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ABSTRACT

During aging, maintaining skin homeostasis is essential for appearance and the biological defense
of the human body. In this study, I identified thrombospondin-1 (THBS1) and fibromodulin
(FMOD) as positive and negative regulators, respectively, of the transforming growth factor-f1
(TGF-B1)-SMAD4 signaling axis in human skin aging, based on in vitro and in vivo omics
analyses and mathematical modeling. Furthermore, I analyzed the transcription factor (TF)
network involved in dermal fibroblast senescence treatment with all-trans-retinoic acid (ATRA).
Using transcriptomic and epigenetic analyses of replication-stress (RS) induced senescent dermal
fibroblasts, I identified TGF-B1 as the key upstream regulator. Bifurcation analysis revealed a
binary high-/low-TGF-B1 switch, with THBS1 as the main controller. Computational simulation
of the TGF-B1 signaling pathway indicated that THBS1 expression was sensitively regulated,
whereas FMOD was regulated robustly, suggesting THBS1 as a controllable molecule in skin
aging. Furthermore, I identified ATRA as a potent THBS1 suppressor, regulating THBS1
transcription via a network involving retinoid X receptor (RXR), SMAD, and transcriptional
enhanced associate domain (TEAD). The analysis of TF activity of the RS model indicated RXR
inactivation and SMAD and TEAD activation in senescent dermal fibroblasts. TEAD inhibition
increased THBSI1 levels. Additionally, senescent dermal fibroblasts cultured on a soft substrate
markedly reduced the number of senescence-associated-P-galactosidase-positive cells by
activating TEAD. Therefore, the study demonstrates the potential of combining data-driven target

discovery with mathematical approaches to determine the mechanisms underlying skin aging.



ORIGINALITY

This doctoral dissertation is based on the results and descriptions of the following papers:

1) Haga M, Okada M. Systems approaches to investigate the role of NF-«B signaling in aging.
Biochem J. 2022;479(2):161-183. doi:10.1042/BCJ20210547

2) Haga M, lida K, Okada M. Positive and negative feedback regulation of the TGF-B1 explains
two equilibrium states in skin aging. iScience. 2024;27(5):109708. Published 2024 Apr 10.
do0i:10.1016/.is¢i.2024.109708

I am preparing a submission related to section 3.2 “Identification of Potent THBS1 Suppressor
and its Mechanism Toward Senescence” as follows:
3) Haga M, Okada M. Data-driven multi-omics analysis and mathematical modeling to explore

skin aging targets and the retinoic acid efficacy



1. INTRODUCTION

1.1 Research topic

Aging and Skin Aging

Aging is a universal and unavoidable process that significantly increases the risk of diseases,
such as skin cancer, by disrupting health homeostasis [1,2]. In the recent revision of the
International Classification of Diseases (ICD), the global multilingual catalog of human diseases,
medical conditions, and mental disorders, the World Health Organization (WHO) replaced
"senility" in ICD-11 with "ageing associated decline in intrinsic capacity" to standardize disease
diagnosis, reduce age discrimination, and promote better health and quality of life for elderly
people [3]. Over the past century, the age structure of developed countries, such as Japan has
undergone a major aging transition. In 1950, over half of Japan's population was under 25, but by
2021, this share had declined, and the proportion of those over 65 had increased significantly,
forming a substantial part of the population (Figure 1.1.1) [4]. In response to the population
transition to an aging society, the third phase of Health Japan 21 (2023-2035), a national health
promotion movement launched by the Japanese government, defines the extension of healthy life
expectancy and reduction of health disparities as the basic direction of the policy [5]. The
increasing proportion of the elderly population has led to a growing awareness of healthy life
expectancy, and there is a growing demand for people to live longer and healthier lives, rather
than simply live longer. Promoting research on aging will help seniors live long, healthy, and
independent lives by increasing their healthy life expectancy, thereby reducing medical and long-
term care costs. Simulation analysis indicates reducing the need for long-term care among elderly
Japanese people can reduce healthcare costs [6]. Maintaining the health of the elderly and
promoting their productive participation in society through aging research will contribute to the
economic stability of society. This demographic shift underscores the need for research into age-
related health issues.

As age has been reported as one of the major risks for skin aging [7], demographic changes in
society have increased the impact of skin aging research. Maintaining skin homeostasis during
aging is vital for biological protection, as thinner and more fragile skin is more susceptible to
diseases [8]. Skin aging causes loss of elasticity, increased inflammation, and reduced mechanical
resistance to skin damage, ultimately resulting in elasticity change such as skin sagging and
wrinkles [8]. Aging skin homeostasis is important not only from the perspective of biological
defense, but also for external beauty; how other people see you is important for self-affirmation

and has social and psychological significance. As skin texture, color, facial radiance, and elasticity



change with aging, these factors greatly affect how people perceive themselves [9-12].
Approaches to addressing skin aging improve mental health by increasing self-esteem and
decreasing social anxiety and isolation, and they may extend healthy life expectancy by promoting
preventive health behaviors [13]. Therefore, this study aims to investigate specific interventions

to extend healthy life expectancy in Japan's aging society through skin aging research.
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Figure 1.1.1: Population distribution by age group in Japan.
[lustration of the demographic shift in Japan's population from 1950 to 2021, highlighting
the increasing proportion of the elderly population [4]. This demographic trend underscores

the growing importance of research on aging and age-related diseases.

The skin is the largest organ of the human body exposed to the outside world; it acts as a barrier
to external environments and protects against unwanted external stimuli [14]. Skin tissue mainly
consists of the epidermis, dermis, and hypodermis (Figure 1.1.2). The epidermis acts as an
interface with the environment as a barrier, the dermis provides structure and flexibility to the

skin, and the hypodermis helps to insulate, store energy, and act as a shock absorber [15].
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Figure 1.1.2: Structure of human skin tissue.

composed primarily of keratinocytes and functions as a barrier to the external environment.
The dermis provides elasticity to the skin through the extracellular matrix produced by
dermal fibroblasts. The hypodermis is composed mainly of fat and plays a role in energy
storage and shock absorption. The original of this image was obtained from TogoTV and

modified (© 2016 DBCLS TogoTV, CC-BY-4.0).

Skin aging has been reported to cause both structural and functional changes. Structurally, the
epidermis becomes thinner and the bonds between keratinocytes weaken [16,17]. The effects of
reduced dermal fibroblast activity and changes in gene expression related to extracellular matrix
(ECM) components are crucial factors in skin aging [18]. In the dermis, ECM, which are essential
for maintaining the structural integrity of the skin components, such as collagen production and
elastin decrease, as does the thickness and number of fibroblasts, mast cells and macrophages
[16,19]. Aging also induces fragmentation and non-organization of dermal collagen fibers due to
increased expression of major matrix metalloproteinase 1, leading to abnormal ECM homeostasis
[20]. In certain areas, hypodermis fat is reduced, with noticeable changes in the face, shins, hands,
and feet [17,21,22]. These structural changes result in the functional decline of aging skin.

Functionally, skin aging reduces the rate of epidermal, hair, and nail growth, and delays wound
healing [17]. In addition, the skin's immune and inflammatory response are reduced and its
resistance to infection is diminished [16,17]. The skin's barrier function is also compromised,
along with its ability to retain moisture [16]. Hence, skin aging research is important not only for

the aging society but also for individual biological defense.



Cellular Senescence

Skin aging is caused by both external factors (such as UV exposure, smoking, and environmental
pollution) [23] and internal factors (such as impaired skin repair and hormonal imbalance) [24].
Specifically, seven notable risk factors for various skin aging phenotypes have been identified:
age, gender, ethnicity, air pollution, nutrition, smoking, and sun exposure [7]. As hallmarks of
skin aging, genomic instability and telomere attrition, epigenetic alterations and loss of
proteostasis, deregulated nutrient-sensing, mitochondrial damage and dysfunction, stem cell
exhaustion/dysregulation, altered intercellular communication, and cellular senescence have been
identified [25].

The key internal factor in skin aging is cellular senescence [26,27], also a hallmark of aging in
general [28]. Senescent cells increase with age in many mouse and human tissues, such as adipose
tissue, liver, kidney, and skeletal muscle [29]. Cellular senescence was first reported in 1961 by
L. Hayflick using human fibroblast cells to demonstrate the limitations of mitotic capacity with
replication-stress (RS), known as the Hayflick limit [30]. Later, telomere shortening was
identified as the cause of accelerated senescence under RS using retinal pigment epithelial cells
and foreskin fibroblasts [31]. Currently, various stressors (e.g., replication-stress (RS), DNA
double-strand breaks, oncogene activation, and reactive oxygen species (ROS)) are reported to
induce cellular senescence [32].

Senescent cells are characterized by their stable and terminal growth arrest and exhibit a flat and
large morphology, DNA damage, shortened telomeres, ROS production, loss of Lamin-Bl,
enhanced senescence-associated (-galactosidase (SA-B-gal) activity, and increased levels of
cyclin-dependent kinase inhibitors p53/p21 and/or p16 [33]. The secretion of the senescence-
associated secretory phenotype (SASP), consisting of inflammatory cytokines, such as interleukin
(IL)-6 and IL-8, is also a well-known senescence marker [34,35]. Lamin-B1, a nuclear matrix
protein, is used to quantify senescence in the skin. Immunohistochemistry of aged epidermal and
dermal tissue indicated reductions in Lamin-B1 expression [36]. Reduced levels of Lamin-B1
induced by UVB radiation also indicate a relationship with cellular senescence and skin aging
[37]. An increase in SA-B-gal positive cells in aging skin is one of the earliest established
indicators of senescent cells in aging skin [38].

With the visualization of the accumulation of p16-expressing senescent cells in vivo using real-
time imaging methods, research on cellular senescence due to aging has been vigorously
conducted [39,40]. Moreover, the removal of pl6-expressing senescent cells suppresses aging and
extends the lifespan of mice, indicating the importance of cellular senescence in aging research
[41,42]. The finding that senescent cell removal contributes to an extended lifespan has led to
senolysis studies that selectively remove senescent cells in aging skin [43]. A combination of

senolytic drugs, Dasatinib and Quercetin, selectively decreased p16 and p21 expression in human



epidermis [44]. Treatment with the senolytic drugs ABT-263 and ABT-737 selectively eliminates
pl6-expressing senescent dermal fibroblast cells in aged mice, increases collagen density and
expression, and inhibits age-related epidermal thinning [45]. These results indicate that cellular
senescence is a fundamental factor in skin aging. However, these senolytic compounds repurpose
medical drugs or reagents and do not lend themselves to general topical or cosmetic use. Therefore,
new approaches to targeting senescent cells are required in the industry.

Keratinocytes, which make up the epidermis, have less influence on senescence because they
have a higher turnover than fibroblasts in the dermis [34]. In the dermis, skin aging results in the
accumulation of senescent fibroblasts [38,46,47]. Fibroblasts orchestrate the development of a
functional skin barrier through crosstalk between the dermis and epidermis [48]. Incorporating
senescent fibroblasts into a 3D equivalent model of human skin can reproduce typical changes
associated with skin aging [49,50]. Early or late passage fibroblasts can mimic young and aged
skin, respectively; late passage fibroblasts thin the dermis and induce epidermal differentiation
[49]. Another 3D skin model using oxidative stress-induced premature senescent fibroblasts
caused progressive thinning of the epidermis, increasing premature senescent cells in the dermis
[50]. These studies strongly suggest that regulation of fibroblast senescence is fundamental to
maintaining the skin barrier and combating aging. However, a comprehensive systems-level
analysis of skin aging and cellular senescence remains unclear. The identification of regulatory
systems in skin fibroblast senescence will enable the identification of upstream factors in skin
aging. Furthermore, elucidating mechanistic network enables us to simulate the progression of
skin aging and identify potential intervention points. Thus, I utilized computational systems

biology approaches toward skin aging.

Computational Systems Biology Approaches Toward Skin Aging Research

Aging and senescence are caused by various developmental signals and different types of
stresses and are the results of a multistep process [51,52]. Although various induced in vitro
senescent cell models [32] and in vivo aging animal models [53] have been reported to elucidate
the complex system, an overall picture that recapitulates the cellular transmission and spatial
interactions of aging is still lacking, which is necessary to understand and overcome the
unfavorable effects of aging. Data-driven multi-omics approaches, such as epigenetics, bulk RNA
sequencing (RNA-seq), and single-cell RNA-seq, are used to map the gene regulatory landscapes
in skin aging [54—57]. RNA-seq, DNA methylation, histone methylation (histone H3 lysine 4 tri-
methylation [H3K4me3] and histone H3 lysine 27 tri-methylation [H3K27me3]) from healthy
skin fibroblasts of donors aged 35 to 75 years revealed an age-dependent decrease in the
expression of genes involved in translation and ribosomal function [54]. An assay for transposase-

accessible chromatin sequencing (ATAC-seq) and RNA-seq analyses of healthy and Hutchinson—
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Gilford progeria syndrome (HGPS, a premature aging syndrome) skin fibroblasts revealed altered
chromatin accessibility enriched in lamina-associated domains and HGPS-specific gene
expression [55]. Single-cell RNA-seq of human skin from healthy individuals of various ages
revealed the age-related change in the heterogeneity of dermal fibroblasts [56,57]. Despite these
advancements, a comprehensive understanding of the regulatory networks governing these
processes remains elusive.

Mathematical approaches have been used to infer skin disease modeling [58]. They have been
also used to infer to skin aging phenotype such as facial wrinkles [59], length of each facial area
[60], and skin barrier [61]. In terms of cellular senescence of dermal fibroblasts, RS-senescence-
induced dermal fibroblasts were utilized to explain tissue heterogeneity with aging using a
mathematical model of somatic mutations associated with cellular senescence [62]. A dynamical
systems model was developed to model the proportion of dermal fibroblast cells in proliferating,
growth-arrested, apoptotic, and senescent states during the transition from early culture to
senescence by measuring senescence markers such as PDL, SA-B-gal, Ki-67, YH2AX, and
TUNEL assays [63]. Despite these mathematical approaches to skin aging and senescence, most
model use phenotypes of skin aging and do not mention gene regulatory networks as a biological
context, making them insufficient models to actually intervene in skin aging. Furthermore, aging-
related dynamic changes complicate the identification of key regulatory structures, making it
difficult to understand the molecular mechanisms underlying skin aging and cellular senescence
regulated by numerous genes.

Snapshot omics studies do not provide information on the underlying mechanistic regulatory
structures; only the correlations between genes based on their expressions can be obtained. From
these static datasets, we can construct only mathematical models (e.g., regression models [64])
based on the probability of correlation between genes (Figure 1.1.3A) [65]. In contrast, time-
course omics data on skin aging, along with biological knowledge, show a directed graph between
the gene regulatory network and the possible activity dynamics of each gene [65]. By integrating
these data with mathematical models and performing numerical simulations, we can predict the
mechanistic structure of biological systems and even manipulate them (Figure 1.1.3B) [65]. Here,
I propose the integration of omics and mathematical modeling to offer a potential solution to
deepen our understanding of the key mechanisms underlying skin aging regulated by genetic and
environmental factors. Mathematical models have been used to represent human disease as a gene
regulatory networks and stratify patients, identify key regulators, and predict drug targets [66—
68]. As the use of animals in skin cosmetic research is prohibited in the industry [69], insights

from simulations with mathematical models are important to studying skin aging.
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Figure 1.1.3: Differences between snapshot and time-course omics analysis [65].

A) Snapshot omics studies do not provide information on the underlying regulatory

B)

mechanisms; they only provide information regarding the correlations between genes. For
these datasets, we can construct only mathematical models based on the probability of
correlation among genes.

Time-course skin aging omics show a directed graph of the gene regulatory network and

the dynamics of each gene. By integrating these data with mathematical models,
mechanisms of biological functions can be elucidated.
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Dynamic behaviors obtained from a mathematical simulation can also provide important
insights into biological functions in silico, elucidating sensitivity and robustness of regulatory
mechanisms and filling the gap between experimentally observable data and theoretical
regulatory principles [70,71]. Biological systems can be represented using several networks, such
as the ordinary differential equation (ODE) model [72]. ODE models are most commonly used to
quantitatively understand biological systems [73,74]. The ODE model is said to be “ordinary”
because it contains only one independent variable, which is basically time. It assumes that species
are present in well-mixed compartments and that concentrations can be continuous [72], which
generally makes the ODE model unsuitable for representing processes such as diffusion, spatial
heterogeneity, and stochasticity [75]. Each variable represents the concentration of one
component (e.g., gene, protein), and how it changes over time depends on the initial value of each
variable, the concentrations of other variables, and fixed kinetic parameters. Hence, if we attempt
to represent the biological system with the ODE model, we need to estimate the kinetic parameters
that correspond to the time-series data.

Notably, skin aging is a physiological phenomenon that progresses over several decades. By
contrast, cellular senescence can be induced by a variety of stimuli in a rather short time period
[32]. In other words, time-series information on signal transduction is important for phenomena
that change rapidly, such as cellular senescence, and a model that allows a structural
understanding of signaling pathways, such as the ODE model, is considered suitable. Thus, I
selected the ODE model as an appropriate model for my dataset to elucidate the system behind
skin aging and senescence. Furthermore, the identification of regulatory systems in skin fibroblast
senescence will enable the identification of upstream factors in skin aging. In this dissertation, by
integrating omics and mathematical approaches, I identified important genes from the numerous

genes and how they should be targeted to counteract skin aging.
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1.2 Objective

In this dissertation, I hypothesize that specific genes and signaling pathways are crucial for
elucidating the molecular mechanisms of skin aging and dermal fibroblast senescence. Therefore,
the main objective is to address the challenges posed by an aging society by focusing on the
regulatory mechanisms underlying skin aging and dermal fibroblast senescence. This study aims

to:

1. Identify key molecular targets and pathways involved in skin aging and dermal fibroblast
senescence through multi-omics analysis and mathematical modeling. This will provide a
detailed understanding of the gene regulatory networks and signaling pathways that drive skin
aging.

2. Develop and validate computational models to predict the dynamics of skin aging and dermal
fibroblast senescence at the systems level. These models will integrate multi-omics data and
time-course information to simulate the progression of skin aging and identify potential
intervention points.

3. Investigate and identify natural compounds that can modulate key molecular targets to
mitigate skin aging and dermal fibroblast senescence. This includes elucidating the
mechanisms of action of these compounds through omics approaches, thereby offering

potential therapeutic strategies for age-related skin conditions.
This research is structured into two main sections: the first focuses on the multi-omics analysis

and mathematical modeling of skin aging, and the second explores the identification of natural

compounds for therapeutic applications and their mode of action through an omics approach.
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1.3 Contribution of this dissertation

The contributions of this dissertation are multifaceted and address significant gaps in the
understanding of skin aging and cellular senescence. Specifically, this dissertation makes the

following contributions:

1. Elucidation of Transcriptional Regulatory Mechanisms:
This research elucidates the transcriptional regulatory mechanisms underlying dermal
fibroblast senescence through multi-omics analysis of in vitro and in vivo data and
mathematical modeling (Figure 1.3.1A). By integrating RNA-seq, chromatin
immunoprecipitation (ChIP)-seq for H3K27Ac modifications, and ATAC-seq data from RS-
induced senescent human dermal fibroblasts, key molecular targets and pathways, such as
transforming growth factor 1 (TGF-B1), thrombospondin-1 (THBS1), and fibromodulin
(FMOD), were identified. This provides a deeper understanding of the gene regulatory
networks involved in skin aging.

2. Development of Predictive Computational Models:
The dissertation develops and validates computational models to predict the dynamics of
skin aging at the systems level. These models integrate multi-omics data and time-course
information, allowing for the simulation of skin aging progression and identification of
potential intervention points. This approach enhances the predictive power and utility of
computational models in aging research.

3. Integration of Omics and Mathematical Modeling:
This dissertation demonstrates the integration of omics data with mathematical modeling to
offer a comprehensive understanding of the regulatory networks governing skin aging and
senescence. This integrated approach not only advances the field of aging research but also
provides a robust framework for studying other complex biological processes.

4. Identification and Mechanistic Elucidation of Natural Compounds:
Through omics approaches, this research identifies natural compounds that can modulate
key molecular targets to mitigate skin aging (Figure 1.3.1B). Specifically, all-trans-retinoic
acid (ATRA) was found to effectively suppress THBS1 through nuclear transcriptional
regulation involving the retinoid X receptor (RXR)/SMAD/transcriptional enhanced
associate domain (TEAD) transcription factor network. This finding provides valuable

insights for the development of therapeutic strategies for age-related skin conditions.
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Figure 1.3.1: Workflow in this dissertation.

A) Workflow of skin aging and senescence analyses [76]. In the first step, replication-stress
(RS) was induced by passage culturing using HFF-1 cells to prepare each population
doubling level (PDL) and generate data on RNA sequencing (RNA-seq), assay for
transposase-accessible ~ chromatin ~ sequencing  (ATAC-seq), and  chromatin
immunoprecipitation sequencing (ChIP-seq) with an H3K27Ac antibody. In the second step,
two independent public RNA-seq datasets were analyzed, one in vitro [77] and another in
vivo [78]. In the third step, I constructed a mathematical model based on the multi-omics
analysis and in vitro experimental results.

B) Workflow to investigate the potential of all-frans-retinoic acid (ATRA). In the first step,
compound screening for THBS1 downregulation was performed. In the second step, I
additionally generated RNA-seq and ATAC-seq data for ATRA with or without TGF-B1. In
the third step, I elucidated the transcription factor (TF) network regarding ATRA and TGF-

Bl.

Through omics analysis, I found that TGF-B1 is the most enriched upstream regulator of
senescence-related genes [76]. Among TGF-B-related genes, I found THBS1 and FMOD to be
highly correlated with PDL or age both in vitro and in vivo. THBS1 is known to activate the latent
form of TGF-B1 [79], while FMOD binds to TGF-B1 and inhibits its binding to the TGF-BR
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receptor [80—82]. Using inhibitor and knockdown (KD) assays, I elucidated the signaling network
for THBS1 and FMOD production. My mathematical modeling approach and bifurcation analysis
revealed a regulatory network mechanism involving TGF-B1, THBS1, and FMOD in skin aging.
Bifurcation analysis revealed a binary high-/low-TGF-B1 switch, with THBS1 as the primary
controller. My computational simulation of the TGF-B1 signaling pathway indicated that THBS1
expression was sensitively regulated, whereas FMOD was regulated robustly, suggesting that
THBSI is a critical target of skin aging.

Combining omics and in vitro experiments, I found ATRA to be an effective natural compound
exhibiting a mutual inhibitory relationship with SMAD signaling, involving the
RXR/SMAD/TEAD TF network. Moreover, I found that TEAD, a TF enriched in senescence-
associated chromatin regions and increased by ATRA, inhibits cellular senescence. Importantly, |
found that senescent human dermal fibroblasts grown on a soft substrate significantly decreased
the number of SA-B-gal-positive cells through the involvement of TEAD activity. My findings
provide valuable insights into the potential therapeutic targets for age-related skin issues and
highlight the importance of the TGF- and Hippo signaling pathways in regulating skin aging and
cellular senescence.

The findings of this dissertation are expected to provide a deeper understanding of the molecular
mechanisms underlying skin aging, particularly the role of cellular senescence and the regulatory
networks involved. Identifying key regulatory genes and pathways will contribute to the
development of targeted therapeutic strategies. Integrating omics data with computational models
offers a novel approach to studying complex biological processes, potentially leading to
breakthroughs in the treatment and prevention of age-related skin conditions. This research could
also inform the development of new cosmetic and medical products aimed at improving skin

health and appearance.

17



2. MATERIALS AND METHODS

2.1 Material Details

See the KEY RESOURSE TABLE in Section 6 for the detailed information on materials used in
this study.

2.2 Experimental Model and Study Participant Details

Cell lines

HFF-1 and BJ cells, human dermal fibroblasts derived from the normal foreskin tissue of neonatal
males, were purchased from the American Type Culture Collection (ATCC). HFF-1 and BJ cells
were maintained in Dulbecco’s modified Eagle’s medium (DMEM, ATCC) supplemented with
10% fetal bovine serum (FBS, Corning) and 1% antibiotic—antimycotic (Thermo Fisher
Scientific) as described previously [76]. Unless otherwise noted, the population doubling level
(PDL) of HFF-1 cells in the following experiments was kept at approximately 24, and that for BJ
cells was approximately 36, which correspond with young cells. In the experiments, the cells were
serum-starved with 0.1% FBS and tested under uniform 2% FBS conditions during stimulation.

All cell lines were maintained at 37°C in a humidified atmosphere with 5% CO..

Human dermal tissues

Human full-thickness dermal tissues were purchased from Biopredic International via KAC and
stored frozen at —20°C as described previously [76]. Skin samples were anonymized, and
informed consent was obtained from all participants (see Table 2.2.1 for donor list). This study
using human tissue samples was approved by the Ethics Committee of the Institute for Protein

Research, Osaka University (clearance no. 2021-2).

Table 2.2.1: Detailed information on donors used to confirm protein expression in human dermal

tissues.
Donor Age Part Gender Race Frozen time | Body mass
ID (years) (Count) index
#1 23 Breast Female Caucasian | 1 23
#2 27 Abdominal | Female Caucasian | 1 24
#3 31 Breast Female Caucasian | 1 31
#4 46 Abdominal | Female Caucasian | 1 21
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#5 61 Breast Female Caucasian | 1 29
#6 63 Abdominal | Female Caucasian | 1 28

2.3 Resource Availability

Data and Code Availability

The sequence data regarding to replication-stress (RS) and TGF-B1 treatment have been deposited
in the DNA Data Bank of Japan (DDBJ) and is available under accession number PRIDB15707
(Submission: DRA016119 and DRAO017188). As for the sequence data regarding to all-trans-
retinoic acid (ATRA), I am in the process of preparing a submission. The code for bioinformatics
analysis and mathematical modeling for the section 3.1 “Identification of Skin Aging Target via
Omics Analyses” is available on GitHub (https://github.com/okadalabipr/Haga2023).

2.4 Method Details

Induction of RS in Dermal Fibroblasts

RS was induced by passaging of HFF-1 and BJ cells. Briefly, cells were seeded in a cell culture
flask and grown on DMEM supplemented with 10% FBS until reaching a sub-confluent condition
as described previously [76]. Experiments were performed in triplicate flasks. After removing the
medium, washing with PBS, and detaching using trypsin/EDTA (ATCC), cells were frozen in
BAMBANKER® solution (NIPPON Genetics) at —80°C in a BICELL container (Nihon Freezer)
and stored under liquid nitrogen. The PDL for each collection was calculated as follows: n = 3.32
(log A —log B) + X (n: final PDL of the cell line, A: yield of harvested cells, B: count of seeded
cells, and X: initial PDL of the seeded cell population).

Sample Preparation for RNA-seq and Genomic Alignment

HFF-1 cells (PDL 24, PDL 36, and PDL 47) were used to prepare RNA sequencing (RNA-seq)
libraries as described previously [76]. Briefly, each PDL was seeded in 6-well plates at 200,000
cells/well, treated with either control (DMEM with vehicle supplemented with 2% FBS) or 4
ng/mL TGF-B1 (R&D Systems), and total RNA (three wells per sample) was harvested after 48 h
using a NucleoSpin RNA kit (Macherey-Nagel GmbH & Co.).

For treatment with ATRA, HFF-1 cells (PDL 24) were seeded in 6-well plates at 200,000
cells/well, serum-starved with 0.1% FBS for 24 h, and treated with 0.1% dimethyl sulfoxide
(DMSO) or 5 uM ATRA (Selleck) in 0.1% FBS DMEM for 1 h before treatment. After the
pretreatment, the cells were treated with either control (DMEM with 2% FBS and 0.1% DMSO
vehicle), 4 ng/mL TGF-B1, or 5 uM ATRA with or without 4 ng/mL TGF-B1, and total RNA (three
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wells per sample) was harvested after 48 h using the NucleoSpin RNA kit (Macherey-Nagel
GmbH & Co.).

The quality of the total RNA was evaluated using a 2100 Bioanalyzer (Agilent), and RNA
samples with RNA integrity > 9.0 were used for library preparation. cDNA libraries were prepared
using a NEBNext® Poly(A) mRNA Magnetic Isolation Module (New England Biolabs) for PolyA
selection and NEBNext® Ultra™ 11 Directional RNA Library Prep Kit (New England Biolabs).
Samples were prepared according to the manufacturer's protocol. The RNA-seq data were
generated as paired-end 150 base reads on the NovaSeq 6000 (Illumina). The expression of

specific genes was validated using qRT-PCR.

Sequence Alignment for RNA-seq

All RNA-seq data, including public RNA-seq data, were trimmed using Trim Galore! version
0.6.6 and aligned to human reference genome GRCh38 using hisat2 version 2.2.1 as described
previously [76]. Mapped reads were extracted using samtools version 1.9 and a read count matrix
was created using gene annotation (GRCh38.p13) with Subread version 2.0.1 for downstream

analysis.

Sample Preparation for Chromatin Immunoprecipitation Sequencing (ChlIP-seq) and
Sequence Alignment

HFF-1 cells (PDL 24, PDL 36, and PDL 47) were used to prepare ChIP-seq libraries as described
previously [76]. Briefly, the cells for each PDL were seeded in a 145-mm dishes at a density of
4,000,000 cells per dish. After 48 h of incubation, the cells were collected using the SimpleChIP
Enzymatic Chromatin IP kit (9003, Cell Signaling Technology [CST]) to obtain the sheared
chromatin. Briefly, two dishes per sample were fixed with fresh 1% formaldehyde (28908,
Thermo Fisher Scientific) for 5 min. The cells were subjected to treatment with a micrococcal
nuclease at 37°C for 20 min and the M220 Focused ultrasonicator (Covaris) for 10 min to obtain
the chromatin in 150-900-bp DNA/protein fragments. Next, the H3K27Ac antibody (ab177178,
Abcam) and the iDeal ChIP-seq kit for histones (Diagenode) were used to obtain ChIP-DNA.
Using the SX-8G (Diagenode) platform, 2 pg of the anti-H3K27Ac antibody was incubated with
10 pL DiaMag ProteinA-coated magnetic beads for 3 h, and an IP reaction was performed for 12
h. Decross-linking was performed using 5 M NaCl and Proteinase K (Thermo Fisher Scientific)
at 60°C for 4 h. ChIP-DNA was purified using MinElute® PCR Purification Kit (Qiagen). ChIP-
seq libraries were prepared using NEBNext® Ultra II DNA Library Prep Kit for Illumina (New
England Biolabs). All samples were prepared according to the manufacturer’s protocol. ChIP-seq
data were generated as paired-end 150-base reads on the NovaSeq 6000 (Illumina).

All ChIP-seq data were analyzed using the nfcore/chipseq pipeline version 1.2.2 with “nextflow
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run nf-core/chipseq -r 1.2.2 -profile singularity —input samplesheet ChIP.csv —genome GRCh38
—save_reference -max_cpus 16 -max_memory 256.GB.” Briefly, reads were trimmed using Trim
Galore! And aligned against the GRCh38 reference genome using BWA. MACS2 was used for
broadPeak calling. Consensus peak sets across all samples were created using BEDTools version
2.30.0. The counts for consensus peaks were generated using FeatureCounts and differential
chromatin accessibility was analyzed using DESeq?2 version 1.36.0. For more details, see the nf-

core/chipseq pipeline (https://nf-co.re/chipseq/1.2.2).

Sample Preparation for Assay for Transposase-Accessible Chromatin Sequencing (ATAC-seq)
and Sequence Alignment

HFF-1 cells (PDL 24, PDL 36, and PDL 47) were used to prepare ATAC-seq libraries as described
previously [76]. Cells for each PDL were seeded in 6-well plates at 200,000 cells/well. After
treatment with either control (DMEM with vehicle supplemented with 2% FBS) or 4 ng/mL TGF-
B1 (R&D Systems), the cells were washed with PBS and detached using trypsin/EDTA after 48
h. Using 200,000 cells of each PDL, ATAC-seq libraries were constructed using an ATAC-Seq
Kit (Active Motif) according to the manufacturer’s protocol. The ATAC-seq data were generated
as paired-end 150 base reads on the NovaSeq 6000 (Illumina).

For treatment with ATRA, HFF-1 cells (PDL 24) were seeded in 6-well plates at a density of
200,000 cells/well, serum-starved with 0.1% FBS for 24 h, and pretreated with 0.1% DMSO or 5
uM ATRA in 0.1% FBS DMEM for 1 h. After pretreatment, the cells were exposed to one of the
following conditions: control (DMEM with 2% FBS and 0.1% DMSO vehicle), 4 ng/mL TGF-p1
(R&D Systems), or 5 uM ATRA with or without 4 ng/mL TGF-B1. Next, the cells were washed
with PBS and harvested using trypsin/EDTA after 48 h.

All ATAC-seq data were analyzed using the nfcore/atacseq pipeline version 1.2.1 with default
parameters using the “nextflow run nf-core/atacseq -r 1.2.1 -profile singularity —input
samplesheet ATAC.csv —genome GRCh38 —save reference —max cpus 16 —max_memory
256.GB” arguments. The downstream procedure is similar to that for the ChIP-seq analysis (for

more detail, see the nf-core/atacseq pipeline [https://nf-co.re/atacseq/1.2.1]).

Transcription factor (TF) Network Analysis

For the TF network analysis, the differentially expressed genes (DEGs) in each RNA-seq were
used as input, and the associated TF network was constructed using Epigenetic Landscape In
Silico deletion Analysis (Lisa) version 1.0. The FC and adj-p were calculated for PDL 24 vs. PDL
36, PDL 24 vs. PDL 47, and PDL 36 vs. PDL 47 (DEGs: |[FC| > 1.2, adj-p < 0.05) using DESeq2
version 1.36.0 to extract DEGs of the associated TF network with increasing PDL. Next, to
identify DEGs in HFF-1 cells treated with control, ATRA, TGF-B1, and TGF-B1 + ATRA, 1
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calculated FC and adj-p for control vs. ATRA, control vs. TGF-B1, TGF-B1 vs. TGF-f1 + ATRA
(DEGs: [FC| > 1.2, adj-p < 0.05) using DESeq?2 version 1.36.0. The DEG symbol name was used
as input to identify the TF network controlling the DEGs using Lisa. The DEG symbol name was
used as input to identify the TF network controlling the DEGs using Lisa with “time lisa model —
clean=True -method="all” —web=True -new_rp_h5=None —new_count_h5=None —species hg38
—epigenome “[‘Dnase’, ‘H3K27ac’]” —cluster=False —covariates=False —random=True —prefix
first_run —background=None —stat_background number=1000 —threads 30
upregulated DEGs_SYMBOL.symbol downregulated DEGs_SYMBOL.symbol”.

TF Enrichment

The activity of the top 20 TFs was determined for the DEGs according to the FC value for RNA-
seq data between PDLs and normalized transcripts per million (TPM) value for RNA-seq data
using DoRothEA version 1.8.0 as described previously [76]. First, to identify the DEGs in RS
induced HFF-1 cells, the FC and adj-p were calculated for PDL 24 vs. PDL 36, PDL 24 vs. PDL
47, and PDL 36 vs. PDL 47 (DEGs: |[FC| > 1.2, adj-p < 0.05) using DESeq2. DEGs and FC values
were used as input to identify the top 20 TFs regulating the DEGs using DoRothEA (confidence
level A, B, and C). The top 20 TFs were identified by extracting the top 10 TFs for PDL 24 vs.
PDL 36, PDL 24 vs. PDL 47, and PDL 36 vs. PDL 47, excluding duplicate TFs. Finally, a
normalized enrichment score (based on DoRothEA) was calculated for the top 20 TFs using
normalized TPM values for all genes greater than five.

To identify the TF activity in HFF-1 cells treated with control, ATRA, TGF-B1, and TGF-B1 +
ATRA, I first calculated FC and adj-p for control vs. ATRA, control vs. TGF-B1, TGF-B1 vs.
TGF-B1 + ATRA (DEGs: [FC| > 1.2, adj-p < 0.05) using DESeq2. Next, DEGs and FC values
were used as input to identify TFs that regulated the DEGs using DoRothEA (confidence levels
A, B, and C). Finally, a normalized enrichment score (based on DoRothEA) was calculated for
SMAD3, SMAD4, TEADI, TEAD4, RARA, and RXRA using normalized TPM values for all

genes greater than five.

Motif Analysis

Motif analysis was performed using HOMER version 4.11 as described previously [76]. Briefly,
I first calculated the gain peak region of ATAC-seq from the counts at the consensus peak using
DESeq2. The region with log;FC > 0 and adj-p < 0.05 was defined as the gain peak that
significantly increases with increasing PDL. Next, the gained peaks for PDL 24 vs. PDL 36, PDL
24 vs. PDL 47, and PDL 36 vs. PDL 47 were concatenated using the “cat” command, sorted and
merged using “sortBed” and “mergeBed,” respectively, in Bedtools version 2.30.0. The

concatenated gained peak bed file was analyzed with “findMotifsGenome.pl hg38 -size given -p
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8” in HOMER to output log (adj-p value) and percent of target sequences with motif from
knownResults.html.

Gene Annotation of ATAC-seq and ChlIP-seq Peaks and Intersection with DEGs

Peak annotation for ATAC-seq and ChIP-seq was performed using “annotatePeak™ in the R
package ChIPseeker version 1.32.1 as described previously [76]. First, the region with |log2FC|
> ( and adj-p <0.05 was defined as the differential peak that changes significantly for PDL 24 vs.
PDL 36, PDL 24 vs. PDL 47, and PDL 36 vs. PDL 47 using DESeq2. Next, differential peaks
were concatenated using the “cat” command, sorted and merged using “sortBed” and “mergeBed”
in Bedtools. The differential peaks were annotated as the nearest neighboring gene with the closest
distance from the peak to the transcription start site (T'SS). The TSS region occurred from —3kb
to +3kb. The annotation package for hg38 (TxDb.Hsapiens.UCSC.hg38.knownGene) was used
as the TxDb object®®. Peak annotation was conducted with the “tssRegion=c (-3000, 3000),
TxDb=TxDb.Hsapiens.UCSC.hg38.knownGene, annoDb=‘org.Hs.eg.db’” option. DEGs from
the RNA-seq data were identified for PDL 24 vs. PDL 36, PDL 24 vs. PDL 47, and PDL 36 vs.
PDL 47 using DESeq2 (DEGs: |[FC|> 1.2, adj-p <0.05). Venn diagrams were created using DEGs
and annotated genes from differential peaks in both the ATAC-seq and ChIP-seq data.

Ingenuity Pathway Analysis (IPA)

IPA was performed for upstream analysis using IPA tool version 81348237 software as described
previously [76]. The gene set was mapped to Ingenuity Knowledge Base using “core analysis.”
Molecule type, genes, RNAs, and proteins were used for the upstream analysis. A right-tailed
Fisher’s exact test was used to calculate a p-value of overlap determining the probability that the
association between the gene set and the upstream regulators is explained by chance alone. The

Benjamini—Hochberg (BH) method for multiple testing was used to calculate the adjusted p-value.

Analysis of Public in vivo and in vitro RNA-seq Data

All public RNA-seq data used the same genomic alignment and read count matrix pipeline as
described in the “Sample preparation for RNA-seq and genomic alignment” as described
previously [76].

In vivo RNA-seq data (GSE113957) of human arm skin was analyzed after filtering outliers and
clustering. Since multiple ethnic and tissue sources were included, data for 55 samples were
manually selected for skin fibroblasts derived from Caucasian individuals (11-71 years of age,
see donor list in Table 2.4.1). The samples were manually divided into three clusters according to
age (young: 10s to 20s; middle: 30s to 50s; aged: 60s to 70s). For each cluster, a robust principal

component analysis (PCA) was performed using “rrcov” version 1.5.2 to detect outliers, resulting
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in a final dataset with 45 samples. Spearman’s correlation coefficient was calculated to evaluate
the distance between each sample using normalized TPM values: distance =1 — Spearman’s
correlation coefficient. Using the distance calculated, samples were clustered using the “hclust”
function in R with “distance, method=‘ward.D2’” (Figure 2.4.1). Finally, DEGs were identified
by comparing each cluster using DESeq2 (DEGs: |FC| > 1.5, adj-p < 0.05). The BH method was

used to calculate the adjusted p-value.

Table 2.4.1: Detailed information on donors in public in vivo expression data.

Run Age (years) Disease Gender [Source Ethnicity Sample
filtering
SRR7093887 |11 Healthy |Female Skin; Arm  |Caucasian Omitted
SRR7093888 (11 Healthy |Female Skin; Arm  |Caucasian Used
SRR7093889 [12 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093897 [19 Healthy |Male Skin; Arm  [Caucasian Used
SRR7093899 (20 Healthy |Female Skin; Arm  |Caucasian Used
SRR7093811 (24 Healthy |Female Skin; Arm  |Caucasian Used
SRR7093930 (24 Healthy |Male Skin; Arm  [Caucasian Used
SRR7093812 |25 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093813 (25 Healthy |Female Skin; Arm  |Caucasian Used
SRR7093928 (25 Healthy |Female Skin; Arm  [Caucasian Used
SRR7093814 |26 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093815 |26 Healthy |Female Skin; Arm  |Caucasian Used
SRR7093816 (28 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093817 |29 Healthy |Male Skin; Arm  [Caucasian Used
SRR7093818 |29 Healthy |Male Skin; Arm  |Caucasian Omitted
SRR7093819 (30 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093820 (30 Healthy |Female Skin; Arm  |Caucasian Used
SRR7093821 |30 Healthy |Male Skin; Arm  |Caucasian Omitted
SRR7093822 |30 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093908 |37 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093909 (39 Healthy |Male Skin; Arm  |Caucasian Omitted
SRR7093825 (41 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093832 (41 Healthy |Female Skin; Arm  |Caucasian Omitted
SRR7093830 [42 Healthy |Female Skin; Arm  |Caucasian Used
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SRR7093823 |43 Healthy |Female Skin; Arm  |Caucasian Used
SRR7093833 (43 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093824 (44 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093834 (44 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093835 (45 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093828 [46 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093836 [46 Healthy |Male Skin; Arm  |Caucasian Omitted
SRR7093837 |46 Healthy |Male Skin; Arm  [Caucasian Used
SRR7093826 (47 Healthy |Male Skin; Arm  [Caucasian Used
SRR7093831 [47 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093838 [47 Healthy |Male Skin; Arm  [Caucasian Used
SRR7093827 |50 Healthy |Female Skin; Arm  [Caucasian Used
SRR7093829 |50 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093910 (51 Healthy |Male Skin; Arm  |Caucasian Omitted
SRR7093912 |55 Healthy |Male Skin; Arm  |Caucasian Omitted
SRR7093839 (61 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093840 |62 Healthy |Female Skin; Arm  |Caucasian Used
SRR7093841 |62 Healthy |Female Skin; Arm  |Caucasian Used
SRR7093842 (63 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093843 |64 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093844 |66 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093845 |67 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093846 |67 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093847 (68 Healthy |Male Skin; Arm  |Caucasian Omitted
SRR7093848 (68 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093939 (68 Healthy |Male Skin; Arm  |Caucasian Omitted
SRR7093849 |69 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093850 [69 Healthy |Female Skin; Arm  |Caucasian Used
SRR7093941 |69 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093940 |70 Healthy |Male Skin; Arm  |Caucasian Used
SRR7093915 |71 Healthy |Female Skin; Arm  |Caucasian Used
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Figure 2.4.1: Analysis of public in vivo omics data on aging.

A) Clustering of public data on human skin fibroblast RNA-seq samples. Samples from human
arm skin fibroblast (age: 11-71 years, n = 45) were clustered into cluster 1 (n = 22), cluster
2 (n=13), and cluster 3 (n = 10) using the “hclust” function of R with “method = ward.D2.”

B) Age distribution of the clustered human skin fibroblast samples. The median (cluster 1: 39.5
years; cluster 2: 45.0 years; cluster 3: 48.5 years) and average (cluster 1: 38.9 years; cluster
2: 44.8 years; cluster 3: 54.5 years) of each cluster increased with the cluster number; n = 3,

*p < 0.05 (Wilcoxon rank sum test).

In vitro RNA-seq data (GSE63577) for the human dermal fibroblast HFF-1 cell line was
compared for each PDL (PDL 16, PDL 26, PDL 46, PDL 64, and PDL 74). DEGs were identified
for PDL 16 vs. PDL 26, PDL 16 vs. PDL 46, PDL 16 vs. PDL 64, PDL 16 vs. PDL 74, PDL 26
vs. PDL 46, PDL 26 vs. PDL 64, PDL 26 vs. PDL 74, PDL 46 vs. PDL 64, PDL 46 vs. PDL 74,
and PDL 64 vs. PDL 74 using DESeq2 (DEGs: |[FC| > 2.0, adj-p < 0.01) and intersected. The BH

method was used to calculate the adjusted p-value.
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RNA-seq data for skin fibroblasts from healthy subjects (age: 1-9 years, n = 12) and

Hutchinson—Gilford progeria syndrome (HGPS) patients (age: 2—8 years, n = 10) were
downloaded from GSE113957 (see donor list in Table 2.4.2).

Table 2.4.2: Detailed information on donors in public in vivo expression data.

Run Age (years) | Disease | Gender | Source Ethnicity

SRR7093809 | 1 Male Skin; Foreskin Asian
Healthy

SRR7093874 | 1 Healthy Male Skin; Unspecified Caucasian

SRR7093875 | 2 Female | Skin; Unspecified Caucasian
Healthy

SRR7093876 | 3 Male Skin; Inguinal area Latino/Hispanic
Healthy

SRR7093877 | 3 Healthy Male Skin; Unspecified NA

SRR7093878 | 5 Male Skin; Umbilical Black
Healthy

area

SRR7093879 | 6 Male Skin; Inguinal area Black
Healthy

SRR7093880 | 7 Male Skin; Inguinal area Black
Healthy

SRR7093881 |7 Healthy Male Skin; Unspecified Caucasian

SRR7093882 | 8 Healthy Male Skin; Unspecified Caucasian

SRR7093883 | 8 Male Skin; Inguinal area Caucasian
Healthy

SRR7093884 | 9 Healthy Female | Skin; Unspecified Black

SRR7093942 | 8 HGPS | Female | Skin; Leg Caucasian

SRR7093943 | 8 HGPS [Male NA NA

SRR7093944 2 + 3 months | HGPS | Female | NA NA

SRR7093945 [ 3 + 9 months | HGPS | Female | NA NA
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SRR7093946 [ 4 + 8 months | HGPS | Female [NA NA
SRR7093947 [ 8 + 6 months | HGPS |Male [NA NA
SRR7093948 | 6 + 11 months | HGPS | Female | NA NA
SRR7093949 | 5 HGPS |Female | NA NA
SRR7093950 | 8 + 10 months | HGPS | Male |NA NA
SRR7093951 |3 HGPS |Female | NA NA

Kyoto Encyclopedia of Genes and Genomes (KEGG) Analysis of Public RNA-seq

KEGG enrichment was compared using the “comparecluster” function in the R package
clusterProfiler version 4.4.4 with “fun”=enrichKEGG, “organism”=I, “keyType”= 28 eg,
“pAdjustMethod”=BH,  “minGSSize”=10,  “maxGSSize”=500,  “pvalueCutoff”=0.05,
“qvalueCutoff’=0.05, and “use internal data”=“FALSE” as described previously [76]. The BH

method was used to calculate the adjusted p-value.

Correlation Analysis of TGF-f8 Pathway-Enriched Genes Using Public RNA-seq Data
Spearman’s correlation between age and gene expression was calculated for the in vivo data or
PDL and gene expression for the in vitro data using “cor” (method = “spearman”) in R as
described previously [76]. The genes associated with KEGG term “TGF-beta signaling pathway”
in Figure 3.1.3D are plotted.

Integrated Analysis of ATAC-seq and RNA-seq of TGF-$1 Treatment

Peak annotation for ATAC-seq was performed using “annotatePeak” in the R package ChIPseeker
version 1.32.1 as described previously [76]. Briefly, the region with adj-p < 0.05 was defined as
the differential peak that changes significantly for control vs. 4 ng/mL TGF-B1 using DESeq2.
The differential peaks were annotated as the nearest neighboring gene with the closest distance
from the peak to the TSS. The TSS region occurred from —3 kb to +3 kb. The annotation package
for hg38 (TxDb.Hsapiens.UCSC.hg38.knownGene) was used as the TxDb object [83]. Peak
annotation was conducted with the “tssRegion = ¢ (-3000, 3000), TxDb =
TxDb.Hsapiens.UCSC.hg38.knownGene, annoDb = ‘org.Hs.eg.db’” option. DEGs from the
RNA-seq data were identified for control vs. 4 ng/mL TGF-B1 using DESeq?2 (adj-p < 0.05).

Visualization of the Genomic Location of THBS1

Integrative Genomics Viewer version 2.8.0 was used as the genome browser to view THBS1
genomic locations. Briefly, I defined the region with |[FC| > 1.2 as the differential peak that
changed significantly for control vs. ATRA, control vs. TGF-B1, TGF-1 vs. TGF-B1 + ATRA
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using DESeq2. The differential peaks were annotated as the nearest neighboring gene with the
closest distance from the peak to the transcription start site (TSS) using ChIPseeker version 1.32.1.
The TSS region was defined as the region from —3 kb to +3 kb. The annotation package for hg38
(TxDb.Hsapiens.UCSC.hg38.knownGene) was used as the TxDb object [83]. Peaks annotated as

THBS1 were defined as variable regions of open chromatin near THBS1.

Enrichment Analysis of TF Near THBS1 Genomic Loci
The enrichment analysis of ChIP-Atlas (https://chip-atlas.org) was performed to identify the
common epigenetic features of fluctuating ATAC-seq-derived genomic loci annotated as the
variable regions of the open chromatin near THBS1. The enrichment analysis was performed with
the following options: Experiment type = ChIP: TFs and others, cell type class = epidermis, and
threshold for significance = 500. The ATAC-seq-derived genomic loci annotated as the variable
regions of the open chromatin near THBS1 were obtained as described in the previous section.
The list of TFs annotated as THBSI1-related TFs in the Signaling Pathways Project
(https://signalingpathways.org) was obtained with the following options: Type = cistromic,
gene(s) of interest = single gene, THBSI, signaling pathway category = all, signaling pathway

class = all, signaling pathway family = all, and biosample category = all species.

Extraction of Genes to which RARA/RXRA Bind in the Vicinity Using ChIP-Atlas

To extract the neighboring genes to which RARA/RXRA bind, I used ChIP-Atlas to obtain the
DNA regions to which RARA and RXRA bind, followed by obtaining a list of the neighboring
genes. Initially, I identified DNA regions bound by RARA and RXRA using the peak browser
function of ChIP-Atlas with the following conditions: experiment type = ChIP: TFs and others,
cell type class = all cell types, threshold for significance = 500, and ChIP antigen = RARA or
RXRA. Next, the peaks were annotated to neighboring genes using HOMER with the
“annotatePeaks.pl Input.bed hg38” option. Finally, I counted the annotated genes from each peak
of RARA and RXRA, constructed two clusters based on these counts, and extracted the common

genes from the peaks.

Extraction of Human Skin Tissue Protein

Skin tissue proteins were extracted after dividing full thickness skin into dermis and epidermis
[84]. In detail, a biopsy punch (tip diameter: 3 mm @) was used to collect a full-layer skin sample
(see donor list in Table 2.2.1), from which hypodermis tissue was physically removed. After
washing in 70% ethanol and HBSS (Thermo Fisher Scientific), samples were treated with 25
Ul/mL Dispase II (Roche) HBSS solution for 15 h at 4°C. Enzymatic digestion was inactivated
with HBSS supplemented with 10% FBS and the dermis and epidermis were separated with
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tweezers. Each dermis and epidermis were separately homogenized in RIPA buffer (Thermo
Fisher Scientific) supplemented with Halt™ Protease and Phosphatase Inhibitor (Thermo Fisher
Scientific) for 10 min using a Powermasher II (Nippi) and centrifuged (13,000 rpm, 20 min, 4°C)

to generate protein extracts for western blot (WB) analysis.

Time-Course Cell Proliferation Analysis (Trypan Blue)

HFF-1 cells were seeded in 6-well plates with DMEM at 200,000 cells/well. After serum
starvation for 16 h, cells were treated with either control (DMEM with vehicle supplemented with
2% FBS) or 4 ng/mL TGF-B1 (R&D Systems) and collected at 0 h, 8 h, 12 h, 24 h, and 48 h.
Reconstitution buffer (0.1% bovine serum albumin [BSA] in 4 mM HCI PBS; R&D Systems) was
used as vehicle and to dissolve TGF-B1. At each time-point, cells were washed with PBS and
detached using trypsin/EDTA to count cells positive for trypan blue (Thermo Fisher Scientific)

using a cell counter (WakenBtech) according to the manufacturer’s protocol.

Cell Viability Analysis (WST-8)

HFF-1 cells were seeded in 96-well plates with DMEM at 10,000 cells/well. After serum
starvation for 16 h, cells were treated with each treatment. After 24 h, 10 uL Cell Counting Kit-8
solution (DOJINDO) was added, incubated for 1 h, and cell viability was calculated at an

absorbance wavelength of 450 nm using a Multiskan FC system (Thermo Fisher Scientific).

5-Bromo-2-Deoxyuridine (BrdU) Incorporation Assay

The inhibition of DNA synthesis was measured using a CycLex Cellular BrdU enzyme-linked
immunosorbent assay (ELISA) Kit Ver.2 (Medical & Biological Laboratories) according to the
manufacturer’s instructions. Briefly, HFF-1 cells were seeded in 96-well plates with DMEM at
10,000 cells/well. After 16 h of serum starvation, cells were treated with either control (DMEM
with vehicle supplemented with 2% FBS), 4 ng/mL TGF-1 (R&D Systems), or 1 pg/mL THBS1
(R&D Systems). After 8 h, the cells were incubated with anti-BrdU antibody and substrate for 16
h, and absorbance was measured at 450 nm with 540 nm as a reference using the Multiskan FC

system (Thermo Fisher Scientific).

Senescence-Associated f-galactosidase (SA-f-gal) Staining

The rate of positive SA-B-gal staining was calculated using a SA-B-gal Detection Kit (BioVision)
according to the manufacturer’s protocol. Briefly, cells were seeded in 12-well plates at 100,000
cells/well, treated with each stimulant, and fixed for 10 min with fixative solution after 48 h. The
cells were stained with Staining Solution Mix at 37°C overnight. After washing with PBS, cells
were treated with Hoechst® 33342 (DOJINDO) for 10 min and washed with PBS before

30



observation (BZ-9000, KEYENCE). SA-B-gal-positive rates were calculated as follows: SA-f-
gal-positive rate (%) = (number of SA-B-gal-positive cells per image/total number of cells per
image) % 100. For each treatment, 12 images were randomly analyzed. The number of SA-3-gal-
positive cells was determined using thresholds for each experiment using ImageJ Fiji software
(The National Institutes of Health). All image files were split into red, blue, and green channels.
The red channels were subtracted from the green channels, and thresholds of 20 and 30 were set
to identify SA-B-gal-positive cells. The total number of cells per image was counted as Hoechst®

33342-positive cells using ImageJ Fiji software.

SiRNA Transfection

HFF-1 cells were transfected with siRNA oligomer (Dharmacon/Horizon Discovery) mixed with
Lipofectamine RNAiIMAX reagent (Thermo Fisher Scientific) in Opti-MEM™ | (Thermo Fisher
Scientific) according to the manufacturer’s instructions as described previously [76]. Briefly, cells
were seeded in 6-well plates with DMEM at 200,000 cells/well. After transfection for 24 h in
serum-starved conditions, cells were treated with either control (DMEM with vehicle
supplemented with 2% FBS) or 4 ng/mL TGF-f1 (R&D Systems) and the lysates or its
supernatants were collected for further quantification. KD efficacy of c-Fos and c-Jun at 50 nM
siRNA are shown in Figure S5B. In addition, KD efficacy at 48 h post-stimulation of SMAD?2,
SMAD3, and SMAD4 at 25 nM siRNA is shown in Figure S13B.

Inhibitor Screening for FMOD Regulatory Pathway

HFF-1 cells were seeded in 96-well plates with DMEM at 10,000 cells/well. Cells were treated
with control (DMEM with 2% FBS-added vehicle) or 4 ng/mL TGF-B1(R&D Systems) with or
without each inhibitor, and supernatants were collected for FMOD ELISA. The following
inhibitors were used: Akt inhibitor VIII (14870, Cayman Chemical) and LY294002 (440202,
Calbiochem). The other inhibitors used were dispensed from a Tocriscreen Kinase Inhibitor

Toolbox (3514, Tocris Bioscience).

Inhibitor Treatment for THBS1 Regulatory Pathway

HFF-1 cells were seeded in 6-well plates with DMEM at 200,000 cells/well. Cells were treated
with control (DMEM with 2% FBS-added vehicle) or 4 ng/mL TGF-B1 (R&D Systems) with or
without each inhibitor, and the lysates were collected after 48 h for quantification by WB. The
following inhibitors were used: LY364947 (123-05981, Fujifilm), SB431542 (dispensed from a
Tocriscreen Kinase Inhibitor Toolbox [3514, Tocris Bioscience]), and T-5224 (528966, Selleck).

Bifurcation Model Analysis
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Dr. Keita lida contributed to the bifurcation analyses as described previously [76]. Based on the
experimental expression of THBS1 and FMOD upon treatment with different concentrations of
TGF-B1 (Figure 3.1.6A), we constructed a core transcription factor network consisting of TGF-
B1, THBS1, and FMOD. A double positive feedback loop (between THBS1 and TGF-B1) and
double negative feedback loop (between FMOD and TGF-B1) can be described by the following
nonlinear ordinary differential equations (ODEs):
d[THBS1] _ ( [TGFB1]"
dt [TGFB1]™a + K,

) — d,[THBS1], 1)

d[FMOD] _ ( K,
dt [TGFB1]™ + K,

d[TGFB1] _ [THBS1] K,
dt ([THBSl] + K1> ([FMOD] +K,

where a/d;, b/d,, and c/d; are maximal values of [THBS1], [FMOD], and [TGF(1],

respectively; K,, Kp, K;, and K, are the half saturation constants; and n, and n, are Hill

) — d,[FMOD], (2)

) — d,[TGFB1], 3)

coefficients. Setting the left-hand sides of Egs. (1)—(3) to zero, the steady state solutions can be

obtained as follows:

——— a( [TGFBI]"

[THBS1] = dy ([TGFBl]"a + Ka>’ )

— b K,

[FMOD] = i (—[TGFﬁl]"b - Kb>' (5)
2 < [THBS1] < K, ©
[TGF1] = d3 \[THBS1] +K1> [FMOD] +1<2>'

Substituting (4) and (5) into (6), [TGFP1] can be computed using Newton’s method and
stability can be determined by the sign of the derivative. Note that [THBS1] = 0, [FMOD] =
b/d,,and [TGFP1] =0 are stable steady state solutions for K; > 0 and K, > 0. By fitting (4)
and (5) to the experimental data (Figure 3.1.6A), the parameters were inferred using a nonlinear
least-squares method with Gnuplot (version 5.4); a/d; = 2.36, b/d, = 0.33, K, = 0.016,
K, = 0.002, n, = 1.6, and n;, = 1.7 (Figure 3.1.9B).

To understand the roles of endogenous TGF-f1, THBS1, and FMOD, we extended (6) to

incorporate the effects of PDL and endogenous TGF-B1 production as described below:

[THBS1-PDL] = a (%), @)
_ K,
[FMOD - PDL] = 8 (ﬁ), (8)
_ ( [THBS1 - PDL] )( K, >
[TGFRL] =y | mm—/——= |  =——~= ), )
[THBS1 - PDL] + K; / \[FMOD - PDL] + K,

32



where [THBS1-PDL], [FMOD - PDL], and [TGFB1] are endogenous concentrations of THBSI,
FMOD, and TGF-B1, respectively, a, B, and y are the maximal values of [THBS1-PDL],
[FMOD - PDL], and [TGFB1], and K., Kg, K, and K, are the half saturation constants,
respectively. In particular, y represents the endogenous TGF-B1 production rate. In the same
manner as before, we fitted (7)-(9) to the experimental data (Figure 3.1.9C) to identify all the
parameter values: @ =3, B =5, y =35, K, =10.1, Kg =5, K; = 0.46, and K, = 0.62.
The bifurcation diagram is depicted using (4)-(6) by replacing c/d3, K;, and K, with y, Kj,
and K, (Figure 3.1.9E).

Moreover, for simulating the immunostaining experiment (Figure 3.1.12), we extended the
model (4)—(6) to a stochastic model by computing probability distributions of [THBS1] and
[FMOD] for a given [TGFB1]. Using an Ornstein—Uhlenbeck process as a model of gene
expression®?, we formulated the dynamics of [THBS1] and [FMOD] by the following stochastic
differential equations:

d[THBS1] = (frups: ([TGFB1]) — [THBS1])dt + 0,dB; (t), (10)

d[FMOD] = (femop([TGFB1]) — [FMOD])dt + 0,dB,(t), (11)
where dB;(t) and dB,(t) are standard Gaussian white noises (mean 0 and variance 1), o; and
0, are constant parameters, and frpgsy and frmop are given by the following functions:

a [ [TGFR1Jta

fTHBs1([TGF51D = a(mna K >,

femon (ITGFR1]) = b K
FMop d, \[TGFB1]™ + K,
In our immunostaining experiment, [TGFB1] is assumed as a control parameter. Hence, we

computed [TGFB1] as a time limit of [TGFB1] using the following ODE:
d[TGFB1]

dt
where frgrg1 ([TGFB1]) is given by the following equation:

frerg1 ([TGFB1])

c [TGFB1]"a KZTdZ ([TGFB1]™ + Kj)

T ds : K,d,
b

= frerp1([TGFB1]) — [TGFB1], (12)

TGFBLIma + 1% ((TGRB1Ima + K,) ) \ K + 522 ([TGRB1I™ + K,)

Note that [TGFB1] corresponds with (6).
I numerically computed (10) and (11) using Euler-Maruyama method and (12) using Euler

method with the following initial conditions:

[THBS1](0) = 0, (12)
[FMOD](0) = 0, (13)
[TGFB1](0)~U (0, [TGFB1]max), (14)
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where (14) means that the initial value of [TGFB1] is randomly sampled from a uniform
distribution U(0, [TGFB1],ax)- Note that (10) and (11) may yield negative values. In such a case,
we addressed it numerically by constraining them to zero. The resulting bias from this adjustment,
however, proved to be negligible. I set the parameter values as follows: ¢; = 0, = 0.2 and
[TGFB1]pax = 0.2 in Figure 4C, and o0y = g, = 0.05 and [TGFB1],.x = 1.0 in Figure
3.1.11B. I simulated independent 10,000 sample paths for long time enough and obtained a steady
state distribution of [THBS1] and [FMOD].

TGF-fR Inhibitor Treatment for Endogenous TGF-f Signaling

HFF-1 cells (PDL 24, PDL 36, PDL 47, and PDL 53) were seeded in 6-well plates with DMEM
at 200,000 cells/well. Cells were treated with control (DMEM with 2% FBS-added vehicle) or 5
UM LY364947 (123-05981, Fujifilm), and the lysates were collected after 48 h for quantification
by WB.

Time-Course Datasets for Mathematical Model Training

I used the time-course data for phosphorylated SMAD3, c-Fos, THBS1, phosphorylated Akt
(Ser473), and FMOD activity with or without 4 ng/mL TGF-B1 (eight time-points up to 48 h)
treatment in HFF-1 cells for data-fitting of the comprehensive model as described previously [76].
Briefly, HFF-1 cells were seeded in 6-well plates at 200,000 cells/well and maintained in DMEM
supplemented with 10% FBS. After serum starvation for 16 h, the cells were treated with either
control (DMEM with vehicle supplemented with 2% FBS) or 4 ng/mL TGF-B1 (R&D Systems)
and the lysate and supernatant were collected at 0 min, 15 min, 30 min, 60 min, 120 min, 8 h, 24
h, and 48 h. Reconstitution buffer (0.1% BSA in 4 mM HCI PBS, R&D Systems) was used as
vehicle. The cells were lysed with RIPA buffer (Thermo Fisher Scientific) supplemented with
Halt™ Protease and Phosphatase Inhibitor (Thermo Fisher Scientific) and used in the western
blot analysis for analyzing anti-phosphorylated SMAD3 (Ser423/425; 9520, CST), anti-c-Fos
(2250, CST), anti-THBS1 (37879, CST), and anti-phosphorylated Akt (Ser473; 9271, CST)
expression. Supernatants were centrifuged (13,000 rpm, 15 min, 4 °C) to remove cell debris and
used for the FMOD ELISA (ab275895, Abcam). In addition, anti-phosphorylated SMAD2 data
(Ser465/467; 3108, CST) were obtained for model validation and not used in data-fitting. The

data were normalized between the minimum (0) and maximum (1) values.

Model Simulation and Parameter Estimation
I constructed the comprehensive mathematical model linking the TGF- and VEGF signaling
pathways (Figure 2.3.3) by integrating two mathematical models using a Python framework for

Modeling and Analysis of Signaling Systems (BioMASS) as described previously [76].
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Figure 2.3.3: Mathematical model diagram of the TGF-B—VEGF integrated signaling pathway
[76].

TGF-B and VEGF signaling pathways in an ordinary differential equation model. (Upper

panel) Diagram of molecular interactions in the TGF-f signaling model. A model of TGF-

BR activation, SMAD phosphorylation, and SMAD complex formation was developed for

the TGF- pathway. (Lower panel) In addition to the TGF-P signaling model, the process
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of VEGFR activation to ERK phosphorylation was described using the Imoto model [68].

Parameter estimation was conducted in two steps. In step one, parameters related to the TGF-f3
signaling network, modified based on the Lucarelli model [86], were trained using normalized
phosphorylated SMAD3, c-Fos, and THBS1 time-course expression. The resulting model had 27
rate equations, 22 species, and 42 parameters, of which 34 were to be estimated. By minimizing
the objective function, i.e., the sum of residual squares between simulation and experimental
values, 30 fitting parameter sets were obtained that reproduce the experimental results
with/without TGF-B1 stimulation in HFF-1 cells. In step two, an additional 30 parameter sets for
the rest of the model, including the Raf-ERK cascade and PI3K-Akt pathway, were trained using
normalized phosphorylated SMAD3, c-Fos, THBS1, phosphorylated Akt, and FMOD time-
course expression. The best fitting parameters in the TGF-f signaling network were adapted from
step one. The resulting integrated model had 79 rate equations, 83 species, and 194 parameters.
An additional 30 fitting parameter sets were obtained that reproduce the experimental results of
TGF-B1 stimulation in HFF-1 cells (parameter range: Figure 2.3.4; objective function trace:
Figure 2.3.5).
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Figure 2.3.4: Parameter range [76].
Estimated parameter values of 30 parameter sets for integrated TGF-B—VEGF signaling model.
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Figure 2.3.5: Objective function trace [76].

A) Objective function traces from 30 optimization runs for the integrated TGF-p—VEGF
signaling model.

B) Distribution of objective function value of 30 parameter sets. Bar graph: histogram of the

count. Shade: density of the count.

For the TGF-B pathway, I developed an original model of TGF-BR activation, SMAD
phosphorylation, and SMAD complex formation. This model activates the transcription of c-Fos
at the same time and forms a logical AND gate with SMAD complexes to regulate THBS1
expression. THBS1 forms positive feedback and activates latent TGF-B1. I modified the Imoto
model [68] to describe the process from VEGFR receptor activation to ERK phosphorylation.
ERK phosphorylation results in the activation of TFs for FMOD transcription. FMOD then forms
a complex with activated TGF-f1 and inhibits its binding to TGF-BR. The TGF-$ and VEGF
signaling pathway models crosstalk via the PI3K-Akt pathway.

All related files to execute the TGF-$ and TGF-f VEGF model using BioMASS can be found at
https://github.com/okadalabipr/Haga2023. I described each biochemical reaction using ODEs. To
train model parameters, I used time-series expression data for HFF-1 cells. For the global
parameter estimation, I minimized the sum of squared differences between the experimental

observations and simulated values using Differential Evolution 87.

Initial value for mathematical model

Values measured by ELISA and RNA-seq were used to determine the initial values of the model
[76].

The initial value for SMAD2, SMAD3, and SMAD4 were quantified using the respective ELISA
kits (SMAD2: 0.060 nM, SMAD3: 0.38 nM, SMAD4: 0.0044 nM). Briefly, HFF-1 cells were
seeded in 6-well plates with DMEM at 200,000 cells/well. Cell lysates were collected using the
lysate buffer provided with the ELISA kits after serum starvation for 16 h, centrifuged (13,000
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rpm, 15 min, 4°C), and used for SMAD?2 (ab260065, Abcam), SMAD3 (ab264624, Abcam), and
SMAD4 ELISAs (ab253211, Abcam).

For other nonzero species, I used RNA-seq data obtained from non-stimulated HFF-1 cells to
determine the initial value. Briefly, HFF-1 cells were seeded in 6-well plates with DMEM at
200,000 cells/well. Total RNA (three wells per sample) was collected after serum starvation for
16 h. RNA purification, sequencing library preparation, and downstream analysis was conducted
as described in the “Sample preparation for RNA-seq and genomic alignment” section. Initial
protein levels of the model species (total of 37 genes) were inferred from RNA-seq data, where
the maximal transcription rate or translated protein level were estimated from the mRNA
level68,88. 1 estimated protein amounts from one or more genes belonging to the same gene
family (isoforms) and employed weighting factors to convert the TPM value of the gene
corresponding to the protein to the appropriate initial protein value. The TPM values are shown
in Table 2.3.4.

Table 2.3.4: The list of genes used to estimate the initial protein value in the mathematical model

and the corresponding transcripts per million (TPM) values.

Gene symbol TPM (mean) TPM (SD)
TGFBR1 64.76 2.24
TGFBR2 95.81 4.21
SMAD7 20.62 3.33
FOS 1.17 0.62
THBSI1 4522.39 40.42
FMOD 20.88 0.66
FLT1 101.53 1.82
KDR 0.02 0.02
GRB2 128.45 0.34
SHCI 401.13 8.79
SHC2 1.16 0.49
SHC3 4.28 0.38
SHC4 1.26 0.30
PIK3CA 16.36 0.80
PIK3CB 15.10 0.89
PIK3CD 32.27 1.57
PIK3CG 0.00 0.00
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PTEN 51.20 1.38
RASALI 85.47 4.19
RASA2 26.93 0.49
RASA3 92.99 3.57
GABI1 7.09 0.54
SOS1 25.34 1.14
SOS2 20.01 0.81
AKTI 84.62 2.25
AKT?2 41.27 0.82
HRAS 101.55 4.41
KRAS 4243 1.21
NRAS 113.71 3.80
ARAF 85.60 1.46
BRAF 4.73 0.20
RAF1 79.97 1.25
MAP2K1 73.15 1.57
MAP2K2 114.17 3.90
PTPN1 84.13 3.12
MAPK1 78.20 1.11
MAPK3 75.96 5.75
Sensitivity Analysis

The sensitivity coefficient Sy was calculated using the following equation [68,88]:

Sy = d0InM/ dlny;
where M is the signaling metric, i.e., the integral expression level of THBS1 with TGF-§1
stimulation, and y; is each nonzero species in the mechanistic model. The sensitivity coefficients
were calculated by finite difference approximations with 1% changes in the biochemical reactions.
To calculate the sensitivity coefficients, I used BioMASS with run_analysis = (target="reaction”,

metric="integral”, style="heatmap”’).

Time-course PI3K-Akt Inhibitor Treatment

I validated the model results using HFF-1 cell experiments with additional inhibitors at each time-
point (four time-points, up to 48 h) as previously described [76]. Briefly, HFF-1 cells were seeded
in 96-well plates with DMEM at 10,000 cells/well. The cells were treated with either control
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(DMEM with 0.1% DMSO supplemented with 2% FBS) or 4 ng/mL TGF-B1 (R&D Systems).
Inhibitors for TGF-B1-treated samples were added at O h, 8 h, 24 h, and 32 h. Supernatants were
collected at 48 h for quantification. Reconstitution buffer (0.1% BSA in 4 mM HCI PBS, R&D
Systems) was used as vehicle. Supernatants were centrifuged (13,000 rpm, 15 min, 4°C) to
remove cell debris and used for FMOD ELISA (Abcam). The following inhibitors were used:
LY364947 (123-05981, Fujifilm) and Akt inhibitor VIII (14870, Cayman Chemical)

Sample preparation for THBS1 and FMOD quantification with TGF-f family

HFF-1 cells were used to prepare recombinant human TGF-f family treated lysates and
supernatants for quantification as previously described [76]. Briefly, cells for were seeded in 6-
well plates at 200,000 cells/well. After treatment with either control (DMEM with vehicle
supplemented with 2% FBS), TGF-f1 (R&D Systems), TGF-f2 (ProteinTech), or TGF-B3
(ProteinTech), cell lysates and supernatants were collected after 48 h for quantification by WB or
FMOD ELISA (Abcam).

Sample Preparation for FMOD Quantification with VEGF, EGF, b-FGF, or PDGF-BB
HFF-1 cells were used to prepare recombinant human VEGF, EGF, b-FGF, or PDGF-BB
supernatants for FMOD ELISA as previously described [76]. Briefly, cells for were seeded in 12-
well plates at 100,000 cells/well. After treatment with either control (DMEM with vehicle
supplemented with 2% FBS), VEGF (ProteinTech), EGF (PeproTech), b-FGF (R&D Systems),
or PDGF-BB (ProteinTech), cell supernatants were collected after 48 h for quantification by
FMOD ELISA (Abcam).

Time-Course TGF-$1 Washout Experiment

TGF-B1-stimulated HFF-1 cells was washed with PBS at seven time-points (i.e., 1 h,2h, 4 h, 8
h, 12 h, 24 h, and 48 h or 15 min, 30 min, 1 h, 4 h, 12 h, 24 h, and 48 h) to confirm the effects of
transient and sustained TGF-B1 stimulation on the expression of THBS1, FMOD, and
phosphorylated Akt (Ser473) as previously described [76]. Briefly, HFF-1 cells were seeded in 6-
well plates with DMEM at 200,000 cells/well. After serum starvation for 16 h, cells were treated
with control (DMEM with 2% FBS-added vehicle) or 4 ng/mL TGF-B1. Cells were washed with
PBS and replaced with control medium at each time-point from the TGF-B1 stimulation condition,

and all lysate was recovered at 48 h for western blot analysis.
Natural Compound Screening for THBS1 Regulation

HFF-1 cells (PDL 24) were seeded in 96-well plates with DMEM at a density of 10,000 cells/well.
The cells were treated with control (DMEM with 2% FBS and 0.1% DMSO vehicle), 4 ng/mL
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TGF-B1, or 4 ng/mL TGF-B1 combined with compounds from a natural bioactive substance
library (S990043-NAT1 to 4, Sigma, 268 compounds in total) as previously described [76]. After
48 h of the treatment, the cells were treated with the Cell Counting Kit-8 solution (DOJINDO),
followed by incubation for 1 h. Cell viability was calculated at an absorbance wavelength of 450
nm using the Multiskan FC system (Thermo Fisher Scientific). Additionally, the supernatants
were collected to perform the ELISA of THBS1 (DTSP10-1, R&D Systems) according to the
manufacturer’s protocol. Briefly, the supernatants were centrifuged (1, 000 rpm, 4 min, and 4°C)
to remove cell debris and used for each measurement (n = 1). Relative protein levels were shown
relative to TGF-B1 as indicated by (1) value. Natural compounds showing >80% cell viability
were tested for THBS1 ELISA.

THBS1 ELISA for Retinol and ATRA

HFF-1 cells (PDL 24) were seeded in 6-well plates with DMEM at a density of 200,000 cells/well.
The cells were pretreated with 0.1% DMSO or each retinoid (retinol or ATRA) in 0.1% FBS
DMEM for 1 h before each treatment. The cells were treated with control (DMEM with 2% FBS
and 0.1% DMSO vehicle), 4 ng/mL TGF-B1, 5 uM LY36494 with or without 4 ng/mL TGF-B1,
0.5 uM or 5 puM retinol (LKT Labs) with or without 4 ng/mL TGF-B1, or 0.5 uM or 5 uM ATRA
with or without 4 ng/mL TGF-B1. After 48 h of the treatment, the supernatants were collected for
THBS1 ELISA (R&D Systems), and ELISA was performed according to the manufacturer’s
protocol. Briefly, the supernatants were centrifuged (1, 000 rpm, 4 min, and 4°C) to remove cell
debris and used for each measurement (n = 3). Relative protein levels were shown relative to

TGF-p1 as indicated by (1) value.

Sample Preparation for THBS1 and Lamin-B1 Quantification with TEAD Inhibitor Treatment
HFF-1 cells (PDL 47) were seeded at a density of 200,000 cells/well in 6-well plates
supplemented with 10% FBS/DMEM. The cells were serum-starved with 0.1% FBS for 24 h and
pretreated with 0.1% DMSO or 5 uM ATRA for 1 h before each treatment. The cells were treated
with control (DMEM with 2% FBS and 0.1% DMSO vehicle), 1 uM K-975 (Selleck) with or
without 5 uM ATRA, cultured for 48 h, and lysates were collected after 48 h for quantification by

western blotting.

THBS1 Immunofluorescence Imaging

The distribution of THBS1 expression in HFF-1 was examined by immunofluorescence imaging
as previously described [76]. Briefly, HFF-1 cells were seeded in 24-well plates with DMEM at
20,000 cells/well. After serum starvation for 16 h, cells were treated with control (DMEM with
2% FBS-added vehicle), 0.04 ng/mL, or 0.2 ng/mL TGF-B1 for 48 h and fixed with fresh 4%
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paraformaldehyde (Thermo Fisher Scientific) in PBS for 15 min (n = 6). After rinsing with PBS,
the cells were subjected to a 0.2% TritonX-100 (Nakalai Tesque) in PBS for 10 min and blocked
using 1% goat serum (Thermo Fisher Scientific) in PBS overnight. Next, cells were incubated
with THBS1 antibodies (ab85762, Abcam) diluted in 1% goat serum in PBS overnight and washed
with PBS. Finally, cells were incubated with Alexa Fluor® 594 conjugated secondary antibodies
(Abcam), CellMask™ (Thermo Fisher Scientific) for cell body staining, and Hoechst® 33342
(DOJINDOQ) for nuclear staining for 1 h at 25 °C in the dark. Fluorescence images of 96 fields
(16 fields per well) under each condition were acquired using IN Cell Analyzer 2500HS (Cytiva).
CellProfiler (ver. 4.2.1) was used to segment nuclear regions from Hoechst® 33342 images and
cytoplasmic regions by excluding nuclear regions from CellMask™ images. The THBSI signal
intensity of each cell was then quantified in the cytoplasmic region; THBS1 signal intensity was

calculated based on the integrated and mean signal density in each image.

SMAD4 Immunofluorescence Imaging

SMADA4 expression distribution in HFF-1 cells was examined by immunofluorescence imaging.
Briefly, HFF-1 cells (PDL 24) were seeded in 24-well plates with DMEM at a density of 20,000
cells/well. After serum starvation for 24 h, the cells were treated with control (DMEM with 2%
FBS and vehicle), 4 ng/mL TGF-B1, 5 uM LY36494 with or without 4 ng/mL TGF-B1, or 5 uM
ATRA with or without 4 ng/mL TGF-1 for 15 min and fixed with fresh 4% paraformaldehyde
(15710, Electron Microscopy Science) in PBS for 15 min. After rinsing with PBS, the cells were
subjected to 0.2% Triton X-100 (Nakalai Tesque) in PBS for 10 min and blocked with 1% goat
serum (Thermo Fisher Scientific) in PBS overnight. Next, the cells were incubated with SMAD4
antibodies (CST), diluted with 1% goat serum in PBS overnight, and washed with PBS. Finally,
the cells were incubated with anti-rabbit Alexa Fluor® 488-conjugated secondary antibodies
(Abcam). CellMaskTM (Thermo Fisher Scientific) was used for cell body staining, whereas
Hoechst® 33342 (DOJINDOQO) was used for nuclear staining for 1 h at 25°C in the dark.
Fluorescence images of 30 fields under each condition were acquired using the IN Cell Analyzer
2500HS (Cytiva). CellProfiler was used to segment nuclear regions from the Hoechst® 33342
images. The SMAD4 signal intensity of each cell was quantified in the nuclear region and

calculated based on the integrated signal density in each image.

Effect of Surface Stiffness on Drug Sensitivity

CytoSoft® 6-well plates (Advanced BioMatrix) were purchased for culturing on substrates of
various stiffnesses (0.5, 2, 8, 16, and 32 kPa). Following the manufacturer’s instructions, 100
pg/mL of PureCol Atelocollagen Solution (Advanced BioMatrix), a type I collagen, was prepared
by diluting with degassed PBS (37°C). The collagen solution was added to each well and
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incubated at RT for 1 h. After washing with PBS, the cells were seeded and used in further
experiments. Briefly, HFF-1 cells (PDL 47) were seeded in 6-well plates with 10% FBS DMEM
at a density of 150,000 cells/well. The cells were serum-starved with 0.1% FBS for 24 h, followed
by their treatment with control (DMEM with 2% FBS and 0.1% DMSO vehicle), 5 uM ATRA, or
1 uM K-975 for 48 h and processed for SA-B-gal staining as previously described in the SA-p-

gal Staining subsection.

Western Blot Analysis

All immunoblots are representative images of three biological replicates as previously described
[76]. Attached cells were washed with PBS and lysed in RIPA buffer (Thermo Fisher Scientific)
supplemented with Halt™ Protease and Phosphatase Inhibitor (Thermo Fisher Scientific). Cell
lysates were centrifuged (13,000 rpm, 15 min, 4°C) to unify protein concentrations between
samples, and a BCA protein assay kit (Thermo Fisher Scientific) was used according to the
manufacturer’s protocol. Proteins were separated by SDS-PAGE and transferred to nitrocellulose
membranes using iBlot2 (Thermo Fisher Scientific). After blocking with EveryBlot blocking
buffer (Bio-Rad), the following antibodies were used for blotting: anti-THBS1 (37879, CST),
anti-FMOD (60108-1-Ig, ProteinTech), anti-LAMIN-B1 (12987-1-AP, ProteinTech), anti-p53
(2524, CST), anti-p21 (2946, CST), anti-c-Fos (2250, CST), anti-c-Jun (9165, CST), anti-
SMAD?2 (5339, CST), anti-phosphorylated SMAD2 (Ser465/467; 3108, CST), anti-SMAD3
(9523, CST), anti-phosphorylated SMAD3 (Ser423/425; 9520, CST), anti-SMAD4 (46535, CST),
anti-phosphorylated Akt (Ser473; 9271, CST), anti-pan Akt (2920, CST), anti-USP11 (ab109232,
Abcam), anti-GAPDH (M171-3, Medical & Biological Laboratories), and anti-GAPDH (10494-
1-Ap, ProteinTech). Primary antibodies were reacted at 4°C overnight, while secondary
antibodies were reacted at room temperature for 1 h. For protein detection, Clarity Istern ECL
Substrate (Bio-Rad) or Clarity Max Istern ECL Substrate (Bio-Rad) was used with an Amersham
Imager 680 (GE Healthcare). Relative protein quantification was performed with ImageJ Fiji.
Expression values (n = 3) were normalized using GAPDH as loading control and the ratio against

the control was calculated. Molecular weights are indicated on the left of each image.

ELISA

All ELISAs were conducted according to the manufacturer’s protocol as previously described
[76]. Cell supernatants were used as samples for ELISAs for THBS1, FMOD, TGF-B1, VEGF,
EGF, b-FGF, PDGF, IL-6, and IL-8. Briefly, supernatant samples were centrifuged (1,000 rpm, 4
min, 4°C) to remove cell debris and used for each measurement. Cell lysates were used as samples
for the ELISA for SMAD2, SMAD3, and SMAD4. Lysate samples were collected using lysis
buffer included in the kits, cell lysates were centrifuged (13,000 rpm, 15 min, 4°C) and used for

43



each ELISA. Relative expression levels are displayed with the control (1) value. The following
ELISA kits were used for quantification: THBS1 (DTSP10-1, R&D Systems), FMOD (ab275895,
Abcam), TGF-B1 (DB100B, R&D Systems), VEGF (DVE00, R&D Systems), IL-6 (D6050, R&D
Systems), I[L-8 (ab214030, Abcam), SMAD?2 (ab260065, Abcam), SMAD3 (ab264624, Abcam),
and SMAD4 (ab253211, Abcam).

Quantitative RT-PCR (qRT-PCR) Analysis

Total RNA from HFF-1 cells was prepared using the NucleoSpin RNA kit (Macherey-Nagel
GmbH & Co.) and subjected to complementary DNA (¢cDNA) synthesis using ReverTra Ace®
gPCR RT Master Mix (Toyobo Life Science) as follows: 15 min at 37°C, 5 min at 50°C, and 5
min at 98°C [76]. Quantitative PCR using cDNA was conducted using a KOD SYBR qPCR kit
(Toyobo Life Science) with a CFX96 Real-Time PCR System (Bio-Rad) according to the
manufacturer’s protocol. PCR cycling conditions were as follows: 40 cycles of 10 s at 98°C, 10 s
at 60°C, and 30 s at 68°C. The primers used for qRT-PCR were as follows: THBSI (5'-
TCCCCATCCAAAGCGTCTTC-3" and 5-ACCACGTTGTTGTCAAGGGT-3'); FMOD (5'-
GGACGTGGTCACTCTCTGAA-3" and 5-GGCTCGTAGGTCTCATACGG-3"); GAPDH (5'-
GTCTCCTCTGACTTCAACAGCG-3" and 5-ACCACCCTGTTGCTGTAGCCAA-3"). Gene
expression was quantified using the AACq method. Expression values (n = 3) were normalized

using GAPDH and the ratio against the PDL 24 value was calculated.

Quantification and Statistical Analysis

Statistical data are presented as the mean with standard deviation (SD), calculated using the “sd”
function in R. The horizontal line in the center of the box plot is the median, the lower and upper
borders indicate the 25" and 75" percentiles, respectively, and all measurements are shown as
point plots. For detection of upstream regulators, the right-tailed Fisher’s exact test was used in
IPA. Comparisons of more than two groups were made using one-way Dunnett’s or Tukey’s
multiple comparisons test. Comparisons of two groups were evaluated by Student’s #-test, Ilch’s
t-test, or Wilcoxon rank sum test. The Silverman test was used to test for multimodality. |
considered p < 0.05 to be statistically significant. Unless otherwise noted, p-values were
calculated using the multcomp package in R. The statistical details of each experiment can be

found in the figure legends.
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3. RESULTS
3.1 Identification of Skin Aging Target Through Omics

Analyses and Mathematical Modeling

3.1.1 Cellular Senescence Induced by Replication-Stress (RS) Using HFF-1 and BJ Cells

To identify global transcriptional signatures and their regulatory mechanisms in dermal
fibroblast senescence, I performed RNA-seq, ChIP-seq (for H3K27Ac modification), and ATAC-
seq of RS induced HFF-1 cells from different PDLs — early (PDL 24), middle (PDL 36), and late
(PDL 47) [76]. First, HFF-1 and BJ, a different cell line of human dermal fibroblasts, were
maintained from early (HFF-1: PDL 13, BJ: PDL 23) to late (HFF-1: PDL 53, BJ: PDL 61) PDL
to induce RS (Figure 3.1.1A). I examined the activities of p53, p21, and SA-B-gal for different
PDLs of fibroblast cells (HFF-1: Figure 3.1.1B, 3.1.1C; BJ: Figure 3.1.1D, 3.1.1E). Slower cell
proliferation was observed with increased PDL in HFF-1 cells (Figure 3.1.1F). RS-induced
cellular senescence was promoted by increased PDL in both cell lines. To explain the decline of
p21 in PDL 53 in HFF-1 cells (Figure 3.1.1B), I focused on USP11—a deubiquitylase that
stabilizes p21 protein and prevents its degradation [89]—and observed a significant decrease in
USPI11 expression with increased PDL in HFF-1 cells (Figure 3.1.1G). This result suggests that
the stability of the p21 protein may decrease due to the decrease in USP11.

45



*K
60 4 BJ kDa * 204 * &
— — sz T 01 T g
| —
50 = P o == O 154 é
40 HFF-1 o p— ] o
[ < 1.0 < ==
a 25 = p21 © Q40
- - & = 10{=h
20_ Lg ] ‘a{
37 | s s | GAPDH 0.5
ol i . — ool — o0l —/
0 50 100 24 36 47 53 24 36 47 53 24 36 47 53
Days in culture - = m — =
PDL PDL PDL
4 R
C ; bt 1 e e
2 4 44 =
# < 4‘ ik g % ek *
] 4 B N 1 -
< 4 < < Tg T Fewk s
PDL 24 PDL36 & 1
5 o
< 2 ‘41 ‘4 4‘-‘ «! 4 320_ @.
oy < ‘4‘ 4 PO % 2
44 1 : it o g&
« 44 < 4‘ 4
e o a5 0 T T T T
“ “ i« 28 24 36 47 53
PDL 47 PDL 53 —
PDL
*k
D «oa 2.04 * 204 f
————| 53
50 = P . é 15 L_]J$
T
25 = < [T < g'-gJ
P p21 gm-:ﬁ"‘ é € 10{mm
w0 o™
[=% [=%
37 =) - | GAPDH 054 0.54
0.0 d———— 0.0 +———r—r—r
36 46 54 63 2% 45 54 63 36 46 54 63
PDL PDL PDL
= 3 40%
E 4 4 5wk
< > -
] = 30% —_—krr
Q .
4 a4 e ! é o "
[}
S e e e 9 20%{ —EEE =
PDL 29 PDL 36 <y = B .
4 Pl . « 4" 5 .58l
S 4 ) < 200 ym < 10% o ’
< g 5 0
< PDL 63 Cb
4 2 4 4 0% A @ T - - -
% % i < 29 36 46 54 63
PDL 46 PDL 54 PDL
nucleus nucleus 400 -

$ 300
E
Z 200
3 w .
- - [=]
o iy 3 100
¢ = s 0
L R 24 36 47 53
PDL 47 PDL 53 POL
G 1.5-
*
1
kDa = 6 $$
— — - o . 1
100 == USP11 % $
37 | s s | GAPDH & 054 :
- e ]
24 36 47 53
_— ool —
PDL 24 36 47 53

PDL

46



Figure 3.1.1: Cellular senescence induced by RS using HFF-1 and BJ cells [76].

A)

B)

0

D)

E)

F)

G)

Growth curve of HFF-1 (blue line) and BJ cells (green line); n = 3, mean + SD.

Western blot (WB) of p53 and p21 in RS-induced HFF-1 cells. Cells were cultured for 48 h,
and lysates were analyzed. (Left panel) Representative image. (Middle panel) Quantification
of p53 expression; n = 3, *p < 0.05 (Dunnett’s test). (Right panel) Quantification of p21
expression; n = 3, *p < 0.05, **p < 0.01 (Dunnett’s test).

(Left panel) SA-B-gal staining of RS-induced HFF-1 cells. Representative images. SA-f-
gal-positive cells are indicated by black arrowheads; scale bar: 200 pm. (Right panel)
Quantification of SA-B-gal: SA-B-gal-positive rate (%) = number of SA-B-gal positive cells
/ total number of cells x 100. Four images per well were randomly analyzed from three wells
(total of 12 images/PDL), ***p < 0.001 (Dunnett’s test).

WB of p53 and p21 in RS-induced BJ cells. Cells of each PDL (PDL 36, PDL 46, PDL 54,
PDL 63) were cultured for 48 h and the lysates were analyzed. (Left panel) Representative
image. (Middle panel) Quantification of p53 expression; n = 3, *p < 0.05. (Dunnett’s test).
(Right panel) Quantification of p21 expression; n =3, **p < 0.01 (Dunnett’s test).

(Left panel) SA-B-gal staining of RS-induced BJ cells. Representative image. SA-B-gal-
positive cells for each PDL (PDL 29, PDL 36, PDL 46, PDL 54, PDL 63) are indicated with
black arrowheads; scale bars: 200 um. (Right panel) Quantification of SA-B-gal: SA-B-gal-
positive rate (%) = number of SA-B-gal-positive cells / total number of cells x 100. Four
images from each of the three wells were analyzed (total 12 images/condition), ***p <0.001
(Dunnett’s test).

Cell counting with Hoechst® 33342 in RS-induced HFF-1 cells. Cells from each PDL (PDL
24, PDL 36, PDL 47, PDL 53) were cultured for 48 h and the number of nuclei were counted.
(Left panel) Representative image. Each image was processed using Image J. (Right panel)
Quantification of cell count per image of each PDL. Four images from each of the three wells
were analyzed (total of 12 images/PDL), ***p < (0.001 (Dunnett’s test).

WB of USP11 in RS-induced HFF-1 cells. Cells of each PDL (PDL 24, PDL 36, PDL 47,
PDL 53) were cultured for 48 h, and lysates were analyzed. (Left panel) Representative
image. (Right panel) Quantification of USP11 expression; n =3, *p < 0.05 (Dunnett’s test).

3.1.2 Multi-omics analysis reveals TGF-p1 as a potential regulator of skin aging

To identify transcription factors (TFs) that regulate senescence in HFF-1 cells, the TF enrichment

score was calculated from the gene expression of each PDL using DoRothEA analysis [90], and

the top 20 TFs were determined based on the enrichment score (Figure 3.1.2A) [76]. The
downstream TFs of the TGF-f§ pathway, SMAD3 (PDL 24 vs. PDL 36: p <0.01, PDL 24 vs. PDL
47: p <0.05) and SMAD4 (PDL 24 vs. PDL 36: p < 0.05, PDL 24 vs. PDL 47: p=0.057), were
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enriched with increasing PDL. I also identified known senescence-associated TFs, including
JUNB [91], GATAG6 [92], TP53 [93], TEADI [91], and E2F4 [91]. To elucidate the TF network
of DEGs related to the cellular senescence of skin fibroblasts, I also identified TFs regulating
upregulated and/or downregulated DEGs with increasing PDLs using Lisa [94] (Figure 3.1.2B).
SMAD?3 was identified as a highly enriched TF that regulates genes whose expression was altered
(upregulated or downregulated) with increasing PDLs. These results suggest that SMAD is an
important factor in cellular senescence in dermal fibroblasts in passaging culture. When the
TGF-P ligand binds to type I and type 11 serine/threonine kinase receptors on the cell surface, the
TGF-p signaling pathway is activated [95]. The type Il receptor phosphorylates and activates the
type I receptor, which then phosphorylates SMAD2 or SMAD3, thereby forming a complex with
SMADA4 that translocates to the nucleus and regulates gene transcription [95].

To confirm whether SMAD motifs indeed played an important role with cellular senescence, 1
performed a TF motif enrichment analysis using HOMER [96], by assessing the gained ATAC
peaks—the open chromatin regions specifically enriched for late PDL (Figure 3.1.2C) [76]. As a
result, I found that SMAD2 (—log[adj-p]: 15.8) and SMAD4 (—log[adj-p]: 10.3) were associated
with the gained ATAC peaks. Next, | analyzed whether TGF- is the upstream regulator of cellular
senescence in dermal fibroblasts from 93 overlapping differentially expressed genes (DEGs)
identified in the RNA-seq, differential ATAC peaks, and differential H3K27Ac peaks (Figure
3.1.2D) between PDL 24, PDL 36, and PDL 47. TGF-$1 was identified as the top regulator among
the overlapping DEGs. From the 294 common DEGs between ChIP-seq of H3K27Ac, a histone
marker indicating active promoter and enhancer regions, and RNA-seq, TGF-B1 was identified as
the most enriched upstream regulator of DEGs associated with cellular senescence (Figure 3.1.2E).
These results indicate that the TGF-B1-SMAD axis with epigenetic changes can be activated in
RS-induced dermal fibroblasts.
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Figure 3.1.2: Multi-omics analysis reveals TGF-B1 as a potential regulator of skin aging [76].

A) Transcription factor (TF) enrichment analysis of RNA-seq data derived from RS-induced
HFF-1 cells of top 20 TFs (see details in Methods section). Heatmap shows the normalized
TF enrichment scores calculated using the DoRothEA analysis.

B) TF network analysis of differentially expressed genes (DEGs; [fold change (FC)| > 1.2, adj-
p <0.05) between PDL 24, PDL 36, and PDL 47 using Lisa. The top 20 TFs are highlighted
in red.

C) Enriched motifs in the gained ATAC-seq peaks with increase of PDL. Log (adj-p value) and
proportion of target sequences with motif was calculated using the “findMotifsGenome.pl”
function of HOMER.

D) (Upper panel) Venn diagram showing RNA-seq differentially expressed genes (DEGs; blue
sphere; |FC| > 1.2, adj-p < 0.05), genes annotated from ATAC differential peaks (purple
sphere; |logoFC| > 0, adj-p < 0.05), and genes annotated from H3K27Ac differential peaks
(red sphere; [log2FC| > 0, adj-p < 0.05) between PDL 24, PDL 36, and PDL 47. The number
of genes in each condition is shown in the Venn diagram. (Lower panel) The top five

upstream regulators found using Ingenuity Pathway Analysis (IPA) are shown with
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epigenetic-linked DEGs (93 genes). A right-tailed Fisher’s exact test and the Benjamini—
Hochberg (BH) method were used to calculate —logio(adj-p) of the overlap.

E) (Leftpanel) Venn diagram showing RNA-seq of DEGs (blue sphere; [FC|> 1.2, adj-p <0.05)
and genes annotated from H3K27Ac differential peaks (red sphere; |log,FC| > 0, adj-p <
0.05) between PDL 24, PDL 36, and PDL 47. The number of genes in each condition is
shown in the Venn diagram. (Right panel) The top ten upstream regulators found by
performing the ingenuity pathway analysis are shown with epigenetic-linked DEGs (294
genes). A right-tailed Fisher’s exact test and the BH method were used to calculate

—logio(adj-p) of the overlap.

3.1.3 TGF-B1 is an upstream factor in aging and cellular senescence, affecting THBS1 and
FMOD expression, positive and negative regulators of TGF-p signaling, through epigenetic
changes

To further confirm the involvement of TGF-B1 in skin aging and senescence, two additional
independent public RNA-seq datasets were analyzed [76]: in vivo data for primary human dermal
fibroblasts [78] representing a wide age range (11-71 years of age, see donor list in Table 2.3.1),
to analyze external factors, and in vitro data for HFF-1 cells over a long-term passage [77], to
analyze internal factors (PDL 16-74, five PDL points). For in vivo data, | obtained three clusters
of donors based on whole gene expression data and identified DEGs among the clusters (Figure
2.3.1). For in vitro data, DEGs between each PDL were identified. The number of overlapping
DEGs in both datasets corresponded to 592 downregulated and 502 upregulated genes (Figure
3.1.3A). Functional analysis of overlapping gene sets using the Kyoto Encyclopedia of Genes and
Genomes (KEGQG) database [97] revealed that the cell cycle and TGF-p signaling pathways were
enriched in both datasets. In addition, TGF-B1 was identified as the top regulator for the
upregulated gene set by upstream analysis of the overlapping gene sets (Figure 3.1.3B). In fact,
the RNA-seq expression of 7GFBI was upregulated with the increase in PDL (Figure 3.1.3C).
Comparisons between gene expression and in vivo age or in vitro PDL revealed that THBS!I and
FMOD expression were strongly correlated with skin aging (in vivo) and senescence (in vitro)
(R?>=0.29) (Figure 3.1.3D). In both data, THBS1 and FMOD show the same time-course dynamics
with in vivo age and in vitro PDL (Figure 3.1.3E, 3.1.3F). Further, the expression of the TGF-3
receptor, TGFBRI, and TGFB3 was also correlated with gene expression levels both in vivo and
in vitro, indicating that TGF-f signaling is more likely to be activated in skin aging. As THBSI
has been associated with aging in other organs [98] and FMOD is responsible for cross-linking of
collagen [99]—which decreases with age in skin tissue [8]—I focused on TGF-f1, THBS1, and
FMOD for further analysis. Note that, while my RNA-seq data using HFF-1 cells showed a
decrease in FMOD with senescence and TGF-B1 treatment (Figure 3.1.3G), public in vitro RNA-
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seq77 using the same HFF-1 cell line showed an opposite trend, i.e., increase of FMOD with
senescence (Figure 3.1.3F). To investigate the effects of modulation of TGF-B1, THBS1, and
FMOD, I obtained RNA-seq and ATAC-seq of TGF-B1 treated HFF-1 cells (Figure 3.1.3H).
Altered expression levels and peak changes in THBS1 and FMOD were observed in the datasets.
These results indicated that TGF-B1 is an upstream factor in aging and cellular senescence,

affecting THBS1 and FMOD expression through epigenetic changes.
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Figure 3.1.3: Positive and negative regulators of TGF-f signaling, THBS1 and FMOD,

identified as critical factors regulating skin aging and dermal fibroblast senescence [76].

A) (Upper panel) Venn diagram showing the public in vitro DEGs (blue sphere) and in vivo
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B)

®)

D)

E)

F)

G)

H)

DEGs (red sphere). (Lower panel) Heat map showing top five pathways annotated in the
pathway enrichment analysis (Kyoto Encyclopedia of Genes and Genomes [KEGG]). The
adj-p was calculated using “compareCluster” of clusterProfiler.

Upstream regulators in common genes between the public in vitro and in vivo datasets.
The top four upstream regulators of 592 downregulated (blue) and 502 upregulated (red)
genes are shown with colored bars. A right-tailed Fisher’s exact test and the Benjamini—
Hochberg (BH) method were used to calculate —logio(adj-p) of the overlap.
Quantification of RNA-seq expression data from RS-induced HFF-1 cells (blue) for
TGFBI. Gene expression was normalized to loga(transcripts per million [TPM] + 1); n =
3, #**p <0.001 (Dunnett’s test).

Correlation coefficient between the public in vitro (PDL), public in vivo (age), and gene
expression data. The genes associated with KEGG term “TGF-beta signaling pathway”
in Figure 1H are plotted. Spearman correlations were calculated using the “cor” function
of R software; THBSI (red) and FMOD (blue). R* was calculated using the
“ggpmisc::stat_poly eq” function.

Public in vivo time-course expression data®’ for THBSI and FMOD. Gene expression was
normalized to log>(TPM + 1); n=45 (age: 11-71 years; see donor list in Table S1). Linear
regression lines were added using ‘geom smooth’ (method = “Im”).

Public in vitro time-course expression data*® for THBSI and FMOD. Gene expression
was normalized to log(TPM + 1); n = 3, mean = SD.

RNA-seq expression data for THBS1 and FMOD in RS-induced and TGF-f1-stimulated
HFF-1 cells (control: blue; 4 ng/mL TGF-B1: red). Gene expression was normalized to
log2(TPM + 1). (Left panel) Quantification of THBS1; n = 3, ***p < 0.001 (Tukey’s
multiple comparisons). (Right panel) Quantification of FMOD; n = 3, ***p < 0.001
(Tukey’s multiple comparisons).

Correlation between the expression FC (control vs. 4 ng/mL TGF-B1; adj-p < 0.05) of
RNA-seq and peak FC (control vs. 4 ng/mL TGF-B1; adj-p < 0.05) of ATAC-seq; THBS1
(red) and FMOD (blue). FC and adj-p were calculated using DESeq?2.

3.1.4 THBS1 and FMOD identified as critical factors regulating skin aging and dermal
fibroblast senescence

The percentage of TGF-B1-positive fibroblasts in the human dermis increases with age [100].
Higher PDL corresponded with higher TGF-f1 expression in HFF-1 cells (Figure 3.1.4A). Istern
blot (Figure 3.1.4B), qPCR (Figure 3.1.4C), and enzyme-linked immunosorbent assay (ELISA)
analyses (Figure 3.1.4D) revealed an increased and decreased expression of THBS1 and FMOD,

respectively, in higher cell passages of dermal fibroblasts. The expression of THBS1 was
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confirmed to increase with age in human dermal tissue isolated from female donors (2363 years
of age; Figure 3.1.4E, see Table 2.2.1 for donor list) [76]. From the same donors, p21 expression
was also confirmed to increase with age, suggesting that my model of cellular senescence induced
by long-term passaged culturing accurately captured changes in human skin-factors associated
with aging. It is worth noting that THBS1 was not detected in the epidermis, suggesting that
THBS1 functions in the dermis during skin aging. Interestingly, using publicly available
transcriptome data [78] (see Table 2.3.2 for donor list), THBSI expression was found to be
increased in patients with HGPS (2—8 years of age) compared to that in healthy donors (1-9 years
of age) of the same age (Figure 3.1.4F). The results from my data-driven analysis identified the
TGF-B1-SMAD signaling pathway along with THBS1 and FMOD expression as critical factors

regulating skin aging and dermal fibroblast senescence.
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Figure 3.1.4: THBS1 and FMOD identified as critical factors regulating skin aging and dermal
fibroblast senescence [76].

A) TGF-B1 enzyme-linked immunosorbent assay (ELISA) in RS-induced HFF-1 cell
supernatants. Cells were cultured for 48 h, and supernatants were analyzed; n = 3, ***p
<0.001 (Dunnett’s test).

B) WB analysis of THBS1 and FMOD in RS-induced HFF-1 cells. Cells were cultured for
48 h, and lysates were analyzed. (Left panel) Representative image. (Middle panel)
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Quantification of THBS1 expression; n = 3, *p < 0.05 (Dunnett’s test). (Right panel)
Quantification of FMOD expression; n = 3, *p < 0.05 (Dunnett’s test).

C) g-PCR analysis of RS-induced HFF-1 cells. (Left panel) Quantification of THBS1; n= 3,
*¥p < 0.01 (Dunnett’s test). (Right panel) Quantification of FMOD; n = 3, **p < 0.01,
**%p < 0.001 (Dunnett’s test).

D) THBS1 and FMOD ELISA of RS-induced HFF-1 (blue) and BJ (green) cell supernatants.
Cells were cultured for 48 h and supernatants were analyzed. (Left) Quantification of
THBSI1 in HFF-1 cells; n = 3, *p < 0.05 (Dunnett’s test). (Middle left) Quantification of
FMOD in HFF-1 cells; n =3, ***p <0.001 (Dunnett’s test). (Middle right) Quantification
of THBS1 in BJ cells; n= 3, *p <0.05, **p <0.01 (Dunnett’s test). (Right) Quantification
of FMOD in BJ cells; n = 3, ***p < 0.001 (Dunnett’s test).

E) WB analysis of THBS1 and p21 in human dermal and epidermal tissues (n = 6). Data
were normalized to the maximum (1) value. R? was calculated using the “stat poly eq”
function of R. (Upper panel) Age of each donor is displayed at the bottom of the image
(see donor list in Table 2.2.1). (Lower left panel) Quantification of THBS1 expression in
dermis. (Lower right panel) Quantification of p21 expression in dermis.

F) THBSI expression between healthy participants and patients with Hutchinson—Gilford
progeria syndrome (HGPS). Public RNA-seq data27 for healthy participants (age: 1-9
years, n = 12) and patients with HGPS (age: 2—-8 years, n = 10) derived from dermal
fibroblasts. Gene expression was normalized to log>(TPM + 1). **p < 0.01 (Ilch’s t-test).

3.1.5 TGF-p1 and THBSI1 induce senescence of human dermal fibroblasts

Next, I investigated the biological functions of TGF-B1 and THBS1 in terms of the senescence
of human dermal fibroblasts [76]. I first assessed the proliferation of HFF-1 cells (Figure 3.1.5A)
and found that TGF-B1 treatment suppressed HFF-1 growth over time (8 h, 12 h, 24 h, and 48 h)
compared to that of untreated cells. As with TGF-B1, THBSI treatment resulted in a
concentration-dependent decrease in cell viability (Figure 3.1.5B). TGF-B1 and THBSI1
treatments were confirmed to inhibit DNA synthesis by BrdU incorporation experiments (Figure
3.1.5C). The levels of the senescence markers Lamin-B1 decreased and p21 increased in a TGF-
B1 dose-dependent manner (Figure 3.1.5D). Like the TGF-B1 treatment, THBS1 enhanced p21
expression (Figure 3.1.5E), confirming that TGF-B1- or THBS1-dependent suppression of cell
proliferation is caused by cellular senescence. TGF-f1 or THBSI treatment of HFF-1 cells
induced the production of the pro-inflammatory SASPs IL-6 and IL-8 (Figure 3.1.5F). TGF-B1
treatment also decreased Lamin-B1 expression (Figure 3.1.5G) and increased IL-6, IL-8 (Figure
3.1.5H) in BJ cells. Moreover, treatment with TGF-f1 or THBS1 significantly increased the
number of SA-B-gal-positive cells (Figure 3.1.51). Interestingly, FMOD alone did not affect SA-
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B-gal activity; however, in combination treatments, FMOD suppressed the effects of TGF-1 or
THBS1 on SA-B-gal activation. In addition, TGF-B1 treatment also increased SA-B-gal activity
in BJ cells (Figure 3.1.5J). These results strongly suggest that TGF-f1 and THBS1 promote the
senescence of skin fibroblasts and this effect is suppressed by FMOD.
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Figure 3.1.5: TGF-B1 and THBS1 induce senescence of human dermal fibroblasts [76].

A) Time-course cell proliferation analysis of control (blue-circled dots) or 4 ng/mL TGF-B1-

B)

0

D)

E)

F)

treated (red triangular dots) cells stained with trypan blue; n = 3, mean + SD.

Cell viability analysis of TGF-f1- and THBSI-stimulated HFF-1 cells. After 24 h of
treatment (control: blue, TGF-B1: red, THBS1: purple), cell viability was measured using
the tetrazolium salt WST-8; n =6, *p < 0.05, **p <0.01 (Tukey’s multiple comparisons).
BrdU incorporation assay: control (blue), 4 ng/mL TGF-B1 (red), or 1 pg/mL THBS1
(purple); n = 6, ***p < 0.001 (Dunnett’s test)

WB analysis of Lamin-B1 and p21 in TGF-B1-stimulated HFF-1 cells. Cell lysates were
collected 48 h after control (blue) or TGF-B1 (red) treatment. (Left panel) Representative
image. (Middle panel) Quantification of Lamin-B1l; n = 3, *p < 0.05 (vs. control,
Dunnett’s test). (Right panel) Quantification of p21; n= 3, ***p <0.001 (Dunnett’s test).
Istern blot of p21 in THBS1-stimulated HFF-1 cells. Cell lysates were collected 48 h after
control (blue) or THBS1 (purple) treatment. (Left panel) Representative image. (Right
panel) Quantification of p21; n = 3, *p < 0.05 (Dunnett’s test).

IL-6 and IL-8 ELISA in TGF-B1- or THBS1-stimulated HFF-1 cells. Cell supernatants
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were collected 48 h after TGF-B1 (red) or THBS1 (purple) treatment. (First panel)
Quantification of IL-6 ELISA with TGF-B1 treatment; n = 3, **p < 0.01, ***p < (0.001
(Dunnett’s test). (Second panel) Quantification of IL-6 ELISA with THBS1 treatment; n
=3, **p <0.01 (Dunnett’s test). (Third panel) Quantification of IL-8 ELISA with TGF-
Bl treatment; n = 3, **p < 0.01, ***p < 0.001 (Dunnett’s test). (Fourth panel)
Quantification of IL-8 ELISA with THBSI treatment; n = 3, **p < 0.01 (Dunnett’s test).

G) WB of THBSI and Lamin-B1 in TGF-B1-stimulated BJ cells. Cell lysates were collected
48 h after control (blue) or TGF-B1 (red) treatment. (Left panel) Representative image.
(Middle panel) Quantification of THBS1; N=3, ***p<(0.001 (Dunnett’s test). (Right
panel) Quantification of Lamin-B1; N=3, ***p<0.001 (Dunnett’s test).

H) IL-6 and IL-8 ELISA in TGF-B1- or THBS1-stimulated BJ cells. Cell supernatants were
collected at 48 h after control (blue), TGF-B1 (red), or THBSI1 (purple) treatment. (First
panel) Quantification of IL-6 ELISA with TGF-B1 treatment; N=3, ***p<0.001
(Dunnett’s test). (Second panel) Quantification of IL-6 ELISA with THBS1 treatment;
N=3, ***p<(.01 (Dunnett’s test). (Third panel) Quantification of IL-8 ELISA with TGF-
B1 treatment; N=3, **p<0.01, ***p<0.001 (Dunnett’s test). (Fourth panel) Quantification
of IL-8 ELISA with THBSI1 treatment; N=3, **p < 0.01, ***p < 0.001 (Dunnett’s test).

I) Effect of TGF-f1 or THBSI1 treatment and inhibition by FMOD on SA-B-gal activity.
HFF-1 cells were treated with control, 4 ng/mL TGF-B1, 0.5 ug/mL THBSI, or 8 ng/mL
FMOD. Combinations of 4 ng/mL TGF-f1 and 8 ng/mL FMOD as well as 0.5 ug/mL
THBS1 and 8 ng/mL FMOD were performed alongside stand-alone treatments. (Left
panel) Representative images. SA-B-gal-positive cells are shown with black arrowhead;
scale bars: 200 um. See Figure S4E for processed images. (Right panel) Quantification
of SA-B-gal: SA-B-gal-positive rate (%) =number of SA-B-gal-positive cells / total
number of cells x 100. Four images per well were randomly analyzed from three wells
(total 12 images/condition), ***p < 0.001 (Tukey’s multiple comparisons).

J) Effect of TGF-B1 simulation on SA-B-gal activity in BJ cells. (Left panel) Representative
images. SA-B-gal-positive cells are shown with black arrowheads; scale bar: 200 um.
(Right panel) Quantification of SA-B-gal: SA-B-gal-positive rate (%) =number of SA-B-
gal-positive cells / total number of cells x 100. Four images from each of the three wells

were analyzed (total 12 images/condition), ***p<0.001 (vs. control, Student’s t-test).

3.1.6 THBS1 and FMOD expression is controlled by the TGF-§ signaling pathway
THBSI1 is known to activate latent TGF-B1 [79], while FMOD reportedly binds to TGF-B1 to
inhibit its binding to the TGF-BR [80-82]. THBSI is also known to be induced by TGF-§1

stimulation in human dermal fibroblasts [101]. Consistently, I found that THBS1 expression was
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induced by TGF-B1 in HFF-1 cells (Figure 3.1.6A) [76]. However, the same TGF-B1 treatment
decreased FMOD expression. These results were also confirmed in BJ cells (Figure 3.1.5G,
3.1.6B). Next, the effect of FMOD on THBSI expression was examined in HFF-1 cells (Figure
3.1.6C). While TGF-B1 alone increased THBS1 expression, the addition of FMOD completely
suppressed THBS1 levels. In contrast, THBS1 treatment downregulated FMOD expression in a
dose-dependent manner (Figure 3.1.6D). These findings suggest a mutual inhibitory role for
THBS1 and FMOD. Interestingly, stimulation of BJ cells with THBS1 enhanced its own
expression (Figure 3.1.6E), suggesting the positive-feedback regulation of the TGF-p pathway by
THBSI1 in dermal fibroblasts. I additionally investigated the effects of other TGF-B family
members, particularly TGF-B2 and TGF-B3, on the expression of THBS1 and FMOD, and found
that THBS1 expression was promoted (Figure 3.1.6F) and FMOD expression was suppressed
(Figure 3.1.6G) in all members of the TGF-f family. Therefore, TGF-B2 and TGF-B3 may also
be involved in skin aging, but they were found to regulate THBS1 and FMOD via a common

mechanism as TGF-B1.
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Figure 3.1.6: THBS1 and FMOD expression is controlled by the TGF-J signaling pathway [76].
A) WBof THBS1 and FMOD in TGF-B1-stimulated HFF-1 cells. Cell lysates were collected
48 h after control (blue) or TGF-B1 (red) treatment. (Left panel) Representative image.
(Middle panel) Quantification of THBS1; n = 3, *p <0.05 (vs. control, Dunnett’s test).
(Right panel) Quantification of FMOD; n = 3, *p < 0.05, **p < 0.01 (Dunnett’s test).
B) FMOD ELISA in TGF-B1-stimulated BJ cells. Cells were treated with control (blue) or 4
ng/mL TGF-B1 (red) for 48 h and their supernatants were analyzed; N=3, **p<0.01
(Student’s t-test).
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C) WB analysis of THBSI1 in TGF-B1- and FMOD-stimulated HFF-1 cells. Cell lysates were
collected 48 h after treatment with control (blue), 4 ng/mL TGF-B1 (red), or a
combination of 4 ng/mL TGF-f1 and 8 ng/mL FMOD (purple). (Left panel)
Representative image. (Right panel) Quantification of THBS1; n = 3, *p < 0.05, **p <
0.01 (Tukey’s multiple comparisons).

D) FMOD ELISA of THBSI-stimulated HFF-1 cells. Cells were treated with THBS1
(purple) for 48 h and their supernatants were analyzed; n = 3, *p < 0.01 (Dunnett’s test).

E) WB analysis of THBS1 in THBS1-stimulated BJ cells. Cell lysates were collected 48 h
after control (blue) or THBS1 (purple) treatment. (Left panel) Representative image.
(Right panel) Quantification of THBS1; n =3, **p < 0.01 (Dunnett’s test).

F) WB analysis of TGF- family-stimulated HFF-1 cells. Cell lysates were collected 48 h
after control (blue) or 4ng/mL TGF-B family (red; with TGF-f1, TGF-f2, TGF-p3)
treatment and the lysates were analyzed. (Left panel) Representative image. (Right panel)
Quantification of THBS1 expression; N=3, *p<0.05, **p<0.01 (Dunnett’s test).

G) FMOD ELISA in TGF-p family-stimulated HFF-1 cells. Cells were treated with control
(blue) or 4 ng/mL TGF-B family (red; with TGF-1, TGF-B2, TGF-B3) for 48 h and their

supernatants were analyzed; N=3, ***p<(.001 (Dunnett’s test).

3.1.7 THBSI1 regulation requires SMAD activation and c-Fos/c-Jun DNA binding

I investigated the regulation of THBS1 and FMOD by TGF-B1 and related signaling pathways
using small molecule inhibitors and small interfering (si) RNA KD experiments [76]. TGF-B1-
dependent induction of THBS1 and phosphorylation of SMAD2 and SMAD3 were inhibited by
LY364947 (TGF-BRI/TGF-BRII inhibitor) and SB431542 (TGF-BRI inhibitor; Figure 3.1.7A).
Because both SMAD3 and SMAD4 cooperate with c-Fos/c-Jun of the activator protein-1 (AP1)
family to mediate TGF-B-induced transcription [102—104], I tested the involvement of c-Fos/c-
Jun in the regulation of THBS1 using siRNA. C-Fos/c-Jun KD significantly reduced the TGF-f1-
induced expression of THBS1 compared to that with non-targeted KD (Figure 3.1.7B). The
siRNA of c-Fos/c-Jun showed downregulation of c-Fos/c-Jun expression without affecting the
activation of SMAD2, SMAD3, and SMAD4 (Figure 3.1.7C). The AP-1 DNA binding inhibitor,
T-5224, was also tested for its effect on THBS1 regulation in HFF-1 cells (Figure 3.1.7D). While
T-5224 alone had no effect on THBS1 expression compared to TGF-B1 alone, the combination of
TGF-B1 and T-5224 reduced THBS1 expression. I also confirmed that T-5224 of c-Fos/c-Jun did
not affect the activation of SMAD2, SMAD3, and SMAD4 (Figure 3.1.7E). These findings
suggest that regulation of THBS1 in dermal fibroblasts requires the formation of AND-gated
networks through the activation of SMAD and binding of c-Fos/c-Jun to DNA, both of which are
activated by TGF-p stimulation.
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Figure 3.1.7: THBSI1 regulation requires SMAD activation and c-Fos/c-Jun DNA binding [76].

A)

B)

©)

D)

WB analysis of TGF-B1-stimulated HFF-1 cells treated with TGF-BR inhibitors. Cells
were treated with LY364947 and SB431542 with/without TGF-B1 for 48 h and the lysates
were analyzed. (Left panel) Representative image. (Right panel) Quantification of
THBS1, pPSMAD?2, and pSMAD3 expression following TGF-PR inhibitor treatment; N=3,
*4%p<(0.001 (Tukey’s multiple comparisons).

WB analysis of THBS1 with c-Fos/c-Jun knockdown (KD) using HFF-1 cells. Cells were
pretreated with each siRNA (50 nM) and collected 48 h after control (blue) or 4 ng/mL
TGF-B1 (red) treatment. (Left panel) Representative image. (Right panel) Quantification
of THBSI; n =3, **p < 0.01 (Tukey’s multiple comparisons).

WB analysis of c-Fos/c-Jun KD in HFF-1 cells. C-Fos/c-Jun KD cell lysates were
collected at 1 h after control (blue) or TGF-B1 (red) treatment. (Left panel) Representative
image. (Right panel) Quantification of c-Fos, c-Jun, pPSMAD2, pSMAD3, and SMAD4;
N=3, *p<0.05, **p<0.01, ***p<0.001, NS: not significant (Tukey’s multiple
comparisons).

WB analysis of TGF-f1-stimulated HFF-1 cells treated with T-5224. Cells were treated
with/without T-5224, and TGF-B1 for 48 h and the lysates were analyzed. (Left panel)
Representative image. (Right panel) Quantification of THBSI1; N=3, **p<0.01,

*#%p<0.001 (Tukey’s multiple comparisons).
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E) WB analysis of TGF-B1-stimulated HFF-1 cells treated with T-5224. Cells were treated
with/without T-5224, and TGF-B1 for 1 h and lysates were analyzed. (Left panel)
Representative image. (Right panel) Quantification of pPSMAD2, pPSMAD3, and SMAD4;
N=3, **p<0.01, ***p<0.001, NS: not significant (Tukey’s multiple comparisons).

3.1.8 Impact of Kinase Inhibitors on FMOD Expression in Dermal Fibroblasts

To investigate the regulatory mechanism of FMOD in dermal fibroblasts, I conducted a
compound screening using various kinase inhibitors (Figure 3.1.8A) [76]. The candidates in the
screening included Ki8751 (VEGFRII inhibitor), GW5074 (c-Rafl inhibitor), and U0126
(MEK1/2 inhibitor). Alongside these compounds, ZM306416 (VEGFRI inhibitor) was also
selected to validate the effect on FMOD expression, which was found to be significantly
suppressed (Figure 3.1.8B). Further supporting this, the expression of FMOD was found to be
significantly increased with higher concentrations of VEGF (Figure 3.1.8C). Additionally, other
growth factors, such as epidermal growth factor (EGF), basic-fibroblast growth factor (b-FGF),
and platelet derived growth factor-BB (PDGF-BB), which also activate c-Raf and MEK, were
found to reduce FMOD expression (Figure 3.1.8D). These results collectively suggest that FMOD
is regulated by the VEGF signaling pathway in dermal fibroblasts.

To determine the mechanism of FMOD suppression by TGF-B1, I tested whether the
combination of kinase inhibitor and TGF-f1 would restore FMOD expression (Figure 3.1.8E)
[76]. Akt inhibitor VIII (Akt inhibitor) or LY294002 (PI3K inhibitor) significantly restored
FMOD expression in the presence of TGF-B1. These results indicate that THBS1 and FMOD
expression is regulated by the TGF-f and VEGF-Raf-ERK signaling pathway, respectively
(Figure 3.1.8.F), and that the TGF-B1-dependent suppression of FMOD is mediated by the PI3K-
Akt pathway.
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Figure 3.1.8: Impact of kinase inhibitors on FMOD expression in dermal fibroblasts [76].
A) FMOD ELISA in kinase inhibitors-screening of HFF-1 cells. Cells were treated with
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various kinase inhibitors for 48 h and their supernatants were analyzed. (Left axis)
Quantification of FMOD (vs. control). (Right axis) Cell viability (vs. control) measured
using the tetrazolium salt WST-8; n=1.

B) FMOD ELISA of kinase inhibitor-treated HFF-1 cells. Cells were treated with
ZM306416HCI, Ki8751, GW5074, or U0126 for 48 h and their supernatants were
analyzed; n =3, **p < 0.01, ***p < 0.001 (Dunnett’s test).

C) FMOD ELISA of VEGF165 treated HFF-1 cells. Cells were treated with VEGF165 for
48 h and the supernatants were analyzed; n = 3, *p < 0.05 (Dunnett’s test).

D) FMOD epidermal growth factor (EGF), basic-fibroblast growth factor (b-FGF), or
platelet derived growth factor-BB (PDGF-BB) treatment of HFF-1 cells. Cells were
treated with each ligand for 48 h and their supernatants were analyzed; N=3, **p<0.01
(Dunnett’s test).

E) FMOD ELISA in kinase inhibitor- and TGF-B1-treated HFF-1 cells. Cells were treated
with Akt inhibitor VIII or LY294002 combined with 4 ng/mL TGF-B1 for 48 h and their
supernatants were analyzed; n = 3, **p < 0.01 (Student’s t-test), 'p < 0.05, p < 0.01
(Dunnett’s test).

F) Regulatory network of THBS1 and FMOD. In human dermal fibroblasts, TGF-p1
induced THBSI production occurs via TGF-BR—SMAD activation (red shade). FMOD
was regulated via activation of the VEGFR—cRaf-MEK pathway (blue shade). Crosstalk
between these pathways occurred with the TGF-f pathway inhibiting the VEGF pathway
via the PI3K-Akt pathway (green shade).

3.1.9 Bifurcation Analysis of Dermal Senescence

A nonlinear ordinary differential equation (ODE) model of the core network consisting of TGF-
B1, THBSI1, and FMOD was constructed to qualitatively elucidate the behavior of the system
(Figure 3.1.9A, see details in the Methods section) [76]. Fitting against the datasets of THBS1
and FMOD levels at different TGF-B1 concentrations yielded parameters that reproduced the
experimental results (Figure 3.1.9B), while the parameters for regulation of TGF-B1 by THBSI
(K;) and FMOD (K;) are yet to be identified. | examined which parameter is more influential for
controlling the steady state, and found that both parameters can induce a bistable switch for TGF-
B1 (Figure 3.1.9C). Since the expression levels of THBS1 and FMOD were upregulated and
downregulated with the increase of TGF-B1expressions, respectively, changing these parameters
simulates the transition from low- to high-TGF-B1 states (Figure 3.1.6A). For the purpose of this
study, we defined ‘high-TGF-B1’ as the state with high-THBS1 and low-FMOD expressions, and
‘low-TGF-B1’ as the state with low-THBS1 and high-FMOD expressions, respectively.

Importantly, the bistable region was quite asymmetric with respectto K; and K:changesin K;
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always induced a transition from the current state, whereas changes in K, induced the transition
only for a small parameter range of K; (Figure 3.1.9C). Moreover, we extended the core model
to a stochastic model to simulate the probability distributions of THBSI1 (see details in the
Methods section) (Figure 3.1.9D). As a result, we found that the bimodal distribution of THBSI
expression becomes relatively unimodal when the value of K; is changed from 14 (near the
bifurcation point) to 10, which corresponds to increasing TGF-B1 levels. In contrast, changing the
value of K, (K; = 16) does not produce bifurcation. Taken together, we concluded that K; has
more influence on state transitioning.

To better understand the roles of endogenous TGF-f1, THBS1, and FMOD, we extended the
above-mentioned model as an endogenous core model to incorporate the effects of PDL and
endogenous TGF-B1 production for simulating the system behavior in an endogenous condition
(Figure 3.1.9E) [76]. By fitting the steady state values of THBS1, FMOD, and TGF-B1 against
the corresponding in vitro experimental values for different PDLs (Figures 3.1.4A, 3.1.4B), we
estimated the endogenous TGF-f1 normalized production rate as y = 3.5 (Figure 3.1.9F). |
found that the endogenous core model also shows binary high-/low-TGF-1 states. Moreover, it
was observed that THBSI is sensitive against y < 1 (bifurcation point: y = 0.07), where
endogenous TGF-B1 production rate is low. Consequently, the nonlinear model was shown to
provide a core network for assessing the molecular contributions to both skin aging and dermal

fibroblast senescence.
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Figure 3.1.9: Bifurcation analysis of dermal senescence [76].
A) Core network consisting of TGF-B1, THBSI, and FMOD. Arrows and barred lines
represent positive and negative regulations, respectively.
B) Model parameters for the core network consisting of TGF-1, THBS1, and FMOD were

trained on the experimental expressions of THBS1 and FMOD upon treatment with
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®)

D)

E)

F)

different concentrations (0.04, 0.4, or 4 ng/mL) of TGF-B1 (Figure 3.1.6A). The x- and
y-axes represent steady state expressions of TGF-f1 and THBSI1 (left panel) or FMOD
(right panel). The points (<>: Replicate 1, *: Replicate 2, m: Replicate 3) indicate
experimental data, and red solid lines indicate model fitting results.

Bifurcation diagrams of steady state expressions of TGF-f1, THBS1, and FMOD, with
respect to K; (upper panel) and K, (bottom panel), which correspond to the cut
surfaces shown in left panels, respectively. Note that [TGFB1] = 0 is a stable solution
for K; > 0 and K, > 0. Red and blue colors represent stable and unstable points on the
surface, respectively. Solutions with high TGF-B1 expression levels indicate a high-
THBS1 (low-FMOD) state, while those with low TGF-B1 expression levels indicate a
low-THBS1 (high-FMOD) state.

Bifurcation diagrams (upper panel) and probability distributions (bottom panel) for the
expression level of THBS1 with respect to K; (left panel) and K, (right panel), which
correspond to the cut surfaces shown in Figure 3.1.9C. Stable (red) and unstable (blue)
fixed points are computed using a deterministic model, while distributions are computed
using a stochastic model with 10,000 independent simulations. Gray shade indicates the
change in K; from 14 (near the bifurcation point) to 10, which corresponds to an
increase in TGF-B1.

Bifurcation diagrams of the steady state expressions of endogenous TGF-$1, THBSI, and
FMOD with respect to y, computed from the extended model. Red and blue points
represent stable and unstable points, respectively, and vertical broken line at y=3.5
represent the fitted value to the in vitro experimental expression upon RS with different
PDL.

Model parameters for the core network consisting of endogenous effects of TGF-p1,
THBS1, and FMOD were trained on the experimental expression of THBS1, FMOD, and
TGF-B1 upon RS with different PDL (PDL 24, PDL 36, PDL 47, PDL 53) (Figures 3.1.4A,
3.1.4B). The x- and y-axes represent steady state expressions of PDL and THBS1 (upper
panel), FMOD (right panel), or TGF-B1 (bottom panel). The points (<: Replicate 1, *:
Replicate 2, m: Replicate 3) indicate experimental data, and red solid lines indicate model

fitting results.

3.1.10 Irreversibility of THBS1 in Dermal Senescence

Here, we demonstrated a binary high-/low-TGF-B1 switch through bifurcation analysis. To
validate the conclusions drawn from the mathematical approaches, I conducted additional
experiments [76]. Firstly, I performed time-course washout experiments of TGF-B1 treatment to

confirm the irreversibility of the regulatory system, which was suggested by the existence of

69



stable and unstable states. TGF-B1 was washed out at various time-points (i.e., 1 h, 2 h, 4 h, 8 h,
12 h, 24 h, and 48 h) and replaced with only the medium, which served as the control (Figure
3.1.10A, 3.1.10B). Interestingly, I found that both transient and sustained TGF-B1 treatments
regulated THBS1 and FMOD expression in a similar manner. Furthermore, both treatments
induced sustained activation of phosphorylated Akt (Ser473), implying that sustained stimulation
is not essential for regulation of the system by TGF-B1, and that transient stimulation can
reproduce the regulation. The regulation of THBS1 and Akt phosphorylation by transient and
sustained stimulation was further confirmed with even shorter time-point washes (i.e., 15 min, 30
min, 1 h, 4 h, 12 h, 24 h, and 48 h) (Figure 3.1.10C). These results indicated an irreversible nature
of THBSI upregulation and FMOD downregulation by TGF-B1 treatment, suggesting the

presence of a binary switch.
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Figure 3.1.10: Irreversibility of THBS1 in dermal senescence [76].
A) Schematic representation of TGF-f1 washout experiment. The x- and y-axes represent
the washout time-points and concentration dynamics of TGF-B1, respectively.
B) WB analysis of time-course TGF-f1 washout experiment using HFF-1 cells. Cells were
treated with 4 ng/mL TGF-B1, washed with PBS at each time-point (1 h,2 h,4 h, 8 h, 12
h, 24 h, and 48 h), and lysates were collected at 48 h. (Left panel) Representative image.
(Right panel) Quantification of THBS1, FMOD, and phosphorylated Akt (Ser473); N=3,
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*p<0.05, **p<0.01, ***p<0.001 (Tukey’s multiple comparisons).

C) WB analysis of TGF-B1 washout experiment using HFF-1 cells. Cells were treated with
TGF-B1, washed with PBS at each time-point (15 min, 30 min, 1 h, 4 h, 12 h, 24 h, and
48 h), and lysates were collected at 48 h. (Left panel) Representative image. (Upper right
panel) Quantification of THBS1; N=3, **p<0.01, ***p<0.001 (Tukey’s multiple
comparisons). (Bottom right panel) Quantification of phosphorylated Akt (Ser473); N=3,

*#%p<0.001 (Tukey’s multiple comparisons).

3.1.11 Role of Endogenous TGF-p in Regulating THBS1 and FMOD Expression

Secondly, the effects of endogenous TGF-f signaling on THBS1, FMOD, and phosphorylated
Akt (Ser473) expressions were confirmed through LY364947 treatment—a TGF-BRI/TGF-BRII
inhibitor—performed during progressive passage-induced senescence at each PDL (Figure
3.1.11A) [76]. Inhibition of endogenous TGF-p signaling downregulated THBS1, but did not
affect FMOD expression or the activation of phosphorylated Akt (Ser473). To further validate my
in vitro findings with model simulations, I simulated the effect of TGF-BR inhibitor using the
endogenous core model, by incorporating changes in the signaling pathways as the model
parameter. Our stochastic simulations also showed that lowering the parameter y for endogenous
TGF-B1 production results in a decrease in THBS1 expression, while FMOD expression remains
largely unchanged (see details in the STAR Methods section) (Figure 3.1.11B). These results
indicate that when endogenous TGF-f signaling is inhibited, THBS1 is more likely to undergo a

change of state, whereas FMOD remains barely sensitive.
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Figure 3.1.11: Role of endogenous TGF-f in regulating THBS1 and FMOD expression [76].

A) WB analysis of RS-induced HFF-1 cells treated with the TGF-fR inhibitor. Cells of each
PDL (PDL 24, PDL 36, PDL 47, PDL 53) were treated with 5 uM LY364947 for 48 h and
the lysates were analyzed. (Upper panel) Representative image. (Bottom left panel)
Quantification of THBS1; N=3, *p<0.05, ***p<0.001 (Tukey’s multiple comparisons).
(Bottom middle panel) Quantification of FMOD; N=3, **p<0.01, ***p<0.001 (Tukey’s

B)

multiple comparisons). (Bottom right panel) Quantification of phosphorylated Akt

(Ser473); N=3, NS: not significant (Tukey’s multiple comparisons).

Probability distributions for the expression levels of endogenous THBS1 (left panel) and

FMOD (right panel) with respect to endogenous TGF-B1 production rate y, as computed
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using a stochastic model with endogenous parameters and 10,000 independent

simulations.

3.1.12 Bimodality of THBS1 in Dermal Senescence

Thirdly, to further validate the presence of a binary high-/low-TGF-B1 switch, I examined the
bistability of THBS1 expression using immunofluorescence imaging (Figure 3.1.12) [76].
Quantification of integral intensity of each image revealed that THBSI expression was
significantly upregulated by TGF-B1 in a concentration-dependent manner (Figure 3.1.12), which
was consistent with the results obtained through western blot (Figure 3.1.6A). Additionally, a
comparison of the mean intensities of each individual immunostained image showed that THBS1
expression was significantly upregulated by TGF-B1 (control vs. 0.2 ng/mL TGF-B1: p < 0.05),
while bimodal distribution of THBS1 expression was also observed in the control group
(Silverman test [ 105]; unimodal: p = 0.19, bimodal: p = 0.028). This result also demonstrated that
the population of low-THBS1 cells (low TGF-f1) was reduced, whereas the population of high-
THBSI cells (high TGF-P1) increased by 0.2 ng/mL TGF-B1 (Silverman test; unimodal: p=0.11,
bimodal: p =0.92). Overall, a distinct population of low-THBS1 cells remained present, although
reduced by the effect of TGF-B1. A bimodal to unimodal shift in THBS1 expression by TGF-p1
was suggested based on the simulations of bifurcation analysis (Figure 3.1.9D). These findings
support the existence of a binary high-/low-TGF-$1 switch in the network consisting of TGF-1,
THBS1, and FMOD.
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Figure 3.1.12: Bimodality of THBSI in dermal senescence [76].
Distribution of THBS1 expression by immunofluorescence imaging using HFF-1 cells.
Cells were treated with TGF-f1 for 48 h and fixed for immunofluorescence imaging.
(Upper panel) Representative images; scale bars: 100 um. (Bottom left panel)
Quantification of integrated intensity of THBS1 of each image; 16 images per well from
six wells were analyzed (total 96 images/condition); *p < 0.05, ***p < (0.001 (Dunnett’s
test). (Bottom right panel) Quantification of mean intensity of THBS1 of each image; 16
images per well from six wells were analyzed (total 96 images/condition); *p < 0.05

(Dunnett’s test).

3.1.13 Mechanistic Mathematical Model of Skin Aging

Because of the limitations in explaining the molecular mechanisms using the above-mentioned
model near equilibrium state, I further constructed a comprehensive ODE model of the TGF-3
and VEGF receptor signaling network to quantitatively understand the dynamics of skin aging
regulated by THBS1 and FMOD (Figure 2.3.3) [76]. The integrated model included latent TGF-
B1 activation by THBS1 [79], inhibition by FMOD [80-82], SMAD-AP1 complex formation
[102—-104], a negative feedback by SMAD7 [106], positive feedback of THBS1 [79,107-109],
VEGFR and Raf-ERK cascade [68,88], and PI3K-Akt crosstalk between the TGF-p and VEGF

pathways. The model was constructed using parameters trained with time-course data (i.e., 0 min,
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15 min, 30 min, 60 min, 120 min, 8 h, 24 h, and 48 h) of protein phosphorylation or expression
(i.e., phosphorylated SMAD3, c-Fos, THBS1, phosphorylated Akt, and FMOD) in HFF-1 cells
stimulated with or without TGF-1 (Figure 3.1.13A). I obtained 30 well-fitting parameter sets
(Figure 2.3.4) that reproduced the experimental data (see details in the Methods section). The
traces of 30 optimization runs and distribution of the objective function, i.e., sum of residual
squares between simulation and experimental values, showed a uniform distribution, indicating
robust parameter estimation results (Figure 2.3.5). The resulting model had 79 rate equations, 83
species, and 194 parameters. To validate the model and assess the reproducibility of the model
dynamics, I used phosphor-SMAD?2 data, which was not used as training data (Figure 3.1.13B).
Finally, I obtained a model that could successfully reproduce most of the experimental results for
HFF-1 cells.
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Figure 3.1.13: Mechanistic mathematical model of skin aging [76].

A) Experimental time-course WB image with/without TGF-B1 treatment in HFF-1 cells.
HFF-1 was stimulated with/without TGF-B1 and the lysates were collected at 0 min, 15
min, 30 min, 60 min, 120 min, 8 h, 24 h, and 48 h. Model parameters for the integrated
TGF-B—VEGF model were trained on time-course phosphorylated SMAD3, c-Fos,
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THBS1, phosphorylated Akt (Serd473), and FMOD protein levels. (Upper panel)
Representative image (Bottom panel) The points (control: blue squares, TGF-B1: red
squares) indicate experimental data, solid lines indicate the average simulation of 30
parameter sets, and shade areas indicate SD. Error bar represents SD; n = 3, mean + SD.
B) Validation of mechanistic model using phosphorylated SMAD2. The model reproduced
phosphorylated SMAD2 dynamics. The points (control: blue squares; 4 ng/mL TGF-p1:
red squares) indicate experimental data, solid lines indicate the average simulation of 30

parameter sets, and shaded areas indicate SD; N=3, mean + SD.

3.1.14 Late inhibition of PI3K-Akt is crucial for FMOD downregulation by TGF-f1

As TGF-B1 and VEGF expression is known to increase during cellular senescence [110,111] and
in HFF-1 cells with higher PDL (Figure 3.1.4A, 3.1.14A), numerical simulations were conducted
with the generated comprehensive ODE model to mimic these changes [76]. In these simulations,
the initial concentrations of TGF-B1 and VEGF were increased to represent a state of senescence
(Fig 3.1.14B). The input increased, the levels of phosphorylated SMAD3 and activated Ras (Ras-
GTP) gradually increased. Interestingly, as senescence progressed, THBS1 gradually increased
until 24 h, while FMOD started to decrease from the 24 h time-point, as compared to the control.
I also observed that while the basal condition induced transient activation (blue line) of
phosphorylated Akt at early phase, higher initial values resulted in sustained Akt activation (red
line). This is likely because as cellular senescence progresses, Akt activation switches from
transient to sustained, and sustained Akt activation suppresses FMOD expression in the later
stages of the dynamics. Based on the simulation of FMOD expression, the 24 h time-point (black
arrow) was identified as the breakpoint of FMOD inhibition by transient and sustained Akt
activation. This suggests that the Akt activation observed in early phase does not affect FMOD
expression, and that FMOD recovery may be achieved by selectively inhibiting persistent Akt
activity in the late phase.

To verify this difference in Akt activation, I examined FMOD recovery in TGF-B1-treated HFF-
1 cells by adding LY294002 (or Akt inhibitor VIII) at specific time-points to suppress Akt
phosphorylation (3.1.14C) [76]. While FMOD expression was significantly reduced by TGF-f1
treatment alone, co-treatment with LY294002 (or Akt inhibitor VIII) from start to end (indicated
as 0 h) restored FMOD expression. When the inhibitor was added at 8 h or 24 h, FMOD recovered
to the same level as observed at 0 h. However, no recovery was observed after 32 h, which exceeds
the 24 h breakpoint where FMOD begins to decrease. Thus, using model simulations and their
validation, I have demonstrated that the sustained dynamics of Akt activity are critical for the

negative regulation of FMOD expression in the progression of cellular senescence.
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Figure 3.1.14: Late inhibition of PI3K-Akt is crucial for FMOD downregulation by TGF-B1 [76].

A) VEGF ELISA in RS-induced HFF-1 cells. Cells of each PDL (PDL 24, PDL 36, PDL 47,

PDL 53) were cultured for 48 h, and supernatants were analyzed by VEGF ELISA; N=3,
*p<0.05 (Dunnett’s test).

B) Simulation of phosphorylated SMAD?3, activated Ras (Ras-GTP), THBS1, FMOD, and
phosphorylated Akt levels using integrated TGF-B—VEGF mathematical model. Initial
values of both TGF-B1 and VEGF were increased, as indicated by the color code (from
x1 to x10). Solid lines indicate the average simulation of 30 parameter sets, and shade
areas indicate SD. The black arrow indicates breakpoint of FMOD inhibition.

C) Quantification of FMOD in LY294002- (left panel) or Akt inhibitor viii- (right panel)
treated HFF-1 cells by ELISA. Cells were initially treated with 4 ng/mL TGF-p1, 1 uM
LY294002 or 1 uM Akt inhibitor viii was added at certain time-points (0 h, purple; 8 h,
green; 24 h, bright red; 32 h, orange), and supernatants were collected at 48 h. The relative
expression to the control (blue) is shown. TGF-B1 conditions that were not treated with

inhibitors are indicated in dark red. n = 3, ***p < (0.01 (vs. control, Student’s ¢-test), T p
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<0.05, 1 p<0.01, 11 p <0.01 (vs. TGF-1, Dunnett’s test).

3.1.15 THBSI1 is a sensitive factor, FMOD is a robust factor, and SMAD2/3/4 formation is
effective in suppressing THBS1 expression

Finally, I aimed to identify the target molecule regulating the rate of cellular senescence. My
findings thus far point to two possible targets: THBS1 can be downregulated or FMOD can be
upregulated. To determined which target is more suitable for manipulation, I simulated THBSI
and FMOD expression as model outputs by increasing the input of TGF-f1 and VEGF,
respectively (Figure 3.1.15A) [76]. Interestingly, the simulation showed that THBS1 expression
was sensitive to TGF-f1 input, whereas FMOD was minimally affected by VEGF input. This
prediction for VEGF was confirmed in an in vitro experiment with HFF-1 cells (Figure 3.1.8C).
Indeed, the expression of FMOD was significantly increased with increasing VEGF
concentrations, but the rate of increase was much lower than that for THBS1 induced by TGF-p1
(Figure 3.1.6A). These results suggest that THBS1 is a sensitive factor, while FMOD is a more
robust factor in cell senescence.

To further identify the molecular factors regulating THBS1 activity, | performed a sensitivity
analysis [112] to determine the bottleneck of the TGF-f signaling network with THBS1 as output
(Figure 3.1.15B) [76]. A reaction involving SMAD2-SMAD3-SMAD4 complex formation (V13,
black arrow) was shown to be more sensitive than reactions involving SMAD2 and SMAD3 alone.
This finding suggests that inhibition of the SMAD4 reaction can effectively suppress THBS1
production. This simulation was validated by monitoring TGF-B1-induced THBS1 expression
after siRNA KD of SMAD2, SMAD3, and SMAD4 in HFF-1 cells (Figure 3.1.15C). As suggested
by the model, SMAD4 KD had the greatest effect on THBS1 expression compared to that of
SMAD2 and SMAD3. Combinations of SMAD2-SMAD4, SMAD3-SMAD4, or SMAD2-
SMAD3-SMAD4 KDs did not show synergistic or additive effects compared to SMAD4 KD
alone. After KD of each SMAD, I found that SMAD4 KD significantly suppressed the induction
of TGF-B1-induced SA-B-gal positivity compared to that by SMAD2 and SMAD3 KDs (Figure
3.1.15D). I also checked the effect of each SMAD KD on Lamin-B1—which was reduced by
TGF-B1 treatment—to determine if SMAD4 KD is effective against other aging markers (Figure
3.1.15E). I found that SMAD4 (p < 0.01) KD significantly restored Lamin-B1 expression,
whereas SMAD2 (p=0.79) and SMAD3 (p=0.72) did not. These results suggested that SMAD4

is essential for THBS1 induction and is a critical target for controlling cellular senescence.
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Figure 3.1.14: Late inhibition of PI3K-Akt is crucial for FMOD downregulation by TGF-B1 [76].
A) Simulation of THBS1 and FMOD using developed mathematical model. The initial value
of TGF-B1 for THBS1 or VEGF for FMOD were increased, as indicated by the color code
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B)

®)

D)

E)

(From x1 to x10). Solid lines indicate the average simulation of 30 parameter sets, and
shade areas indicate SD.

Sensitivity analysis of TGF-Bl-induced THBS1 for 30 parameter sets. Negative
coefficients (blue) indicate that the quantity of the response metric decreases as species
increase, while positive coefficients (red) indicate that the quantity of the metric increases.
The black arrow indicates V13, SMAD2-SMAD3-SMAD4 formation.

Validation of the sensitivity analysis by WB analysis of THBS1 following siRNA KD of
SMADs in HFF-1 cells. Lysates were collected 48 h after pretreatment with each SMAD
siRNA alone or in combination for 24 h prior to stimulation with or without 4 ng/mL
TGF-B1. (Left panel) Representative image. (Right panel) Quantification of THBS1 with
SMADs KD; n = 3, ***p < (.001 (vs. non-target control treatment, Student’s -test), "p
< 0.01 (vs. non-target TGF-B1 treatment, Dunnett’s test).

Effect of siRNA KD of SMADs on SA-B-gal activity. HFF-1 cells were pretreated with
each 25 nM siRNA and stimulated with or without 4 ng/mL TGF-B1. (Left panel)
Representative images. SA-B-gal-positive cells are indicated with the arrowhead (black).
Scale bars, 200 um. See Figure S13A for processed images. (Right panel) Quantification
of SA-B-gal: SA-B-gal-positive rate (%) =SA-B-gal-positive cells / total number of cells
x 100. Four images per well were randomly analyzed from three wells (total 12
images/condition), ***p < 0.001 (Tukey’s multiple comparisons).

WB analysis of Lamin-B1 and SMADs following siRNA KD of SMADs in HFF-1 cells.
Cells were pretreated with each siRNA (25 nM) and collected 48 h after control (blue) or
4 ng/mL TGF-B1 (red) treatment. (Left panel) Representative image. (Upper right panel)
Quantification of Lamin-B1; N=3, *p<0.05 (Student’s t-test), 7'p<0.01 (Dunnett’s test).
(Middle left panel) Quantification of SMAD2; N=3, ***p<(0.001 (Dunnett’s test),
p<0.001 (Dunnett’s test). (Middle right panel) Quantification of SMAD3; N=3,
*%p<(0.01 (Dunnett’s test), 'p<0.05 (Dunnett’s test). (Bottom left panel) Quantification of
SMAD4; N=3, ***p<(.001 (Dunnett’s test), "7p<0.001 (Dunnett’s test).

&3



3.2 Identification of Potent THBS1 Suppressor and its

Mechanism Toward Senescence

3.2.1 ATRA Suppresses THBS1 by Nuclear Transcriptional Regulation

As THBSI1 was identified as a key promoter of skin aging, I decided to search for an effective
molecule to suppress THBS1.To manipulate cellular senescence via THBS1, I screened a natural
product library and identified compounds that efficiently suppressed TGF-B1-induced THBS1
expression (Figure 3.2.1A). Among the 268 screened compounds, isotretinoin (13-cis-retinoic
acid) was the most potent suppressor of THBS1. Consequently, I assessed other retinoic acid-
related compounds such as retinol and ATRA (Figure 3.2.1B). TGF-B1-induced THBS1 was
suppressed after treatment with LY364947, a TGF-BRI/TGF-BRII inhibitor (p < 0.001, TGF-B1
vs. 5 uM LY364947 + TGF-B1). Retinol showed no effect on THBSI suppression at a
concentration of 0.5 uM (p > 0.05, TGF-B1 vs. 0.5 uM Retinol + TGF-B1); however, it suppressed
THBSI1 at a concentration of 5 uM (p < 0.001, TGF-B1 vs. 5 uM Retinol + TGF-B1). Additionally,
ATRA more potently inhibited THBSI1 than retinol at the same concentration (p < 0.01, 5 uM
Retinol + TGF-B1 vs. 5 uM ATRA + TGF-B1). As retinol is metabolized in the body and converted
to ATRA [113], I further investigated using ATRA.

Herein, immunostaining for SMAD4, which translocates to the nucleus upon TGF-B1
stimulation, was performed to elucidate the regulatory mechanism by which ATRA suppresses
THBS1 (Figure 3.2.1C). Treatment with TGF-B1 localized SMAD4 in the nucleus (p < 0.001,
control vs. TGF-B1), whereas treatment with LY364947 and TGF-B1 combination prevented
SMAD4 from entering the nucleus and restricted it to the cytoplasm (p < 0.001, TGF-BI vs.
LY364947 + TGF-B1). Treatment with the ATRA and TGF-B1 combination did not inhibit the
nuclear localization of SMADA4, thus allowing it to enter the nucleus (p > 0.05, TGF-f1 vs. ATRA
+ TGF-B1). This result indicates that TGF-B1-induced THBS1 suppression by ATRA is not a

regulation that occurs outside the nucleus, but rather inside the nucleus.
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Figure 3.2.1: ATRA suppresses THBS1 by nuclear transcriptional regulation.

A) Natural compound screening for THBS1 downregulation. Each compound was combined

B)

®)

with TGF-B1, and 119 compounds showing >80% cell viability were used for THBS1
ELISA (n = 1). Relative levels are indicated in accordance with the TGF-B1 (1) value.
THBS1 ELISA in compound-treated HFF-1 cell supernatants. The cells were cultured
with control (DMEM with 2% fetal bovine serum and 0.1% DMSO vehicle), 4 ng/mL
TGF-B1, 5 uM LY 36494 with or without 4 ng/mL TGF-B1, 0.5 pM/5 uM retinol with or
without 4 ng/mL TGF-B1, or 0.5 uM/5 uM ATRA with or without 4 ng/mL TGF-B1 for
48 h, and supernatants were analyzed; n = 3, **p < 0.01, ***p < 0.001 (Tukey’s multiple
comparisons).

Nuclear localization of SMAD4 by immunofluorescence imaging using HFF-1 cells. The
cells were treated with LY36494 or ATRA in combination with or without 4 ng/mL TGF-
B1 for 48 h and fixed for immunofluorescence imaging. (Left panel) Representative
images; scale bars: 100 pm. (Right panel) Quantification of nuclear SMAD4 intensity in

each treatment; In total, 30 images per treatment were randomly analyzed, ***p < 0.001
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(Tukey’s multiple comparisons).

3.2.2 Mutual Inhibition Identified Between TGF-B1 and ATRA

To elucidate nuclear TF regulation by ATRA, I identified the TF network from the DEGs that
were upregulated or downregulated in response to treatment with ATRA using the RNA-seq data
analyzed by Lisa [94] (Figure 3.2.2A). The TF network analysis identified SMAD3 as a related
TF in the ATRA-treated RNA-seq DEGs. Next, I determined the relationship between SMAD and
ATRA based on TF activity predicted from RNA-seq using DoRothEA [90] and found that SMAD
activity (SMAD3 and SMAD4) decreased after ATRA treatment, whereas ATRA activity (retinoic
acid receptors [RARs] and retinoid X receptors [RXRs]) decreased after TGF-B1 treatment
(Figure 3.2.2B). These results indicate a mutual inhibitory relationship between ATRA and
SMAD signaling. To determine how these TFs are regulated after treatment with ATRA, 1
examined the binding sites of RARA and RXRA using ChIP-Atlas [114,115], a public TF database
that integrates publicly available ChIP-seq data, allowing users to analyze binding sites of specific
TFs and epigenetic modifications (Figure 3.2.2C). ATRA binds to RARA and RXRA to form
heterodimers to regulate gene transcription [116]; thus, genes commonly annotated in RARA and
RXRA ChIP peaks were extracted. The associated genes were identified by annotating
neighboring genes at each binding region, and the gene group was divided into two clusters
according to the number of peaks present as follows; cluster 1: peak count of 3 or fewer and
cluster 2: peak count greater than 3. The KEGG analyses of each cluster revealed that the gene
group with many RARA/RXRA binding sites, especially cluster 2, was associated with Hippo
signaling, TGF-f signaling, and cellular senescence. These results are consistent with the findings
obtained for Yes-associated protein (YAP)1-TEADI, the major transcriptional mediators of the
Hippo pathway [117,118], and SMAD?3, an important TF of gene regulation in ATRA treatment
(Figure 3.2.2A). These results indicate the possibility that TGF-p signaling- and cellular
senescence-related genes are regulated by RARA/RXRA via YAP-TEAD when treated with
ATRA. Therefore, I decided to investigate this aspect in detail.
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Figure 3.2.2: Mutual inhibition identified between TGF-f1 and ATRA.

A) TF network analysis of RNA-seq data derived DEGs (control vs. 5 uM ATRA, |FC|> 1.2,
adj-p<0.01) using Lisa. The top 20 TFs are highlighted in red.

B) TF enrichment analysis of RNA-seq data derived from control, 4 ng/mL TGF-B1, or 5
uM ATRA with/without 4 ng/mL TGF-B1-treated HFF-1 cells, focusing on SMAD3,
SMAD4, RARA, and RXRA (details in the Methods section). The heatmap shows the
normalized TF enrichment scores calculated using DoRothEA analysis.

C) (Upper panel) Venn diagram showing genes near the binding sites of RARA and RXRA
using ChIP-Atlas (Cluster 1: peak count 3 or fewer, Cluster 2: peak count greater than 3).
(Lower panel) Heatmap showing pathways annotated in the KEGG pathway enrichment
analysis. The adj-p was calculated using the BH method with the “compareCluster”

function of clusterProfiler.

3.2.3 TEAD Family Is Associated with THBS1 Regulation in TGF-$1 and ATRA
Stimulation

To identify TFs crucial for the transcriptional regulation of THBS1, I used ATAC-seq data to
identify DNA regions with fluctuating peak intensities near THBS1 (Figure 3.2.3A). Open
chromatin regions around THBSI1 that increased with TGF-B1 treatment and decreased with the
combination of TGF-B1 and ATRA were identified. These DNA regions also fluctuated with both
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TGF-B1 and ATRA treatments, revealing that a common TF may regulate THBS1 in response to
both stimuli. Therefore, I extracted TFs with binding sites near THBS1 that fluctuated with TGF-
B1 or ATRA stimulation from ATAC-seq data using ChIP-Atlas (Figure 3.2.3B). I found TEAD4
binding in both conditions. The TF network involved in ATRA-treated DEGs includes TEADI1
and its upstream factor, YAP1, suggesting that YAP-TEAD may play a crucial role in regulating
THBSI1 (Figure 3.2.2A). To identify TFs associated with THBS1, I constructed a network of TFs
involved in TGF-B1-stimulated DEGs using Lisa (Figure 3.2.3C). The graphs show 45 TFs
common to the 269 TFs annotated as THBS1-related in “The Signaling Pathway Project” [119],
a public dataset summarizing TFs near each gene, and the top 100 TFs associated with genes
upregulated by TGF-B1 stimulation. Results suggest that TEADI, similar to that in ATRA
stimulation, is involved in regulating TGF-B1-stimulated DEGs. RXRA is also enriched by TGF-
B1 alone, and a binding site is present for RXRA near THBSI1, suggesting that retinoic acid
suppresses THBS1 expression by transcriptionally regulating it through RXRA. In Figure 2C,
gene cluster 2, which contains many RARA/RXRA binding sites, is highly enriched in the Hippo
signaling pathway, where TEAD functions as a key TF. To summarize, the RXR/SMAD/TEAD
TF network plays a critical role in regulating THBSI.
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Figure 3.2.3: The TF network of retinoid X receptor (RXR)/SMAD/transcriptional enhanced
associate domain (TEAD) is associated with stimulation of both TGF-B1 and ATRA.
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A) DNA regions with fluctuating ATAC-seq peak intensities near THBS1. IGV traces of
ATAC-seq peak intensities for each control, 4 ng/mL TGF-B1, or 5 uM ATRA
with/without 4 ng/mL TGF-B1 (blue) are shown, along with DNA regions with fluctuating
ATAC-seq peaks (red; |[FC| > 1.2). The upper THBS1 ID indicates NM_003246.4,
whereas the lower THBS1 ID indicates XM 011521971.3.

B) Extraction of TFs with binding sites near THBS1 using ChIP-Atlas. The fluctuating DNA
region derived from ATAC-seq for each TGF-B1 (horizontal axis) and ATRA (vertical
axis) treatment was used to determine the frequency of each TF.

C) (Leftpanel) Venn diagram showing common TFs between THBS1-related TFs from “The
Signaling Pathway Project” and the top 100 TFs identified from upregulated DEGs
(control vs. 4 ng/mL TGF-B1, FC > 1.2, adj-p<0.01) using Lisa. (Right panel) TF network
analysis of RNA-seq data-derived DEGs (control vs. 4 ng/mL TGF-B1, |[FC| > 1.2, adj-p
< 0.01) using Lisa. RXRA, SMAD4, and TEADI are highlighted in red. In total, 45 TFs
were identified from the Venn diagram. Except for RXRA, SMAD4, and TEADI, the

other TFs are shown in dark grey.

3.2.4 TEAD Is Activated with Senescence of Dermal Fibroblasts

TEAD protein is a major transcriptional mediator of the Hippo pathway, regulating gene
expression crucial for development, cell proliferation, regeneration, and tissue homeostasis
[117,118]. The transcriptional activity of TEAD is facilitated by its interaction with the co-
activators YAP/TAZ, which are regulated in the cytoplasm by phosphorylation via the Hippo
pathway. When the Hippo pathway is activated, YAP/TAZ is degraded in the cytoplasm via
phosphorylation and TEAD cannot interact with YAP/TAZ [117,118]. In contrast, when the Hippo
pathway is inactivated, unphosphorylated YAP/TAZ translocates to the nucleus and interacts with
TEAD, forming complexes with TEAD family TFs [120].

Based on the involvement of the RXR/SMAD/TEAD network in TGF-1 and ATRA treatments,
I investigated how these TF activities change during cellular senescence. I calculated TF
enrichment scores from the gene expression of each PDL using DoRothEA [90] (Figure 3.2.4A).
As shown in previous section 3.1.2, SMAD3 and SMAD4 were found to be activated with
increasing PDL. TEAD1 and TEAD4 were also found to be activated with increasing PDL,
whereas RARA and RXRA showed attenuated activity with increasing PDL. The upstream
analysis of DEGs associated with increased PDL also revealed that TEAD1 and TEAD4 are
crucial for the transcriptional regulation of cellular senescence (Figure 3.1.2B). Additionally,
ATAC-seq was used to explore the TF binding motifs present in DNA open chromatin regions,
which were peaked by increased PDL and TEADs showed strong enrichment (Figure 3.2.4B). I

also identified the AP1 family as senescence-associated motifs, including the Jun family (JunB

&9



and Jun-AP1), Fos family (Fos), Fra family (Fral and Fra2), and ATF family (Atf3). These results
suggest that TEAD-regulated gene expression increases with cellular senescence in dermal

fibroblasts, and AP1-TEAD binding motifs are enriched in open chromatin regions.
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Figure 3.2.4: TEAD is activated with senescence of dermal fibroblasts.

A) TF enrichment analysis of RNA-seq data derived from RS-induced HFF-1 cells for
SMAD3, SMAD4, TEADI1, TEAD4, RARA, and RXRA. The heatmap shows the
normalized TF enrichment scores calculated using DoRothEA analysis.

B) Enriched motifs in the gained ATAC-seq peaks with increasing PDL. The log(adj-p value)
and proportion of target sequences with motif were calculated using the

“findMotifsGenome.pl” function of HOMER. TEAD motifs are highlighted in red.

3.2.5 TEAD Inhibits Senescence of Dermal Fibroblasts

I determined the effect of TEAD inhibition on the regulation of THBS1 expression and SA-f-
gal activity as an in vitro senescence marker. Notably, THBS1 expression was upregulated by K-
975, a TEAD inhibitor [121], and the combination of K-975 and ATRA resulted in expression
levels comparable to those of the controls (Figure 4A). These findings suggest that TEAD
functions in a repressive manner on the transcriptional regulation of THBS1. Additionally, ATRA
treatment suppresses THBS1 expression by promoting TEAD activity. Lamin-B1 expression, a
marker of cellular senescence, was also confirmed and suppressed by K-975. The downregulation
of Lamin-B1 expression suggests that TEAD inhibition may promote cellular senescence. When
SA-B-gal staining with a TEAD inhibitor was performed using young PDL 24 HFF-1 cells, the
number of SA-B-gal-positive cells increased (p < 0.001, control vs. K-975) and the expression of
SA-B-gal returned to the same level as in the controls with the combination of K-975 and ATRA
(Figure 4B). When SA-f-gal staining was performed using senescent PDL 47 HFF-1 cells, ATRA
treatment decreased the number of SA-B-gal-positive cells (p <0.001, control vs. ATRA) (Figure
4C). These results indicate that TEAD has an inhibitory role against cellular senescence and that
ATRA improves the function of TEAD.
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Figure 3.2.5: TEAD inhibits the senescence of dermal fibroblasts.
A) Western blotting of THBS1 and Lamin-B1 in K-975 and ATRA stimulated HFF-1 cells

B)

©)

(PDL 47). Cells were treated with 1 uM K-975 with or without 5 pM ATRA, cultured for
48 h, and lysates were analyzed. (Left panel) Representative images. (Middle panel)
Quantification of THBS1 expression; n = 3, *p < 0.05, **p < 0.01 (Tukey’s multiple
comparisons). (Right panel) Quantification of Lamin-B1 expression; n = 3, *p < 0.05
(Tukey’s multiple comparisons).

(Left panel) SA-B-gal staining of 1 uM K-975 with or without 5 uM ATRA stimulated
PDL 24 HFF-1 cells. Representative images. SA-B-gal-positive cells are shown by black
arrowheads. Scale bar: 200 pm. (Right panel) Quantification of SA-B-gal: SA-B-gal-
positive rate (%) = number of SA-B-gal-positive cells/total number of cells x 100. In total,
12 images per treatment were randomly analyzed, ***p < 0.001 (Tukey’s multiple
comparisons).

(Left panel) SA-B-gal staining of control (DMEM with 2% FBS and 0.1% DMSO
vehicle), 5 uM ATRA, or 1 uM K-975 with or without 5 uM ATRA stimulated PDL 47
HFF-1 cells.
arrowheads; scale bar: 200 pm. (Right panel) Quantification of SA-B-gal: SA-B-gal-

Representative images. SA-f-gal-positive cells are shown by black

positive rate (%) = (number of SA-B-gal-positive cells/total number of cells) x 100. In
total, 12 images per treatment were randomly analyzed, ***p < 0.001 (Tukey’s multiple

comparisons).

3.2.6 Mechanical Stress regulates Senescence of Dermal Fibroblasts
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Mechanical stress from extracellular matrix (ECM) stiffness can regulate YAP/TAZ; hence, the
Hippo signaling pathway involving TEAD is closely associated with adhesion in the surrounding
environment [122,123]. While most cultured plastic plates are very stiff, with elastic moduli
ranging from 0.2 to 5.0 GPa [124], a non-negligible difference is found in the human skin dermis
at 35 kPa[125]. Additionally, the surrounding environment should be brought closer to skin tissue
to determine the role of cellular senescence in TEAD activity. Hence, I examined SA-B-gal
activity in senescent human dermal fibroblasts (PDL 47) grown on collagen-coated silicone gel
of different stiffness elastic modulus ranging from 0.5 to 32 kPa (Figure 3.2.6). I found that
culturing senescent cells on a soft substrate significantly decreases the number of SA-(B-gal-
positive cells (p < 0.001, 2 kPa vs. 32 kPa). Although skin aging decreases the ability to produce
collagen and other ECMs [20], my results indicate that the environment surrounding the cells may
affect cellular senescence. Furthermore, the effects of ATRA and K-975 on SA-B-gal staining
were confirmed at different substrate stiffnesses (2 kPa and 32 kPa). Under 2 kPa conditions, no
changes were found with ATRA. However, I found that TEAD inhibition with K-975 increased
SA-B-gal positivity (p < 0.001, control vs. K-975). In contrast, at 32 kPa, ATRA decreased SA-f-
gal positivity, whereas K-975 showed no significant effect (p = 0.49, control vs. K-975). These
results indicate that TEAD inhibition increases SA-B-gal positivity when initial SA-B-gal levels
are low, whereas ATRA has no effect (Figures 3.2.5B). When initial SA-B-gal levels are high,
TEAD inhibition does not significantly change SA-B-gal positivity, but ATRA can suppress it
(Figures 3.2.5C).

skpa  PDLA7
i
) S ke p=0.49
£ <  20% | | 25%]  P————— 2KPa
o ] <=8 ® — = —* | 32kPa
2 = Q 15%] p0ar @ 0% —
2 =
o 2 E |_| E
3 = 15% -
< 8_ 10% [pe010 9 .
o - — 1N —
2L ¥ 3 T 10% J
< 1 [
% % 2
fuls 5% 4
< 77 & 5%
g : w w
o A 0% 1 ; , , 0% . . .
3 ‘ S\ 0 10 20 30 Control ATRA  K-975
x (b kPa
3 ~ 200pMm

Figure 3.2.6: Mechanical stress regulates senescence of dermal fibroblasts.
(Left panel) SA-B-gal staining of control (DMEM with 2% FBS and 0.1% DMSO
vehicle), 5 uM ATRA, or 1 uM K-975 stimulated PDL 47 HFF-1 cells cultured on
substrates with elastic moduli of 2 kPa or 32 kPa. Representative images. SA-f-gal-
positive cells are shown by black arrowheads; scale bar: 200 pm. (Middle panel)
Quantification of SA-B-gal under control (DMEM with 2% FBS and 0.1% DMSO
vehicle) conditions at various elastic moduli of 0.5, 2, 8, 16, and 32 kPa for PDL 47 HFF-
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1 cells. In total, 12 images per treatment were randomly analyzed, ***p < 0.001 (Tukey’s
multiple comparisons). (Right panel) Quantification of SA-B-gal staining of control
(DMEM with 2% FBS and 0.1% DMSO vehicle), 5 uM ATRA, or 1 uM K-975 stimulated
PDL 47 HFF-1 cells cultured on substrates with elastic moduli of 2 kPa or 32 kPa. In total,
12 images per treatment were randomly analyzed, ***p < 0.001 (Tukey’s multiple

comparisons).
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4. DISCUSSION

In this study, I investigate the regulatory network in skin aging using multi-omics and
mechanistic modeling approaches. Inflammation and fibrosis have been shown to characterize
senescence in in vivo [126]. Multi-omics analysis revealed the roles of the TGF-p and YAP-
TEAD signaling pathways in the senescence of dermal fibroblasts. TGF-f signaling pathway
regulates fibrosis and the activation of YAP and TAZ, transcriptional coactivators of TEAD,
which contribute to pulmonary fibrosis by activating the profibrotic functions of lung fibroblasts
[127]. Studies have shown the involvement of the TGF-f signaling pathway in cellular
senescence. TGF-P pathway activation can cause senescence in surrounding cells through the
TGF-B1 protein [111,128]. Transcription of p21 can be activated by the TGF- pathway [129].
Multi-omics analysis of RS-senescent WI-38 cells (human lung fibroblasts) showed activation
of the TGF-B pathway and YAP-TEAD activity [130]. The transcriptome analysis of aged
mouse skin highlights the TGF- pathway as a regulator [131]. Together with my findings,
these results support that the TGF- pathway is a major signaling pathway and TEAD is
involved in human skin aging. On contrary, previous papers reported TGF-f signaling pathway
decline with human skin aging [20,132]. TBRII mRNA Ievels are reported to be reduced in aged
(80+ years) compared to young (20-30 years) dermis, along with photoaged human skin, as
determined by laser capture microdissection coupled with quantitative real-time RT-PCR [133].
Therefore, prior studies have concluded a decrease in TGF-} signaling from a macroscopic
perspective using skin tissue in response to skin aging, while I have concluded an increase in
TGF-p signaling from a microscopic examination using a cellular aging model of dermal
fibroblasts. This contradiction highlights the complexity of skin aging, suggests that the role of
TGF-f signaling in skin aging may vary depending on the context and scale of the analysis.

The association between aging and Hippo signaling is well-documented [134,135]. Previous
study has shown that YAP and TAZ activities decrease with aging, protecting the skin from
premature aging in mouse dermal fibroblasts [136]. A whole-genome CRISPR knockout screen
showed that the YAP-TEAD pathway affects cell viability in senescent cells [137]. Another
study performed a multi-omics analysis of the RS model in mouse fibroblasts and identified AP-
1 and TEADI as key regulatory TFs [138]. Other studies have reported that AP-1 directly
interacts with TEAD [139,140]. In human dermal fibroblasts, decreased YAP/TAZ levels
activate AP-1, which suppresses the TGF-§ pathway via the induction of SMAD7 [141]. In my
analysis, | found that the AP-1 family, including the Jun family (e.g., JUN, JUND), Fos family
(e.g., FOS), and ATF family (e.g., ATF3), is enriched with the increase in PDL, indicating the
involvement of AP-1 in TEAD regulation in dermal fibroblast senescence. A previous study

showed that Teadl knockdown in mouse dermal fibroblasts attenuates SA-f-gal activity [138].
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However, the knockdown of YAP and TEAD1/3/4 increased SA-B-gal activity in IMR90 cells
(human lung fibroblasts) [142]. My results showed that TEAD inhibitor treatment promotes SA-
B-gal activity. The association between YAP-TEAD and senescence indicates that even
identical fibroblasts can play different roles in aging based on their species and organs of origin.
Nevertheless, these results should be confirmed in human skin-derived cells to determine the
role of YAP-TEAD in human skin aging.

In addition, my analysis identified an age-related enrichment of estrogen receptor 2 (ESR2).
Knockout of the human ESR2 gene reduced the expression of human 7THBSI mRNA [143] and
its ligand 17B-estradiol induced THBSI mRNA expression [144]. 17B-estradiol decreased Fmod
mRNA expression in the frontal cortex of rats [145]. These results suggest that ESR2 may also
be involved in the regulation of THBS1 and FMOD in dermal senescence. Furthermore, USP11
has been reported to stabilize p21 levels in a p53-independent manner [89]. As p53 expression
did not decrease with increasing PDL in my study, it is possible that changes in USP11 are
responsible for the downregulation of p21 in the late PDL.

In previous reports, the analysis of human dermal fibroblast mRNA suggested that THBS!
expression increased with age [ 146]. Among 998 proteins that showed an age-dependent secretion
pattern, THBS1 was upregulated with skin aging [147]. These reports implicated THBS1 as a
biomarker of skin aging but did not directly demonstrate its function. Collectively, my findings
and previous findings suggest that THBS1 expression plays a vital role as a universal phenotype
in skin aging. In addition, THBS1 was reported to promote senescence in endothelial cells
[148,149]. Given the strong relationship between THBS1 and age-associated diseases [98], my
current findings on THBS1 have potential applications beyond skin aging.

In contrast, the expression of FMOD seems to be heterogeneous among reports of skin aging. I
found that the expression of FMOD decreased with the senescence of dermal fibroblasts.
Proteomic analysis of human skin punch biopsies showed that FMOD protein expression
decreased with age [150]. In contrast, an earlier analysis of skin-fibroblast mRNA also suggested
that FMOD increases with age [146]. FMOD expression was upregulated with increasing age and
senescence in the public RNA-seq dataset, which contradicts my validation. A possible
explanation for this difference in the senescence tendency of FMODs in the same HFF-1 cell line
could be the variation in culture conditions, such as the medium glucose level. Inconsistencies in
reports on FMOD regulation may also be due to the differences between proteomic and
transcriptomic data in aging, suggesting that their expressions are poorly correlated and that
mRNA profiling alone does not provide the complete picture [151].

My findings suggest that both SMAD activation and c-Fos/c-Jun binding to DNA are required
to regulate THBS1 expression in dermal fibroblasts. In earlier studies, THBS1 was regulated by
the SMAD3 binding site of the THBS1 promoter [109]; c-Jun, but not c-Fos, was involved in AP-
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1 activity at the AP-1 binding site of the THBS1 promoter in human hepatocarcinoma cell lines
[152]. Various TFs (e.g., NF-xB, USF, E2F1, AP-1, EGR1, and SP1) have been reported to bind
to the promoter region of THBS1 [153]; therefore, the TFs associated with THBS1 may vary
among cell lines. In addition, I found that TEAD is involved in the transcriptional regulation of
THBS1 in dermal fibroblasts. A bioinformatics analysis using MCF7 cells (breast cancer)
identified THBSI as a direct transcriptional target of YAP-TEAD [154]. WI-38 and HFF-1 cells
show TGF-B and TEAD activation with RS; however, TEAD inhibition decreases THBS1 in WI-
38 cells [130]. However, my TEAD inhibition experiment with dermal fibroblasts increased
THBS1. My findings indicate that while TEAD acts as a repressor of THBS1 in dermal fibroblasts,
it may function differently in other cell types, including WI-38 and HFF-1 cells, highlighting the
complexity of the Hippo signaling pathway and its context-dependent roles in cellular senescence
and aging. Subsequent investigations into the molecular interactions among TEAD, THBS1, and
other regulatory factors in various cell types can provide deeper insights into the tissue-specific
functions of TEAD and its implications in skin aging and potential therapeutic interventions.

Meanwhile, FMOD expression in dermal fibroblasts was found to be regulated by the VEGF-
Raf-ERK pathway. Previous reports have indicated that FMOD was regulated by the Wnt/[-
catenin pathway in human breast cancer cell lines [155], MAPK/AP-1 pathway in human
pancreatic stellate cells [156], and TGF-B2 in rat pericytes [157]. These results suggest that
FMOD regulation may vary in different cells, tissues or environments.

Our bifurcation analysis of TGF-B1, THBS1, and FMOD network indicated that a binary high-
/low-TGF-B1 switch. Earlier studies identified a bistable switch that regulates TGF-p1 activation
in liver fibrosis [158] and asthmatic airways [159]. In addition to these diseases, the bifurcation
analysis may be useful in qualitatively capturing other phenomena of senescence.

Several mathematical models have been reported for the TGF-f signaling pathway [86,160,161].
Nevertheless, my model is invaluable because it reflects unbiased data-driven insights into the
gene regulatory network of skin aging, combined with the previous models. Computational
simulation of skin aging showed that THBS1 responded sensitively while FMOD was robustly
regulated with any input. These results suggest that THBS1 is a more promising drug target than
FMOD. The sensitivity analysis further confirmed that the model-predicted sensitive response,
i.e., the complex formation by SMAD4, was conserved across 30 independent parameter sets,
suggesting that parameter identifiability does not affect the uncertainty of model outputs. In the
siRNA-based SMADs KD experiments, knockdown of the SMAD2-SMAD3 combination
(besides SMADA4) significantly reduced THBS1, which may indicate a functional redundancy of
SMAD2 and SMAD3. On the contrary, when considering practical applications in drug
development, focusing on a single target (SMAD4) is more suitable than developing drugs for

two alternative targets, SMAD2 and SMAD3. Experimental evidence has shown that inhibition
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of SMAD4 complex formation has a restorative effect on the aging phenotype (i.e., SA-B-gal and
Lamin-B1), and that its effects go beyond THBS1 regulation. This approach of targeting THBS1
by inhibiting SMAD4 complex formation will open new avenues for skin aging research.

ATRA, also known as tretinoin, is considered the clinical gold standard for addressing skin
aging-related concerns due to its ability to reduce fine lines, coarse wrinkles, and pigmentation,
and improve skin texture [162]. ATRA influences the photodamage of the skin by promoting the
production of collagen I, an ECM protein that provides structure and elasticity to the skin [163].
Furthermore, it plays a role in regulating epidermal thickening, proliferation, and differentiation,
thereby maintaining the health of the epithelium and preventing skin aging [163,164].
Immunohistochemistry assay showed a significant increase in the number of RAR-expressing
epidermal keratinocytes in aged photo-protected human skin compared to young skin [165].
Nevertheless, no change was found in RAR expression in dermal fibroblasts [165]. Retinoic acid
inhibits collagenase and gelatinase expression in human dermal fibroblasts [166]. A TF network
between retinoid receptors and the AP-1 family has been reported [167]. AP-1, which binds to the
promoter region of matrix metalloproteinases collagenase and gelatinase and is triggered by UVB
irradiation, is repressed by nuclear retinoid receptors [168,169]. Despite these findings, the
mechanisms underlying the transcriptional regulation of RARs and RXRs in skin aging have yet
to be elucidated.

My results revealed mutual inhibition between SMAD activity and RARA/RXRA activities. |
found that ATRA downregulates THBS1 via the regulation of the RXR/SMAD/TEAD TF network.
Previous study has reported that retinoic acids exhibit anti-fibrotic activity in scleroderma
fibroblasts where retinoic acids downregulated TGF-B1 expression [170]. In human tendon
fibroblasts, ATRA inhibits SMAD2 and SMAD?3 phosphorylation induced by TGF-1 [171]. In
this study, immunostaining results showed that ATRA does not affect the nuclear influx of
SMAD4 induced by TGF-B1, indicating that multiple pathways may be present for the
suppression of TGF-f1 by ATRA. However, retinoids have been reported to increase TGF-f3
activity [172]. Regarding the regulation of THBS1, a previous study reported that some cell lines
upregulate or downregulate THBS1 expression in response to retinoic acid [173]. These findings
suggest that crosstalk between TGF-f3 signaling and the retinoic acid signaling pathway is context-
dependent, sometimes promoting and other times inhibiting the pathway.

Tissue cells sense and respond to the stiffness of their substrate [ 174]. Regarding the effect of
substrate stiffness on senescence, soft substrates can delay senescence and maintain the
proliferation of human mesenchymal stem cells during long-term expansion [175]. A previous
study reported that senescent mesenchymal stromal cells showed reduced markers of the
senescence-associated secretory phenotype (SASP) when cultured on soft substrates compared

with those in cells cultured on tissue culture plastic [176]. In premature senescence-induced
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dermal fibroblasts, cells cultured on soft substrates (0.5 kPa) did not express p21 and pl6
compared with those in cells cultured on stiff substrates (4 GPa) [177]. These findings suggest
that the stiffness of the culture substrate may also affect cellular senescence induced by the RS
model in dermal fibroblasts. My findings on SA-B-gal activity in human dermal fibroblasts grown
in environments with different stiffness suggest that senescent human dermal fibroblasts induced
by the RS model, when cultured on a soft substrate, can significantly decrease the number of SA-
B-gal-positive cells due to the involvement of TEAD activity. Previous studies [177] have not
elucidated the mechanisms underlying how dermal senescent cells sense and respond to
mechanical stimuli. Another study suggests a link between reduction of mechanical force,
downregulation of the TGF-f signaling pathway and skin aging, but does not show the regulatory
mechanism behind it [178]. Nevertheless, my findings suggest that substrate stiffness affects the
senescence phenotype via TEAD regulation. The involvement of the retinoic acid receptor and
TEAD in dermal fibroblast senescence provides an important background for therapeutic
intervention in this field.

Big data is increasingly being used to study real-world diseases and disorders. In this regard, the
present study represents a major advancement in the study of skin aging and the regulatory

mechanisms of retinoic acid.
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5. CONCLUSION

My findings indicate that the TGF-B1-SMAD axis is crucial for regulating cellular senescence
in human dermal fibroblasts. I found that TGF-B1 is the most enriched upstream regulator of
senescence-related genes. Additionally, activation of this pathway, accompanied by epigenetic
changes, is induced by RS. Furthermore, multi-omics analysis revealed THBS1 as a major gene
in skin aging and cellular senescence, with ATRA effectively suppressing THBS1 through nuclear
transcriptional regulation. Suppression of THBS1 by ATRA occurs through a mutual inhibitory
relationship between ATRA and SMAD signaling, involving the RXR/SMAD/TEAD
transcription factor network. Moreover, I found that TEAD, a transcription factor enriched in
senescence-associated chromatin regions and increased by ATRA, inhibits cellular senescence.
Importantly, senescent human dermal fibroblasts grown on a soft substrate significantly decreased
the number of SA-B-gal-positive cells through the involvement of TEAD activity. My findings
provide valuable insights into the potential therapeutic targets for age-related skin issues and

highlight the importance of the Hippo signaling pathway in regulating dermal fibroblast

senescence.
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Figure 5: Schematic of the transcription factor network of RXR, SMAD, and TEAD in THBS1

regulation in dermal fibroblasts senescence.
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6. LIMITATIONS OF THE STUDY

The mechanisms regulating FMOD expression in the dermal fibroblasts remain unclear. Although
the involvement of VEGF pathway was demonstrated, this study does not rule out the possibility
that FMOD expression may also be regulated by other ligands. Additionally, [ used an anonymous
transcription factor for FMOD in our mathematical model. Furthermore, the role of endogenous
TGF-p signaling in senescent transcripts is yet to be elucidated.

Further research is necessary to elucidate the factors regulating FMOD in skin aging, especially
because the regulation of FMOD may vary in different cells and tissues, or in different
environments.

Although the involvement of mechanical stress in the senescence of dermal fibroblasts has been
indicated, further validation with other markers of cellular senescence is required. Moreover,
while the RXR/SMAD/TEAD transcription factor network has been implicated in dermal
fibroblast senescence and THBS1 regulation, the mechanism of TEAD activation by ATRA

remains unclear and warrants further investigation.
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7. KEY RESOURSE TABLE

Table 7.1: Detailed Information on Materials Used in This Study

REAGENT or
e SOURCE IDENTIFIER
Antibodies
Anti-THBS1 Cell Cat# 37879; RRID: AB_2799123
Signaling
Technology
Anti-THBS1 Abcam Cat# ab85762, RRID: AB_10674322
Anti-FMOD ProteinTech | Cat# 60108-1-Ig; RRID: AB 2105538
Anti-Lamin B1 ProteinTech | Cat# 12987-1-AP; RRID: AB 2136290
Anti-p53 Cell Cat# 2524; RRID: AB 331743
Signaling
Technology
Anti-p21 Cell Cat# 2946; RRID: AB 2260325
Signaling
Technology
Anti-c-Fos Cell Cat# 2250; RRID: AB 2247211
Signaling
Technology
Anti-c-Jun Cell Cat# 9165; RRID: AB 2130165
Signaling
Technology
Anti-SMAD2 Cell Cat# 5339; RRID: AB_10626777
Signaling
Technology
Anti-phosphorylated Cell Cat# 3108; RRID: AB 490941
SMAD?2 (Ser465/467) Signaling
Technology
Anti-SMAD3 Cell Cat# 9523; RRID: AB 2193182
Signaling
Technology
Anti-phosphorylated Cell Cat# 9520; RRID: AB 2193207
SMAD3 (Ser423/425) Signaling
Technology
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Anti-SMAD4 Cell Cat# 46535; RRID: AB_2736998
Signaling
Technology
Anti-phosphorylated Akt | Cell Cat# 9271; RRID: AB_329825
(Ser473) Signaling
Technology
Anti-pan Akt Cell Cat# 2920; RRID: AB 1147620
Signaling
Technology
Anti-USP11 Abcam Cat# ab109232; RRID: AB 10862711
Anti-GAPDH Medical & | Cat# M171-3; RRID: AB_10597731
Biological
Laboratories
Anti-GAPDH ProteinTech | Cat# 10494-1-Ap; RRID: AB 2263076
Anti-H3K27Ac Abcam Cat# ab177178; RRID: AB_2828007
Anti-IgG  (H+L chain) | Medical & | Cat# 330; RRID:AB 2650507
(Mouse) pAb-HRP Biological
Laboratories
Anti-IgG (H+L chain) | Medical & | Cat# 458; RRID:AB 2827722
(Rabbit) pAb-HRP Biological
Laboratories
Goat Anti-Rabbit 1gG | Abcam Cat# ab150080, RRID:AB 2650602
H&L (Alexa Fluor® 594)
Goat Anti-Rabbit IgG | Thermo Cat# A32731, RRID: AB 2633280
H&L (Alexa Fluor™ Plus | Fisher
488) Scientific
Chemicals, Peptides, and
Recombinant Proteins
D-PBS (-) (1X) Nacalai Cat# 14249-24
Tesque
HBSS Thermo Cat# 14025092
Fisher
Scientific
Dulbecco’s modified | ATCC Cat# 30-2002
Eagle’s medium
Fetal bovine serum Corning Cat# 35-010-CV
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Goat serum Thermo Cat# 16210-064
Fisher
Scientific
Antibiotic—antimycotic Thermo Cat# 15240062
Fisher
Scientific
Trypsi/EDTA ATCC Cat# 30-2101
BAMBANKER® NIPPON Cat# CS-04-001
Genetics
RIPA Buffer Thermo Cat# 89900
Fisher
Scientific
Halt™  Protease and | Thermo Cat# 78442
Phosphatase inhibitor Fisher
Scientific
Trypan blue Thermo Cat# 15250-061
Fisher
Scientific
Cell counter WakenBtech | Cat# WC2-100
Hoechst® 33342 DOJINDO | Cat# 346-07951
Opti-MEM™ | Thermo Cat# 31985-070
Fisher
Scientific
Lipofectamine RNAiMax | Thermo Cat# 13778150
Fisher
Scientific
Precast gel 7.5-15% Nacalai Cat# 13066-44
Tesque
Wide Precast Gel 7.5— | Biocraft Cat# MDG-287
15%
Tris/Glycine/SDS Buffer | Bio-Rad Cat# 1610732
4x  Laemmli sample | Bio-Rad Cat# 1610747
buffer
2-Mercaptoethanol Bio-Rad Cat# 1610710
Precision Plus Protein | Bio-Rad Cat# 1610376

IsternC blotting standard
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Clarity  Istern  ECL

Substrate

Bio-Rad

Cat# 1705060

Clarity Max Istern ECL | Bio-Rad Cat# 1705062
Substrate
Blocking buffer Bio-Rad Cat# 12010020
iBlot®2 PVDF Thermo Cat# 1B24001
Fisher
Scientific
Reconstitution buffer | R&D Cat# RB04
(0.1% BSA in 4 mM HCI | Systems
PBS)
Recombinant human | R&D Cat# 7754-BH-005
TGF-p1 Systems
Recombinant human | ProteinTech | Cat# HZ-1092
TGF-p2
Recombinant human | ProteinTech | Cat# HZ-1090
TGF-p3
Recombinant human | PeproTech Cat# AF-100-15
EGF
Recombinant human b- | R&D Cat# 233-FB-025
FGF Systems
Recombinant human | ProteinTech | Cat# HZ-1308
PDGF-BB
Recombinant human | R&D Cat# 3074-TH-050
THBS1 Systems
Recombinant human | Abcam Cat# ab152392
FMOD
Recombinant human | ProteinTech | Cat# HZ-1038
VEGF165
Dimethyl sulfoxide Fujifilm Cat# 041-29351
all-trans-retinoic acid Selleck Cat# S1653
Chemicals
Retinol LKT Labs Cat# R1876
LY364947 Fujifilm Cat# 123-05981
Akt inhibitor VIII Cayman Cat# 14870
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Chemical

LY?294002 Calbiochem | Cat# 440202

T-5224 Selleck Cat# S8966
Chemicals

Tocriscreen Kinase | Tocris Cat# 3514

Inhibitor Toolbox Bioscience

ZM306416HCI Tocris Cat# 3514-2499
Bioscience

Kig8751 Tocris Cat# 3514-2542
Bioscience

GW5074 Tocris Cat# 3514-1381
Bioscience

uo0126 Tocris Cat# 3514-1144
Bioscience

SB 431542 Tocris Cat# 3514-1614
Bioscience

K-975 Selleck Cat# E1329
Chemicals

Formaldehyde Thermo Cat# 28908
Fisher
Scientific

Paraformaldehyde Electron Cat# 15710
Microscopy
Science

HCS CellMask™ Stains | Thermo Cat# H32721
Fisher
Scientific

Triton® X-100 NACALAI | Cat#35501-15
TESQUE

Proteinase K Thermo Cat# 26160
Fisher
Scientific

Dispase® I1 Roche Cat# 04942078001

PureCol  Atelocollagen | Advanced Cat#5005-100ML

Solution BioMatrix

Critical Commercial
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Assays

Pierce™ BCA Protein | Thermo Cat# 23227
Assay Kit Fisher
Scientific
NucleoSpin® RNA kit Macherey- | Cat# 740955
Nagel
GmbH &
Co.
ReverTra Ace® qPCR RT | Toyobo Life | Cat# FSQ-201
Master Mix Science
KOD SYBR® qPCR kit | Toyobo Life | Cat# QKD-201
Science
SimpleChIP® Enzymatic | Cell Cat# 9003
Chromatin IP kit Signaling
Technology
iDeal ChIP-seq kit for | Diagenode | Cat# C01010171
Histones
MinElute® PCR | Qiagen Cat# 28004
Purification Kit
Bioanalyzer Agilent | Agilent Cat# 5067-4626
High-Sensibility = DNA
Kit
NEBNext® Poly(A) | New Cat# E7490
mRNA Magnetic | England
Isolation Module Biolabs
NEBNext® Ultra™ 11 | New Cat# E7760
Directional RNA Library | England
Prep Kit Biolabs
ATAC-Seq Kit Active Cat# 53150
Motif
NEBNext® Ultra I DNA | New Cat# 7645
Library Prep Kit for | England
[llumina Biolabs
Cell Counting Kit-8 DOJINDO | Cat# 343-07623
SA-B-gal Detection Kit BioVision Cat# K320-250
SA-B-gal Detection Kit Abcam Cat# ab65351
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CycLex® Cellular BrdU | Medical & | Cat# CY-1142V2
ELISA Kit Ver.2 Biological
Laboratories
CytoSoft® 6-well plates Advanced Cat# 5190-7EA
BioMatrix
THBS1 ELISA Kit R&D Cat# DTSP10
Systems
FMOD ELISA Kit Abcam Cat# ab275895
TGF-p1 ELISA Kit R&D Cat# DB100B
Systems
VEGF ELISA Kit R&D Cat# DVEOO
Systems
SMAD2 ELISA Kit Abcam Cat# ab260065
SMAD3 ELISA Kit Abcam Cat# ab264624
SMAD4 ELISA Kit Abcam Cat# ab253211
IL-6 ELISA Kit R&D Cat# D6050
Systems
IL-8 ELISA Kit Abcam Cat# ab214030
Deposited Data
RNA-seq: HFF-1 (PDL | This Paper Submission: DRA016119
24, PDL 36, PDL 47) BioProject: PRIDB15707
Treatment: Control
RNA-seq: HFF-1 (PDL | This Paper Submission: DRA017188
24, PDL 36, PDL 47) BioProject: PRIDB15707
Treatment: 4 ng/mL TGF-
B1
ChlIP-seq: H3K27Ac | This Paper Submission: DRA016119
HFF-1 (PDL 24, PDL 36, BioProject: PRIDB15707
PDL 47); Input HFF-1
(PDL 24, PDL 36, PDL
47)
Treatment: Control
ATAC-seq: HFF-1 (PDL | This Paper Submission: DRA016119
24, PDL 36, PDL 47) BioProject: PRIDB15707
Treatment: Control
ATAC-seq: HFF-1 (PDL | This Paper Submission: DRA017188
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24)
Treatment: 4 ng/mL TGF-
B1

BioProject: PRIDB15707

RNA-seq: HFF-1 (PDL

24) initial condition

This Paper

Submission: DRA016119
BioProject: PRIDB15707

The code for
bioinformatics  analysis
and mathematical

modeling

This Paper

https://github.com/okadalabipr/Haga2023

Experimental models:
Cell lines

Human dermal fibroblast
HFF-1

ATCC

Cat# SCRC-1041; RRID: CVCL_3285

Human dermal fibroblast
BJ

ATCC

Cat# CRL-2522; RRID: CVCL_3653

Experimental ~ models:

Organisms/Strains

Frozen human full

thickness skin

Biopredic

International

Cat# TRA1FTRO, TRA1FTR2

Oligonucleotides

qRT-PCR forward
primer: THBS1 5'-
TCCCCATCCAAAGCG
TCTTC-3'

This paper

N/A

qRT-PCR reverse primer:
THBS1 5 -
ACCACGTTGTTGTCA
AGGGT-3'

This paper

N/A

gRT-PCR forward
primer:  FMOD  5'-
GGACGTGGTCACTCT
CTGAA-3'

This paper

N/A

gqRT-PCR reverse primer:
FMOD 5'-
GGCTCGTAGGTCTCA
TACGG-3'

This paper

N/A
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https://github.com/okadalabipr/Haga2023

gRT-PCR forward | OriGene Cat# HP205798

primer: GAPDH 5'-

GTCTCCTCTGACTTC

AACAGCG-3'

gRT-PCR reverse primer: | OriGene Cat# HP205798

GAPDH 5'-

ACCACCCTGTTGCTG

TAGCCAA-3’

ON-TARGET plus Non- | Dharmacon | Cat# D-001810-02-20

targeting siRNA

ON-TARGET plus | Dharmacon | Cat# L-003265-00-0010

Human c-Fos siRNA —

SMARTpool

ON-TARGET plus | Dharmacon | Cat# L-003268-00-0010

Human c-Jun siRNA —

SMARTpool

ON-TARGET plus | Dharmacon | Cat# L-003561-00-0020

Human SMAD?2 siRNA —

SMARTpool

ON-TARGET plus | Dharmacon | Cat# L-020067-00-0020

Human SMAD?3 siRNA —

SMARTpool

ON-TARGET plus | Dharmacon | Cat# L-003902-00-0020

Human SMAD4 siRNA —

SMARTpool

Software and Algorithms

CellProfiler ver. 4.2.1 Stirling et al. | https://cellprofiler.org/
[179] RRID: SCR_007358

ImageJ Fiji version 1.52p | Schindelin http://fiji.sc
etal. [180] | RRID: SCR 002285

Biomass version 0.5.2 Imoto et al. | https://github.com/biomass-dev/biomass
[68,88] RRID: N/A

Gnuplot vesion 5.4

Williams et
al. [181]

http://www.gnuplot.info/
RRID: SCR 008619

R version 4.2.1

The R

Foundation

https://r-project.org
RRID: SCR 001905
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https://cellprofiler.org/
http://fiji.sc/
https://github.com/biomass-dev/biomass
http://www.gnuplot.info/
https://r-project.org/

QIAGEN
Pathway Analysis version
81348237

Ingenuity

Krimer et
al. [182]

https://digitalinsights.qiagen.com/products-

overview/discovery-insights-portfolio/analysis-

and-visualization/giagen-ipa/
RRID: SCR_008653

Nextflow version 21.10.6

Tommaso et

https://github.com/nextflow-io/nextflow

al. [183] RRID: SCR_024135
nfcore/chipseq  version | Ewels et al. | https://nf-co.re/chipseq/1.2.2
1.2.2 [184] https://zenodo.org/record/7139814+#.Y4lJDXbP1a
Q
RRID: N/A
nfcore/atacseq  version | Ewels et al. | https://nf-co.re/atacseq/1.2.1
1.2.1 [184] https://zenodo.org/record/7384115#.Y41Jv3bP1aQ
RRID: N/A
Trim Galore! Version | The http://www.bioinformatics.babraham.ac.uk/project
0.6.6 Babraham s/trim_galore/
Institute RRID: SCR 011847
hisat2 version 2.2.1 Kim et al. | http:/ccb.jhu.edu/software/hisat?/index.shtml
[185] RRID: SCR 015530
Samtools version 1.9 Danecek et | https://github.com/samtools/samtools
al. [186] RRID: SCR_002105
Subread version 2.0.1 Liao et al. | https://subread.sourceforge.net/
[187] RRID: SCR_009803
BEDTools version 2.30.0 | Quinlan et | https://github.com/arq5x/bedtools2
al. [188] RRID: SCR_006646

HOMER version 4.11

Heinz et al.

http://homer.ucsd.edu/homer/

[96] RRID: SCR 010881
DoRothEA version 1.8.0 | Garcia- https://saezlab.github.io/dorothea/
Alonso et al. | RRID: N/A
[90]
clusterProfiler version | Wu et al. | https://bioconductor.org/packages/release/bioc/ht
444 [189] ml/clusterProfiler.html
RRID: SCR_016884
DESeq?2 version 1.36.0 Love et al. | https://bioconductor.org/packages/release/bioc/ht
[190] ml/DESeq?2.html
RRID: SCR_015687
ChlIPseeker version | Yu et al. | https://bioconductor.org/packages/release/bioc/ht
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https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://github.com/nextflow-io/nextflow
https://nf-co.re/chipseq/1.2.2
https://zenodo.org/record/7139814#.Y4lJDXbP1aQ
https://zenodo.org/record/7139814#.Y4lJDXbP1aQ
https://nf-co.re/atacseq/1.2.1
https://zenodo.org/record/7384115#.Y4lJv3bP1aQ
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://ccb.jhu.edu/software/hisat2/index.shtml
https://github.com/samtools/samtools
https://subread.sourceforge.net/
https://github.com/arq5x/bedtools2
http://homer.ucsd.edu/homer/
https://saezlab.github.io/dorothea/
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/ChIPseeker.html

1.32.1

[191]

ml/ChIPseeker.html
RRID: SCR 021322

rrcov version 1.5.2

Hubert et al.

https://cran.r-project.org/package=rrcov

[192] RRID: N/A
ChIP-Atlas Oki et al. | http:/chip-atlas.org/

[114] RRID: SCR 015511

Zou et al.

[115]
The Signaling Pathways | Ochsner et | https://signalingpathways.org
Project al. [119] RRID: SCR 018412
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