

Title	MOLECULAR DYNAMICS SIMULATIONS AND MODELING OF ANTIMICROBIAL CYCLOTETRAPEPTIDES AND THEIR RHAMNOSE-CONJUGATED DERIVATIVES: MECHANISTIC INSIGHTS AND FORCE FIELD VALIDATION
Author(s)	Dirgantara, Jelang Muhammad
Citation	大阪大学, 2024, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/98721
rights	
Note	やむを得ない事由があると学位審査研究科が承認したため、全文に代えてその内容の要約を公開しています。全文のご利用をご希望の場合は、大阪大学の博士論文についてをご参照ください。

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (Jelang Muhammad Dirgantara)	
Title	MOLECULAR DYNAMICS SIMULATIONS AND MODELING OF ANTIMICROBIAL CYCLOTETRAPEPTIDES AND THEIR RHAMNOSE-CONJUGATED DERIVATIVES: MECHANISTIC INSIGHTS AND FORCE FIELD VALIDATION (抗菌性シクロテトラペプチドとそのラムノース結合誘導体の分子動力学シミュレーション:メカニズムの洞察およびフォースフィールドの検証)
Abstract of Thesis In the quest to develop potent antimicrobial agents, cyclic antimicrobial peptides have garnered significant attention owing to their unique structural features and robust activity against drug-resistant pathogens. This study presents a comprehensive molecular dynamics (MD) simulation analysis of two antimicrobial cyclotetrapeptides, c-PKAI and c-PKFI, along with their rhamnose-conjugated derivatives, to elucidate their interaction mechanisms with lipid bilayer membranes and to validate the force fields for general organic molecules used in these simulations with Amber24. The first chapter focuses on the interactions of c-PKAI and c-PKFI with bacterial-mimicking (POPG) and mammalian-mimicking (POPC) lipid bilayers. The simulations revealed differential interaction dynamics, with c-PKFI demonstrating superior membrane penetration and stability across both lipid bilayers, resulting in poor selectivity. In contrast, c-PKAI exhibits good membrane-penetrating selectivity towards the POPG lipid bilayer. Detailed statistical and dynamical analyses provide insights into the peptides' selective interactions with bacterial membranes at the amino acid residue level, which is crucial for their antimicrobial efficacy. The second part of the study investigated the antibody-recruiting potential of six new molecules derived from c-PKAI and c-PKFI, conjugated with rhamnose via polyethylene glycol (PEG) linkers of two lengths ($n = 4$ and $n = 8$), using molecular dynamics simulations against POPG and POPC lipid bilayers. This conjugation enables the peptides to penetrate the membrane while keeping the rhamnose moiety externally accessible for recognition by anti-rhamnose antibodies, facilitating microbial cell clearance through an immune response. Notably, longer PEG linkers enhance the presentation of rhamnose via metabolic labelling, provided that the conformation does not sterically hinder peptide-membrane interactions, as observed in one of the three molecules with the longer PEG length. One molecule demonstrated favorable rhamnose presentation and selective interaction with the POPG lipid bilayer, suggesting its significant antibody-recruiting potential for antimicrobial therapy. The final part of this study evaluated the GAFF and GAFF2 force fields for PEG, utilizing a PEG-200 polydisperse mixture as an example to compare the experimental thermodynamic properties. The results indicate that GAFF2 outperforms GAFF, offering a more accurate potential energy surface (PES) and structural dynamics for PEG-200, as well as improved predictions of the rotational energy barriers. MD simulations revealed that GAFF2 shows lower structural deviations than quantum mechanical simulations, validated through extended (10 ns) semi-empirical molecular dynamics simulations. Furthermore, GAFF2 accurately predicted the density of PEG-200 with less than 3% error and provided reasonable diffusion constant predictions despite some temperature-specific inaccuracies. In contrast, GAFF was unable to calculate the thermodynamic properties of PEG-200 due to failures in velocity calculations during the simulations. Nevertheless, neither GAFF nor GAFF2 fully captures PEG behavior, indicating a need for automated parameter optimization and machine learning refinement, particularly focusing on the O-C-C-O dihedral angle parameter. These findings are likely to be applicable to other PEG-200 compositions, enhancing the generalizability of this research.	

Keywords: Molecular dynamics, quantum mechanics, antimicrobial peptides, antibody-recruiting molecules, GAFF, GAFF

論文審査の結果の要旨及び担当者

氏名 (Jelang Muhammad Dirgantara)	
	(職)
論文審査担当者	主査 教授 深瀬 浩一
	副査 教授 久保 孝史
	副査 教授 奥村 光隆
	副査 Asst. Prof. (Universitas Ari Hardianto Padjadjaran)

論文審査の結果の要旨

Jelang Muhammad Dirgantara 氏の博士論文研究「MOLECULAR DYNAMICS SIMULATIONS AND MODELING OF ANTIMICROBIAL CYCLOTETRAPEPTIDES AND THEIR RHAMNOSE-CONJUGATED DERIVATIVES: MECHANISTIC INSIGHTS AND FORCE FIELD VALIDATION (抗菌性シクロテトラペプチドとそのラムノース結合誘導体の分子動力学シミュレーション: メカニズムの洞察およびフォースフィールドの検証)」について、論文審査を実施した。

Jelang 氏の研究は、分子動力学シミュレーション用いてリン脂質二重膜と抗菌環状テトラペプチドの相互作用を解析することを目的としている。研究対象のリン脂質は、アニオン性の POPG と双性イオン構造を持つ POPC の 2 種類であり、環状テトラペプチドはフェニル置換基の有無によって c-PKAI と c-PKFI の 2 種類に分けられる。JELANG は AMBER 力場を用いて、以下の 4 つの組み合わせについて相互作用エネルギーを比較した: POPG-フェニル置換有、POPG-フェニル置換無、POPC-フェニル置換有、POPC-フェニル置換無。その結果、POPG は環状テトラペプチドとの相互作用が強く、POPC は相互作用が比較的弱い傾向があることが示された。また、フェニル置換基を持つ環状テトラペプチドは、リン脂質との相互作用が強化されることが確認された。さらに、環状テトラペプチド分子内の 4 種類のアミノ酸骨格の相互作用の違いも解析され、特定のアミノ酸 (リジン) が強い相互作用を示すことが分かった。

次に、Jelang 氏は、c-PKAI および c-PKFI に自然抗体のリガンドであるラムノースを導入した抗菌ペプチドの分子動力学シミュレーションを行った。これらの分子は、2 つの長さのポリエチレングリコール (PEG) リンカー ($n = 4$ および $n = 8$) を介してラムノースと結合した 6 種類の分子である。ペプチドが膜に導入され、ラムノース部分が膜外に提示されることにより抗ラムノース抗体によって認識されやすくなり、免疫応答を通じて細菌の除去を促進可能である。POPG および POPC 脂質二重膜に対するラムノース結合環状テトラペプチド誘導体の分子動力学シミュレーションにより、望ましいラムノース提示と POPG 脂質二重膜との選択的相互作用を示す分子が見出され、この分子が膜との相互作用による抗菌作用に加え、抗体をリクルートして補体依存性細胞傷害を誘導する可能性を示唆した。

最後に PEG のシミュレーションにふさわしい力場について、PEG-200 のポリ分散混合物を用いて、GAFF および GAFF2 力場を評価し、GAFF2 が GAFF よりも正確なポテンシャルエネルギー面と構造ダイナミクスを提供し、回転エネルギー障壁の予測において優れていることを示した。

以上のように、Jelang 氏は、抗菌性シクロテトラペプチドとそのラムノース結合誘導体の分子動力学シミュレーションにおいて優れた成果を上げた。よって、本論文は博士 (理学) の学位論文として十分価値あるものと認める。