined as
their minimum, and their product is defined as their sum. When the minimum operation
is replaced by the maximum, the result is an isomorphic semiring known as the Max-
Plus semiring. In 1978, Imre Simon introduced the semiring (N U {oco}, min,+) and
later summarized several early results related to semirings in [IS88] where the Min-Plus
semiring is characterized as the tropical semiring. J ~E.Pin discussed the development
of problems related to tropical semirings in [P98]. In this framework, from well-known
rings such as R, Q,Z, one can define their tropical counterparts—tropical reals, tropical
rationals, and tropical integers—by augmenting the set with {co}.

J.Richter-Gebert, B.Sturmfels, and T.Theobald elaborated on the geometry over trop-
ical semirings in [RSTO05]. They defined the tropical hypersurface of a tropical polynomial
function. The tropical hypersurface of a two-variable tropical polynomial is referred to
as a tropical curve. Furthermore, they also proved the tropical version of Bézout’s Theo-
rem. G. Mikhalkin, in [M05], showed a remarkable connection between tropical geometry
and classical geometry, specifically related to the number of curves of a given degree and
genus.

Valuation maps allow us to tropicalize algebraic geometry objects, such as functions
and hypersurfaces. For the field of p-adic numbers, the p-adic valuation can serve as the
valuation map. Meanwhile, when working with the field of formal Laurent series, the
order of an element can be used as the valuation map. M.Einsiedler, M.Kapranov, and
D.Lind, in [EKLO06], considered the Log function as the valuation map for the base field
and showed that the tropicalization of the hypersurface of f and the tropical hypersurface
of the tropical f are equal after compactification.

By employing the field of Puiseux series as the base field, E.Katz, H.Markwig, and
T.Markwig demonstrated the relationship between the j-invariant of a cubic polynomial
and the cycle length of its tropical hypersurface in [KMMO8]. In [M10], T.Markwig argued
that the field of generalized Puiseux series serves as an ideal base field for concurrently
working with algebraic and tropical geometry.



M.D.Vigeland established a connection to the group law on plane cubic curves by
defining a group law on smooth plane tropical cubic curves in [V09]. Various works in
tropical geometry have focused on specific two-variable polynomials and explored their
tropical geometric properties. In [CS13], M.Chan and B.Sturmfels identified the plane
cubic curves whose tropicalizations feature a hexagonal cycle and provided a detailed
analysis of the tropical group law on these curves. Additionally, A.Nobe demonstrated in
[NO8] that the cycles of the tropical curves of a cubic share shapes with the uQRT maps,
and further showed how point addition on a tropical curve can be understood through
the uQRT map.

K.Kajiwara, M.Kaneko, A.Nobe, and T.Tsuda studied the tropicalization of the Hesse
cubic curve and presented a duplication map of points on a specific nonsmooth tropical
cubic curve in [KKNT09]. They constructed the level-three theta functions parametriza-
tion of the Hesse cubic curve and applied the ultradiscretization procedure to reveal its
connection with the tropical duplication process. Furthermore, Nobe, in [N11], provided
the addition formula for points on the tropical Hesse cubic curve, examining the tropical
addition via intersection points. In [N16], Nobe investigated the tropical analogue of the
group of linear automorphisms acting on the Hessian cubic curve.

This study concentrates on the tropical curves derived from symmetric Laurent poly-
nomials of degree three, specifically those in which the terms 2% and 3 are truncated. We
examine the conditions under which these tropical curves are either smooth or nonsmooth,
as discussed in [T23]. As an application, we investigate the criteria for a symmetric trun-
cated cubic curve to satisfy the honeycomb form and to align with the invariant curves
of uQRT maps. In [NT23], H.Nakamura and R.S.Tarmidi showed that the symmetric
truncated cubic is birationally equivalent to a form of elliptic curves introduced in [E07]
by H.M.Edwards. Furthermore, we also delineate the addition-group structure on these
tropical curves. The theta parametrization of the Edwards elliptic curves enables us to
observe point addition through the ultradiscretization procedure. Lastly, we looked into
a cryptographic aspect utilizing this cubic curve.

1.2 Main results

In this thesis, we consider a symmetric truncated cubic polynomial
fla,y) = cia(ay® + 2%y) + caa(@® + y°) + es(wy) + cor(z +y) + s € K[z, 9] (1.1)
and its tropical polynomial

trop(f)(X,Y) = min(vig + X + 2Y, v12 + 2X + Y, v34 + 2X, v34 + 2Y,

(1.2)
vs + X + Y, ver + X, v67 + Y, vs)

where v, = val(cg) € Q for k € {12,34,5,67,8}.
After reviewing basic notions in Chapter 2, we have the connections between the
tropical curve and the Newton polygon of a tropical polynomial. We let A; shown in



Figure 1.1 be the Newton polygon of trop(f)(X,Y). When Ay is divided into several
cells, we call it as a subdivision of Ay. We can also map the value (vig, vs4, U5, V67, Us) t0 a
subdivision of Ay. We call such subdivisions as regular subdivisions of A¢ (see Definition
2.0.5 for the precise definition). A unimodular subdivision is one of the examples of a
regular subdivision. It partitions A into a collection of the finest cells, i.e. triangular
cells of area 3.

In Chapter 3, we see that Proposition 3.1.1 enables us to characterize tropical smooth
curves by unimodular subdivisions of the Newton polygon of trop(f)(X,Y). Since tropical
polynomial (1.2) is symmetric with respect to the interchange of its variables X and Y,
any regular subdivisions of the Newton polygon A exhibits symmetry with respect to
the dashed line on Figure 1.1. Thus, the unimodular subdivisions are limited to the five
cases in Theorem 1.2.1.

8

Figure 1.1: Newton polygon Ay.
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Figure 1.2: The unimodular subdivisions of Ay.

Theorem 1.2.1 (= Theorem 3.1.2). Let f(x,y) be the symmetric truncated cubic in equa-
tion (1.1). Then the possible cycles appearing in the tropical curves of trop(f)(X,Y) are
triangles, squares, pentagons, hexagons and heptagons. All possible unimodular subdivi-
stons are as shown in Figure 1.2, respectively. Fach of these cycles occurs if and only if
(v12, V34, Us, Vg7, Us) Satisfies inequalities listed in Table 1.1.

We also discuss thoroughly about the conditions of (vys, v34, vs, Vg7, vg) for the 17 non-
smooth tropical curves of trop(f)(X,Y’). There are 23 other subdivisions of Ay as listed
in Table 1.2. Among these subdivisions, 6 subdivisions are not related to the tropical
curve C(trop(f)) for any (vq2, vs4, Vs, Vg7, U3).



Conditions of (v1s, V34, Vs, Vg7, Us)

(I) —V34 + 2057 — Vg < 0 V1g — Vs — Vg7 + vg < 0 —2v19 + 3v5 —vg < 0
(II) —v5 + 2vg7 — vg < 0 —V19 + 205 — vgr < 0 V12 — U3q — U5 + Vg7 < 0
(III) vs — 2v0g7 + Vg < 0 —v12 + U5 + vg7 — v < 0 V19 — U3g — U + Vg7 < 0
(IV) —v5 4+ 2vg7 —vg < 0 —U34 +v5 <0 —v19+ 34+ V5 —vg7 <O
(V) v — 2067 + vg < 0 —vU34 + 2067 — g <0 —U19 + U3y + V5 — Vg7 <0

Table 1.1: Conditions of (v12, v34, V5, Vg7, vg) for all smooth tropical curves C(trop(f)).
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Table 1.2: Other subdivisions of Ay.

Theorem 1.2.2 (= Theorem 3.2.1). Let trop(f)(X,Y) be as defined in equation (1.2)
and Ay be its Newton polygon. Then, the subdivisions on the right column of Table 1.2
never occur as the reqular subdivisions of Ay for any (vi2,Vs4, Vs, Ver, Vs).

Theorem 1.2.3 (= Theorem 3.2.2). The conditions of (via, Us4, Vs, Vg7, Vs) for non-unimodular
reqular subdivisions in Table 1.2 are shown in Table 1.3.

In Chapter 4, we provide some simple examples as applications of the characteriza-
tion. We elaborated when truncated symmetric cubic forms satisfy the honeycomb form.
We also analyzed the possible invariant curves of ultradiscrete QRT maps for various
parameters. In Chapter 5, we observe the family of two-parameter Edwards curves f,
by applying a unimodular transformation to the symmetric truncated cubic. In Chapter
6, we discussed the tropical group law of points on the curves of a symmetric truncated
cubic polynomial.



Conditions of (vyg, 34, V5, Vg7, Us)

1.1 2v019 — 3v3s +vg =0 —V19 + 2034 — Vg7 < 0 vy — U5 <0
2.1 Vg — 2U34 + vg7 = 0 v3g — U5 < 0 —Us3q + 2vg7 — vg < 0
2.2 U3y — 2067 + V8 <0 V3g — U5 < 0 —2v19 + 3vu3y —vg < 0
3.1 U3y — U5 <0 —v19 + 2v34 — vg7 < 0 —v34 + 2067 —vg < 0
3.2 | 20104+ vz + 205 —vg =0 U3y — 2067 + 08 <0 2u19 — 3vgy +vg < 0
3.3 Vg4 — 207 +vg < 0 210 — 3vs +vg <0 2U10 — vz + vg < 0
3.4 V19 — Vg7 + 205 = 0 V19 — 205 + vgr < 0 V19 — 2U34 + Vg7 < 0
4.1 V19 — U34 — Vg7 + U8 = 0 —V12 + V34 + V5 — Vg7 = 0 V12 — 2u34 + Vg7 < 0
4.2 V19 — 205 + vgr < 0 V19 — 2034 + Vg7 < 0 —v19 + 3vgy — 2ug < 0
5.1 | —vig+ w3 +vs—ver =0 —v34 + 2067 — 08 <0 w19 — 34 — Vg7 + U3 <0
02| —vip+ v+ us —ve7r =0 Vig — 2034 + Vg7 <0 —v19 + 34 + Vo7 — Vg <0
5.3 U3y — 2067 + V8 <0 —2V19 + v34 + 205 —vg < 0 —v34 +v5 <0
5.4 —V19 + V5 + vgr —vg =0 —v34 + 2vg7 —vg < 0 V19 — Vg7 + 2vg < 0
5.5 V34 — 2067 — 08 < 0 2019 — V34 — 2v5 +vg < 0 —2v19 4+ 3v5 —vg <0
5.6 2019 — 305 +v5 <0 —v34 + 2vg7 — vg < 0 V12 — Jvgy + 2vg < 0
6.1 vy — 2067 +vg =0 —v19 + 3vgr — 2vg < 0 V19 — U3q — Vg7 + vg < 0
6.2 Vs — 21)67 + vg = 0 —V12 + VU3g + Vg7 — Vg < 0 —V34 + 2U67 —vg < 0

Table 1.3: Conditions of v for subdivisions in Table 1.2.



Chapter 2

Tropical curves and symmetric
truncated cubic forms

Let K be a field. A valuation map of K is a map val : K — R U {oo} that for a,b € K, it
satisfies properties

1. val(a) = oo if and only if a = 0,
2. val(ab) = val(a) + val(b), and
3. val(a + b) > min(val(a), val(b)).
Remark 2.0.1. For a,b € K, a valuation map satisfies the following statements.
1. If a* = a, then val(a) = 0.
2. val(a) = val(—a).
3. If val(a) # val(b), then val(a + b) = min(val(a), val(b)).

Proof. If a®> = a, we have val(a?) = val(a) that implies 2val(a) = val(a) and the first
statement follows. Moreover, since a? = (—a)?, we have 2val(a) = 2val(—a) and the
second statement follows.

Lastly, assume val(a) > val(b). From the third property, we have val(a 4+ b) > val(b).
Moreover,

val(b) =val(a + b — a)
>min(val(a + b), val(—a)) = min(val(a + b), val(a)) = val(a + b).

The last line is an implication of the second statement and the assumption. Thus, the
third claim follows. []

Set K* denotes the nonzero elements of K. In practical applications, as discussed in [M10],
it is convenient to let K be the field of Puiseux series

C{{t}}z{iakt!@ :meZ,NeN,akGC}

k=m



with valuation
val :C{{t}}" - Q
> E (K
kgaktlv — min (N Cay # 0) :

Let Z C Z? be a non-empty subset and

fla,y)= > aya'y’ € Ko™,y
(4,9)€T

be a Laurent polynomial.

Definition 2.0.2. The tropical polynomial of f(z,y) is the piecewise linear function
trop(f)(X,Y) = min(val(a;;) +i- X +7-Y : (4,)) € 7).

Tropical curve C(trop(f)) is the collection of coordinates (X, Y) € R? where trop(f)(X,Y)
is nondifferentiable, i.e. the minimum value is attained at least twice.

A tropical curve forms a graph in R2. It contains bounded and unbounded edges.
Some tropical curves have cycles formed by some bounded edges.

Remark 2.0.3. It is common to find other sources in the literature that express the
tropicalization of a polynomial by using operations (+,max). The curve of a tropical
polynomial in the form

trop(f')(X,Y) = max(—val(a;;) +i- X +j-Y)
and C'(trop(f)) are point-symmetric with respect to the origin O.

Proof. Let (X,Y) be a point on C(trop(f)). Then there exist (i1, j1) and (g, j2) such
that
Val(ailjl) + ZlX +]1Y = val(amz) —f- ZQX + jQY

and less than other terms of val(a;;) + X + jY. Thus, we have
—val(ai,j, ) + i1 (=X) + 51(=Y) = —val(ai,y,) +ia(=X) + j2(=Y)

and greater than other terms of —val(a;;) +i(—X) + j(—=Y). In other words, (X,Y) is a
point on C(trop(f)) if and only if (=X, —Y) is a point on C(trop(f’)). Thus, the tropical
curves are point-symmetric with respect to the origin O. O

Expressions of the form val(a;;)+i- X +7-Y can be disregarded when val(a;;) is 0o or —oo,
depending on the operations we use for defining the tropical polynomial. Consequently,
we define the following set for a tropical polynomial.



Definition 2.0.4. The support of f(z,y), or alternatively the support of trop(f)(X,Y),
is the set

Supp(f) = {(i,5) € Z* : a;; # 0}
and the Newton polygon of trop(f)(X,Y"), denoted by Ay, is the convex hull of Supp(f).
Let I'y be the triangle with vertices (0,0), (0,d), (d,0). If Ay fits inside I'; but not inside

Lg41, then we say C(trop(f)) has degree d. If Ay = I'y, we say C(trop(f)) has a full
support.

The structure of tropical curve C(trop(f)), including its vertex count and the presence
of cycles, exhibits a connection with the regular subdivision of A as defined below. The
definition of subdivisions can be summarized in the diagram in Figure 2.1.

Definition 2.0.5. Let v = (val(a;;) : a;; # 0) € QSuep() . Furthermore, let A; be the
Newton polygon of trop(f)(X,Y’) and Ay be the convex hull of

{(i, 4, val(a;;)) : (i,5) € Supp(f)} C Z* x R.

The regular subdivision Subdiv, is the image of corner edges of the upper part of A, under
the projection to Z? that subdivide A into smaller polygons. Each small polygon is called
a cell. A cell is primitive when all of its lattice points are its vertices. It is unimodular if
it is a triangle of area half. A regular subdivision is primitive (resp. unimodular) when
all of its cells are primitive (resp. unimodular).

Subdivisions of Ay
Regular subdivisions

Non-primitive Primitive
subdivisions subdivisions

Unimodular
subdivisions

Figure 2.1: Subdivisions of a Newton polygon.

In this thesis, the points on A; are numbered according to the position of the term
corresponding to it in the tropical polynomial trop(f)(X,Y’). Furthermore, we will name
the cells of a regular subdivision of A; by using these numbers.

Example 2.0.6. Assume tropical polynomial

trop(f)(X,Y) = min(vy + X + 2Y, 03 + 2X + Y, v3 + 2X, vy + 2Y,
U5+X+}/,UG+X,U7+§/,U8>.

For vector (vy,...,v8) = (0,0,0,0,—1,0,0,0), the regular subdivision Subdiv, is shown
in Figure 2.2. We can write this subdivision as [[1,2, 5], [1,4, 5], [2, 3, 5], [4, 5, 8], [3, 5, 8]].



8 6 3

Figure 2.2: The regular subdivision that is dual to
trop(f)(X,Y) =min(X +2Y,2X +V,2X,2Y, -1+ X + Y, X, Y,0).

Additionally, we may notice that we have the same regular subdivision for a different
vector (vy,...,vs) = (0,0,0,0,—2,0,0,0).

Definition 2.0.7. Let v € Q5PP(). The collection of vectors v that yield the same
regular subdivision forms a polyhedral cone in RS®™P()  The collection of these cones
defines the secondary fan of the Newton polygon Ay.

Furthermore, the polyhedral cones corresponding to unimodular subdivisions are top-
dimensional cones, see [KMMO0S|.

Definition 2.0.8. Let i € N and p be a cell of a regular subdivision. The i*® term of
tropical polynomial trop(f)(X,Y) is denoted by trop(f)(X,Y);. If the name of cell p
contains ¢, then we write ¢ € p. If ¢ € p but ¢ is contained inside cell p, we say p covers 1.

Remark 2.0.9. [V10, Lemma 3.2] Let f = > ; jjer a;;2'y’ be a polynomial and let v =
(val(aij) : a;; # 0). For any edge E that is pointing outward from vertex V' on the tropical
curve C'(trop(f)), there is a cell p in the subdivision Subdiv, bounded by edge D where E
is the inward normal vector of D. The opposite holds as well. This dualism is illustrated
in Figure 2.3.

Figure 2.3: The dualism of vertex V of a tropical curve and cell p of a subdivision.



Remark 2.0.10. Let trop(f)(X,Y’) be a tropical polynomial and p be a cell of its regular
subdivision. Let (X,,Y,) be a vertex on a tropical curve C(trop(f)) that corresponds to

cell p. Then (X,,Y)) is the solution of the system of linear equations

{trop(f)(X,Y); = trop(f)(X,Y); 1 i,j € p and i # j}.

Let 7 € p and we have cell p corresponds to inequalities

y {g trop(f)(X,,Y}); 1 7 & p,p covers j

2.1
< trop(f)(X,,Yp); 1 j € p,p doesn’t cover j 21)

trop(f)(Xp, ¥y

Proof. Let p = [p1,...,p] where for i« = 1,...,t, p; € N are points on the regular
subdivision that form the vertices of cell p. Cell p is a t sides polygon. It is dual to vertex
(X,,Y,) whose ¢ emerging edges separate t regions (see Figure 2.3). Each region is the
collection of (X, Y’) where trop(f)(X,Y) = trop(f)(X,Y),,, (¢ =1,...,t). Thus, (X,,Y,)
is the intersection point between ¢ terms trop(f)(X,Y),,, (i =1,...,1).

Furthermore, from the definition of a tropical curve, we know that vertex (X,,Y,) is

a point where the minimum value trop(f)(X,Y) is attained ¢ times by

tI’Op(f)(X, Y)pl == tI‘Op(f)(X, Y)pt'
Hence, for j # p1,...,p, we have trop(f)(X,Y),, < trop(f)(X,Y); when j is covered by
cell p and trop(f)(X,Y),, < trop(f)(X,Y); for other j. O

The edges of a tropical curve connect vertices that lie on Q2. Meanwhile, the edges of
a regular subdivision connect lattice vertices Z?2.

Definition 2.0.11. Let E be an edge in a tropical curve and D be the corresponding
edge in its dual subdivision. If n is the number of lattice points on D, then the weight
of E, denoted by wg, is defined to be n — 1. If £ is a bounded edge, let |E| and |D| be
the Euclidean lengths of F and D, respectively. The lattice length of E, denoted by [g,
is given by lp = %. If P and @ are two points on E, the lattice length between P and
Q is
1o = P2,
|E]

The relationship between tropical curves and regular subdivisions establishes a coherent
mapping between various elements of the two entities. Specifically, there is a one-to-
one correspondence between edges of a tropical curve and edges of a regular subdivision,
between vertices of a tropical curve and cells of a regular subdivision, and between regions
of a tropical curve and vertices of a subdivision.

Remark 2.0.12. For a polynomial f(z,y) = X jjer ai;#'y’, let v = (val(ay;) : as; # 0).

/
Let u = <31> and v = <3,1> be primitive integer vectors that satisfy
2 2

wy—u,=0  uy+u;=0. (2.2)



Suppose V' is a vertex on C(trop(f)) and edges Fji,..., E; emerge from it following a

clockwise orientation. Let wuq,...,u; be their primitive integer directions, respectively.
We have uy + - -+ + u; = 0. Furthermore, vertex V' is dual to cell p in Subdiv, that is
bounded by edges Dy, ..., D, that can be written as vectors wiu,...,wu;, following a

clockwise orientation.

Proof. The first claim that says u; + --- + u; = 0 is the direct corollary of Remark
2.0.9. If cell p of Subdiv, is dual to vertex V, it is bounded by t edges D1,...,D;. For
it =1,...,t, we can assume the primitive integer directions of D; is w since vectors u; and
u; are perpendicular to each other. Moreover, from the definition of the weight of E;, the
Euclidean length of edges D; is |D;| = w;|uf|. Thus, the result follows. O

Triangular cells have a special role because it allows us to define the multiplicity of
trivalent vertices that are dual to it.

Definition 2.0.13. Let V be a trivalent vertex on a tropical curve with edges E1, Fs, Fs
emerging from it. Let wi,ws, w3 be the weights and vy, vy, v3 be the primitive integer
directions of these edges, respectively. The multiplicity of V', denoted by multy, is defined
by the absolute values of

W19 ‘Ul Ug‘ = WiWws ‘Ul 1)3‘ = WoWs ‘Ug Ug‘ .

In [V09], Vigeland focused on a tropical curve whose vertices are all trivalent and of
multiplicity one.

Definition 2.0.14. A tropical curve is defined to be smooth if each vertex is trivalent
and has multiplicity one.

We can also notice that a tropical curve whose vertices are all trivalent of multiplicity one
is dual to a unimodular subdivision. Step by step proof is is given in Proposition 3.1.1.



Chapter 3

Explicit criteria for various types of
subdivisions

The dualism between a regular subdivision and a tropical curve tells that we can identify
all tropical curves from the families of regular subdivisions. In this chapter, we will
describe all combinatorial possibilities of the subdivisions of A; and determine the values
of (v12, V34, V5, Vg7, Ug) for each subdivision, [T23].

3.1 Smooth tropical curves

First, we want to identify the subdivisions that are dual to smooth tropical curves.

Proposition 3.1.1. Let C(trop(f)) be a tropical curve and Subdiv, be a subdivision that
are dual. Tropical curve C(trop(f)) is smooth if and only if Subdiv, is a unimodular
triangulation.

Proof. Suppose Subdiv, is a unimodular triangulation. Let p be a triangular cell in
Subdiv, and its borders be vectors a’, b, ¢’. Since the area of p is half, there is no lattice
point contained in p except its vertices, and vectors a’, i/, ¢’ are primitive integer directions.
It implies w, = wp = w. = 1. Furthermore,

1
5 = area of p= o (a4b — ) = S (bheh — byeh) = 5(cha — cha).

Let V' be the vertex on C(trop(f)) that is dual to cell p. The direction of three emerging
edges from V will have primitive integer vectors a,b, ¢ satisfying Remark 2.0.12. Due
to the equations (2.2), the absolute values of determinants ‘a bT;, ’a cl , lb c’ are one.

Thus we have the absolute value of w,wy, ’a b‘ is one, which establishes multy, = 1. For
a treatment of general tropical curves, we refer the reader to [MS15].

Conversely, suppose that C(trop(f)) is smooth. Let V' be a vertex and the three
emerging edges have primitive integer directions a,b,c. Let p be the triangular cell in
the subdivision that is dual to V. If @/, ¥, ¢ are primitive integer vectors as mentioned in

14



Remark 2.0.12, the boundaries of p are vectors wqa’, wpb’, w.c’. Since we have multy = 1
the weights of a,b, ¢ are w, = w, = w. = 1 and the absolute values of ‘a bl, la ¢

Y

, and

Y

‘b c‘ are one. Furthermore, applying the relation (2.2) of Remark 2.0.12 yields

1

area of p = = |a bzlb c:lc al .
2' ‘ 2 2

Therefore, we can assert that the subdivision Subdiv, is a unimodular triangulation. [J

Theorem 3.1.2 (= Theorem 1.2.1). Let f(x,y) be the symmetric truncated cubic in equa-
tion (1.1). Then the possible cycles appearing in the tropical curves of trop(f)(X,Y) are
triangles, squares, pentagons, hexagons and heptagons. All possible unimodular subdivi-
sitons are as shown in Figure 1.2, respectively. Fach of these cycles occurs if and only if
(v12, V34, Us, Vg7, Us) Satisfies inequalities listed in Table 3.1.

Conditions of (v1g, 34, Vs, Vg7, Us)

(I) —V34 + 2057 —vg < 0 V1g — Vs — Vg7 + vg < 0 —2v19 + 3v5 —vg < 0
(II) —v5 + 2vg7 — vg < 0 —V19 + 205 — vg7 < 0 V12 — U3g — U5 + Vg7 < 0
(III) v — 2067 + v < 0 —v12 + U5 + vg7 — v < 0 V1g — U3qg — U5 + vg7 < 0
(IV) —v5 4+ 2vg7 —vg < 0 —U34 +v5 <0 —v19+ 34+ V5 —vg7 <O
(V) vs — 2067 + v < 0 —vU34 + 2067 — g <0 —U19 + U3y + V5 —Vgr <0

Table 3.1: Conditions of vy9, v34, V5, Vg7, vs for all smooth tropical curves C(trop(f)).

Proof. We will simultaneously prove the five cases since their proofs share similarities.
There are three main steps involved in determining the conditions of (v12,vs4, vs, Ve7, Us)
for each subdivision in Figure 1.2. We will apply Remark 2.0.10. First, we calculate the
coordinates of the vertices of a smooth tropical curve. Since a vertex in a tropical curve
corresponds to a cell in a subdivision, each smooth tropical curve has seven vertices. The
second step involves finding the inequalities that determine each cell of the subdivision.
Lastly, we assemble a collection of inequalities that is equivalent to the union of all
inequalities obtained in the second step.
The five subdivisions on Figure 1.2 can be written as

1. §=[1,2,5],[1,5,8],[2,5,8],[1,7,8],[2,6,8],[1,4, 7], 2, 3, 6]]

[\

. Sir=1[1,2,5],[1,5,7],[2,5,6],[1,4,7],[2,3,6],[5,6,7],[6,7,8]],

3. Sur=1[1,2,5],[1,5,7],[2,5,6],[1,4,7],[2,3,6],[5,7,8], 5,6, 8]],

4. Siv =1[1,2,5],[1,4,5],[2,3,5],[4,5,7],[3,5,6], 5,6, 7], 6,7, 8]], and
5. Sv =[1,2,5],[1,4,5],[2,3,5],[4,5,7],[3,5,6],[5,7, 8], [5,6, 8]]

By using Remark 2.0.10, the coordinates (X, Y’) corresponding to all cells of the subdivi-
sions are



- Sixyy = [(—vi2 + vs, —v12 + v5), (=205 + V12 + Vs, —V12 + U5),

(—v12 + v5, =205 + V12 + vg), (—v12 + 2067 — Vs, —Ve7 + Us),

(—ver + v8, —V12 + 207 — Vs), (—V12 + V34, —Us4 + Vg7), (—U34 + Vg7, —V12 + U34)],

- Sinxyyy = [(—vi2 + vs, —v12 + v5), (=5 + Vg7, —V12 + Us), (—V12 + Vs, —Us5 + Vg7),

(—v12 + U4, —V34 + Ve7), (—U34 + V67, —V12 + U34), (—Us + V67, —Us + V67),

(—ver + vs, —Ver + Vs)],

S xy) = [(—v12 + v, —V12 + 5), (—Us + Vg7, —V12 + V5), (—V12 + V5, —U5 + Ve7),

(—v12 + U4, —V34 + Ve7), (—U34 + V67, —V12 + U34), (—V7 + Vs, —Us + Ve7),

(—vs + ve7, —ve7 + Vs)],

- Svxy) = [(—v12 + V5, —V12 + 5), (—V12 + V34, —V12 + U5), (—V12 + Vs, —V12 + U34),

(—vs4 + Vo7, —U5 + V67), (—Vs + Vg7, —Vs4 + Ve7), (— V5 + Vg7, —Vs + Ug7),

(—ver + vs, —ve7 + vg)], and

- Svxyy) = [(—vi2 4+ vs, —v12 + v5), (—v12 + Vs34, —V12 + Vs5), (—V12 + V5, —V12 + V34),

(—vs4 + Vo7, —U5 + Ve7), (—Vs + Vg7, —Vs4 + Ve7), (—Vs5 + Vg7, —Vs7 + Us),

(—ver + vs, —v5 + V7))

Meanwhile, the union of inequalities that determine all cells are

1.

ST inequalities = {V5 < Us4, 2V5 < V12 + Vg7, 3U5 < 2012 + Us, 4vs < Vs + Usq + 2012,
2us < —v12 + (3ve7), 3vs < V34 — (2012) + (4v67), V12 < 2U34 — Vg7, —V34 + 2067 < Vs,

Vg + V12 — Vg7 < Us, —Usq + V12 + V7 < U5, —Us4 + 2012 + vg < 205},

- Silinequalities = {U5 < U4, 205 < V12 + Vg7, 305 < 2012 + Vs, U5 < Vs + V12 — V7,

3vs < Vg7 + V12 + V34, V12 < 2034 — Vg7, —Us + 2067 < Vs, —U34 + 2067 < Vg,

— V12 + 3vgr < 20s, —U34 + V12 + Vo7 < Us},

- SIiT inequalities = {5 < Us4, U5 < —Ug + 2067, 205 < V12 + Vg7, 305 < 2012 + Us,

vs < Ug + V12 — Vg7, 205 < —Ug + V34 + 2067, 3U5 < Vgy + Uiz + Usg, V12 < 2034 — Vg,

— V34 + 2067 < Vg, —U34 + V12 + Vg7 < U5},

. SIVinequalities = {Us < Usa, 205 < V12 + Ugr, 305 < 2012 + Vs, U5 < —Us4 + V12 + Ver,

2us < —U34 + 2012 + vg, —Ug + 2v7 < s,

— Vg4 + 2067 < Vs, —V12 + U7 < 203}, and

. SVinequalities = {Us < U4, U5 < —Us + 20g7, 205 < V12 + Vg7, 305 < 2012 + Vs,

U5 < Vg + V12 — Vg7, U5 < —U34 + V12 + Vg7, 205 < —Vg + U34 + 2067,
2U5 < —v34 + 2010 + Vg, —U34 + 207 < 'Ug}.



Finally, we will proceed to simplify the five sets of inequalities that are mentioned
above. This reduction can be accomplished through Maple calculations, as demonstrated
in Section 3.3. As a result, we obtain the final conditions for (v, vs4, Vs, ve7,vs) that
determine each subdivision, which are as follows.

1. 81y = {—vs — 34 + 2067 < 0, —v5 + vg + V12 — Vg7 < 0,305 — vg — 2019 < 0},

2. Si1p ={—v5 — vg + 2vs7 < 0, —U5 + V12 — V34 + Vo7 < 0,205 — V13 — Vg7 < 0},

3. Strre = {—vs + V12 — V34 + Vg7 < 0,05 — V5 — V12 + ve7 < 0,05 + vs — 2067 < 0},
4. Spyp = {—vs — vs + 2067 < 0,05 — V12 + v34 — Vo7 < 0,05 — v34 < 0}, and

5. SV,'U = {—Ug — V34 + 27}67 < O, Vs — V12 + Usqg — Vg7 < 0, Vs + Vg — 21]67 < 0}

3.2 Non-smooth tropical curves

Due to Proposition 3.1.1, we know that all regular subdivisions that are non-unimodular
correspond to nonsmooth tropical curves of cubic polynomial f(x,y) in equation (1.1).
Table 1.2 shows all subdivisions of Newton polygon Ay that have some non-unimodular

cells. Now, we will determine which subdivisions in Table 1.2 are regular subdivisions of
Ay.

Theorem 3.2.1 (= Theorem 1.2.2). Let trop(f)(X,Y) be as defined in equation (1.2)
and Ay be its Newton polygon. Then, the subdivisions in the right column of Table 1.2
never occur as the reqular subdivisions of Ay for any (vi2,vs4, Vs, Ver, s).

Proof. The proof can be accomplished by examining the shape of the subdivision. By
contradiction, assume that the subdivisions are viable. In doing so, we observe that the
interior point (1,1) forms a vertex of the Newton polygon A;. However, it is evident that
its dual does not form a closed cycle in a tropical curve. O]

We can see that the regular subdivisions in Table 1.2 can be derived through a coars-
ening process from the unimodular subdivisions shown in Figure 1.2. This implies that
the linear expressions representing the polyhedral cones for subdivisions in Table 1.2 may
not all be strict inequalities, unlike those in Table 3.1. Moreover, we can arrange all of
the non-unimodular and unimodular subdivisions as shown in Figure 3.1.

Theorem 3.2.2 (= Theorem 1.2.3). The conditions of (v12, V34, Vs, Va7, Us) for non-unimodular
reqular subdivisions in Table 1.2 are shown in Table 3.2.

Proof. We will do the proof in three separate steps. The first step is replicating the
three steps in the proof of Theorem 3.1.2 and achieving the sets of linear expressions in
(v12, 34, U5, Vg7, Ug). Unlike the proof of Theorem 3.1.2, we may notice linear equality due



Figure 3.1: A poset of all regular subdivisions of Ay from the coarsest to the finest.

to the cells that are formed by four vertices or more. At this step, we let all inequalities
(3.2) produced by the Maple calculation in Section 3.3 be strict inequalities to create
similarity with the proof of Theorem 3.1.2. The linear expressions of (v12, V34, Us, Vg7, Us)
for each non-unimodular subdivision obtained by this first step are written in Table 3.3.

In the second step, we separate the non-unimodular subdivisions into the primitive
and the non-primitive. Since a primitive cell does not cover any point of Ay, the inequal-
ity expressions in Table 3.3 for the primitive subdivisions will remain strict inequalities
according to Remark 2.0.10. Thus, the conditions of (vis, v34, Vs, Vg7, vg) for the subdivi-
sions 4.1, 5.1, 5.2, 5.4, 6.1, 6.2 are as shown in Table 3.3.

The third step is changing the sign of some strict inequalities to non-strict inequalities
on the conditions of (vi2,v34, 5, Vg7, vg) for the non-primitive subdivisions. We do this
by applying Remark 2.0.10. In subdivision 1.1, all inequalities are non-strict because all
points are covered by the single cell [1,2, 3,4, §].

Lastly, we see the finer regular subdivisions on the second and third lines of Figure
3.1. We want to see which inequalities are non-strict by evaluating the non-primitive cells.
Due to the symmetrical property of trop(f)(X,Y"), we can reduce the observation to Table
3.4. Furthermore, we change the inequalities of subdivisions containing the non-primitive
cells accordingly. Thus, the result follows. O



Conditions of (vyg, 34, 5, Vg7, Us)

1.1 2v19 — 3v3s +vg =0 —V19 + 2034 — vg7 < 0 vy — U5 <0
2.1 Vg — 2034 + vg7 = 0 V3q — U5 < 0 —Us3q + 2vg7 — vg < 0
2.2 U3y — 2067 + 08 < 0 V3g — U5 < 0 —2v19 + 3vu3y —vg < 0
3.1 U3y — U5 < 0 —v19 + 2vU34 — vg7 < 0 —v34 + 2067 —vg < 0
3.2 | 20104+ v34 + 205 —vg =0 U3y — 2067 + 08 <0 2v19 — 3vgy +vg < 0
3.3 Vg4 — 207 +vg < 0 2010 — 3vs +v3 <0 2U10 — vz + v5 < 0
3.4 V19 — 3vgr + 208 =0 V19 — 205 + vg7 < 0 V19 — 2U34 + Vg7 < 0
4.1 V19 — U34 — Vg7 + Ug = 0 —V12 + V34 + V5 — Vg7 = 0 V12 — 2034 + Vg7 < 0
4.2 V19 — 205 + vg7 < 0 V19 — 2034 + Vg7 < 0 —v19 + 3vgy — 2ug < 0
5.1 | —vig+ vz +vs —ver =0 —v34 + 2067 — 08 <0 w1g — 34 — Vg7 + vg <0
5.2 —V12 + V34 + V5 — vg7 = 0 V12 — 2034 + Vo7 <0 —v12 + U4 + Vg7 — g <0
9.3 U3y — 2067 + 08 <0 —2v19 +v34 + 205 —vg <0 —vs34 +v5 <0
5.4 —v12 + V5 + vg7 —vg =0 —v34 + 2vg7 —vg < 0 V12 — 3vg7 + 2vg < 0
5.5 U3y — 2067 — Vg < 0 2U19 — V34 — 2v5 +vg < 0 —2v192 + 3v5 —vg < 0
5.6 2010 — 3vs +vg <0 —v34 + 2vg7 —vg < 0 V19 — Vg7 + 2vg < 0
6.1 vs — 2067 +vg =0 —V19 + 3vgy — 205 < 0 V19 — U3q — Vg7 + vg < 0
6.2 v5 — 2vg7 +vg =0 —V19 + V34 + Vg7 — v < 0 —v34 + 2067 — Vg < 0
Table 3.2: Conditions of (v12, v34, Vs, Vg7, vg) for subdivisions in Table 1.2.
Conditions of (v1g, V34, s, Vg7, Us)
1.1 2019 — 3ugy + 5 =0 —V19 + 2034 — Vg7 < 0 Vg — U5 < 0
2.1 V1g — 2034 + Vg7 = 0 V3q — U5 < 0 —v34 + 2vg7 —vg < 0
2.2 U3y — 207 + V5 < 0 V3 — U5 < 0 —2v19 + 3vugy —vg < 0
3.1 V3 — U5 <0 —vU19 + 2v34 — vg7 < 0 —v34 + 2vg7 —vg < 0
3.2 | —2v19+v34 + 205 —vg =0 U3y — 2067 + Vg < 0 2v19 — 3vgs +vg < 0
3.3 V34 — 207 +vg < 0 2U10 — 3vs +vg < 0 2U190 — 3vgg +vg < 0
3.4 V19 — 3vgr + 2vg = 0 V19 — 205 + vg7 < 0 V12 — 2v34 + vg7 < 0
4.1 V19 — Ugg — Vg7y +vg =0 —V19 + V34 + V5 — V7 =0 V12 — 2U34 + vg7 < 0
4.2 V12 — 205 + Vg7 < 0 V12 — 2u34 + 7 < 0 —v12 + 3vgr — 208 < 0
5.1 —V1g + V34 + V5 — Vg7 =0 —Vs34 + 2vg7 — vg < 0 Vg — VU3qg — Vgr +v8 < 0
5.2 | —vVip+ vz +v; —ver =0 V12 — 2034 + Uer <0 —v1p + v3q + v67 —vs <0
5.3 V34 — 207 +vg < 0 —2V19 + v34 + 205 —vg < 0 —v34 +v5 <0
5.4 —V1p + V5 + vgr —vg =0 —v34 + 2vg7 —vg < 0 V12 — 3vg7 + 208 < 0
5.5 V34 — 2vg7 — Vg < 0 2019 — v34 — 2v5 +vg < 0 —2v19 4+ 3v5 —vg < 0
5.6 2019 — 3vs +v3 < 0 —v3y4 + 2vg7 — vg < 0 V12 — Jvgr + 2vs < 0
6.1 Vs — 2067 + 08 =0 —v19 + 3vgr — 208 < 0 V1g — U3qg — Vg7 +vg < 0
6.2 vs — 2vg7 + g =0 —V1g + V34 + Vg7 — Vg < 0 —V34 + 2vg7 — vg < 0

Table 3.3: The linear expressions of (v12, Vs34, Us, Vg7, Vs) after the first step.



Cell p Coordinate (X,,Y,) Inequalities Subdivisions
[1, 2, 3, 4, 6, 7} (—U34 + Vg7, —Us3q + U67> V1o — V34 — U5 + Vg7 < 0 2.1

V1o = 2034 — Vg7
[1, 2, 3, 4] ( V12 + V34, —V12 + U34) V34 — Vs S 0 22, 3.1
[3,4,8] ( U34+* —M‘i‘vs) U34—’U5§0 2.2

v34 — 2067 + U3 < 0
[3 4,6, ] (—U34 + Vg7, —Usq + U67) v34 — U5 <0 3.1
[1, 4 5 8] (—U12 + V3yq, —VU12 + ’05) —vV19 + V34 + V5 — Vg7 < 0132
[1 4 8] (—'U12 + V3q, — v34 + ’Ug) V34 — 21}67 + vg < 0 3.3
1,2, 8] (—%Jr%s,—m ) 215 — 3U5 + g < 0 3.3, 5.6
[1 2 6 7 ] (—1167 + Vg, —Ug7 + Ug) V12 — 21)5 + Vg7 S 0 3.4

V12 — 3U67 + 2U8 =0
[1,2,6, 7] ( 1)12 + U67, %—F U%) V12 —2U5+7}67 S 0 4.2
[3,5,8] ( U34 + 1]28,—U5+U78+%) U34_2U67+US S 0 9.3

Table 3.4: Non-strict inequalities correspond to non-primitive cells.

3.3 Maple code

In the proof of Theorem 3.1.2, we can narrow down several inequalities to three by checking
the equivalence of the two sets of inequalities. We can also do this calculation in Maple
by using its PolyhedralSets package. We employ the following commands to calculate
the conditions for (vq2, vs4, vs, Vg7, vs) in the case of smooth tropical curves in the proof of
Theorem 3.1.2.

I_inegs:= {v[5] <= v[34], v[5] <= v[12]/2 + v[67]1/2, v[5] <= (2*v[12])/3
+ v[8]/3, v[b] <= v[8]/4 + v[34]/4 + v[12]/2, v[8] <= -v[12]/2 + (3*v
[671)/2, v[8] <= v[34]/3 - (2xv[12])/3 + (4*v([67])/3, v[12] <= 2xv[34]
- v[67], —-v[34] + 2xv[67] <= v[8], vI[8] + v[12] - v[67] <= v[5], -
[34] + v[12] + v[67] <= v[5], -v[34]/2 + v[12] + v[8]/2 <= v[5]}:

I_pseudo_polyhedral:= PolyhedralSets:-PolyhedralSet(I_ineqs);

II_ineqgs:= {v[5] <= v[34], v[5] <= v[12]/2 + v[67]/2, v[B] <= (2%v[12])/3
+ v[8]/3, v[5] <= v[8] + v[12] - v[67], v[b] <= v[67]/3 + v[12]/3 + v
[34]1/3, v[12] <= 2xv[34] - v[67], -v[8] + 2xv[67] <= v[5], -v[34] + 2x%
v[67] <= v[8], -v[12]/2 + (3xv[67])/2 <= v[8], -v[34] + v[12] + v[67]
<= v[5]}:

IT_pseudo_polyhedral:= PolyhedralSets:-PolyhedralSet(II_inegs);

IIT inegs:= {v[5] <= v[34], v[5] <= -v[8] + 2xv[67], v[5] <= v[12]/2 + v
[671/2, v[5] <= (2xv[12])/3 + v[8]/3, v[5] <= v[8] + v[12] - v[67], v
[56] <= -v[8]/2 + v[34]/2 + v[67], v[5] <= v[671/3 + v[12]/3 + v[34]1/3,
v[12] <= 2%v[34] - v[67], -v[34] + 2xv[67] <= v[8], -v[34] + v[12] +



v[67] <= v[5]}:
IIT_pseudo_polyhedral:= PolyhedralSets:-PolyhedralSet(III_ineqs);

IV_inegs:= {v[5] <= v[34], v[5] <= v[12]/2 + v[67]1/2, v[5] <= (2xv[12])/3
+ v[8]/3, v[b] <= -v[34] + v[12] + v[67], v[B] <= -v[34]/2 + v[12] +
v[8]/2, -vI[8] + 2xv[67] <= v[b], -v[34] + 2xv[67] <= v[8], -v[12]/2 +
(3xv[67])/2 <= v[8]}:

IV_pseudo_polyhedral:= PolyhedralSets:-PolyhedralSet (IV_ineqs);

V_ineqgs:= {v[5] <= v[34], v[5] <= -v[8] + 2xv[67], v[5] <= v[12]/2 + v
[671/2, v[5] <= (2xv[12])/3 + v[8]/3, v[5] <= v[8] + v[12] - v[67], v
[6] <= -v[34] + v[12] + v[67], v[5] <= -v[8]/2 + v[34]/2 + v[67], v[5]
<= -y [34]/2 + v[12] + vI[8]/2, -vI[34] + 2xv[67] <= v[8]}:

V_pseudo_polyhedral:= PolyhedralSets:-PolyhedralSet(V_ineqgs);

This gives polyhedra (3.1).

Coordinates : [vs, vs, V12, Usq, Ug7]

1 pseudo_polyhedral := Relations : [—vg — v34 + 207 < 0,
—U5 + vg + V1g — V7 < 0,05 — & — 22 < (]

Coordinates : [v5, Vg, V12, V34, U67]
11 _pseudo_polyhedral = Relations : [—vs — vg + 2vg7 < 0,

v U
—V5 + V12 — V34 + Vg7 < 0,05 — %2 — %L < ()

Coordinates : [vs, g, V12, V34, V7]
111 _pseudo_polyhedral := Relations : [—vs + v1a — v34 + ve7 < 0, (3.1)

v — Vg — V12 + V7 < 0,05 + vg — 2067 < 0]
Coordinates : [vs, g, V12, V34, V7]

1V pseudo_polyhedral = Relations : [—vs — vg + 2vg7 < 0,

Vs — V12 + V34 — Vo7 < 0,05 — v34 < 0]
Coordinates : [vs, Vs, V12, V34, V7]

V _pseudo_polyhedral := Relations : [—vg — v34 + 207 < 0,

Vs — V1g + V34 — Vo7 < 0,05 + vg — 2067 < 0]

The command PolyhedralSets:-PolyhedralSet () calculates a set of non-strict inequal-
ities. However, we know that a unimodular subdivision corresponds to a top-dimensional
cone of the secondary fan of Ay. Thus, we simply change all inequality expressions in
(3.1) to strict inequalities to achieve a five-dimensional polyhedral cone.

For non-unimodular regular subdivisions, we employ the following commands to get
preliminary inequality expressions (3.2) that correspond to the non-unimodular subdivi-
sions.



ineqs_11:= {ul8] = -2*ul12] + 3*ul[34], ul[34] <= u[b], 2*u[34] - ul[67] <=
ul12]}:
pseudo_polyhedral 11:= PolyhedralSets:-PolyhedralSet(ineqs_11);

ineqgs_21:= {u[12] = 2*u[34] - ul[67], -ul8] + 2*u[67] <= u[b], -ul[34] + 2%
ul67] <= ul8], -ul12]/2 + (3*xul[67])/2 <= ul[8], ul12] - 3*ul[34] + 3*u
[67] <= u[8], ul12] - ul[34] + ul[67] <= u[5]}:

pseudo_polyhedral 21:= PolyhedralSets:-PolyhedralSet(ineqs_21);

ineqs_22:= {u[8] <= -u[34] + 2*u[67], ul34] <= u[5], -2*ul[12] + 3*u[34]
<= u[8], 2*u[34] - ul67] <= ul[12]}:
pseudo_polyhedral 22:= PolyhedralSets:-PolyhedralSet(ineqs_22);

ineqs_31:= {ul[34] <= u[5], -ul8] + 2*u[67] <= ul[b], -2*ul12] + 3*u[34] <=
ul8], -ul34] + 2*ul67] <= u[8], 2*ul[34] - ul67] <= ul12], -u[12]/2 +
(3xul67])/2 <= ul8]}:

pseudo_polyhedral 31:= PolyhedralSets:-PolyhedralSet(ineqs_31);

ineqs_32:= {ul[8] = ul[34] - 2*u[12] + 2xu[5], ul[b] <= u[34], ul5] <= u
[12]1/2 + u[67]1/2, ulb] <= (2*u[12])/3 + ul8]1/3, ulb] <= ul12] - u[34]
+ ul67]}:

pseudo_polyhedral_32:= PolyhedralSets:-PolyhedralSet(ineqs_32);

ineqs_33:= {u[8] <= -2xu[12] + 3xu[34], u[8] <= -u[34] + 2*u[67], ul8] <=
-ul12]/2 + (3*ul[67])/2, ul8] <= ul67] - ul12] + ul34], (2*ul[12])/3 +
ul[8]/3 <= u[5], ul8]/2 - ul34]/2 + ul[12] <= u[5]}:
pseudo_polyhedral_33:= PolyhedralSets:-PolyhedralSet(ineqs_33);

ineqs_34:= {ul[12] = 3*ul[67] - 2*ul[8], ul8] <= ul[67] - ul12] + ul[34], u
[12] <= 2*%u[34] - ul67], -ul34] + 2*xul[67] <= ul[8], ul12] - ul34] + u
[67] <= ul[5], ul12] - ul[67] + ul[8] <= ul[5]}:

pseudo_polyhedral_34:= PolyhedralSets:-PolyhedralSet(ineqs_34);

ineqs_41:= {u[b] = -u[8] + 2*ul[67], ul[6] = ul12] - u[34] + ul[67], ul5] <=
ul34], ulb] <= ul12]/2 + ul67]1/2, ulb] <= (2%ul12])/3 + ul8]/3, ulb]
<= u[12] - ul67] + ul8], ul12] <= 2%u[34] - ul67], -ul34] + 2*ul[67] <=
ul8]}:

pseudo_polyhedral 41:= PolyhedralSets:-PolyhedralSet(ineqs_41);

ineqs_42:= {ul[12] <= 2xu[34] - ul[67], -ul[8] + 2*ul[67] <= u[b], -ul34] +
2xul[67] <= u[8], -ul12]/2 + (3*u[67])/2 <= ul[8], ul12]/2 + ul[67]1/2 <=
ul5], ul12] - ul34] + ul67] <= ulbl}:

pseudo_polyhedral 42:= PolyhedralSets:-PolyhedralSet(ineqs_42);



ineqs_51:= {u[b] = ul12] - u[34] + ul67], ul6] <= ul[34], ulb] <= -u[8] +
2+¥u[67], ulb] <= ul12]/2 + ul67]1/2, ulb] <= (2*ul[12])/3 + ul8]/3, ul5]
<= ul[12] - ul[67] + ul8], ul5] <= -ul8]/2 + ul[34]/2 + ul[67], ull2] <=
2xu[34] - ul67], -ul34] + 2*xul[67] <= ul8]}:

pseudo_polyhedral 51:= PolyhedralSets:-PolyhedralSet(ineqs_51);

ineqs_52:= {u[b] = ul12] - u[34] + ul[67], ul[b] <= ul34], ulb] <= ul[12]/2
+ ul[67]/2, ulb] <= (2*ul[12])/3 + ul[8]/3, ul12] <= 2*ul[34] - ul[67], -u
[8] + 2xu[67] <= ul[b], -ul34] + 2*xul[67] <= u[8], -ul12]/2 + (3*u[67])
/2 <= u[8]}:

pseudo_polyhedral 52:= PolyhedralSets:-PolyhedralSet(ineqs_52);

ineqs_53:= {ul[5] <= ul[34], ul5] <= ul[12]/2 + ul[67]1/2, ulb] <= (2*ul12])/3
+ ul[8]1/3, ulb] <= ul12] - ul34] + ul67], ulb] <= -ul8]/2 + ul34]/2 +
ul67], ul5] <= ul8]/2 - ul34]/2 + ul12], ul5] <= ul8]/4 + ul12]/2 + u
[34]1/4, ul8] <= -ul[34] + 2*ul[67]}:
pseudo_polyhedral 53:= PolyhedralSets:-PolyhedralSet(ineqs_53);

ineqs_54:= {u[b] = ul12] - u[67] + ul[8], ul5] <= ul[34], u[5] <= u[12]/2 +
ul67]/2, ulb] <= (2*ul12])/3 + ul8]/3, ul8] <= -ul12]/2 + (3*ul[67])
/2, ul8] <= ul34]1/3 + (4*ul[67]1)/3 - (2*u[12])/3, ul[12] <= 2xu[34] - u
[67], -ul34] + 2*xul[67] <= ul8], ul12] - ul34] + ul67] <= ul[5]}:

pseudo_polyhedral 54:= PolyhedralSets:-PolyhedralSet(ineqs_54);

ineqgs_55:= {u[5] <= ul34], ulb] <= ul12]/2 + ul67]1/2, ulb] <= (2%u[12])/3
+ u[8]/3, ulb] <= ul8]/4 + ul12]/2 + ul[34]/4, ul8] <= -2xu[12] + 3*u
[34], ul8] <= -ul34] + 2xul67], ul8] <= ul67] - ul12] + ul34], ul12] -
ul67] + ul8] <= ulb], ul8l/2 - ul34]1/2 + ul12] <= ulb]l}:

pseudo_polyhedral 55:= PolyhedralSets:-PolyhedralSet(ineqs_55);

ineqs_56:= {ul8] <= -2xu[12] + 3*u[34], ul[8] <= -ul[12]/2 + (3*ul[67])/2, u
[8] <= ul34]/3 + (4*xul67])/3 - (2*ul[12])/3, ul12] <= 2xu[34] - ul67],
-ul[34] + 2*xul[67] <= ul8], (2*ul12])/3 + ul8]/3 <= ul[5], ul12] - ul[34]
+ ul67] <= u[5], ul12] - u[67] + u[8] <= u[5]}:

pseudo_polyhedral 56:= PolyhedralSets:-PolyhedralSet(ineqgs_56);

ineqs_61:= {u[b] = -u[8] + 2*ul[67], ul[b] <= ul34], ulb] <= ul12]/2 + u
(671/2, ul5] <= (2%xul12])/3 + ul8]/3, ulb] <= ul12] - ul67] + ul8], u
(5] <= ul67]1/3 + ul12]/3 + ul34]1/3, ul12] <= 2*ul[34] - ul67], -ul34] +
2%u[67] <= ul[8], ul12] - ul34] + ul67] <= ulb]l}:

pseudo_polyhedral 61:= PolyhedralSets:-PolyhedralSet(ineqs_61);



ineqs_62:= {ul[b] = -ul8] + 2*ul[67], ul[b] <= u[34], ulb] <= ul12]/2 + u
[671/2, ulb] <= (2*xul[12])/3 + ul8]/3, ulb] <= ul12] - ul34] + ul67], u
[6] <= ul12] - ul67] + ul8], ulb] <= ul8]/2 - ul34]1/2 + ul12], -ul34]

+ 2xu[67] <= u[8]}:

pseudo_polyhedral 62:= PolyhedralSets:-PolyhedralSet(ineqs_62);

pseudo_polyhedral 11 :

pseudo_polyhedral 21 :

pseudo_polyhedral 22 :

pseudo_polyhedral 31 :

pseudo_polyhedral 32 :

pseudo_polyhedral 33 :

pseudo_polyhedral 34 :

pseudo_polyhedral 41 :

pseudo_polyhedral 42 :

Coordinates : [vs, g, V12, V34, V7]
Relations : [2v15 — 3vsy + vg = 0,

—v19 + 2034 — ve7 < 0,034 — v5 < 0]

Coordinates : [125, Vg, V12, V34, Uﬁ?]
Relations : [v13 — 2v34 + vgr = 0,

V34 — U5 < 0, —v34 + 2067 — vg < 0]

Coordinates : [vs, g, V12, V34, V7]
Relations : [vsy — 2vg7 + vg < 0,
V34 — U5 < 0, —2019 + 3vzs — v < 0]

Coordinates : [vs, g, V12, V34, V7]
Relations : [vgy — v < 0,

—v12 + 2034 — ve7 < 0, —V34 + 2067 — Vg < 0]

Coordinates : [vs, vs, V12, U4, Vg7]
Relations : [—2v15 + v34 + 2v5 — vg = 0,
U3y — 2067 + v8 < 0,2012 — 3usy + vg < 0]

Coordinates : [vs, g, V12, V34, V7]
Relations : [vsy — 2vg7r + vg < 0,
2019 — 3vs + v3 < 0, 2012 — 3vsg + vs < 0]

Coordinates : [vs, g, V12, V34, V7]
Relations : [v1g — 3vgr + 2ug = 0,
V12 — 205 + Vg7 < 0,012 — 2034 + ve7 < 0]

Coordinates : [vs, vg, V12, V34, V7]

Relations : [v1g — v34 — vg7 + vg = 0,

—V1g + V34 + V5 — V7 = 0, V12 — 2034 + Vg7 < 0]
Coordinates : [vs, g, V12, V34, V7]

Relations : vy — 2v5 + vg7 < 0, (3.2)
V19 — 2034 + Vg7 < 0, —v19 + 3ugr — 208 < 0]



pseudo_polyhedral 51 :

pseudo_polyhedral 52 :

pseudo_polyhedral 53 :

pseudo_polyhedral 54 :

pseudo_polyhedral 55 :

pseudo_polyhedral 56 :

pseudo_polyhedral 61 :

pseudo_polyhedral 62 :

Coordinates : [v5, Ug, V12, V34, U67]
Relations : [—v12 + v34 + v5 — vg7 = 0,

—v34 + 2067 — v8 < 0,019 — v34 — Vg7 + V3 < 0

Coordinates : [vs, g, V12, V34, V7]
Relations : [—U12 + Usyq + U5 — Vg7 = 0,
V12 — 2034 + Vo7 < 0, —V12 + U34 + V7 — vg < 0]

Coordinates : [vs, vg, V12, V34, V7]
Relations : [vsy — 2vg7 + v < 0,
—2v12 + V34 + 205 — v3 <0, —v34 + v5 < 0]

Coordinates : [vs, s, V12, V34, V7]
Relations : [—vig + v5 4+ vg7 — vg = 0,
—U34 + 2U67 — Vg S 0, VU112 — 3U67 + 21)8 S O]

Coordinates : [vs, g, V12, V34, V7]
Relations : vy — 2ugr — vg < 0,
2’012 — U3q — 2U5 + vg S 0, —2U12 + 3'05 — Vg S 0]

Coordinates : [vs, g, V12, V34, V7]
Relations : [2v15 — 3vs + vg < 0,
—v3y + 2067 — v < 0,012 — g7 + 208 < 0]

Coordinates : [vs, vg, V12, V34, V7]

Relations : [vs — 2vg7 + v5 = 0,

—v12 + 3ve7r — 2vg < 0,012 — V34 — Vg7 + v < 0]
Coordinates : [vs, g, V12, V34, V7]

Relations : [vs — 2vg7 + vg = 0,

—v12 + V34 + ve7 — Vs < 0, —v34 + 2057 — vg < 0]

We simply change the non-strict inequalities in (3.2) that are related to the primitive
subdivisions. On the other hand, for a non-primitive subdivision, we observed the non-
primitive cells one by one to determine the non-strict inequalities in the proof of Propo-

sition 3.2.2.



Chapter 4

Examples

4.1 Symmetric honeycomb

For a cubic polynomial g(z, y), Chan-Sturmfels [CS13] defined the tropical curve C(trop(g))
to be in honeycomb form if it contains a trivalent hexagonal cycle. Furthermore, a hon-
eycomb tropical curve is called symmetric when the hexagonal cycle has six edges with
the same lattice length and the three bounded edges emerging from the cycle also have
the same lattice length. It is mentioned that a cubic in the form

g(z,y) =al® + >+ 1) + b2’y + 2° + zy® +  + y* +y) + 3y

is a symmetric honeycomb if and only if val(a) > 2val(b) > 0. In this section, we want to
examine the conditions for our truncated symmetric cubic

f(@,y) = cio(@y® + 2%y) + c34(2” + ¥*) + cszy + cor(z + y) + cs (4.1)
to be in honeycomb form.

Corollary 4.1.1. Let f(x,y) be the cubic in equation (4.1). The tropical curve of trop(f)(X,Y)
s in honeycomb form if and only if

—v5 + 2vg7 —vg < 0 — U3+ v5 <0 — V1o + V34 + U5 — vg7 < 0.

Proof. Tropical curve C'(trop(f)) contains a trivalent hexagonal cycle if and only if it is
dual to the regular subdivision in Figure 4.1. Thus, this is the case (IV) of Table 3.1.
O

Proposition 4.1.2 (Two types of truncated honeycomb). Let f(x,y) be as defined in
equation (4.1), and suppose tropical polynomial trop(f)(X,Y) satisfies the conditions in
Corollary 4.1.1. In this case, the six edges emanating from the hexagonal cycle can be
classified as either:

(a) five rays and one bounded edge (called the tail), or

26



8 ] 3

Figure 4.1: The regular subdivision of A; corresponding to C(trop(f)) with a trivalent
hexagonal cycle.

Edges emerging from the cycle Subdivision Tropical curve
1 Ds
Ds Dy
(a) Five rays and one bounded edge ' 7
Dy
Dy
8 D3 3
1 Ds
D5 Dl
(b) Six rays ’ 7
D>
Dy
Dy °

Table 4.1: Two types of truncated honeycomb.

(b) siz rays,

as illustrated in Table 4.1. The cases (a),(b) occur according to whether cg # 0, cg = 0,
respectively.

Proof. For i = 1,2,3,5,6, edges E; of the tropical curves correspond to edges D; of the
subdivisions. When cg # 0, the Newton polygon Ay takes the form shown in case (a). In
this scenario, edge D4 does not lie on the border of Ay, resulting in its correspondence
edge, £y, being a bounded edge. If cg = 0, Ay exhibits the shape depicted in case (b). In
this case, edge Dy takes part as the border of Ay, causing £, to form a ray. O

We shall say a truncated honeycomb C(trop(f)) is quasi-symmetric if the six sides of
the hexagon have the same lattice length. A quasi-symmetric truncated honeycomb is
symmetric (following the definition in [CS13]) if and only if the hexagon has six emanating
rays and does not possess a tail, that is of type (b) of Proposition 4.1.2.

Proposition 4.1.3 (Quasi-symmetric truncated honeycombs). Let f(x,y) be as in equa-
tion (4.1) and suppose C(trop(f)) is a truncated honeycomb. Then C(trop(f)) is quasi-
symmetric if and only if

2U34 = V19 + Vg7 and — vs + 2vgy < Ug.



The lattice length of the hexagon’s side is |vsy — vs| and the tail is equal to |vs — 2vg7 + vg].
Additionally, C(trop(f)) is symmetric if and only if

2034 = V19 + Vg7 and vg = 0.

Proof. A truncated honeycomb tropical curve is illustrated in Figure 4.2. The lattice

(—ver + vs, —ve7 + Vs)

(—vsa + ve7, =5 + Ve7) (—vs + ve7, —v5 + Vg7)

(—v12 4 v5, —v12 + v34)

(—vs + ve7, —U34 + Ve7)

(—v12 + s, —v12 + v5) T(fwz + Us4, —V12 + U5)

Figure 4.2: A quasi-symmetric truncated honeycomb tropical curve.

lengths of the bounded edges can be determined by the differences of coordinates X or
Y in Figure 4.2. Thus, a truncated honeycomb tropical curve is quasi-symmetric if and
only if |v34 — vs| = |v12 — V34 — v5 + ve7|. From the last two inequalities of Corollary 4.1.1,
we have vgy — v5 = V1o — V34 — U5 + Vg7, thus 2v3y = v19 + vg7. Together with the first
inequality of Corollary 4.1.1, the result follows. Hence, the lattice lengths of the edges on
the hexagonal cycle are |v3y — vs|, while the tail has lattice length |vs — 2vg7 + vs].
Meanwhile, truncated honeycomb C(trop(f)) is symmetric if and only if the tail has
infinite lattice length. That is |vs — 2ugr + vg| = v5 — 2vg7r + vs = 00. Hence, v5 = 0o or
vg = 00. If vy = 00, the edges [5,1i], where i = 1,2,3,4,6,7, of the regular subdivisions on
Table 4.1 do not exist. Thus, vg = oco. O]

Example 4.1.4. Let (vi2,vs4,05,067) = (3,2,0,1). If vg = 3, C(trop(f)) is a quasi-
symmetric truncated honeycomb where the hexagon’s sides have length 2 and the tail has
length 1 as shown in Figure 4.3(I). If vg = oo, tropical curve C(trop(f)) is a symmetric
truncated honeycomb as illustrated in Figure 4.3(II).

%

(I) (0127 V34, U5, V6T, US) = (37 27 07 17 3) (II) (Ulﬂv V34, U5, V6T, US) = (37 27 07 17 OO)

Figure 4.3: Quasi-symmetric and symmetric truncated honeycombs in Example 4.1.4.



4.2 Nobe’s one-parameter family f;

Nobe studied the relation between the invariant curves of a certain piecewise linear dy-
namical system called the ultradiscrete QRT map and the cycle of a tropical elliptic
curve in [NO8]. For a fixed (vy2,v34,v67,v3) € R, we modify our tropical polynomial
trop(f)(X,Y) and consider a one-parameter family of tropical curves {C(trop(fx)) }rer
of tropical polynomial

trop(fx)(X,Y) = min(vis + X + 2Y, 015 + 2X + Y, v34 + 2X, v34 + 2V,
kE+ X +Y, v6r + X, v67 + Y, v3).

According to [NO8, Lemma 1], there is a one-parameter family of ultradiscrete QRT maps
whose invariant curve I coincides with the cycle part of C(trop(fy)) for each k € R.

Example 4.2.1 ([N08, Example 1]). Since we are dealing with operations (4, min) instead
of (+, max) like [NO8], we apply Remark 2.0.3. Therefore, we substitute the following
negative values of Nobe’s parameters,

V12 = —10 V34 = 0 Vg7 — -5 vg = O,
to Table 3.1 and we obtain Table 4.2. We see that the invariant curves Ix(k € R) are

Cycle shape Conditions of &
—10<0
(1) Triangle -5 <k
k< -2
-10 <k
(II) Square k< =75
—-15 <k
k< —10
(III) Pentagon k< —=5
—-15 <k
—-10< k
(IV) Hexagon k<0
k< —15
k< —10
(V) Heptagon —-10<0
k< —15

Table 4.2: The conditions of C(trop(fy)) for (via, v34, ver, v8) = (—10,0,—5,0).

classified into heptagon for k € (—o0, —15), pentagon for k € [—15,—10), and square for
k € [-10,—7.5). The values (—10,0, k, —5,0) when k = —15, k = —10, and k > —7.5 lie
in the polyhedral cones of cases (5.1), (6.1), (4.2) of Proposition 3.2.2, respectively.



We want to give one more example of a family of invariant curves [ that contains a tri-
angular shape. Furthermore, it seems natural to ask if there exist a fixed (v12, v34, Vg7, Us)
so the family {C(trop(fx))}rer varies from a triangular shape to a heptagonal shape. We
will discuss this in Proposition 4.2.3.

Example 4.2.2. Let us present the case (vig, v34, V67, v3) = (0,14,4,0) and substitute it
to the Table 3.1 in Theorem 3.1.2. Thus, we have Table 4.3. Then we have the cycle

Cycle shape Conditions of k
—6 <0
(1) Triangle —4 <k
k<0
8 <k
(1I1) Square k<2
-10 <k
k<38
(III) Pentagon k< —4
—-10 < k
8 <k
(IV) Hexagon k<14
k< —10
k<8
(V) Heptagon —6 <0
k< —10

Table 4.3: Conditions of C(trop(fx)) for (vi2, vs4, ver, vs) = (0,14,4,0).

part of C(trop(fi)) forms a heptagon for k& < —10, a pentagon for —10 < k < —4, and
a triangle for —4 < k < 0. The nonsmooth tropical curves for k = —10, k = —4, and
k > 0 are the cases (5.1), (5.4), and (5.6) of Proposition 3.2.2, respectively. Figure 4.4
illustrates the family {C(trop(fx))}xer for the given (vig, va4, ver, v3).

Figure 4.4: C(trop(fx)) for k = —1,—5, —11 in Example 4.2.2.



Proposition 4.2.3. For any fived (vi2, vs4, Vg7, Vs), tnvariant curves Iy, with triangle and
square shapes are not possible to coezist in the family {C(trop(fx))}rer-

Proof. For a fixed (v12, V34, Vg7, Ug), the invariant curve Iy, is the cycle of a smooth tropical
curve C(trop(fx)) for most of k € R. Suppose we have (vis, 34, V67, v3) = (a, b, ¢, d) such
that I, is a triangle and [, is a square for some ky, ks € R. Thus, from Table 3.1, we have
(v12, V34, Vs, Vg7, V) = (a, b, k1, ¢, d) satisfies case (I) and (v12, va4, s, Vs7, V8) = (@, b, k2, ¢, d)
satisfies case (II). In other words, we have

% +d
atd 2c—d<k2<ag_c.

a—ct+d<k <

This implies a — 3¢+ 2d < 0 and —a + 3¢ — 2d < 0, which are contradiction. [



Chapter 5

Two-parameter family of Edwards
curves [ s

5.1 Unimodular transformation
Let ¢ be an integral unimodular affine transformation

¢ 22— 77
(i) = (i )A+7

where A € GLy(Z) and 7 € Z2. For (i,j) € Z?, let (wy)®) denote monomial x'y’ and
(1,7) - (X,Y) denote iX + jY.

Definition 5.1.1. For a non-empty set Z C Z?2, let

f(r,y) = Z %‘(xy)(i’j) € K[z, y*')

(i.j)€T
be a Laurent polynomial and
trop(f)(X,Y) = min(val(a;;) + (¢,7) - (X,Y) : (¢,5) € I)
be its tropicalization. Map ¢ acts on f(x,y) to form

fozy) = Z aij(xy)¢(i7j)

(i.9)€T
and acts on trop(f)(X,Y) to form
trop(f)*(X,Y) = min(val(a;;) + ¢(i, 5) - (X, Y) : (i, ) € T).
This definition implies that we have

trop(f)?(X,Y) = trop(f*)(X,Y).
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In [KMMO09], Katz-Markwig-Markwig mentioned that integral unimodular affine trans-
formations preserve the lattice length of edges on a tropical curve.
In this section, we consider a specific transformation by letting

A= [_01 _01],72(2,2)

and let g(z,y) = f®(z,y) where f(x,y) is the symmetric truncated cubic polynomial in
(1.1). Thus, we have

g(x,y) =ci2(x + y) + caa(@® + ¥°) + cszy + cor(2’y + vPx) + s’y

11
:f (7 ) : $2y2
ry

The tropicalization of g is

trop(¢)(X,Y) = min(vis + X, v12 + Y, v34 + 2X, v34 + 2Y, 05 + X + Y,
ver +2X + Y ver + X + 2Y,vg + 2X + 2Y).

Next we want to show the exact relation between the tropical curves of trop(g)(X,Y’) and
trop(f)(X,Y).

Lemma 5.1.2. Let f(x,y) and g(z,y) be the Laurent polynomials that satisfy
11
glz,y) = f ( ) -xhy,
ry
Then we have C(trop(f)) = —1 - C(trop(g)) holds. In other words, these two tropical

curves are symmetric about the center O.

Proof. From the tropicalization of

g($’y> = f (31:7 ;) ' $2y27

we have
trop(g9)(X,Y) = trop(f) (=X, -Y) + 2X + 2Y.
Note that 2X + 2Y does not exhibit any singularities for any (X,Y’). Therefore, we have
(X,Y) is a point on C(trop(g)) if and only if (=X, —Y) is a point on C'(trop(f)). In other
words,
C(trop(g)) = —1 - C(trop(f))
holds. ]

Furthermore, Lemma 5.1.2 implies that the two tropical curves share the same structure
for the same (v12, v34, Vs, Vg7, Vs).



5.2 Tropical curves of f,

Let K be a valuated field and ¢ € K such that val(q) > 0. For Euler functions

(14+¢")=14+qg+¢+2¢°+ ...,

[
3

€

3
I
—_

(@]
[
3
—
+

(—¢9)")=1-qg+¢*—2¢°+..., and

i
I

r,s € K such that er # €s , define coefficients

dyy = 2eé(e* — ) (es — er),

dzq = (' — &)(€s* — €*r?),

ds = 8ee(er — €s)(e°r — €%s), (5.1)
der = 2(er — €s){(€* — €*)rs + 2¢e(é*r?* — €257}, and

dy = 2(e?s* — ér?)(e2s* — *r?).
For i € {12,34,5,67,8}, let u; = val(d;). In [NT23], it is shown that
frs(@,y) = dio(x +y) + dsa(2® + y°) + dszy + der(2°y + y*x) + dsa®y?

is birationally equivalent to an Edwards elliptic curve that can be parameterized by theta
functions, [E07]. We will discuss it in the next section. We can see that Laurent polyno-
mial

11
Grs(T,y) = frs ( ) - z?y?
z'y

= d12<l’y2 + l’zy) + d34($2 + y2) + d5$y + d67($ + y) + dg

shares the same Newton polygon with our symmetric truncated cubic in (1.1). By Lemma
5.1.2, the tropical curve of tropical polynomial

trop(f,.s)(X,Y) = min(u1s + X, u1o + Y, usg + 2X, usq + 2Y, us + X + Y,
ugr + 2X + Y, ugr + 2Y + X, ug + 2X +2Y)

and the tropical curve C(trop(g.s)) are point-symmetric with respect to the origin O.
In this section, we want to discuss the possible tropical curves of trop(f,s). We have

val(c) = ilval(l SO e = ival(l T (—q)")
=0 =0

due to Remark 2.0.1. Furthermore, we have val(e! — €) = 1. For a big N € N, let

B 1 1+4
r=ro+7qN +---+rng+ryp1qg N +... and



1 1
§ =80+ 81N + -+ 5nq+ snpaq TV 4.

where r;, s; € K and rg, sg are nonzero. Assume

fi=es—er fo =5 — P fy = — &t fy=Er — 35, fs = (64 — *)rs — 2¢efs,

and F; = val(f;) fori = 1,...,5. We can know the values of F; by expanding f;. Further-
more, we have

U1 = 1+ Fl,U34 =1+ Fg,u5 = F1 -+ F4,u67 = F1 + F5, and usg = F2 + F3. (52)

Proposition 5.2.1. Table 5.1 shows the conditions for (Fy, Fy, F3, Fy, F5) of the reqular
subdivisions related to trop(f,)(X,Y).

‘ 2F1 —2F, +F5—1<0
Fg—F5:0

(a)
Fl—FQ—F4+F5:O

2F, —2F5 — F34+2F; —1 <0
(b) : —F1+F2—F4+1§0
2F) —2F, +F5—1=0

2F1 —2Fs +F3—-1=0
—2F 4+2F, —F5+1<0
-Fi+F—-F+1<0
2Fy —2F, +F5;—-1<0
—F3+ F5 <0

T —F1+F2+F4—F5:0
F—F+F,-1<0

(e) g& R+ 2F—1<0
—2F +2F, + F3—-2F;4+1<0
Fi—F, —F3—F,+2F;<0
(f) F,— F;<0
Fi—F—-F+F<0

-+ 4+ F3+ Fy—2F5<0
(g) 2F) —2F, — F3+2F5—1<0
—Fi+F+F,—F<0

Table 5.1: Summaries of the regular subdivisions related to trop(f,s)(X,Y).

Proof. Table 5.1 can be obtained by substituting equations (5.2) to Table 3.2 of Propo-
sition 3.2.2 and Table 3.1 of Theorem 3.1.2. Cases (a) - (e) are cases (4.1), (2.1), (1.1),
(5.2), (5.3) of Proposition 3.2.2, respectively. Meanwhile, cases (f) and (g) are the square
and heptagon cases of Theorem 3.1.2. O]

Proposition 5.2.2. The tropical curves trop(f,s)(X,Y) are limited to the cases in Table
5.2.



Cases Regular subdivisions

1. s3—r3 #0.

2. 8g—19g="-"+=8_1—11=0and s, —r;, # 0 for some
1<t<N-1.

3. 8g+190="+""=58_1+1_1=0and s, + 1 # 0 for some |
1<t<N-1.

4. so+1r9g="-"-=58ny_1+7rny_1=0and sy +ry # +2rg,0.

5. SO—T():"':SN_l—T’N_l:OaHdSN—TN:—QTO [ .

6. so—19="-""=8nv_1—rn_1=0and sy —ry # —2rg [ .

7. 8o+1r9g=---=8ny_1+7rnv_1=0and sy +ry = —2r¢

8 so+rg=--=8y_1+rn_1=0and sy +ry = 2r9

9. s9+rg="-=sy+ry =0and s, + 1 # 0 for some
N+1<t<2N-1.

10. sp+r9p=--=sy+ry=---=8any_1+1ron-1 =0 g{

Table 5.2: The regular subdivisions that are dual to C'(trop(f,s)(X,Y)).

Proof. Fori=1,...,5, the value of Fj is determined by the leading term of f;. Expressions
fi can be seen as functions of ¢ with coefficients rg,r, ..., sg, $1,... that follow certain
patterns. Their expansions are

N—-1

1
fi=(so—=ro) + (s1 =r)q¥ + -+ (sy-1 —7rn-1)¢ ¥ + (S8 —rv —So—To)g+ ...,
f2 =(s5 —15) + (25081 — 27‘07”1)(1% + (28089 + 87 — 2rgry — rf)q% + ...

+ (28081\7 + 2813N_1 + = 27“07”]\[ — 27’1TN_1 — s — 288 — QTS)Q
+ (250SN+1 + 2515N + - -+ — 2rorNg1 — 2rry — - — 4Sps1 — 47’07‘1)q1+%
+...,

fa =(s5 —15) + (25081 — 27‘07”1)(1% + (28089 + 87 — 2rgry — rf)q% + ...
+ (208N + 2818N—1 4 -+ — 2rory — 2rry_1 — -+ + 255 + 215)g



+ (28081\7.,_1 —f- 2318]\[ + = 2T0TN+1 — 27‘17“]\[ — e + 48081 —f- 4T0T1)q1+%
+...,

1 N—-1
fa=(ro—s0)+ (r1 —s1)¢g¥ +---+(ry_-1—Sn)q ¥ + (rv — sy —3ro—3s0)g+ ...,
fs =(2r3 — 2s3) + (4ror; — 48081)(]% + (4rgry + 2r? — 4sgsy — 23%)q% +...

+ (drory +4rirn_q + - — 4Sosy — 4S1Sy_1 — - — 47% — 433 — 8r9S0)q
+ (drorys1 +4rry 4+ - — 4sgsn1 — 4s1Sy — -+ - — 8rgry — 8sps1 — 8rpsy — 850r1)q1+%
+ ...

Table 5.3 shows the values of (F1, ..., F5) for all of the ten cases. We can check that each

Fy F F3 Fy Fy
Case 1 0 0 0 0 0
Casez © r L L1
Case 3 0 = % 0 %
Case 4 0 1 1 0 1
Case b 1 1 F5>1 1 1
Case 6 Flzl F2:F1 1 F4Z]_ F5Zl
Case 7 0 Fy,>1 1 0 1
Case 8 0 1 F5>1 0 1
Case 9 0 1 1 0 1< Fy<2
Case 10 0 1 1 0 F5>2

Table 5.3: The values of (F1,. .., Fy) for the ten cases.

value of (Fy,..., Fs) satisfies the condition of the corresponding regular subdivision as
mentioned in Proposition 5.2.1. O

5.3 The parametrization of the cycle by ultradiscrete
theta functions

Edwards in [E07] showed that the elliptic curves of form
E, =2 +y* = a*(1 + 2%y%)

can be parameterized by theta functions

01(z|7) =—14i> (—1)"exp (m'T (; - n>2> exp(miz(2n + 1)),

neL

Or(z|T) = Z exp (m’r (; + n)2> exp(miz(2n + 1)),

nez



05(z|7) = exp(mitn®) exp(miz2n),
nez

04(z|7) =D (—1)" exp(mitn®) exp(miz2n)

nez
where z,7 € C and im(7) > 0.
Remark 5.3.1. [E07, Theorem 15.1] Let 7 € C where im(7) > 0 and
. 0,(0[27)
65(0]27)°
Then elliptic curves E, can be parameterized by
0= D, - 12

for z € C.

Through rational substitutions
rx+e  ry+e
sxte VT sy +e€

Tr =

we see that f, s(x,y) is the numerator of the rational function. Thus, we can parametrized
frs(x,y) by utilizing the theta parametrization of E, as demonstrated in [NT23]. The
ultradiscretization of these theta parametrizations allows us to express the cycle part of
C(trop(f,s)) as two periodic functions. For t € R, let

0°d() = —2(2 H 1)

2
t+1
0o (1) = —2(2 VZ‘J -
Remark 5.3.2. [NT23, Theorem 1.2] For ¢t € R, expressions
1

Y () =max(6°%(t), -1 4+ 6°¥(t))
— max(valg (r — 8) + OV (), —valg (r + s) + ©°(1))
trace the cycle part of C(trop(f.s)) as {(—=X(¢),-Y(t)) : t € R}.
By assuming ¢ = valg(r + s) — valg(r — s) and

Y5(u) = max(6°%(t), —1 + 0% (£)) — max(d + ©°n(¢), ©°%(1)), (5.3)

-X(t)\ _ [(—Ys(t—3) 1
(—Y(t)) = ( “Yy(8) + valg (r + s) N (5.4)
Since the last term does not play a role in determining the shape of (—X(¢), =Y (t)), we
have that the value of 6 determines the shape of the cycle part of C(trop(f.s)).

we have



Remark 5.3.3. [NT23, Corollary 1.3] The cycle part of C(trop(f,s)) is determined by

the value 0 with the following rules.

1

2

. Curve C(trop(f,

. Curve C(trop(f,

s

. Curve C

s

has no cycle if and only if 6 < —1.
has a square cycle if and only if —1 < ¢§ < 1.

has a heptagonal cycle if and only if 1 < § < 2.

(trop(frs))
(trop(f7.s))
(trop(fr.s))
. Curve C(trop(f,.,)) has a pentagonal cycle if and only if 2 < 6.

_———— — —
e =0

N —— ——

Figure 5.1: From left top: Curves (—Ys(t — 1), —Y5(t)) for 6 = =1, 6 =1, § = 1.5, and
J=2.



Chapter 6

Tropical group of points

6.1 Intersection points on tropical curves

A group of points has been defined on various tropical curves in [V10], [N16], and [N11].
In this section, we adopt the definitions related to the group of points on smooth tropical
curves of degree three, also known as tropical elliptic curves, [V10]. We particularly
emphasize the tropical elliptic curve associated with the tropical polynomial (1.2). In this
section, we will introduce two kinds of intersections involving a tropical curve. The first
one is the intersection between two tropical curves. The second one is the intersection
between a tropical curve and another piecewise linear expression.

Definition 6.1.1. Let ¢} and C5 be two tropical curves. The two curves intersect
transversally when they do not intersect at any of the vertices of the two curves. The
set of intersection points are denoted as C7; N Cy. When the two curves do not inter-
sect transversally, we wiggle the two curves as far as € to C] and C§ until they intersect
transversally. Then we define the stable intersection

Cl Mgt 02 = lim Cf N C;
e—0

Fori=1,2,let P € C;Ng Cy be a point on edges F; of C;. Let u; be the primitive integer
directions and w; be the weights of E;. The multiplicity of P, denoted by mult(P), is the
absolute value of

W1 ‘U1U2’ .

In classical algebra, we know that two curves of degree d; and dy intersect at d;dy points
in projective space by counting multiplicities. Similarly, we encounter a similar number
of intersection points of two tropical curves.

Theorem 6.1.2 (Tropical Bezout-Bernstein). Let Cy and Cy be two tropical curves of
degree di and ds, respectively. Assume one of the tropical curves have full support. By
counting multiplicities, the stable intersection contains dyds points.

Next, we will consider the intersection of a tropical curve with the variety of a tropical
rational function.

40



Definition 6.1.3. A tropical rational function is a piecewise linear function of the form

where f(z,y) and g(z,y) are polynomials with Ay = A,. The variety V(h) of h(X,Y) is
the collection of coordinates (X,Y’) where the function is not linear.

When dealing with the intersection of a tropical curve C' and V' (h), we observe the re-
striction of h(X,Y") to C that is piecewise linear on each edge of C' with integer slopes.

Definition 6.1.4. Let h be the restriction of h(X,Y) to C. Note that for any point P
on a tropical curve C, we have P is either a vertex or a 2-valent vertex. The order of a
point P with respect to h, denoted by ord;(P), is the sum of the outgoing slopes of h
along the edges adjacent to P.

Example 6.1.5. Let trop(f)(X,Y) = min(1+X,Y,4), trop(g)(X,Y) = min(X,1+Y,4),
and h(X,Y) = trop(f)(X,Y) — trop(g)(X,Y). Let C be a tropical curve that is situated
with V' (h) as shown in Figure 6.1. The orders of some points P, P, € C' with respect to
h are

ord; (P1) =(0,1) - (=1,1) + (1,0) - (=1,1) + (=1, —1) - (—=1,1) = 0,
ord; (Py) =(—1,0) - (=1,1) + (1,0) - (0,0) = 1.

Figure 6.1: Tropical curve C' and variety V' (h) of Example 6.1.5.

It is worth noting that for points P on a tropical curve that are not contained in V'(h),
their order is zero.

The collection of points on a tropical curve C' forms a group that is called the group
of divisors. The intersection points play an important role in this group.

Definition 6.1.6. A divisor D on C is a finite sum D = Y upP where up € Z and
P are points on C. The collection of these divisors forms the group of divisors Div(C').
The degree of D is - up. An important subgroup of Div(C') is the group of degree-zero
divisors that is denoted by Div’(C).



The most important divisors on a tropical curve C are ones that are related to a polynomial
f(z,y) or to a tropical rational polynomial h(X,Y).

Definition 6.1.7. Let C be a tropical curve. For a polynomial f(z,y), let P = C Ny
C(trop(f)). The divisor related to f(x,y) is

div(f) = ) mult(P)P.

PeP

For a tropical rational polynomial h(X,Y'), the divisor related to h(X,Y) is

div(h) = > ord;(P)P
PeC
and is called a principal divisor. When A(X,Y") = trop(f)(X,Y) — trop(¢)(X,Y), [V09]
shows that div(h) = div(f) — div(g). Two divisors D; and D, are equivalent, denoted by

Dy ~ Dy, if Dy — D, is a principal divisor. The group Div®(C)/ ~ is called the Jacobian
of C, denoted by Jac(C).

Example 6.1.8. Consider a tropical curve C, tropical line L;, and tropical line Ly in
Figure 6.2. We have D(L,) = P, + P, + P; and D(Ly) = Q1 + Q2 + Q3. Thus, we can say
P4+ P+ Py~ Q1+ Q2+ Qs.

Figure 6.2: Equivalent divisors.

6.2 Point addition by intersection points

From this point, we let C' be a tropical elliptic curve. Thus, it has a unique cycle that is
denoted by C. We can attach a metric on C' as follows.

Definition 6.2.1. Fix a point O on C and name the vertices of C with V;,...,V,, in
counter-clockwise direction so that either O = V; or O is between V; and V,,. For i =
1,...,n, let E; be the edge connecting V; and V;; where V; =V, ;. Let £ be the sum of
the lattice length (see Definition 2.0.11) of the edges of cycle C' and we define the bijection
map « : C — R/LZ as follows.



1. a(0) =0,

2. a(V) = low,

3. a(V;) = a(Vi_1) + lg,_,, and

4. for P on E;, a(P) = a(V;) + ly; p.

Furthermore, for any two points P and @ on C, the sign displacement of these two points
is

dC(P7 Q) = Oé(Q) - Oé(P)
The sign displacement has several properties, discussed next.

Remark 6.2.2 ([V09, Lemma 6.3]). For any three points P,Q, and R on C, the sign
displacement satisfies the following properties.

L. do(P,Q) +de(Q, P) = 0.

2. de(P,Q) +dc(Q, R) = dc(P, R).

3. For points P’ and ', divisors P+@Q ~ P'+@Q' if and only if do(P, P') = —dc(Q, Q).
The group of point addition on C' is algebraically defined as follows.

Definition 6.2.3. Due to the properties of d¢, for a fixed O € C, the map

70 : C — Jac(C)
P—P-0

is bijection. For points P,Q € C, the point P + @ is the preimage 7, (P + Q — 20).
We can identify the point P 4 ) by using the sign displacement.

Proposition 6.2.4. For P,Q € C, a point T € C is the point P + Q if and only if

Proof. Let T € C satisfy equation (6.1). By adding dc(Q, O) to both sides, we have
de(Q,T) = do(O, P). Remark 6.2.2 implies

T+O~P+Q
T-0O~P+Q-20.

From the definition of 7o, we have T'75 (T — O) = 75 (P+Q —20) = P+@Q. Conversely,
it is shown in [V09, Theorem 6.6] that the point P + @ satisfies (6.1). O

For some pairs of points on C, the addition can be achieved geometrically in the following
manner.



Remark 6.2.5. Let (P, Q) be a pair of points on C. It is defined as a good pair when
a tropical line Lpg such that P,Q € Lpg Ng C is present. For a good pair (P,Q), let
R be the third intersection point in Lpg Ny C. If (O, R) is a good pair, let Log be the
tropical line such that O, R € Logr Ng C. The point P + @ is the third intersection point
in LOR ﬂst 6

Next, we are going to provide an addition calculation related to the smooth tropical
curves mentioned in Theorem 3.1.2. Let C be the cycle of the smooth tropical curves of

trop(f)(X,Y) = min(vis + X + 2Y, 015 + 2X + Y, v34 + 2X, v34 + 2V
vs + X + Y, v67 + X, v67 + Y, 08)
that is a symmetrical triangle, square, pentagon, hexagon, or heptagon. Let P(X1,Y)) and
Q(X2,Y3) be two points on C'. Occasions may arise wherein numerous tropical lines pass-
ing through points P and () are discernible, such as when X; = X5. In these occurrences,

a singular tropical line is rigorously defined, originating from the tropical determinant of
a matrix.

Definition 6.2.6. For any two points P(X;,Y;) and Q(X»,Y>) on C, let

0 X Y
LPQ(X,Y) =10 Xl Yi :min(X1—|—Y2,X2—i—Yl,X+min(Y1,Y2),Y—i—min(X1,X2))
O X2 er trop

be the unique tropical line passing P and Q.

Line Lpg has one vertex (Vx,Vy) that is always within the cycle C. Furthermore, we
have

Vx = min(X; + Y2, X + Y1) — min(Yy, Y3),

Vy = min(X; + Y3, Xo + V7)) — min( Xy, X5).

Inspired by some calculations in [O06], we have the following coordinate-wise expres-
sion of point addition.

Proposition 6.2.7. The intersection points of Lpg Ng C are
P1 :(U5 — V19 + max((), VX — Vy), Vs — V12 + maX(—(VX — Vy), O)),

Py =(Vx, min(vs — Vi, ver, v34 + Vx) — v5),
Py =(min(vs — Vy, ver, v34 + Vi) — vs, Vy).
The pair of points (P, Q) is a good pair if and only if {P,Q} C { Py, Ps, P3}. Furthermore,
when (P, Q) is a good pair of points, the coordinate of the third intersection point R in
LPQ ﬂst 6 18
R=P+P,+P;,—P—Q,

that is the sum of coordinates in R2.



Proof. Assume the intersection points L pg N C are situated as shown in Figure 6.3. When
Vi > Vx, we have coordinate P is the solution of X — Y = Vy — V4 and X = v5 — v1a.
Meanwhile, when Vx > V4, coordinate P; is the solution of X — Y = Vx — V4 and
Y = v — v12. The coordinate of P, is the solution of X = Vx and the smallest value
of Y =wvg—vs —Vx, Y = vg7 —v5, or Y = v34 — v5 + Vx. Similarly, coordinate Pj is
the solution of Y = V4 and the smallest value of X = vg —vs — V3, X = vgy — v5, Or
X:’U34—U5+Vy.

The second claim follows from the definition of a good pair of points. Furthermore,
it is clear that the coordinate of the third intersection of Lpg N C is the sum of all the
three intersection points minus the pair of good points. O

Figure 6.3: Intersection points Lpg Ny C'.

When working with the symmetric truncated cubic, we can choose a point O so that
line Logr in Remark 6.2.5 is not needed.

Proposition 6.2.8. Let C be the cycle of the tropical curves mentioned in Theorem
3.1.2 and O be the vertex that is dual to cell [1,2,5]. For any tropical line L such that
LnNg C ={P, Py, P3}, we have

dc(O, Pl) + dc(O, PQ) + dc(O, Pg) - O

Proof. Assume the intersection points L Ny C are situated as shown in Figure 6.3. If
P, = O, the result follows due to the symmetric property of C. If P; is somewhere on
the horizontal (or vertical) edge emerging from O, we translate line L horizontally (or
vertically) until P, becomes P] = O and P, becomes P; (or P becomes P;) and the sum
of the sign displacement from O to the new points is zero.

In counter-clockwise direction from point O, the edges of C' have the integer primitive
directions limited to (1,0),(1,1),(0,1),(—1,1),(-1,0),(—1,—1), or (0,—1). Thus, we
have do(Py, P)) = do(Py, Py) (or do (P, P)) = de(Pj, P)) holds. By considering

dc(o, Pl) = dc(O,P{) — dc(Pl, Pll) and dc(o, PQ) = dc(O, Pé) + dc(PZI, PQ)
(or de (O, Ps) = dc (O, P}) + do(Pj, Ps)), we have

dC(Ou-Pl) +dC(O7P2) +dC(O7P3) =0.



Corollary 6.2.9. Let C be the cycle of the tropical curves mentioned in Theorem 3.1.2.
Fiz the point that is dual to cell [1,2,5] as the point O. Let (P, Q) be a good pair of points
on C and let R be the third intersection point in LpgNg C. Then the coordinate of P+ Q
can be obtained by flipping the coordinate of R.

Proof. From Proposition 6.2.8, we have the points P, (), R satisfy
dc(O, P) +dc(0,Q) + dc(O,R) =0
and Proposition 6.2.4 implies
dc(O, P+ Q) + dc(O, R) = 0.

It tells us that the displacements of point P+ () and point R from point O have the same
magnitude but opposite direction. Hence, the point P + @ is the image of point R with
respect to X =Y. ]

Next, we want to show how to deal with a bad pair (P, Q). It is shown in [V09] that
we can transform a bad pair (P, Q) to a good pair (P, Q') as follows. Choose tropical
lines Lp and Lg such that Lp Ny C = {P, P, P2}, Lo N C = {Q, Q1,Q2}, and we have
two good pairs (P, Q1) and (P, Q). Next, we can have two tropical lines L; and Lo such
that L1 Ny C = {P1,Qy, P’} and Ly Ny C = { P, Q2,Q’}. Under this procedure, we have
P+@Q ~ P+ Q. Figure 6.4 illustrates this procedure for a bad pair on various cycles C.

P17Q17P/ P

Qo Py
Qr < Q O
P 0Q'
P ¢
Q/ E)/

Figure 6.4: Moving a bad pair of points.

6.3 Edwards case by ultradiscrete functions parametriza-
tion

Now we want to discuss the possibility of performing point addition through theta parametriza-
tion of a curve. This technique is simpler because we do not need to check if the given
points are a good pair. However, [CM17] argued that point addition on tropical Hesse
curves is better done through intersection points because it involves less calculation.

In order to make a parallel connection with point addition, we modify the parametriza-
tion in Remark 5.3.3 so its period is the cycle length of the cycle.



Corollary 6.3.1. Let Ys(t) be as defined at (5.3) and assume 1 < 6. Let the points (X,Y)
of the cycle of C(trop(f,s)) be parameterized by

)
(v
(

D) < (P2 it 1)

Thus, for two points A = (X(a),Y (a)) and B = (X(b),Y (b)) where a,b € R/LZ, we have
A+ B=(X(a+b),Y(a+D)).

Proof. Notice that for 1 < 9, we have constant cycle length £ = 8. Since the period
of the cycle parametrization in (5.4) is 2, substituting ¢ — £ to equation (5.4) makes
(X(t),Y(t)) : R/LZ — C a bijection map. Thus, we can apply Proposition 6.2.4. O

6.4 Cryptographic applications

In this section we apply a cipher construction that is a modification of the one proposed
in [CM17]. Assume Alice and Bob share the tropical polynomial function trop(f)(X,Y")
where its unique cycle C' is of length £ € R and is parametrized by (X (t),Y(t) : t €
R/L7Z). Let O = (X(0),Y(0)) be the identity of the point addition on C.

Suppose Alice wants to send a message of 500 alphanumeric characters to Bob. We
assume that each character is represented by 7-bit data. So we have that Alice’s message
is an element of {0,1}*%. Assume we partition the message into 350 blocks where each
block is an element of {0, 1}'°. Let mg € {0, 1}'° be a part of the message that Alice wants
to send to Bob. Alice maps myq to point M, € C through the following procedure. First,
Alice converts mg to mg € N that will be in the interval [0,2'°—1]. Let to = moz% € Q%Z.
Lastly, Alice defines My = (X (to), Y (t0))-

Let r € N be a public property denoting the number of iterations during the ciphering
process. Through the Diffie-Hellman Key Exchange procedure, Alice and Bob share ug =
E5ng € $5Z such that 0 < ng < 2'°—1 and k € N such that 0 < k < 2" — 1. Let
So = (X (up),Y (ug)) € C be a secret point and k € {0,1}"~that is the binary form of
k-be a secret key.

Define the two halving functions

ho(X (), Y (1)) = (X (;) Y (;)) and

e = (v (H59) v (45)

During the ciphering process, Alice obtains the points M; = (X (t;), Y (t;)) with t; € 5=Z
(t=1,...,r) in Table 6.1. Then Alice eventually obtains the ciphered coordinate M, =
(X(t,),Y(t,) € C. Alice calculates m, = t, ngr and convert it into the ciphered binary
message m, € {0,1}'°%" to be sent to Bob.

Meanwhile, Bob receives the ciphered binary message m,.. By using the secret point S

and the secret key k, Bob can determine secret points Si, Sy, ..., S,. Now, Bob deciphers



Iteration Ciphered points Secret points
1 M1 = hk1 (Mo + S()) Sl = hk1 (S())
2 Mg = th(Ml + Sl) SQ - hk2(S1)

r Mr = hkr(Mr—l + Sr—l) S?" = hkr (Sr—l)

Table 6.1: Alice’s encryption process.

the message by converting m, to m, € N. Then, Bob calculates ¢, = mwm% and obtains
M, = (X(t,),Y(t,)) € C. During the r iterations, Bob obtains the following points on C,
see Table 6.2. Now Bob has My = (X (tg), Y (to)) where to € R/LZ. Thus, Bob can get

Iteration | Secret points Points on C
1 Srfl M, = 2M, — Srfl
2 Sr72 Mr72 = 2Mr71 - Sr72
r So MO = 2-]\41 - SO

Table 6.2: Bob’s decryption process.

my = t0¥ € N that is in the interval [0,2'° — 1]. Lastly, Bob can obtain the decrypted
message mg € {0, 1} that is the binary form of m.
Below is an example when working with a nonsmooth pentagonal cycle of

trop(f)(X,Y) = min(5 + X +2Y,5+2X +V,3 4 2X,3 + 2V,
—5+X+Y,5+X,5+Y,—1).

In this case, we have £ = 40. Let r = 10, uy = %, and k = [1,0,1,1,1,1,1,0,0,0].

Assume mg = [1,1,0,0,1,1,1,1,0,0] is the message Alice wants to send. We have my =
3°. Figure 6.5 shows the plots of (i, X(;)) and (¢, Y (;)) for i = 0,...,10. Additionally,

we can see the randomness of points My, ..., Mo in Figure 6.6. The ciphered coordinate
is
4 1 1 1
Mg = (5399 5’_50863 ) _ (X( 850665) ,Y( 850665)) (6.2)
1310727 131072 131072 131072

and the ciphered binary message is
my = [1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,1,1,0,1,0].

Furthermore, we want to measure decorrelation and diffusion properties of this ci-
phering procedure. For observing the decorrelation property, pick 400 random mes-
sages Mo.1,Mo2, - - -, Mo 400- We compare them with the first 10 bits of ciphered messages
My1, My 2, ..., Myao0 and see how many bits are changed. For the same trop(f)(X,Y),



~10- . . ~10- .

M4 :
v 1.&
5. 5
M, M
. et
10 =8 -6 —4 -2 0 2 11"._ 6
5
M
6,
. JAID-
—4 L ]
M
(] 6
M,
‘e —10

Figure 6.6: The coordinates (X (¢;),Y(¢;)) for i =1,...,10.

r, u, and k, Figure 6.7 shows the percentage of bit-changes. Even though the first bit
typically stays the same and the second bit tends to change, the average probability of a
bit change is approximately 47.9%. This indicates there is a good decorrelation between
the original message mg and its encrypted counterpart m,.

For observing the diffusion property, we pick 40 random messages mg 1,02, - - - , Mg 40
For each sample mg;, where ¢ = 1,...,40, let m(l)yi,mai, e ,m(l)?i be the messages that
differ from my; only on its 15,274 .. 10*® bits, respectively. For h = 1,...,10, let H" be
the set of 40 Hamming distances between m,.; and m/!; (for i = 1,...,40). The horizontal
axis of Figure 6.8 indicates the location of the bit that is changed. The vertical axis
shows the possible Hamming distance between two ciphered messages. For our settings
of trop(f)(X,Y), r, u, and k, the length of the ciphered message is 10 + r = 20 bits.
Each column of H" in Figure 6.8 (for h = 1,...,10) has 40 points of Hamming distances
between m,; and mf}J (for i = 1,...,40). The average of each column shows a stability
of the Hamming distances regardless the location of the bit that is changed.
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