

Title	Harmonic Generation from Narrow-Gap Semiconductors in the Terahertz Region
Author(s)	Phan Thanh, Nhat Khoa
Citation	大阪大学, 2024, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/98710
rights	
Note	やむを得ない事由があると学位審査研究科が承認したため、全文に代えてその内容の要約を公開しています。全文のご利用をご希望の場合は、大阪大学の博士論文についてをご参照ください。

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (PHAN THANH NHAT KHOA)	
Title	Harmonic Generation from Narrow-Gap Semiconductors in the Terahertz Region (テラヘルツ領域におけるナローギャップ半導体からの高調波 発生)

Abstract of Thesis

The terahertz (THz) electromagnetic region, which covers the frequency range from 0.3 THz to 10 THz, has been received quite a fair amount of interest due to high potential of applications such as the advent of wireless communication systems of the sixth generation (6G network), security and bio-medical imaging, data storage media, air pollution diagnosis with THz time-domain spectroscopy (THz-TDS) and fusion plasma diagnosis. These applications involve the generation and detection of new frequency, e.g. the nonlinear optical process of harmonic generation. However, the advances of nonlinear optics in the THz region have been less than the near infra-red (NIR), visible (VIS) region and the microwave region, thus this spectrum region has been dubbed “the terahertz gap”. The reasons of which include the lack of adequately intense pump source, the strong absorption of various gas species in the earth atmosphere which limits the propagation distance to less than~10 meters, to name a few.

The issue about lacking of adequately strong THz pump source has recently seen significant progress through several novel techniques, including the femtosecond laser based optical rectification (OR) system and free electron laser (FEL). The FEL has several advantages when harmonic generation and detection are involved, including intense electric field (around MV/cm), a narrow frequency bandwidth, strong coherence, short pulse duration (as small as several picoseconds). The interesting point of this laser characteristic, especially the intense electric field, is that it is not only highly capable of generating a harmonic signal with high conversion efficiency, but it can also push the electron system of the narrow bandgap semiconductor into a non-perturbative regime, where a vast variety of other nonlinear ultrafast phenomena come into interplay.

By utilized the merits mentioned above in the FEL at the Sanken facility in Osaka University, we studied the third harmonic generation (THG) in the THz region from indium antimonide (InSb), indium arsenide (InAs) and silicon (Si). InSb and InAs serve as the stereotype of the famous narrow bandgap semiconductor, whose free carriers possess a high third order susceptibility due to the non-parabolicity (NP) of the conduction band. This non-parabolicity contributes essentially to the THG in THz region in our samples. We report a high THG efficiency which was optimized to a value which, to the best of our knowledge, is the highest ever reported so far in the THz region, higher than even those of the novel materials such as graphene and topological insulators. This is the result of the combination between the merits of the FEL and the tuning of the density and mobility of the free carrier in the samples.

In the subsequent part of our research, the THG due to the momentum-dependent scattering rate (SC) was conducted and we obtained the complex anisotropy ratio, which is the ratio between the elements in the THG susceptibility tensor. This is, to the best of our

knowledge, the first research ever reported regarding a complex nonlinear susceptibility in the FIR-THz gap of the electromagnetic spectrum. The imaginary part of the complex nonlinear susceptibility can be ascribed to the momentum-dependent scattering rate of the free carrier. This result can be helpful for researchers who are in pursuit of gaining better understanding about scattering-related ultrafast events in the picosecond time scale.

- [1] T. N. K. Phan, T. Shimizu, Y. W. Wang, K. Kato, V. C. Agulto, G. Isoyama, S. Fujioka, and M. Nakajima, "Third harmonic generation due to free carrier in InSb using a terahertz free electron laser," Opt. Lett. 49, 1073 (2024).
- [2] T. N. K. Phan, Y. W. Wang, T. Shimizu, K. Kato, V. C. Agulto, G. Isoyama, S. Fujioka, and M. Nakajima, "Complex anisotropy ratio of third harmonic generation in semiconductor using terahertz free electron laser", Opt. Lett., submitted.
- [3] T. N. K. Phan, K. Kato, G. Isoyama, M. Yoshimura, S. Fujioka, M. Nakajima, "Third Harmonic Generation From InSb Excited By Free Electron Laser", 43rd International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2018), 8509972 (2018).

論文審査の結果の要旨及び担当者

氏名 (Thanh Nhat Khoa PHAN)		
論文審査担当者	(職)	氏名
	主査 教授	藤岡 慎介
	副査 教授	工藤 一貴
	副査 教授	木村 真一
	副査 教授	千徳 靖彦
	副査 准教授	有川 安信
	副査 准教授	中嶋 誠

論文審査の結果の要旨

Thanh Nhat Khoa PHAN 氏の博士論文は、テラヘルツ (THz) 帯自由電子レーザー (FEL) を利用し、インジウムアンチモン (InSb)、インジウム砒素 (InAs)、シリコン (Si) などの狭帯域半導体における高次高調波発生を研究したものである。本論文の成果として、これらの半導体材料のテラヘルツ領域における非線形光学特性を明らかにし、特に導電帯バンド構造の非調和性およびキャリア散乱率の影響を評価することに成功した。本研究は、これまでに報告された中で最も高い THG 発生効率を達成し、THz 領域における非線形光学現象の理解に貢献するものである。本論文は 6 章で構成されている。

第一章では、高輝度なテラヘルツ (THz) 光源としての FEL が近年の技術進展により注目され、非線形光学現象の研究において重要な役割を果たしていることを紹介している。特に FEL は、狭帯域、高コヒーレンス、短パルスという特長を持ち、THz 領域での三次高調波発生に適している。本研究では、大阪大学産業科学研究所の FEL を利用し、狭帯域半導体における三次高調波発生を研究した。

第二章では、狭帯域半導体の基本特性と自由キャリアの輸送特性に基づく高調波発生の理論モデルについて概説している。具体的には、バンド構造の非調和性と散乱周波数が三次非線形感受率テンソルにどのように寄与するかを説明している。また、InSb と InAs のエネルギーバンド構造や電子の有効質量の非調和性、THz 領域での三次高調波発生に及ぼす影響を詳細に分析している。散乱率に起因する THG の寄与についても議論し、複雑な非線形感受率の虚部を抽出する計算方法について紹介している。

第三章では、FEL システムの動作原理と実験セットアップについて詳細に説明している。まず、システムの基本構造と操作パラメータについて紹介し、大阪大学産業科学研究所の FEL の特徴を説明している。次に、狭帯域半導体における三次高調波発生の実験設定について述べており、三次高調波のスペクトル、強度、温度依存の測定方法について詳述している。さらに、試料の方位角依存性を測定することで複雑な異方性比を抽出し、散乱率が三次感受率テンソルに与える寄与を明らかにする方法についても述べている。

第四章では、InSb、InAs、Si の各サンプルの基本的なパラメータを測定および特性評価し、それに基づいて三次高調波の実験結果を示している。各サンプルのキャリア密度、フォノン周波数、および散乱率に基づき、これらが三次高調波発生に与える影響を解析した。実験の結果、特に InSb では最高の THG 変換効率を達成するために温度調整が有効であることが示された。さらに、InSb において 5 次高調波の生成も観測されている。

第五章では、FEL の 4THz 出力を用いた半導体の三次高調波発生の実験結果を示し、非線形感受率テンソル成分間の複素位相差を評価した。具体的には、InSb、InAs、ボロンドープ Si サンプルに対して、結晶軸と FEL 出力の偏光の方位角依存性を分析した。その結果、すべてのサンプ