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Abstract

In this thesis, we investigate the in-plane acoustic phonons and thermal trans-

port properties in moiré superlattices, focusing on twisted bilayer systems. Moiré

pattern holds an important role in the physical properties of van der Waals mate-

rials. A well-known example is twisted bilayer graphene (TBG), where the long-

wavelength moiré potential modulates the original Dirac fermions of graphene and

various correlated phases were observed due to the emergence of nearly flat bands

at some specific twist angles. Novel electronic phenomena were also observed in

other twisted bilayer materials, such as hexagonal boron nitride or twisted bilayer

transition metal dichalcogenides (TMD).

The interlayer moiré potential in twisted bilayer systems also induces a struc-

tural change which is expected to strongly renormalize of the vibrational prop-

erties. In TBG, in-plane acoustic phonons were shown to be reconstructed into

superlattice mini-bands with a notable flattening of some particular bands. These

phonons behave as a vibration of the effective triangular structure of the moiré

superlattice with a different mechanical characteristic to the original graphene

honeycomb lattice. However, the moiré effect on the in-plane acoustic phonons of

twisted bilayer materials beyond TBG was not understood. Furthermore, changes

in the band structure of the acoustic phonons would have an immediate impact

on the thermal transport properties, particularly at low temperature.

In the first part of this thesis, we investigate in-plane acoustic phonons in

twisted bilayer systems beyond TBG, including twisted graphene / hexagonal

boron nitride (t-G / hBN), and twisted bilayer molybdenum disulfide (t-MoS2) as

a representative of TMD systems. We utilize the continuum approach, where the

interlayer potential is a continuous function of the local stacking configurations

which changes smoothly across the moiré superlattice unit cell. We show that

there is a strong correspondence between the relaxed lattice structure and the

phonon band structure which leads to the appearance of universal features across

different twisted bilayer systems. To elucidate this correspondence, we develop
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an effective mass-spring model that can perfectly reproduce the original phonon

bands at low frequency. One particular characteristic of the band structures

is the presence of multiple flat bands that can be understood as independent

oscillations of a collection of isolated strings. Furthermore, we also show that the

moiré phonons can also exhibit chiral properties for systems with no inversion

symmetry in the moiré potential, such as t-G/hBN.

In the second part of this thesis, we calculate the thermal conductivity of

twisted bilayer systems using the semi-classical transport equation. We focus

on the low-temperature regime, where the mean free path of phonons is roughly

constant, and the energy of the reconstructed phonons is the most relevant. We

show that significant flattening of the phonon bands leads to a reduction in ther-

mal conductivity for up to 40% at a particular temperature. Furthermore, we

show that these changes are also manifested in the temperature dependence of

the thermal conductivity, where a characteristic deviation from the usual T2 of

in-plane acoustic phonons is found for every twisted bilayer system with a notable

moiré effect.

Our results hold an important role in the study of moiré materials. We expect

that the electron-phonon interactions are enhanced by the moiré effect, which

could help explain the mechanism behind various transport phenomena observed

in twisted bilayer systems. The flat phonon bands are also expected to entail novel

physics, such as localized excitations that was previously realized in photonic

lattices. Lastly, the characteristic changes in thermal conductivity should be

useful for the definitive verification of the presence of moiré phonons as well as

for the future of thermal device engineering.
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Chapter 1

Introduction

1.1 Purpose of study

In recent years, two-dimensional (2D) moiré materials have attracted significant

research interest. The most well-known example is twisted bilayer graphene

(TBG), where a relative twist angle θ between two stacked graphene layers in-

troduces a lattice mismatch and creates an interference pattern, i.e., the moiré

pattern. In small-θ TBG, the emerged long-periodic moiré superlattice mod-

ulates the graphene’s Dirac electrons into an effective superlattice mini bands

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], which become nearly flat for θ ∼ 1◦,

also known as the magic angle. This leads to the observation of various strong

correlated phenomena in magic angle TBG, such as superconductivity and cor-

related insulators [14, 15]. The study of moiré superlattice have also been ex-

tended to other van der Waals multilayers involving hexagonal boron nitride

(hBN) [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] and transition metal

dichalcogenides (TMD) [29, 30, 31, 32, 33, 34, 35, 36, 37], where various exotic

phenomena were also observed.

Moiré effect does not only influence the electronic properties but also the

phonons. The phonon bands of the monolayer are folded into the mini superlattice

Brillouin zone, which then used to characterize the twist angle assuming that

phonon dispersion are largely unchanged by the interlayer potential [38, 39, 40,

41, 42, 43]. However, when the moiré period is much larger than the atomic scale,

spontaneous relaxation gives significant lattice deformation that leads to a strong

renormalization of lattice vibrations as various features emerge at the moiré scale
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[44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. In small-θ TBG, for example, the in-

plane acoustic phonons of graphene are reconstructed into a group of superlattice

mini bands separated by spectral gaps with a notable flattening of some particular

bands [45, 55, 56]. These reconstructed bands are represented as oscillations of

an effective triangular structure of relaxed TBG moiré superlattice. Despite these

results, little is known about the description of phonons in moiré superlattices

beyond TBG, particularly, on the relation to the effective relaxed lattice structure.

In this thesis, we aim to investigate the effect of moiré pattern in the phonon

properties of twisted bilayer systems, which includes twisted graphene/hexagonal

boron nitride (t-G/hBN) as the first example of hetero bilayers, and twisted bi-

layer molybdenum disulfide (t-MoS2) as a representative of TMD systems. We

focus specifically on the hybridization of in-plane acoustic modes of the monoalay-

ers, where siginificant moiré effect was previously demonsrated in the case of TBG

[45, 46]. Here, we show that the reconstructed phonon bands converges towards a

particular structure at low-θ limit, that is strongly related to the geometry of the

relaxed state of the given system. To demonstrate this relation, we develop an

effective mass-bond model to reproduce the original band structure and elucidate

the origin of notable features, such as flat phonon bands, that are universally

found across different systems. We also show that the reconstructed phonon

modes in graphene/hBN can also exhibit chirality due to the absence of inversion

symmetry in the moiré potential [55]. We further calculate the thermal conduc-

tivity to demonstrate the moiré effect in the thermal transport properties. We

show that the flattening of the low-energy phonons bands leads to a significant

suppression of thermal conductivity up to 40%, resulting in a characteristic devia-

tion from the generic quadratic temperature dependence of thermal conductivity

in two-dimensional system.

This thesis is organized as follows. For the rest of this chapter, we briefly

review previous works on graphene and 2D moiré materials, lattice relaxation,

and phonon properties. In Chapter 2, we provide a theoretical basis for perform-
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ing lattice relaxation and for describing phonons in a variety of twisted bilayer

systems. In Chapter 3, we discuss the calculated phonon modes and elucidate

the special features introduced by the moiré effects. In Chapter 4, we explore the

observable properties of the moiré effect on phonons in terms of thermal transport

by calculating the thermal conductivity at the low-temperature regime. Finally,

this thesis is concluded in Chapter 5.

1.2 Graphene and 2D materials

Graphene is a one-atom-thick material that is composed of carbon atoms arranged

in a two-dimensional honeycomb lattice [Fig. 1.1 (a)]. Naturally, graphene can

be abundantly found as a single layer component of graphite, which is the same

material that is commonly found as pencil leads. In graphite, a large number of

graphene layers are stacked and held together by the van der Waals force, which is

significantly weaker than the in-plane chemical bonds between the carbon atoms.

In fact, the most common way to obtain graphene is by the exfoliation method,

i.e., repeatedly peeling a graphite flake using adhesive tapes [57]. Interestingly,

graphene has significantly different physical properties compared to graphite. One

of them is that charge carriers in graphene behave as massless Dirac fermions that

travel with around 1/300 of the light velocity. These are evident from the linear

energy-momentum dispersion of the conduction and valence bands in the vicinity

of K and K’ points of the momentum space, where the two bands become degen-

erate [Fig. 1.1 (b)]. This unusual feature gives a variety of exceptional electronic

properties, such as very high carrier mobility [57, 58, 59] and the observation of

a integer quantum Hall effect at room temperature [60].

Since the graphene boom era in the 2010s, many other single-layered materials

have become widely available. These include a variety of metals (e.g., NbSe2),

semiconductors (e.g., MoS2), and insulators (e.g., hexagonal boron nitride (hBN)].

Each of these materials have notably different properties from their 3D counter-

parts. While the search for other atomically thick crystals is considered to be in
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Figure 1.1: (a) Atomic structure of graphene. (b) The valence band and conduc-
tion band of graphene [61].

its maturity, a new path of exploration emerged: stacking different single-layered

crystals in a similar way to building Lego blocks [Fig. 1.2 (a)] [62]. In this ap-

proach, each layer acts like a block with a particular function that is combined

with other layers to produce a heterostructure with the desired property. For ex-

ample, placing a transition metal dichalcogenides (TMD) close to graphene can

greatly enhance the spin-orbit interaction in graphene, which would otherwise be

negligibly small [63, 64, 65]. However, the importance of relative orientation be-

tween the constituent layers have been largely overlooked in the early study of van

der Waals (vdW) heterostructures. It was later revealed that various properties

are very sensitive to the relative rotation angle θ, and controlling θ would prove

to be a crucial tool in the discovery of new physics in these systems [66]. The

emergence of novel phenomena is intimately tied to a geometric pattern known as

the moiré pattern, which appears when two or more overlapping periodic struc-

tures are misaligned. In vdW multilayers, these pattern generally exists when the

stacked layers have different lattice constants [Fig. 1.2 (b)] or lattice orientations

[Fig. 1.2 (c)]. In the following section, we take a closer look on how the moiré

pattern influences the physical properties of layered materials.
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Figure 1.2: (a) Construction of van der Waals heterostructure from a variety of
single-layered crystals that act like Lego blocks. Moiré pattern in bilayer system
can appears due to (b) lattice constant mismatch, ε = a′/a − 1, where a and a′

are the two lattice constans, or (c) relative twist angle θ.
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1.3 Moiré superlattice in twisted bilayer graphene

(TBG)

Twisted bilayer graphene (TBG), a rotationally-stacked pair of graphene, is the

first and most studied example of two-dimensional materials with moiré pattern.

Here, we begin with providing an overview on how the presence of long-periodic

moiré pattern in TBG affects the electronic, mechanical, and phononic properties

and leads to a variety of novel phenomena.

1.3.1 Electronic properties

When two graphene are stacked on top of each other with a relative twist angle

θ, mismatch of the two lattices creates the moiré pattern. The moiré period is in-

versely proportional to sin (θ/2), so it becomes much longer than the atomic scale

when the twist angle is small. Here, the moiré pattern acts as a long-wavelength

potential that significantly alters the electronic properties of TBG depending on

the twist angle [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 67]. Figure 1.3 (e) shows

the electronic band structure of TBG at three different θ, calculated by a con-

tinuum approach [8]. One of the important features is the reduction of Fermi

velocity that becomes nearly zero at some specific set of twist angles, which are

also known as the magic angle. The emergence of nearly-flat bands at the charge

neutrality point suggests the presence of a strong electron-electron interaction

and a likely appearance of correlated phases. Indeed, transport measurement in

magic-angle TBG reveals the existence of superconducting and correlated insu-

lating states which occurs at different filing factors of the narrow bands [Fig. 1.3

(f)] [15, 14, 68, 69, 70]. On top of that, further studies observe the presence of

other correlated phenomena, such as strange metallic behavior [71, 72, 73] and

ferromagnetism [74, 75, 76]. These exceptional discoveries instigated intense re-

search to elucidate the various correlated phenomena in TBG, as well as using it
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Figure 1.3: (a) Electronic band structure of TBG at three different twist angle
[8]. (b) Phase diagram of magic-angle TBG [14].

as a platform to search for new physical properties.

1.3.2 Lattice relaxation

In the early theoretical studies of twisted bilayer graphene, scientists assume that

the graphene remains rigid and undistorted when they are stacked together and

twisted. This assumption was partly justifiable due to the immense in-plane

mechanical strength of graphene [77] and the widely-used hBN substrate that

is able to maintain the integrity of the two-dimensional structure of graphene

[78]. However, as we will see below, significant lattice reconstruction occurs,

particularly when the twist angle is small, and this has significant influence in

the electronic properties.

In small-θ TBG, the local structure at a given position resembles a certain

stacking configuration of the non-twisted bilayer graphene that changes contin-

uously across a single moiré unit cell [Fig. 1.4 (a)]. Each stacking configuration

corresponds to a different binding energy which then defines the landscape of

interlayer interaction across the moiré superlattice [Fig. 1.4 (b)] [79, 80, 81, 82].

For instance, the lowest energy are given by the AB and BA stacking configura-

tions where for AB (BA) the A (B) sublattice of the top layer is right above the
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B (A) sublattice of the bottom layer, and the highest energy is given by the AA

configurations where the two layers are perfectly aligned. When the moiré period

is long, the energy gained by maximizing the area of AB/BA configurations be-

comes large enough to overcome the elastic energy cost required to locally distort

the honeycomb lattices. As a result, the whole system spontaneously relaxes to

form a large commensurate regions of AB/BA stacking structure separated by

domain walls [79, 83, 84, 85, 86]. These AB/BA domain structures are well ob-

served in various measurements of bilayer graphene in the experiments [Fig. 1.4

(c) and (d)] [87, 88, 89, 90].

Theoretically, the lattice relaxation in TBG has been studied through den-

sity functional theory (DFT) calculations [67], molecular dynamics [83, 84], and

continuum model [91, 85]. Due to the large number of atoms within a single

moiré unit cell, the usual atomistic calculations are computationally challenging,

particularly for small-θ TBG. In such a case, continuum model is often utilized in

which the relevant physics are assumed to be continuous and varying smoothly

at the atomic scale. Figure 1.4 (e) show the relaxed structure of TBG at four

different twist angle ranging from θ = 2.65◦ to 0.547◦, calculated using the con-

tinuum model [85]. Here, the enlargement of AB/BA stacking regions becomes

more noticable at smaller twist angle and eventually forms an effective triangular

domain pattern that follows the periodicity of the moiré superlattice.

The relaxation of the lattice structure also has a strong influence on the elec-

tronic bands of TBG [85, 92, 93, 94, 90]. Figure 1.4 (f) shows the electronic bands

in both case of the relaxed (black line) and non-relaxed (red-dashed line) of TBG

for θ = 2.65◦ and 1.05◦ [85]. For the 1.05◦ case (around the magic angle), lattice

relaxation isolates the group of narrow bands near the charge neutrality from

the higher and lower bands with a gap of around 15 meV, as well as introduces

an electron-hole asymmetry. In the real space, electronic states corresponding

to the flat bands are highly localized within the constricted AA-stacking regions

[95]. This, along with the topological characteristics of the bands, aids the devel-
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Figure 1.4: (a) Moiré pattern and the local AA, BA, and AB stacking structure.
(b) Distribution of interlayer binding energy across moiré superlattice [85]. (c)
and (d) Dark-field transmission electron microscopy images of bilayer graphene,
showing the AB/BA domain formation and the domain walls [89]. (e) Local
binding energy of TBG at various twist angles [85]. (f) Electronic band structure
and density of states of relaxed (black lines) and non-relaxed (red-dashed lines)
TBG for θ = 2.65◦ and 1.05◦ [85].
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opment of simplified model to investigate the origin of the emergent correlated

phases [93, 96, 97, 98, 99]. Meanwhile, the domain walls, which becomes clearly

distinct at angle even lower than the magic angle, acts as a one-dimensional

topological channels for electronic transport when the system is exposed by a

transverse electric field [90, 100].

1.3.3 Phonon properties

The lattice reconstruction in TBG is expected to affect not only the electronic

properties, but also the phonons. In graphene, the two atoms in its unit cell give

rise to three acoustic phonon modes and three optical phonon modes. Due to the

two-dimensional nature of graphene, each of the three modes are further classified

as either in-plane or out-of-plane, based on the polarization of the atomic oscil-

lations relative to the propagating direction. Figure 1.5 (a) shows the phonon

dispersion of monolayer graphene, calculated by the force constant method [40].

At low-frequency, the two in-plane modes, longitudinal acoustic (LA) and trans-

verse acoustic (TA) have linear dispersions while the out-of-plane flexural acoustic

mode (ZA) is quadratic. The quadratic dispersion of the ZA phonons is a char-

acteristic of two-dimensional system which is decoupled to the in-plane counter

part within the harmonic approximation [101].

When two graphene are stacked to form AA or AB bilayer graphene, each of

the phonon modes become hybridized into either interlayer symmetric (atoms on

both layer move in parallel) or antisymmetric (move in opposite) [102, 103, 104,

105]. However, due to the weak van der Waals interaction between the layers, the

two interlayer modes are generally nearly degenerate, except for the ZA phonons

as the corresponding antisymmetric modes modulate the interlayer distance, as

shown in Fig. 1.5(b) [102, 103, 104, 40]. The phonon dispersion of TBG with

θ = 13.2◦ is shown in Fig. 1.5(c), calculated using the force-constant method with

Lennard-Jones function to capture the interlayer potential [40]. The folding effect

of the original phonon bands of AA bilayer graphene is evident as numerous bands
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(d)

(a) (b)

(c)

Figure 1.5: Phonon dispersions of (a) monolayer graphene, (b) AA-stacked bilayer
graphene (AA-BLG), and (c) TBG with θ = 13.2◦. (d) Phonon density of states
for AA-BLG and TBG with θ = 21.8◦ and 13.2◦. Figures are obtained from [40].
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appear in the small superlattice Brillouin zone. However, the phonon density of

states, as shown in Fig. 1.5 (d), remain mostly unchanged from those of AA/AB

bilayer graphene and also independent of the twist angle [40]. Similar conclusions

are obtained by other calculation methods, such as force-constant method with

registry-dependent interlayer potential [41], molecular dynamics [38], and density

functional theory [106], showing minimum frequency change by the interlayer

potential. In fact, the lack of renormalization effect enables a relatively accurate

determination of twist angle from Raman spectroscopy, since the frequency signal

that is attributed to the folded phonons can be mapped directly to the phonon

dispersion of the original non-twisted bilayer system [39, 42, 43].

The notable lattice relaxation at small twist angle, however, is expected to

strongly affect the phonon properties. When the triangular domain structure

become apparent, the lattice vibrations in TBG become localized within different

regions of moiré superlattice [44, 45, 47, 49]. At low frequency, in particular, the

in-plane acoustic phonons are reconstructed into superlattice mini bands with

notable band gap and the flattening of some specific bands. This is clearly seen by

comparing the phonon dispersion in the absence of interlayer coupling, i.e., empty-

lattice folding of graphene’s LA and TA phonons, [Fig.1.6(a)], that of 1.05◦ TBG

[Fig.1.6(b)] [45]. In the real space, the superlattice phonon modes correspond

to the oscillation of the domain walls that separate the AB/BA stacking regions

[see Fig. 1.6 (e)]. In fact, these modes can be emulated by the mass and bond

model [Fig. 1.6 (c)] which correspond to the squeezed AA stacking regions and the

domain walls connecting them, respectively. In such model, the potential energy

of the system is proportional to the length of the bonds, reminiscent of the one-

dimensional soliton wall [46, 107]. The effective model manages to reproduce the

phonon dispersion of the two lowest bands [Fig. 1.6 (d)] and the corresponding

eigen modes [Fig. 1.6 (f)], as well as the convergence of the phonon velocities at

low-θ limit which later verified by a fully analytic derivation [108].

Recently, the study of moiré phonons in TBG is extended to include the
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Figure 1.6: Phonon dispersion of the interlayer antisymmetric modes of TBG for
(a) no interlayer coupling case and (b) θ = 1.05◦. Panel (a) also corresponds to
the empty-lattice folding of the LA and TA phonons of graphene. (c) Schematic
diagram of the mass-bond model. (d) Phonon dispersion of the original numerical
calculation for θ = 0.547◦ and the effective mass-bond model. Phonon wave
functions for the second mode at q = [0, 2π/(6LM)] in (e) 1.05◦ TBG and the (f)
effective model. All figures are obtained from [45].
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out-of-plane modes, which is calculated by continuum method [53], molecular

dynamics [109], and a DFT-based continuum method [52]. Generalization to

higher number of layers was also investigated [110, 108], as well as the discussions

on the symmetry origins in relation to the generally incommensurate nature of

the moiré superlattice [108]. The interaction of the renormalized phonons with

the electrons were also studied [46, 111, 112], where coupling enhancement at low

twist angle is predicted [111], and possible explanation of the very low critical

temperature for the linear-in-temperature resistivity behavior is also proposed

[73, 112].

1.4 Moiré superlattices beyond TBG

The wealth of new physics discovered in twisted bilayer grpahene attracted signif-

icant interest to the study of moiré superlattices beyond TBG. Some of the well-

studied examples are graphene/hBN and bilayer TMDs. These materials are also

found to exhibit novel properties. For instance, the few tens of nanometers period

of the moiré potential in graphene/hBN heterostructures provides the necessary

length scale to observe Hofstadter’s butterfly, i.e., fractal electronic spectrum, at

an accessible magnetic field strength, as well as the fractional quantum Hall effects

[17, 78, 19, 21]. In TMD moiré superlattices, an isolated flat band also appears

and various correlated phases are also observed [30, 34, 113, 114, 36, 115, 116, 117].

In this section, we briefly review the physical properties of moiré bilayer systems

beyond TBG, that includes hBN and TMD materials. Particularly, we focus on

how the differences in the moiré superlattice structure are reflected in the lattice

relaxation and the phonon properties.

1.4.1 Atomic structure and lattice relaxation

Figure 1.7 (a) and (b) show the atomic structure of hBN and TMD, respectively.

Instead of carbon atoms as in graphene, the A and B sublattices of the honeycomb
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Figure 1.7: Atomic structure of (a) hexagonal boron nitride (hBN) and (b) tran-
sition metal dichalcogenides (TMD). In (c), M denotes transition metal atoms
and X denotes chalcogen atoms. (c-e) Different stacking formation of twisted
bilayers.

lattice in hBN are occupied by boron and nitrogen atoms. As for TMD, the two

sublattices are occupied by transition metal atoms (e.g., Mo, W), denoted by ′M′,

and two chalcogen atoms (e.g., S, Se, Te), denoted by ′X′, which are separated at

a distance perpendicular to the two-dimensional plane. The lattice constant of

hBN is closely similar to that of TBG, with approximately 1.8% difference, while

the lattice constant of TMD is generally around 30% larger.

In constructing twisted bilayer systems, it is possible to stack two mono-

layers of the same type (homobilayer) or different type (heterobilayer). One of

the most common example of heterobilayer is graphene/hexagonal boron nitride

[Fig. 1.7(c)] In homobilayer with different sublattice atoms, two different way of
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stacking can also be realized, which are parallel stacking (perfect alignment of the

two layers) and antiparallel stacking (one of the layers are rotated by 180◦), as il-

lustrated in Fig. 1.7(d) and (e). One of the physical properties that demonstrates

the significant difference among the variety of twisted bilayer structures is the

lattice relaxation. Figure 1.8 shows the local AA, AB, and BA stacking structure

[see Fig. 1.4(a)] along with the corresponding binding energy landscape for the

moiré superlattice in graphene/hBN, parallel-stacked MoS2, and the antiparallel-

stacked MoS2.

In graphene/hBN, the local AA stacking (where both boron and nitrogen

atoms are on top of carbon atoms of graphene) represents the highest energy

(least preferable) stacking structure while the AB stacking (boron on carbon)

correspond to the lowest energy (most preferable) configuration. Here, the dif-

ference of the binding energy between AA/BA is approximately a tenth of the

AA/AB [118]. As a result, the relaxed structure of graphene/hBN consists of an

enlarged AB stacking regions which forms an effective hexagonal domain pattern

in contrasts to the triangular pattern of TBG [see Fig. 1.4(e)].

Meanwhile, the parallel- and antiparallel-stacked MoS2 have a clearly dissim-

ilar binding energy on their corresponding AA, AB, and BA stacking configura-

tions. In the parallel MoS2, the AB and BA configuration are a mirror images

of each other along the xy-plane between the layers, resulting to an identical

stacking energy. Conversely, the AB and BA stacking strucures in antiparallel

MoS2 are no longer related by mirror symmetry and they have different stacking

energy. This leads to distinct a relaxed structure as observed in the experiments

[119, 120]. The parallel case has a TBG-like triangular domain shape at low twist

angle, while the antiparallel one transitions from a triangular structure at large

twist angle, towards a graphene/hBN-like honeycomb structure in the low-θ limit

[86, 121, 122].
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(a) Graphene/hBN

(b) MoS2/MoS2 (Parallel)

(c) MoS2/MoS2 (Antiparallel)

AA AB BA

AA AB BA

AA AB BA
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AA
AB

BA
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AB
BA

N

C

Mo

S

Figure 1.8: Different local stacking structures and the interlayer binding energy
for a variety of twisted bilayer systems [118, 86].
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1.4.2 Phonon properties

Moiré effect is also expected to be present in the vibrational properties of twisted

bilayers beyond TBG. In twisted bilayer hBN, measurements of optical phonon

frequency reveals multiple signals which correspond to different localized stacking

in the relaxed domain structures [123]. Renormalization effects induced by lattice

relaxation was also observed in twisted bilayer MoS2 [50]. There, the frequency

shift of the shear modes (i.e., interlayer antisymmetric in-plane mode) and the

breathing mode (i.e., interlayer antisymmetric out-of-plane mode) for different

twist angle was observed and the regimes corresponding to the fully reconstructed

structure (θ < 2◦) can be identified. Theoretically, the phonons of twisted TMD

system at small twist angle is calculated by continuum method [55], molecular

dynamics [48, 51], and hybrid continuum-DFT method [52]. The molecular dy-

namics calculation predicts phonon velocity reduction of the LA and TA modes

similar to TBG [45, 46]. The chiral properties of the emergent moiré phonons are

also discussed [55, 51]. The appearance of these chiral phonons is attributed to

the lack of inversion symmetry in the the moiré potential. These studies demon-

strate how the phonons of twisted bilayer systems are strongly renormalized by

the interlayer moiré potential and the lattice relaxation. However, little is known

on how the differences in the relaxed structure of various twisted bilayer systems,

as illustrated in Fig. 1.8, are manifested in the reconstructed phonon bands.

In this thesis, we will demonstrate that the geometry of the relaxed structure

has a strong relationship to the phonon properties of twisted bilayer moiré su-

perlattices. This relation is represented by universal features in the phonon band

structure across different systems with similar profile of interlayer binding energy.

We also develop an effective model that is able to capture the low-frequency band

structure that can be utilized to elucidate the nature of the flat phonon bands

observed across different systems. Furthermore, we also demonstrate that the ab-

sence of inversion symmetry in the moiré-induced interlayer potential, such as in

graphene/hBN, leads to the appearance of superlattice phonon modes with finite
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angular momentum, signifying the presence of chiral phonons at moiré scale.

1.5 Thermal transport in 2D materials

Heat transport in 2D materials has attracted notable interest because of its su-

periority and its sensitivity to heterostructuring. For example, the high ther-

mal conductivity of suspended graphene [124, 125, 126, 127] is significantly de-

creased in the presence of substrate or other layer due to strong scattering of

flexural phonons [128, 129, 130, 131, 132, 133, 134]. Meanwhile, experimen-

tal measurements demonstrated further suppression when rotationally stacked

graphene layers [135, 136]. Theoretical simulations showed that such a thermal

conductivity reduction by a twist can be caused by the enhancement of anhar-

monic phonon scattering and the redistribution of phonons to higher frequencies

[137, 138, 139, 140, 141]. While all these simulations assumed the room temper-

ature and above, the effect of moiré-induced phonon band reconstruction on the

thermal properties is expected to be relevant in the low temperature regime, and

it remains unknown.

In this thesis, we calculate the thermal conductivity of various representative

twisted bilayer systems, including TBG, twisted graphene/hBN, and also twisted

bilayer MoS2 as representation of the TMD family. Using the continuum model

and the semiclassical approach, we demonstrate that the flattening of the low-

energy phonons bands across different systems leads to a significant suppression

of thermal conductivity up to 40%, resulting in a characteristic deviation from

the generic quadratic temperature dependence of thermal conductivity in two-

dimensional system.

27



Chapter 2

Continuum theory of phonons in

moiré superlattice

In this Chapter, we introduce the continuum approach to calculate phonons

in twisted bilayer systems. We begin by constructing the moiré superlattice

from a pair of generic two-dimensional honeycomb lattice. Then, we describe

the formulation of continuum Lagrangian which takes into account the kinetic

energy, intralayer elastic energy, and the interlayer binding energy, in terms of

displacement on both layers. Next, we obtain the time-indepedent solution to the

Euler-Lagrange equations, which correspond to the displacements that minimize

the total energy, i.e., lattice relaxation. Finally, we describe the time-dependent

solution and derive the dynamical equations from which the phonon frequency

and the corresponding phonon eigen modes can be obtained.

2.1 Geometry of moiré superlattice

We consider a twisted bilayer system composed of two honeycomb lattice layers

with generally different lattice constants, a and a′, as illustrated in Fig. 2.1(a).

The layer 2 is stacked on top of the layer 1 with relative rotation angle θ around

a common honeycomb center. We label the sublattices of layer 1 by A and B,

and that of layer 2 by A′ and B′ as in Fig. 2.1(a). The primitive lattice vectors

of layer 1 are defined as a1 = a(1, 0) and a2 = a(1/2,
√
3/2), and those of layer

2 are given by a′
i = M̂R̂ ai (i = 1, 2), with rotation matrix R̂(θ) and isotropic

expansion matrix M̂ = (1+ε)Î where ε = (a′−a)/a. The corresponding reciprocal
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lattice vectors for layer 1 and 2 are given by bi and b′
i, respectively, which satisfy

ai · bj = a′
i · b′

j = 2πδij. A long-range moiré interference pattern appears due

to a slight mismatch from a small difference in lattice constant or small twist

angle. The reciprocal lattice vectors of the pattern are given by GM
i = bi − b′

i,

while the corresponding real-space lattice vectors are obtained from the condition

LM
i ·GM

j = 2πδij. The moiré period LM = |LM
i | can be expressed as

LM = a
1 + ε√

ε2 + 2(1 + ε)(1− cos θ)
. (2.1)

For honeycomb lattice components, we take graphene, hexagonal boron ni-

tride, and molybdenum disulfide with lattice constant of a ≈ 0.246 nm, 0.2504 nm,

and 0.317 nm, respectively. In this paper, we consider twisted bilayer graphene

(TBG) and twisted bilayer molybdenum disulfide (t-MoS2) as examples of homo-

bilayer (ε = 1) and also twisted graphene/hexagonal boron nitride (t-G/hBN) as

a heterobilayer (ε ̸= 1). In Fig. 2.1(c), we illustrate the formation of moiré super-

lattice in t-G/hBN with θ = 1.25◦ where a lattice constant difference ε ≈ 1.8%

and the twist angle produce a moiré pattern of LM = |LM
i | ≈ 8.8 nm.

Across the moiré pattern, the local stacking structure changes smoothly at

the atomic scale. At a given position r, it is characterized by the phase difference

(φ1, φ2) defined as

φj(r) = (bj − b′
j) · r = GM

j · r. (2.2)

For example, (φ1, φ2) = (0, 0), (2π/3, 2π/3) and (4π/3, 4π/3) correspond to AA

(complete alignment of the honeycomb lattices), AB (B′-site of layer 2 on top of

A-site of layer 1), and BA (A′-site of layer 2 on top of B-site of layer 1), respec-

tively [Fig. 2.1(b)]. We note that, when stacking two monolayers with different

sublattice atoms, e.g., t-MoS2, there are two possible stacking configuration, par-

allel (P) and antiparallel (AP), which are related by 180◦ rotation of layer 2. In

the parallel stacking, the two layers have identical atoms at A and A′ (B and B′),

whereas in the antiparallel stacking, the two layers have different atoms on the
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Figure 2.1: (a) Schematic diagram of a twisted bilayer system. (b) Three local
stacking structures AA, AB, and BA. (c) Non-relaxed atomic structure of t-
G/hBN with θ = 1.25◦. The inset shows the first moiré Brillouin zone.
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same sublattice sites.

2.2 Continuum Lagrangian

We describe the in-plane lattice vibration in the twisted bilayer systems using

a continuum approach. Specifically, we express the Lagrangian as a functional

of smoothly-varying lattice displacement field (shifts of atoms) and obtain the

Euler-Lagrange equation. The Lagrangian is given by L = T − (UE + UB) with

kinetic energy T , the elastic energy UE and the interlayer binding energy UB.

In the following, we generalize the formulation for TBG [85, 45] to also include

hetero moiré bilayers consisting of different 2D materials.

The interlayer binding energy UB is expressed as integration of the binding

energy depending on the local interlayer configuration. As a simple example, let

us consider a one-dimensional system composed of two parallel atomic chains with

different lattice constants. We describe the atomic periodicities of chain 1 and

2 by sinusoidals cos bx and cos b′x, respectively, where minima of the functions

represent the atomic positions. We assume |b− b′| ≪ b, b′, i.e., the moiré period

is much longer than the atomic periods. The local structure at position x is

characterized by the phase difference between the two sinusoidals, φ(x) = (b−b′)x.

Here φ = 0 represents a perfectly overlapping arrangement where atoms of chain

1 and 2 are aligned, while φ = π is a staggered configuration where the atoms

are aligned with the midpoint of bonds of the other chain. The local inter-

chain binding energy can be written as V [φ(x)], a functional of the local phase

difference. The V [φ] must be a periodic function satisfying V [φ+ 2π] = V [φ].

Now we consider the lattice distortion parallel to the chain, described by

smooth displacement field u(x) and u′(x) for chain 1 and 2, respectively. Then

the sinusoidal functions are changed to cos b(x− u(x)) and cos b′(x− u′(x)), and
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hence the phase difference at x becomes

φ(x) = b(x− u(x))− b′(x− u′(x))

= GM(x− u+(x)/2) + b̄ u−(x), (2.3)

where GM = b − b′, b̄ = (b + b′)/2, and u± = u′ ± u are interlayer-symmetric

and asymmetric components of the displacement. The local inter-chain binding

energy in the presence of the distortion is given by V [φ(x)] with φ(x) of Eq. (2.3).

The binding energy between two layers in twisted bilayer systems can be de-

scribed in a parallel manner. The periodicity of individual honeycomb lattices

are modelled by
∑3

j=1 cosbj · r and
∑3

j=1 cosb
′
j · r for layer 1 and 2, respectively,

where the minima represent the atomic positions. The local interlayer arrange-

ment is characterized by the phase difference (φ1, φ2), where φj(r) = (bj −b′
j) · r

for a rigid lattice without distortion. Here (φ1, φ2) = (0, 0), (2π/3, 2π/3) and

(4π/3, 4π/3) correspond to AA, AB and BA stacking, respectively. Due to 120◦

symmetry of the system, the local binding energy should be expressed as a sym-

metric function of φ1, φ2, and φ3(= −φ1 − φ2). In the lowest harmonics, it is

written as

V [φ1, φ2] =
3∑

j=1

2V0 cos [φj + φ0] + Vconst. (2.4)

The energy of AA, AB, and BA bilayer stacking is then given by VAA = 6V0 cos(φ0),

VAB = 6V0 cos(φ0+
2
3
π), and VBA = 6V0 cos(φ0− 2

3
π). Here we obtain the parame-

ters (V0, φ0) from the relative values of VAA, VAB, and VBA found in the literature.

Table 2.1 lists the values of (V0, φ0) and the corresponding (VAA, VAB, VBA) for

the systems considered in this thesis.

Now we consider smooth, in-plane displacement fields u(1)(r, t) and u(2)(r, t)

for layer 1 and layer 2, respectively, which represent atomic shifts at the position

r and time t. We also define the symmetric and antisymmetric components as
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Table 2.1: Parameters for interlayer binding energy, (V0, φ0), and the corre-
sponding (VAA, VAB, VBA) for the considered systems in this paper. Note that the
zero-energy reference of the interlayer binding energy is arbitrary. The unit of
V0, VAA, VAB, and VBA is eV/nm2.

V0 φ0 VAA VAB VBA Ref.
TBG 0.160 0 0.961 -0.481 -0.481 [79, 80]
t-G/hBN 0.202 0.956 0.700 -1.208 0.509 [118]
t-MoS2 (P) 0.0889 0 0.533 -0.267 -0.267 [121, 142]
t-MoS2 (AP) -0.0801 -0.805 -0.333 -0.133 0.467 [121, 142]

Table 2.2: Lamé parameter and mass density used in the calculation.

λ (eV/Å2) µ (eV/Å2) ρ (10−8 g/cm2) Ref.
Graphene 3.25 9.57 7.61 [144, 145]
hBN 3.5 7.8 7.59 [146, 145]
MoS2 4.23 4.23 30.5 [121, 142]

u±(r, t) = u(2)(r, t)± u(1)(r, t). The phase difference becomes

φj(r, t) = bj ·
(
r− u(1)(r, t)

)
− b′

j ·
(
r− u(2)(r, t)

)
= GM

j ·
(
r− u+(r, t)/2

)
+ b̄j · u−(r, t), (2.5)

where b̄j = (bj + b′
j)/2. The total interlayer binding energy is then calculated

by taking the integral over the system,

UB =

∫
V [φ1(r, t), φ2(r, t)] d

2r. (2.6)

The energy cost associated with the in-plane distortion is described by a

standard elastic theory [143],

UE =
2∑

l=1

1

2

∫
(λ(l) + µ(l))

(
u(l)
xx + u(l)

yy

)2
+ µ(l)

[(
u(l)
xx − u(l)

yy

)2
+ 4

(
u(l)
xy

)2]
d2r, (2.7)

where u
(l)
ij = (∂iu

(l)
j + ∂ju

(l)
i )/2 is the strain tensor, and λ(l) and µ(l) are the Lamé

parameters for layer l which are given in Table 2.2.
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Meanwhile, time-dependent displacement field gives a kinetic energy which is

expressed as

T =
2∑

l=1

∫
1

2
ρ(l)

(
u̇(l)2
x + u̇(l)2

y

)
d2r, (2.8)

where ρ(l) is the mass density of layer l. The mass density for graphene, hBN,

and MoS2 are given in Table 2.2.

The Lagrangian of the moiré bilayer system is given by L = T − (UE + UB)

which is a functional of the displacement vector fields u(l)(r, t). We rewrite the

Lagrangian in terms of the symmetric and antisymmetric displacement vector

fields u±. The Euler-Lagrange equation for u± is obtained as

1

2


ρ ρ′

ρ′ ρ

 ∂2

∂t2
+

K̂ K̂ ′

K̂ ′ K̂



u+

u−


=

3∑
j=1

2V0 sin [φj(r, t) + φ0]

−GM
j /2

b̄j

 , (2.9)

where

K̂ = −

(λ+ 2µ)∂2
x + µ∂2

y (λ+ µ)∂x∂y

(λ+ µ)∂x∂y (λ+ 2µ)∂2
y + µ∂2

x

 , (2.10)

K̂ ′ = −

(λ′ + 2µ′)∂2
x + µ′∂2

y (λ′ + µ′)∂x∂y

(λ′ + µ′)∂x∂y (λ′ + 2µ′)∂2
y + µ′∂2

x

 , (2.11)

and

λ =
λ(2) + λ(1)

2
, λ′ =

λ(2) − λ(1)

2
,

µ =
µ(2) + µ(1)

2
, µ′ =

µ(2) − µ(1)

2
,

ρ =
ρ(2) + ρ(1)

2
, ρ′ =

ρ(2) − ρ(1)

2
. (2.12)

Note that ρ and ρ′ in Eq. (2.9) are multiplied by a 2× 2 unit matrix.
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We see that λ′, µ′, ρ′ are responsible for the hybridization of interlayer sym-

metric component u+ and anti-symmetric component u−. For homobilayers,

λ′, µ′, ρ′ = 0 which means that the antisymmetric and symmetric modes are com-

pletely decoupled. For graphene/hBN case, λ′, µ′, ρ′ are much smaller than λ, µ, ρ,

respectively, and hence we neglect these hybridization terms hereafter.

The effect of the moiré interlayer coupling is also much more significant in

the antisymmetric part than in the symmetric part, as the phase difference φi in

Eq. (2.5) is more sensitive to u− because of |b̄j| ≫ |GM
j |. By neglecting u+ in

φi, the equation of motion for u+ becomes equivalent to that for the single-layer

honeycomb lattice with the averaged parameters of Eq. (2.12). As a result, the

symmetric phonon modes are simply represented by the longitudinal (LA) and

transverse (TA) acoustic modes with phonon velocity

vL =

√
λ+ 2µ

ρ
and vT =

√
µ

ρ
, (2.13)

respectively.

2.3 Static case: Lattice relaxation

We assume a solution for the anti-symmetric mode in the form of [45]

u−(r, t) = u−
0 (r) + δu−(r, t), (2.14)

where u−
0 (r) is the static equilibrium part and δu−(r, t) is a time-dependent

perturbation from the equilibrium. The equation for the static solution u−
0 (r) is

given by setting δu−(r, t) = 0 in Eq. (2.14). Here we assume that u−
0 has the

same periodicity as the original moiré pattern, and write it as

u−
0 (r) =

∑
G

u−
0,Ge

iG·r, (2.15)
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where G = mGM
1 + nGM

2 are the moiré reciprocal lattice vectors. Eq. (2.9) then

becomes

K̂Gu
−
0,G =

3∑
j=1

4V0f
j
Gb̄j, (2.16)

where

K̂q =

(λ+ 2µ)q2x + µq2y (λ+ µ)qxqy

(λ+ µ)qxqy (λ+ 2µ)q2y + µq2x

 , (2.17)

and f j
G is defined by

sin
[
GM

j · r+ b̄j · u−
0 (r) + φ0

]
=

∑
G

f j
Ge

iG·r. (2.18)

We solve a set of equations (2.16) and (2.18) iteratively as follows [85]. For

a given u−
0 , we obtain the Fourier component f j

G by Eq. (2.18). We then obtain

the u−
0 of the next generation by u−

0,G =
∑3

j=1 4V0f
j
GK̂

−1
G b̄j [Eq. (2.16)]. We

iterate the process until the solution converges. The order of relevant number of

harmonics in the Fourier transformation of u−
0 is characterized by a dimensionless

parameter [85],

η =
LM

a

√
V0

λ+ µ
. (2.19)

As the moiré period increases, higher number of Fourier expansion terms become

necessary to obtain the converged solution.

Figure 2.2 shows the calculated interlayer binding potential, V , before and

after relaxation at various twist angle of all the considered systems. Each sys-

tem exhibits a characteristic domain pattern, which is determined by relative

stabilities among AA, AB and BA stacking configurations (Table 2.1). In TBG

[Fig. 2.2(a)] and parallel t-MoS2 [2.2(c)], the relaxed structure reveals a triangu-

lar pattern comprising AB and BA stacking regions, indicative of the energetic

equivalence between these configurations [85, 86]. In t-G/hBN [Fig. 2.2(b)], on
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the other hand, only the AB stacking dominates in the relaxed structure as it

is the only structure with the lowest energy, resulting in a honeycomb domain

pattern [118, 147]. Note that the rightmost figure correspond to the case where

lattice constant mismatch, ε, is reduced to 0.65% (from the original 1.8%). The

antiparallel t-MoS2 [Fig. 2.2(d)] exhibits a transition between triangular structure

towards a honeycomb pattern in the low-θ limit, This behavior arises from the

relatively small energy difference between the most stable AA stacking and the

second stable AB stacking (see, Table 2.1), resulting in competition of domain

structure enlargement before the eventual domination of the AA stacking regions

as the twist angle is reduced towards 0◦ [86, 121, 142].

The higher number of harmonics, as represented by the dimensionless pa-

rameter η, at small twist angle, also means that the displacement field becomes

sharper with respect to the moiré period LM. Therefore, the η parameter can be

generally understood as the degree of lattice relaxation, where large η corresponds

to a soft lattice, strong interlayer coupling, and/or large moiré period. In fact,

the sharp domain walls at large η represent one-dimensional solitons which is a

special solution to the time-independent Euler-Lagrange equations [85, 46, 108].

Using that description, the width of the domain walls is approximately given

by[85],

wd ≈ a

4

√
λ+ µ

V0

, (2.20)

which is independent of the twist angle, and hence, the moiré period.

2.4 Dynamical case: Moiré phonons

The time dependent part in Eq. (2.14) can be expressed in a Fourier series as

δu−(r, t) =
1√
S

∑
G

∑
q

δu−
q+G(t)e

i(q+G)·r, (2.21)
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Figure 2.2: Local binding energy of the four considered twisted bilayer systems
at various twist angles. Each figures are scaled by the moiré period LM.
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where S is the system’s total area, q is the phonon wave vector within MBZ. The

equation of motion, Eq. (2.9), is then written as

ρr
d2

dt2
δu−

q+G = −
∑
G′

D̂q(G,G′)δu−
q+G′ , (2.22)

where ρr = ρ/2 is the relative mass density, D̂q(G,G′) = (1/2)K̂q+GδG,G′+V̂G′−G

is the dynamical matrix, and V̂ is defined as

V̂G = −2V0

3∑
j=1

hj
G

b̄j,xb̄j,x b̄j,xb̄j,y

b̄j,y b̄j,x b̄j,y b̄j,y

 , (2.23)

with

cos
[
GM

j · r+ b̄j · u−
0 (r) + φ0

]
=

∑
G

hj
Ge

iG·r. (2.24)

At a given q, we obtain the phonon eigen modes by solving the following

eigenvalue equation,

ρrω
2
n,qCn,q(G) =

∑
G′

D̂q(G,G′)Cn,q(G
′), (2.25)

where n is the mode index, ωn,q is the eigenfrequency, andCn,q(G) = (Cx
n,q(G), Cy

n,q(G))

is the eigenvector normalized by
∑

G |Cn,q(G)|2 = 1.

While we neglect distortion on the out-of-plane direction throughout this

work, the real sample is expected to be corrugated as in TBG [67, 83, 92], since

the optimal interlayer spacing is generally registry-dependent. Accordingly the

out-of-plane phonon modes (flexural phonons) would also be subject to some su-

perlattice effect [52, 53]. However, it is relatively minor compared to the complete

restoration of in-plane phonon since out-of-plane motion does not affect the moiré

pattern unlike in-plane interlayer sliding [45]. Also, the corrugated structure may

cause some finite coupling between the in-plane modes and out-of-plane modes,

but it is negligible within harmonic approximations [101].
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Chapter 3

Phonons in twisted bilayer moiré

superlattices

In this chapter, we discuss the properties of the phonons of the various repre-

sentative twisted bilayer moiré superlattices using the continuum theory described

in the previous chapter. In Sec. 3.1, we show the phonon dispersion of twisted

bilayer graphene, twisted graphene/hBN, and twisted bilayer MoS2, including

the wave function of some of the modes. Using these results, we demonstrate the

universal features as the twist angle reduces towards the low-angle limit. In Sec.

3.2, we construct an effective model that is able to reproduce the properties of

moiré phonons in the low-angle limit. In Sec. 3.3, we use the effective model to

elucidate the origin of flat phonon bands that are found across different twisted

bilayer systems. In Sec. 3.4, we discuss the existence of chiral phonons, given by

the finite angular momentum of the moiré phonons due to the lack of inversion

symmetry in the twisted graphene/hBN.

3.1 Phonon modes

3.1.1 TBG

In this part, we show the calculated phonon dispersion and wave function of

TBG. We note that similar results have been previously shown by Koshino and

Son [45]. Here, we reproduce some parts that are relevant to the purpose of this

thesis.

Figure 3.1 show the phonon dispersions of in-plane antisymmetric modes of
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Figure 3.1: Phonon dispersion and density of states of the in-plane antisymmetric
mode of TBG with various twist angle. The horizontal axis is scaled by the
superlattice Brillouin-zone size ∝ 1/LM, and the vetical axis is scaled by ω0 ∝
1/LM (see main text). The value of η is given for each case to indicate the
relative strength of interlayer coupling. (a) Phonon dispersion when the interlayer
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TBG (u−) calculated for θ = 2.65◦, 0.817◦, and 0.32◦. Here the horizontal axis is

scaled by the size of the superlattice Brillouin zone (∝ 2π/LM and the vertical

axis is scaled by

ω0 =
2π

LM

√
λ

ρ
, (3.1)

where
√

λ/ρ corresponds to the characteristic velocity scale for the acoustic

phonons in graphene. The right vertical axis provides the corresponding scale of

phonon energy, ℏω in meV. Figure 3.1(a) is the phonon dispersion in the absence

of interlayer moiré potential. This is equivalent to the folded linear dispersions

of the LA and TA phonons of graphene, which are given by ω(q) = vLq and

vT q, respectively, where vL and vT are the phonon velocity of the corresponding

modes as given in Eq. (2.13). The plotted bands in 3.1(a) are independent of the

twist angle, since both the horizontal and vertical axes are normalized by units

proportional to 1/LM. As comparisonn, the same dispersions of the lowest two

bands are also indicated by red dashed lines in Figs. 3.1(b)-(d). Note that the

phonon band structure of the in-plane symmetric modes (u+) remain unchanged

and they are not drawn in Fig. 4.2(b)-(d).

For the antisymmetric modes, we find the reconstruction of the original acous-

tic bands of graphene into mini bands of the moiré superlattice, signified by band

splittings that show up as sharp peaks in the density of states. This reconstruc-

tion becomes more notable at small twist angle, where band gaps gradually open

between specific group of bands, i.e., between 2nd and 3rd, 5th and 6th, 8th and

9th. More importantly, we also find the extreme flattening of the third, sixth,

and ninth bands, seemingly fitting a specific number pattern given by 3n where

n is a non-zero positive integer.

Figure 3.2 shows the phonon wave functions for the lowest seven antisymetric

modes of TBG with θ = 0.817◦, calculated at q = [0, 2π/(6LM)][= (1/4)γκ].

Here, the y axis is taken as the horizontal axis, and the colors represent a snapshot

of the local binding energy at a ceratin time of the oscillations. We note that

in these plots, the amplitude of the oscillations are amplified for the purpose of
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Figure 3.2: Phonon wave functions of the lowest seven modes at q = [0, 2π/(6LM)]
in TBG with θ = 0.817◦. The y axis is taken as the horizontal axis, and the colors
represent the local binding energy. Dashed line indicates the static position of
the domain walls.
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illustration only. From this figure, we find that the reconstructed phonon modes

are seen as the effective vibrations at the moiré scale. For example, the first

two modes, as shown in Fig. 3.2(a) and (b), can be viewed as the longitudinal

and transverse acoustic modes of the triangular domain pattern of the moiré

superlattice. We also note that the phonon velocity of this LA mode is less than

the TA mode, in contrary to the LA and TA mode of graphene and other two-

dimensional honeycomb lattices, as given by Eq. (2.13). This feature implies

that the moiré superlattice has different elasticity nature to the graphene and the

description of low-energy phonons requires different lattice model that takes into

account the renormalization of the elastic constants [107, 46, 108].

In each panel of Fig. 3.2, an inset (bottom right) shows the spatial distribu-

tion of the amplitude of the atomic displacement, |δu(r)| for each corresponding

phonon band. Here, we can observe the position of atomic displacement in the

graphene lattice which responsible for the effective oscillations in the moiré su-

perlattice. We find that across the lowest seven modes, the atomic vibrations are

concentrated in the vicinity of the domain walls. More importantly, we find that

for the third and sixth modes, which correspond to the flat bands in Fig. 3.1(c),

clearly exhibit nodes where the amplitude completely vanishes. As we argue in

the next few sections, this indicates that the wave function is composed of funda-

mental oscillation modes of independent strings that is intimately related to the

flatness of the corresponding bands.

3.1.2 Twisted graphene/hBN

In Fig. 3.3, we show the phonon dispersion of the interlayer antisymmetric modes

of twisted graphene/hBN at various twist angles, in a similar way to Fig. 3.1.

Fig. 3.3 represents the non-coupling case that is independent of the twist angle

which also shown in Fig. 3.3(b)-(d). Fig. 3.3(d) represents the lattice-matching

case, as discussed in Sec. 2.3 in the context of lattice relaxation. Here, the lattice-

matching allows a moiré period larger than that of 0◦ twisted graphene/hBN to
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(c) 0◦, and (d) 0◦ with lattice mismatch reduced to 0.65%.
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illustrate the strong interlayer coupling regime (η ≈ 2) [see Eq. (2.19)]. We note

that similar effect can be achieved by enhancing V0, i.e., larger potential difference

between the most and least stable stacking regions.

As observed in the case of TBG, the moiré effect in the phonon band struc-

ture of interlayer antisymmetric modes is observed as the appearance of gaps and

the flattening of particular phonon bands. However, as the interlayer coupling

becomes more significant (larger η), the reconstructed bands converge to a com-

pletely different structure to those of TBG. Here, we find two different type of

gaps, the smaller gaps separate the 3n+2-th and 3n+3-th (n = 0, 1, 2, ..) bands

at the κ+ and κ− points, and the larger gaps separating the 3n+3-th and the

3n+4-th bands at the γ-point. The small gaps at the MBZ corners are related to

the inversion symmetry breaking and the presence of phonons with finite angular

momentum, which will be discussed in more detail in Sec. 3.4. We also find that

the extreme band flattening are occurring at different band index. In this twisted

graphene/hBN system, the flat bands are given by the 3n+1-th (n = 0, 1, 2, ...)

band. This suggests different nature of these flat phonon bands to that of TBG,

which will be elucidated using effective model described in the later sections.

Figure 3.4 shows the phonon wave functions for the lowest seven antisymetric

modes of twisted graphene/hBN with θ = 0◦, calculated at q = [2π/(6LM), 0][=

(1/4)γκ]. In each panel, the spatial distribution of the amplitudes of the atomic

oscillation is also shown as inset in the bottom right. Similar to the TBG case,

here we also find the renormalized phonon modes are represented as effective os-

cillations at the moiré scale. This time, these oscillations are given as modulation

of the honeycomb domain wall network. The distribution of oscillating atoms are

also found to be concentrated in the vicinity of domain walls, which is obvious as

the modulation of honeycomb moiré superlattice is just distortion of the domain

walls network. For the flat bands, clear nodes with vanishing amplitudes are also

observed. However, we will show that the exact location of these clear nodes can

be determined which intimately related to the origin of the flat phonon bands.
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Figure 3.4: Phonon wave functions for the lowest 7 modes (a-h) of the interlayer
antisymmetric modes in 0◦ G/hBN at q = ( 2π

6LM
, 0). The color gradient represents

the local binding energy. The inset at each figure shows the sum of amplitude
distribution of all wave vectors within MBZ for the corresponding phonon branch.
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3.1.3 Twisted bilayer molybdenum disulfide

Figure 3.5 shows the phonon dispersion of the in-plane antisymmetric modes

of twisted bilayer MoS2 for both parallel and antiparallel case for two different

twist angles. Here, we find that the antisymmetric phonon modes of the parallel-

stacked case closely resembles to that of TBG [Fig. 3.1]. In fact, around the same

relative coupling strength [Fig. 3.1(c) and Fig. 3.5(a); Fig. 3.1(c) and Fig. 3.5(b)],

the phonon band structure of the two systems are almost identical, except that

those of MoS2 have a lower energy scale. This similarity is reflected in their

relaxed lattice structure where TBG and parallel-stacked t-MoS2 shares the same

triangular domain pattern.

In analogous way, the phonon band structure of the antiparallel case can be

understood by comparing its relaxed structure with other systems. At 0.8◦, the

lattice structure of antiparallel t-MoS2 correspond to an intermediate state in the

transition from triangular structure at large twist angle (weak interlayer coupling)

to honeycomb structure at small twist angle (strong interlayer coupling). As a

result, while at nominal twist angle [Fig. 3.5(c)], the phonon band structure

does not have a clear correspondence to either that of TBG or graphene/hBN,

it converges towards a graphene/hBN-like bands in the strong-coupling regime

[Fig. 3.5(d)] where the honeycomb domain pattern in the relaxed structure are

clearly observed.

These results demonstrate the strong correspondence between lattice relax-

ation and the phonon band structure and the presence of universal characteristics

shared across different twisted bilayer systems. In the following sections, we de-

velop an effective model to reproduce the phonon dispersion of different moiré

superlattices can be reproduced and use it to elucidate the origin of various fea-

tures, particularly the flat bands.
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Figure 3.5: Phonon dispersion of twisted bilayer MoS2 for the parallel case with
θ = (a) 0.8◦ and (b) 0.29◦, and for the antiparallel case with θ = (c) 0.8◦ and (d)
0.28◦. The red-dashed line corresponds to the lowest two bands of the phonon
dispersion in the absence of moiré interlayer coupling.
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3.2 Effective model

Effective description of acoustic phonons in the small-θ (strong-coupling) regime

of twisted bilayer graphene have been studied using mass-bond model [45], soliton

approximation [46], and a fully field theoretical treatment [108]. One of the

notable results from these studies is the finite convergence of the phonon velocities

of the lowest two modes (the moiré acoustic modes) and the effective elasticity of

the moiré superlattice. However, the description of higher energy bands remains

unknown. In this section, we presents an extended version of the mass-bond

model that reproduces the full band structure in the strong-coupling limit.

3.2.1 Equation of motion

One key element of the domain wall in the relaxed structure of moiré superlattices

is that its energy is proportional to its length [107, 45, 46]. This can be understood

by the following argument [45]. In the relaxed structure of TBG, the total binding

energy per moiré unit cell, relative to the AB/BA stacking, is proportional to the

area of the domain walls, UB ∼ wdLM, where wd is width of the domain walls.

The elastic energy is also concentrated within the domain-wall regions, and it

is given by UE ∼ λ(∂ui/∂xj)
2(wdLM). Here, λ is a representative scale for the

elastic constant, since λ and µ are in the same order of magnitude. In the domain

wall, the strain tensor ∂ui/∂xj is of the order of a/wd since an atomic shift ui

changes by about a inside the domain wall. The relaxed state is then given by the

condition UE ∼ UB, and this gives wd ∼ a
√
λ/V0 which correctly approximate

the width of the domain walls, Eq. (2.20), which is independent of the twist angle

[46, 148].

Now, let us consider a simple oscillations that correspond to the phonon wave

functions such as the first few modes in Figs. 3.2 of TBG. During the oscillations,

the local changes at a given moiré unit cell are represented by distortion of the

domain walls, such as elongation and bending, in which the width of the walls
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Figure 3.6: Schematic diagram of the effective mass-bond model for the (a) tri-
angular and (b) honeycomb domain walls of the relaxed domain pattern in moiré
superlattice [see Fig. 2.2].

remains approximately constant. In such distortion, the actual atoms in the

honeycomb lattice are not displaced in a similar way to the domain walls, but

the area of the same local atomic configurations is increased (or decreased), so

that the total energy change is proportional to the change in the total length of

the domain walls. Note that this is contrary to the usual mass-spring model for

lattice dynamics, where the energy of the spring proportional to the square of the

change in length.

Based on the argument above, we construct a discrete lattice model which

simulates the domain wall motion with an array of masses and bonds, as illus-

trated in Fig. 3.6. Here, a segment of the wall connecting the vertices is broken

down into N small segments (bonds) that are linked to masses that can move

within the two-dimensional plane. Let us first focus on the honeycomb structure.

We define τj (j = 1, 2, 3) as vectors connecting A (AA in graphene/hBN and BA

in antiparallel t-MoS2) to the nearest B points (BA in graphene/hBN and AB in

antiparallel t-MoS2). The equilibrium position of a mass is given by

r
(j,n)
R = R+ nτj/N, (3.2)
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where R = m1L
M
1 + m2L

M
2 is the position of the nearest A sublattice, and j =

1, 2, 3 represents the direction of the chain that the mass belongs to, and the

index n = 0, 1, · · · , N specifies the position on the chain as in Fig. 3.6(b). The

displacement of the corresponding mass is denoted by u
(j,n)
R = (u

(j,n)
x,R , u

(j,n)
y,R ). This

is a quantity different from the atomic displacement of the graphene lattice. Note

that three vectors u
(j,0)
R (j = 1, 2, 3) are actually the same variable that represents

a shift of a vertex mass at A, and likewise u
(j,N)
R+τ1−τj

(j = 1, 2, 3) express a mass

at B.

In the presence of the displacement of masses, the change of total length of

the bonds is written in the second order as

∆L =
1

2l

∑
R

3∑
j=1

N−1∑
n=0

[
|∆u

(j,n)
R |2 −

(
τ̂j ·∆u

(j,n)
R

)2
]
, (3.3)

where ∆u
(j,n)
R = u

(j,n+1)
R − u

(j,n)
R , l = |τj|/N and τ̂j = τj/|τj| is a unit vector

along j direction. Here, the linear length change to u
(j,n)
R is considered to be

zero, assuming that an overall expansion of the whole system is restricted by

the boundary condition. The change in the total energy is then given by U =

αV0wd∆L, where wd is the width of the wall [Eq. (2.20)] and α is a numerical

constant to match the energy scale of original system. By the Fourier transform

u
(j,n)
R =

∑
q u

(j,n)
q exp(iq · r(j,n)R ), U can be written as

U =
K

2

∑
q

3∑
j=1

N∑
n,n′=0

[
u
(j,n′)
−q

]T
D̂j

q(n
′, n)u(j,n)

q , (3.4)

where K = αV0wd/l is the effective spring constant of the bond. The D̂j
q(n, n

′)

is a 2× 2 dynamical matrix of which non-zero elements are given by,

D̂j
q(n, n) =

 T̂j (n = 0, N)

2T̂j (n = 1, 2, · · · , N − 1),
(3.5)

D̂j
q(n− 1, n) =

[
D̂j

q(n, n− 1)
]†

= −T̂je
iq·τj/N , (3.6)
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where

T̂j =

1− (τ̂xj )
2 −τ̂xj τ̂

y
j

−τ̂xj τ̂
y
j 1− (τ̂ yj )

2

 . (3.7)

The T̂j is a projection operator perpendicular to τ̂j, which works for an arbitrary

vector x as T̂jx = (δµν − τ̂µj τ̂
ν
j )x

ν = x− τ̂j(τ̂j · x).

The kinetic energy of the system is

T =
M

2

∑
q

[
|u̇A

q |2 + |u̇B
q |2 +

3∑
j=1

N−1∑
n=1

|u̇(j,n)
q |2

]
, (3.8)

where M = ρa2l/wd is the effective mass [45], and uA
q = u

(j,0)
q and uB

q = u
(j,N)
q .

The Euler-Lagrange equation is then given by M ü
(j,n)
q = K

∑
n′ D̂j

q(n
′, n)u

(j,n′)
q ,

which is solved to obtain eigen phonon frequencies and the corresponding wave

functions.

For the triangular effective model, a wall segment connect a single vertex (the

AA stacking regions) to the an equivalent vertex in the neighboring moiré unit

cells. By following similar derivation to the honeycomb case, the corresponding

total energy can be written as

U =
K

2

∑
q

3∑
j=1

N−1∑
n,n′=0

[
u
(j,n′)
−q

]T
D̂j

q(n
′, n)u(j,n)

q , (3.9)

where the dynamical matrix D̂j
q(n, n

′) is now given by

D̂j
q(n, n) = 2T̂j, (3.10)

D̂j
q(n− 1, n) =

[
D̂j

q(n, n− 1)
]†

= −T̂je
iq·τj/N . (3.11)

The equations of motion is obtained in a similar way. Note that for the triangular

case, the number of independent mass displacement are given by 3(N − 2) + 1,

instead of 3(N−2)+2 as in the honeycomb case, due to the absence of sublattices,
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i.e., extra vertex within the unit cell.

3.2.2 Phonon modes

Figure 3.7 shows the phonon dispersion of the effective model that is fitted to the

original band structure of each considered systems in the strong-limit regime (η ≈

2). Here, we use N = 50 and α = 33.0, 24.2, 22.17, 10.1 for TBG, parallel t-MoS2,

antiparallel t-MoS2, and t-G/hBN, respectively. The choice of these parameters

is purely based on the best-fit consideration. We see that the effective model

qualitatively reproduces the flat bands and the repeating unit of the original

band strucutre. For effective triangular model, the flat bands are located at the

3n-th (n = 1, 2, ...) band, while for honeycomb model they are located at the

3n+ 1-th (n = 0, 1, ...) band.

The phonon wave functions of the first seven modes of the effective triangular

model and honeycomb model are shown in Figs. 3.8 and 3.9, respectively. The

wave vector and temporal snapshot are chosen to be the same as the phonon

wave function of TBG and t-G/hBN shown in Figs. 3.2 and 3.4. Here, we observe

the perfect correspondence of the oscillations mode between the effective model

and the original system, particularly for those corresponding to the flat bands,

where vanishing oscillation amplitudes are located at identical positions within

the domain walls.

3.2.3 Inhomogeneous mass model

While the effective model is able to reproduce the flat bands satisfactorily, we note

that it does not capture well some band gaps in both triangular and honeycomb

case.

Here, we show that these band gaps are reproducible by considering an in-

homogeneous distribution of masses in the effective model. We assume that the
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Figure 3.7: Phonon dispersion of the effective model (red-dashed line) and the
original model (black line) of each considered twisted bilayer systems at the
strong-coupling regime (η ≈ 2).
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Figure 3.8: Phonon wave function of the first seven modes of the triangular
effective model which correspond to the same wave vector and temporal snapshot
of Fig. 3.2.
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Figure 3.9: Phonon wave function of the first seven modes of the honeycomb
effective model which correspond to the same wave vector and temporal snapshot
of Fig. 3.4.
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Table 3.1: List of parameters for the effective models with inhomogeneous mass
distribution.

α b0 b1 b2
TBG 24.2 2 0.019 0.019
t-G/hBN 8.12 1 -0.375 -0.390
t-MoS2 (P) 19.4 2 0.020 0.020
t-MoS2 (AP) 22.2 10 0.007 -0.050

mass at position r
(j,n)
R , is given by

mn/M0 = b0 + f(n/N, b1) + f(n/N − 1, b2), (3.12)

where bi(=0,1,2) is a fitting parameter, M0 is a normalization factor such that∑N
n=0mn = (N + 1)M , and f(x, b) = (b/π)/(x2 + b2) is a decaying function with

maximum at x = 0 and half maxima at x = ±b. Figure 3.10 (a-d) compares the

phonon dispersion of the effective model with the inhomogeneous mass distribu-

tion (red-dashed lines) and the original model (black lines) for each system. We

find that a nearly perfect agreement can be achieved by considering a distribu-

tion of masses along a single segment (n = 0, ..., N) as given in the top-right inset

within each panel. The corresponding values of bi parameters that produce these

distributions are given in Table 3.1. These values are determined by considering

the nature of the band gaps which is explained as follows.

As an example, let us consider the third, fourth, and fifth phonon modes

near the γ-point in the honeycomb model. In the t-G/hBN case, the fourth

and fifth modes are degenerate at γ while the third mode is gapped at lower

frequency. By observing the corresponding phonon wave functions [Fig. 3.4 (c-e)],

we find that the oscillation pattern of the third mode can be clearly distinguished

from that of the fourth and fifth modes. The vibrations in the former mode are

concentrated within each domain wall segment whereas those in the latter modes

are concentrated near the vertex positions. From the perspective of mass-bond

model, this suggests that the masses in the center of each segment are heavier

than those close to the end points. To reproduce the exact size of the gaps in
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Figure 3.10: Phonon dispersion of the effective model with inhomogeneous mass
assumption (red-dashed line) and the original model (black line). Inset in each
panel shows the mass distribution for masses at n = 0, ..., N .
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the model, we fine-tune the magnitude of b1 and b2 that tells the sharpness of the

distribution gradient and the magnitude of b0 which determines the ratio of the

mass at the center and the ends of the segments.

Band gaps at γ in other systems are also reproduced using the same approach

except those between the seventh and eighth mode in the triangular model which

requires further introduction of an energy cost associated with rotational degree

of freedom at the vertex points. Meanwhile, the gaps at the κ± points in the

honeycomb case is particularly special, as it requires mass distribution that breaks

the inversion symmetry, i.e., b1 ̸= b2. We note that in the present case, we treat

the bi as phenomenological constants. In the actual systems, we expect that these

corresponds to the inhomogeneity of binding and elastic energy across the domain

walls. We left this rigorous treatment of the bi parameters for future study.

3.3 Origin of flat bands

One striking feature in the phonon band structures of both triangular and hon-

eycomb models are the presence of multiple flat bands. To consider the origin

of these flat bands, we first consider the N = 1 case of the honeycomb effective

model and obtain the analytical solution. Here, a unit cell contains masses only at

A and B, and hence the equation has only four degrees of freedom. The equation

of motion is written as

Mω2

uA
q

uB
q

 = K
3∑

j=1

 T̂j −T̂je
iq·τj

−T̂je
iq·τj T̂j


uA

q

uB
q

 , (3.13)

where ω is the eigen frequency. The obtained phonon dispersion has a similar

structure to the lowest four bands of N = 20 model, where flat bands appear in

the first and fourth bands with eigen frequencies ω = 0, 3
√

K/M , respectively.
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The corresponding eigenstates are given by

uA
q

uB
q

 =

 fq

∓f∗q

 , (3.14)

respectively, where

fq =
3∑

j=1

τje
−iq·τj . (3.15)

It is straightforward to check that Eq. (3.14) satisfies the eigen equation Eq. (3.13),

by using the relation

T̂jfq = −T̂jf
∗
qe

iq·τj , (3.16)

and
∑3

j=1 T̂j = (3/2)I, where I is a 2×2 unit matrix.

The expression of Eq. (3.14) leads to an important observation for the motion

of the neighboring masses. Let us consider a pair of masses at A and B points

separated by τj. According to Eq. (3.14), the motions of the two points are given

by uA(R) = Cfq and uB(R + τj) = ∓Cf∗qe
iq·τj , where C is a common constant.

Using Eq. (3.16), we immediately have

T̂ju
A(R) = ±T̂ju

B(R+ τj), (3.17)

for the first and fourth modes, respectively. Noting that T̂j is the projection

operator perpendicular to τj, we conclude that, in the flat band modes, the

neighboring vertices A and B always move either in phase (the first mode) or out

of phase (the fourth mode) when the motion is projected perpendicularly to the

bond, regardless of the wave number.

Actually, this relationship holds for vertex-site motions of any flat band modes

in N ≥ 1 cases, where 3n + 1-th flat bands can be further associated with the

in-phase motions (6n+1-th) and out-of-phase motions (6n+4-th), as illustrated

in Fig. 3.11. The phase synchronization of the vertex sites means that masses in
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1st

(a) In-phase vertex motion

7th

(b) Out-of-phase vertex motion

4th 10th

Figure 3.11: Phase synchronization for the perpendicular motion of neighboring
vertices in the honeycomb effective model: (a) in-phase mode, and (b) out-of-
phase mode. These corresponds to the two type of solutions in the vibration
modes of string-like system with open boundary conditions.

each single chain can collectively vibrate as a stationary wave of an isolated string.

Since the phase synchronization persists at any q as shown above, this gives a

flat dispersion at the frequency of the corresponding fundamental mode of the

string. The vertex motions parallel to bonds are not generally synchronized, but

they are irrelevant for the band flatness because the contributions of the parallel

shifts to the total bond length cancel as a whole, and do not change the total

energy. Here note that the energy of an effective bond is linearly proportional to

its length as argued above.

Meanwhile, for the triangular case, the absence of sublattice degree of freedom

prevent the phase synchonization of neighboring vertices at any finite wave-vector
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6th3rd

Figure 3.12: The two lowest fundamental oscillation modes in the string-like
system with closed boundary conditions. The corresponding oscillation in the
effective triangular model are also given, representing the wave function of the
lowest two flat bands at the κ+ point.

q. Therefore, the only way it can hosts a localized oscillation along the domain

walls is by having a similar oscillation pattern resembling the stationary waves

of isolated string with closed boundary conditions. This is contrary to the honey-

comb lattice case, where the oscillation modes corresponding to the flat bands can

be viewed as stationary waves of isolated string with open boundary conditions.

Therefore, the oscillation pattern that corresponds to the flat bands of triangular

lattice are characterized by nodes at the vertices, followed by additional nodes

at equidistant positions along the domain walls for each subsequent fundamental

mode. These type of nodes are clearly observed in the spatial distribution of the

oscillation amplitudes of atomic vibrations in TBG [Fig. 3.2(c) and (f)] as well as

the oscillation of the masses in the effective model [Fig. 3.8(c) and (f)]. The first

two fundamental modes of such oscillations are illustrated in Fig. 3.12. Here the

corresponding oscillations in the effective triangular lattice are taken from the

third and sixth band at the κ+ point.

A notable feature in the phonon band structure in the effective honeycomb

lattices like t-G/hBN and antiparallel t-MoS2 is the existence of a flat band

at zero frequency. The complete flattening of the lowest branch implies that
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the regular honeycomb array is unstable against expansion/contractions of the

hexagonal unit cell. This can be understood by noting that we can modify a

regular honeycomb array into an irregular pattern without a change in the total

length of the domain wall (and hence the total energy), by expanding/shrinking

hexagons with the orientation of sides (domain walls) kept unchanged. This

situation is quite similar to solid phases of adsorbed atoms on a graphite surface,

where the commensurate domain wall formation was discussed [149]. In the

reality, the lowest band is not completely flat as seen in Figs. 4.3 and 3.5, and

therefore the regular honeycomb superlattice is energetically stable. Within the

effective model, the finite dispersion of the lowest band could be incorporated

by adding vertex-vertex interaction energy in the effective model. The flat zero

mode does not appear in the triangular lattices as it is impossible to introduce

any distortion without changing the total side length.

3.4 Phonon angular momentum

In a system without inversion symmetry, the phonons generally acquire a chiral

nature with finite angular momentum and the Berry curvature [150, 55, 51].

In the current system, the inversion symmetry breaking enters as difference in

local binding energy of stacking configurations located at opposite positions, e.g.,

AB/BA in t-G/hBN and antiparallel t-MoS2. The existence of chiral phonons in

the antiparallel stacking of t-MoS2 has been investigated by Suri, et al. [55]. To

clarify the existence of chiral phonons in t-G/hBN, we calculate the out-of-plane

component of angular momentum defined as [151, 55]

Lz = ρ

∫
d2r

2∑
l=1

(
δu(l) × δu̇(l)

)
z
, (3.18)

where l(= 1, 2) is the layer index and δu(l)(r, t) is the displacement vector of layer

l = 1, 2.

By using the Fourier transformation of the displacement vector [Eq. 2.21] and
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the relation δu(2) = −δu(1) = (1/2)δu−, we can rewrite Eq. (3.18) as,

Lz =
∑
q

∑
G

(
δu−

q+G × δp−
q+G

)
z
, (3.19)

where δp−
q = ρrδu̇

−
−q. In terms of phonon creation and annihilation operators,

δu−
q+G and δp−

q+G are written as [111],

δu−
q+G =

∑
n

Cn,q(G)

√
ℏ

2ρrωn,q

(an,q + a†n,−q),

δp−
q+G =

∑
n

iC∗
n,q(G)

√
ℏρrωn,q

2
(a†n,q − an,−q), (3.20)

where Cn,q(G) is the normalized eigenvector of Eq. (2.25). Substituting these

into Eq. 3.19, we have

Lz =
iℏ
2

∑
q,G

∑
n,n′

√
ωn′,q

ωn,q

[
Cn,q(G)×C∗

n′,q(G)
]
z

× (an,q + a†n,−q)(a
†
n,q − an,−q). (3.21)

Finally, the expectation value in equilibrium is written as

⟨Lz⟩ =
∑
n,q

Lz
n,q

[
f(ωn,q) +

1

2

]
, (3.22)

where

Lz
n,q = iℏ

∑
G

Cn,q(G)×C∗
n,q(G), (3.23)

and f(ω) = 1/(exp(ℏω/kBT )− 1) is the Bose-Einstein distribution function, and

we note that ⟨a†n,qan′,q′⟩ = f(ωn,q)δn,n′δq,q′ , ⟨an,qan′,q′⟩ = ⟨a†n,qa
†
n′,q′ ⟩ = 0, and

ωn,q = ωn,−q.

Figure 3.13 shows the k-space distribution of the angular momentum Lz
n,q for

the lowest six bands in 0◦-stack of G/hBN. We observe relatively large amplitudes
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Figure 3.13: Angular momentum for the lowest sixth bands of 0◦ G/hBN within
the MBZ.

with opposite signs in the second and third bands around the BZ corner κ±. This

corresponds to a gap opening caused by the inversion symmetry breaking [∆
κ−
23 ,

Fig. 3.14(a)]. In the fourth to sixth bands, notable angular momentum is observed

only in the close vicinity of κ±, in accordance with very small symmetry-breaking

gaps in the phonon band structure.

Figure 3.14(c) shows the twist-angle dependence of the angular momentum

Lz
n,q of the second and the third bands at κ−. The corresponding plot for the

gap width ∆
κ−
23 is shown in Fig. 3.14(b). We observe that the angular momenta

of these two bands are swapped when the gap closes at θ ∼ 0.3◦. The absolute

values peak at ∼2◦ and monotonically decrease in larger twist angles, as shown

in the inset of Fig. 3.14(c).

In Fig. 3.13, we also observe notable signals of angular momentum in the

two lowest bands around lines connecting γ and the κ± points. This can be

attributed to a tiny energy distance between the two bands, where perturbative

matrix elements of the symmetry breaking terms give rise to sizable angular

66



0

1

0

1

2

■ ■ ■ ■ ■
■

■
■

■
■

■
■

■

 









     

0.

0.2

0.4

■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

      

       
      

       

0.0 0.2 0.4 0.6 0.8 1.0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3




 

      


  
      

0 2 4 6 8 10
-0.4

0

0.4
(3rd, 𝜅!)

(2nd,	𝜒)

(1st, 𝜒)

(2nd,	𝜅!)

Δ!"
#!

Δ$!
%

Δ "
"!

𝐪
(m

eV
)

𝐿 !
𝐪

#
( ℏ
)

𝜃 (degree)

(b)

(c)

𝜅$ 𝛾 𝜇 𝜅%𝜒
(= !

"𝛾𝜅!)

Δ&'
(!

Δ)&
*

𝜔
	(m

eV
)

1st
2nd

3rd
(a)

Figure 3.14: (a) Dispersion of the lowest three bands of 0◦ G/hBN. (b) Twist
angle dependence of gap width (∆q

nn′) between the n-th and n′-th band at q. χ
is taken as 1

5
γκ−. (c) Twist angle dependence of the angular momenta for each

corresponding bands involved in (b) with inset showing larger range of angle up
to θ = 10◦.
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momentum by hybridizing these nearly-degenerate bands. We present the twist

angle dependence of the angular momentum of the first and the second bands

at χ ≡ (1/5)γκ− in Fig. 3.14(c), and also the corresponding plot of the energy

distance ∆χ
12 between the two bands at χ in Fig. 3.14(b). In increasing the

twist angle from 0, the ∆χ
12 become rapidly increases, and their angular momenta

immediately vanish correspondingly.
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Chapter 4

Low-temperature thermal transport

in bilayer moiré superlattices

In this chapter, we discuss how the moiré effect on the low-frequency phonon

properties of twisted bilayer systems are reflected in the thermal transport phe-

nomena. In Sec. 4.1, we describe the formulation of thermal transport theory

within the semiclassical picture and the constant mean free path assumption. In

Sec. 4.2, we show the calculated thermal conductivity for various representative

moiré superlattices and demonstrate the reduction of thermal conductivity and

changes in the temperature-dependence due to the moiré effect.

4.1 Thermal transport theory

Based on linearized Boltzmann transport theory with relaxation time approx-

imation [152], thermal conductivity of 2D isotropic material can be expressed

as

κ =
1

S

∑
n,q

1

2
v2n,qτn,qℏωn,q

∂f0(ωn,q)

∂T
, (4.1)

where S is the total area of the system, f0(ω) = 1/[exp(ℏω/kBT ) − 1] is the

Bose-Einstein distribution function, vn,q = |∇qωn,q| is the phonon velocity, τn,q

is the relaxation time, and the summation is taken over all of the mode index n

and wave vector q. Here, we note that the isotropic behavior is a consequence of

the three-fold rotation symmetry.

The relaxation time, τn,q, describes various scattering mechanisms that limit

the mean free path of the phonon which is defined as Λn,q ≡ τn,qvn,q. At low tem-
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perature, scattering due to geometric boundary is the dominant scattering mech-

anism and the mean free path no longer depends on the phonons frequency and

wavelength, i.e., Λn,q = Λ (constant) [152]. For example, in graphitic systems,

Λ is determined from the size and shape of the sample or the grain boundaries,

and it well describes the thermal conductivity for up to 100 K [153, 154, 155]. In

moiré systems, the superlattice period is generally observed to be varying across a

single sample [156, 157] and this would disrupt the propagation of phonon modes

[148]. In such a case, Λ can be regarded as a typical length where the moiré

pattern remains uniform. Henceforth, we treat Λ as a phenomenological constant

to be determined from direct measurements. The thermal conductivity is then

entirely governed by the harmonic properties, and it can be written as

κ =
Λ

2

∫ ∞

0

ñ(ω)C(ω, T )dω, (4.2)

where velocity-weighted density of states (VDOS) ñ is defined as

ñ(ω) =
1

S

∑
n,q

δ(ω − ωn,q)vn,q (4.3)

and spectral heat capacity C is defined as

C(ω, T ) = ℏω
∂f0(ω)

∂T
= kB

[
βℏω/2

sinh(βℏω/2)

]2
, (4.4)

where β = 1/(kBT ). In Eq. (4.2), ñ(ω) contains all information regarding the

phonon dispersion while C(ω, T ) acts as a weight function. The function C(ω, T )

is plotted in Fig. 4.1; it equals to kB when ω = 0, and decays exponentially

for ℏω ≳ 2kBT . In general, the summation over mode index n would include

both in-plane and out-of-plane (flexural) phonon modes. However, scattering

due to substrate or other layers significantly reduces the mean free path of the

flexural mode [129, 130, 131, 132, 133, 134], hence, its contribution to thermal

conductivity especially at low temperatures [128]. Hereafter, we will focus only
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Figure 4.1: Plot of the spectral heat capacity function C(ω, T ) [Eq. (4.4)] as a
function of phonon energy at different temperatures.

on the in-plane modes contribution in the thermal conductivity.

Since only the antisymmetric phonon modes are strongly affected by the in-

terlayer moiré potential, it is useful to write κ and ñ in terms of the symmetric

and antisymmetric components

κ = κ+ + κ−, ñ = ñ+ + ñ−, (4.5)

which takes the contribution from the symmetric (+) and antisymmetric (−)

phonon modes separately. In the absence of the interlayer moiré coupling (i.e.,

two independent monolayers), they are given as

ñ+
NC = ñ−

NC = 1
2
ñNC =

ω

2πv̄
, (4.6)

κ+
NC = κ−

NC = 1
2
κNC =

3Λζ(3)

2πℏ2v̄
k3
BT

2, (4.7)

where v̄−1 = v−1
L + v−1

T , ζ(n) is the Riemann zeta function, and NC stands for

‘non-coupled’. Here, we note that we have neglected the out-of-plane (flexural)

phonon modes in the calculation of thermal conductivity. The quadratic temper-

ature dependence of the thermal conductivity is a characteristic of linear acous-

tic phonon-dominated thermal transport of 2D systems in the low-temperature
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regime [128].

4.2 Thermal conductivity

4.2.1 TBG and twisted graphene/hexagonal boron nitride

Figure 4.2 shows the calculated band dispersion and density of states for antisym-

metric phonon modes in TBG with θ = 5◦, 2.65◦ and 0.817◦. Figure 4.3 presents

similar plots for t-G/hBN with θ = 5◦, 3◦, and 0◦. The phonon dispersion is

plotted along the high-symmetry line in the moiré Brillouin zone (MBZ) as illus-

trated in Fig. 2.1(c). In each panel, the red-dashed line indicate the dispersion

(only the lowest two branches shown) and the density of states in the non-coupled

case. Here we can see that the interlayer coupling significantly modifies the band

structure of the antisymmetric modes in the energy range below ∼20 meV. This

reconstruction is characterized by sharp peaks in the density of states which re-

sults from the flattening of superlattice phonon bands [45, 55, 56, 53]. As the

twist angle is reduced towards 0, the number of sharp peaks increases dramati-

cally. On the other hand, the phonon bands of the symmetric phonon modes are

not affected by the moiré interlayer coupling, hence they are equivalent to those

of the non-coupled case (red-dashed lines).

To provide a more comprehensive understanding of the band flattening effects,

we present two-dimensional density maps in Fig. 4.2(d)-(f) and Fig. 4.3(d)-(f),

which plot the distribution of antisymmetric phonon modes on a space of fre-

quency and velocity, or

D(ω, v) =
∑
n,q

δ(ω − ωn,q)δ(v − vn,q). (4.8)
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Figure 4.2: Band structure of the interlayer antisymmetric phonon modes (black
line) and the symmetric modes (red-dashed line) for (a) 5◦, (b) 2.65◦, (c) 0.817◦

TBG. The right panel plots the density of states. (d)-(f) Corresponding plots for
D(ω, v), the density of states on the frequency-velocity space [see, Eq. (4.8)].
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Figure 4.3: Plots of the band structure and D(ω, v) similar to Fig. 4.2, for t-
G/hBN with θ = 5◦, 3◦, 0◦.
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In each panel, the vertical axis is scaled by a factor of

v0 =
√

λ/ρ (4.9)

and the color brightness is a linear scale of D(ω, v). The horizontal red-dashed

lines correspond to the velocity of the TA (vT) and LA (vL) phonons of a single

layer [Eq. (2.13)]. Here, the flattening of phonon bands can be immediately seen

as a distribution of phonon modes below vT and vL. In 0.817◦ TBG [Fig. 4.2(f)]

and 0◦ t-G/hBN [Fig. 4.3(f)], particularly, the signals in ℏω < 15 meV predomi-

nantly falls below the line of vT, i.e., nearly all of the low-energy antisymmetric

phonons become slower than the original acoustic phonons in its non-moiré coun-

terpart. Note that the distribution of symmetric phonon states (not shown) sticks

to the vL and vT lines, where the intensity increases linearly with energy.

Figure 4.4(a) and (b) show ñ−(ω) (the VDOS of the antisymmetric phonon

modes) of TBG and t-G/hBN, respectively, with various small twist angles. The

effect of the moiré coupling is observed as a difference from a black-dashed line,

which represents ñ+
NC = ñ−

NC ∝ ω [Eq. (4.6)]. While VDOS is proportional to

both phonon density of states and velocity, we find that the reduction of phonon

velocity is more significant than the sharpening of density of states, leading to

a suppression of ñ− over a wide range of phonon frequency. We also find that

the linear behavior of ñ− remains in the low frequency region, which corresponds

to the linear dispersion in the the lowest moiré phonon band in ω < ωedge ≈

2πv0/LM. For the symmetric phonon modes (not shown), we have ñ+(ω) =

ñ±
NC(ω), because they are not influenced by the moiré coupling.

Figure 4.5(a) and (b) summarise the calculated thermal conductivity κ(T )(=

κ++κ−) of TBG and t-G/hBN, respectively. In each figure, the left panel shows

a log-log plot of κ(T ) for 2 < T < 100 K. Here the vertical axis is scaled by

the constant mean-free-path length Λ, which is assumed to be independent of

temperature. The colored lines correspond to different twist angles. The black-

dashed line represents the non-coupled bilayer case, κNC, which is proportional
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Figure 4.4: (a) Velocity-weighted density of states (VDOS) of the antisymmetric
modes, ñ−(ω), in TBGs with various twist angles. Black dashed lines represents
ñ+
NC = ñ−

NC for a non-coupled bilayer [Eq. (4.6)]. The VDOS for symmetric
phonons ñ+ is equal to ñ±

NC. (b) Similar plots for t-G/hBN.
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Figure 4.5: (a) Thermal conductivity in TBGs with various twist angles. The left
panel shows the thermal conductivity κ(T ) scaled by the mean free path Λ. The
right panel shows the relative thermal conductivity to the non-coupled bilayer
case, κNC(T ) [Eq. (4.7)]. (b) Similar plots for t-G/hBN.

to T 2 as given in Eq. (4.7). Here, we find that thermal conductivity is suppressed

from the non-coupled case, notably around 20 K, while it converges towards the

non-coupled value as increasing temperatures.

To better understand the change from the intrinsic graphene, we plot the rela-

tive thermal conductivity, κ(T )/κNC(T ), in the right panel of Fig. 4.5(a) and (b).

Here, suppression of thermal conductivity is represented by a value below unity.

We can see that the suppression occurs over a wide temperature range except

near the low-temperature limit. This suppression becomes more pronounced as

the twist angle is smaller, where the largest reduction of up to ∼35% for 0.817◦

TBG and up to ∼40% for 0◦ t-G/hBN takes place at around 20 K. This can

be understood since at around 20 K, heat transport is carried by phonons with

energy below ∼20 meV [see Fig. 4.1], where the moiré effect on the asymmetric
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modes are the most notable, as shown by the changes in VDOS [Fig. 4.4]. There,

thermal conductivity is almost entirely came from the symmetric phonon modes,

κ+ = κNC/2 (red-dashed line).

In the zero-temperature limit, we observe that the relative thermal conduc-

tivity κ/κNC rapidly rises and even exceeds 1, indicating that the thermal trans-

port is enhanced by the moiré effect. The reason for this phenomenon is ex-

plained as follows. Within this temperature range, only phonons in the two

lowest moiré phonon bands in ω < ωedge become relevant in the thermal trans-

port equation. These phonon modes have a linear dispersion, where the VDOS

is given by ω/(2πv) with the corresponding group velocity v [Eq. (4.6) for the

noncoupled case]. Since the velocities of the antisymmetric phonon modes are

significantly reduced by the moiré effects [see Fig. 4.2 and Fig. 4.3], the inverse

relation leads to an enhancement of the VDOS, and hence of the thermal conduc-

tivity. In decreasing the twist angle, these phonon velocities are monotonically

decreased, and eventually converges towards a finite value in the small angle limit

[45, 108]. This sets the upper bound of the relative thermal conductivity in the

T → 0 limit.

We also find that the overall modifications of the thermal conductivity by the

moiré effect results in a change of the power coefficient α in κ(T ) ∝ Tα, as seen

from the logarithmic plot in the left panel of Fig. 4.5(a) and (b). In the absence

of moiré interlayer coupling, thermal conductivity has quadratic temperature de-

pendence (α = 2), which comes from the linear dispersion of the original acoustic

phonons. However, the enhancement in the low T limit and the subsequent sup-

pression in higher T decrease the power coefficient from 2. For example, it is given

by α ≈ 1.6 in 0.817◦ TBG and α ≈ 1.4 in 0◦ t-G/hBN within the temperature

range of 4 K to 8 K. As temperature increases further, moiré effect starts to fade

out and thermal conductivity returns towards the original value. This requires

the power coefficient to be larger than 2. For example, it is given by α ≈ 2.25 for

0.817◦ TBG and α ≈ 2.4 for 0◦ for t-G/hBN which occurs in the range from 35
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K to 80 K.

4.2.2 Twisted bilayer molybdenum disulfide

The calculated phonon dispersion for t-MoS2 is shown in Fig. 4.6 for both parallel

and antiparallel stacking case with twist angle 0.8◦. We find that the antisym-

metric phonon modes of the parallel-stacked case closely resembles that of TBG

[Fig. 4.2(c)]. This similarity occurs because TBG and t-MoS2 share triangular

domain wall structures [see Fig. 2.2(a) and (c)]. In an analogous way, the phonon

band structure of the antiparallel t-MoS2 resembles those of t-G/hBN, reflecting

a common honeycomb domain-wall structure [Fig. 2.2(b) and (d)]. This is a nat-

ural result because the moiré phonon band structure is qualitatively reproduced

by an effective mass-spring model for domain-wall motion [56], and hence it is

primarily determined by the geometical structure of domain walls (triangular or

honeycomb). We also observe that the characteristic energy scale of the moiré

phonon bands in t-MoS2 is much smaller than in TBG and t-G/hBN, because the

original acoustic phonon velocity in MoS2 is much lower than that of graphene

and hBN.
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In Fig. 4.7, we plot the calculated thermal conductivity of t-MoS2 (P and

AP) in a parallel manner to the TBG and t-G/hBN case. Here we find an overall

reduction of thermal conductivity and the enhancement near T → 0 just as in

TBG and t-G/hBN. However, the characteristic temperature range is much lower

than TBG and t-G/hBN because of the smaller energy scale of the corresponding

moiré phonons. At T ∼ 4 K, the thermal conductivity is reduced up to around

35% and 40% in the P and AP cases, respectively. In the limit of T → 0, we

find that the AP case exhibits greater enhancement of κ than in the P case. This

is attributed to the smaller phonon velocity v in the lowest branch in the AP

case [Fig. 4.6] and the fact that κ for the linear band regime is proportional to

1/v as argued in the previous section. Accordingly, we have the corresponding

change of the power coefficient (α) in κ(T ) ∝ Tα in a similar manner to TBG

and t-G/hBN.
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Chapter 5

Conclusion

In this thesis, we have investigated the moiré effect on the low-frequency

phonons and the low-temperature thermal conductivity of twisted bilayer systems.

In Chapter 2, we presented a continuum approach to investigate the effect

of interlayer moiré potential on the in-plane acoustic phonons of twisted bilayer

moiré superlattices. Specifically, we extend the existing model for TBG [45] ,

so that it also applicable for heterobilayer systems. We demonstrate this by

considering various representative of twisted bilayer systems; TBG as a typical

homobilayer case, twisted graphene/hBN as the common example of heterobilay-

ers, and twisted bilayer MoS2 to represent the transition metal dichalcogenides

family. Using the static version of the model, we obtain the relaxed structure of

each system. These relaxed states are characterized by the enlargement of regions

with the most stable stacking configuration. The final structure can be viewed as

an effective superlattice at the moiré scale which are further classified as either

triangular or honeycomb.

In Chapter 3, we employ the continuum model to study the low-frequency

phonons of each considered system. Here, we showed that the phonon band struc-

ture evolves in the same manner as the lattice relaxation. Their correspondence

becomes clear at the low twist angle limit (or equivalently, the strong interlayer

coupling regime), where universal features on the band structure are found across

different systems. Specifically, these features are shown as an extreme flattening

of some particular bands and a repeating unit consisting a specific order of dis-

persive bands and flat bands. We then develop an effective model consisting of a

chain of mass and bonds that simulates the dynamics of the domain walls in the
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relaxed domain structure of the actual systems. We showed that this model can

qualitatively reproduces the original band structure, particularly the flat phonon

bands where perfect correspondence can be observed. Then, using the effective

model, we find that the flat phonon bands that are found across different sys-

tems are originated from the string-like oscillations of the domain walls. For

the honeycomb-type effective lattice, the oscillation modes corresponding to the

flat bands are analogous to the stationary wave on an isolated string with open

boundary conditions. In contrast, for the triangular-type lattice, these modes

correspond to a string with closed boundary conditions.

In the latter part of Chapter 3, we also investigate the chiral property of moiré

phonons. We calculated the phonon angular momentum for twisted graphene/hBN

and found a significant signal not only at the highly-symmetric Brillouin-zone cor-

ners, but also in the entire k-space regions for the lowest bands. We also reveal

the twist-angle dependence of these chiral phonons. For the lowest two modes,

the finite angular momentum only present near 0◦ twist angle where the corre-

sponding bands are nearly degenerate. On the other hand, the chiral phonons at

the BZ corners persists at large twist angle with a sign-inversion at around 0.3◦.

In Chapter 4, we investigate how changes in the low-frequency phonons in-

duced by the moiré effects are reflected in the thermal transport phenomena.

We calculated the thermal conductivity for each system using the semiclassical

approach. In general, we found a reduction of thermal conductivity due to an

overall flattening of the phonon bands. The largest reduction is around 35-40%

which occurs at around 20 K for 0.817◦ TBG and 0◦ t-G/hBN and around 4 K

for 0.8◦ t-MoS2/MoS2. At higher temperature, the thermal conductivity returns

towards the original intrinsic value, as the moiré superlattice effect for the acous-

tic phonons is significant only in the low energy region. These changes result

in a characteristic deviation to the original quadratic temperature dependence

of two-dimensional systems where linear acoustic phonons dominate the thermal

transport properties.
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Finally, we would like to make a final remark regarding the important achieve-

ment of this work and its future perspective. Here, we have established a clear

correspondence between the relaxed structure of moiré superlattices and their

phonon band structure. This provides an additional tuning mechanism where

changes in lattice relaxation are reflected in the phonon band structure, and vice

versa. For instance, in homobilayers with different atoms on the sublattices, such

as MoS2 and hBN, a transverse electric field induces a potential difference between

AB/BA stacking configurations due to their opposite polarizations. As a result,

adjusting the magnitude of the electric field would alter both the relaxed struc-

ture and the phonon properties [158, 159, 160]. The notable features, such as flat

phonon bands and chiral moiré phonons with sub-meV gaps are expected to entail

various physical consequences. For instance, bosonic condensation on flat bands

through an external excitation was realized in an exciton-polariton system [161].

For moiré phonons, a possible excitation mechanism is through electromagnetic

radiation, since in some cases such as graphene/hBN, the moiré superlattice has

inversion-asymmetric charge densities [162], and the moiré phonon modes at the

zone boundary would couple to an in-plane AC electric field. Meanwhile, band

flatness is also generally associated with the existence of a spatially-localized

eigenmode. In our moiré phonon system, this suggests that highly localized

phonon excitation (vibration of a single domain wall sector) is possible, as was

achieved in photonic lattice [163, 164]. Lastly, we expect that signature of moiré

effect on the temperature dependence of thermal conductivity provide a promis-

ing way to observe the moiré effects on phonon properties of twisted bilayer moiré

superlattices, which so far remains elusive. Furthermore, the tunability of ther-

mal conductivity would also enable the engineering of thermal transport for the

development of future thermal devices.
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twisted bilayer graphene and moiré electron-phonon interaction,” Physical
Review B, vol. 101, no. 19, p. 195425, May 2020.

[112] H. Ochoa and R. M. Fernandes, “Extended linear-in-t resistivity due to
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