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ABSTRACT 

During aging, maintaining skin homeostasis is essential for appearance and the biological defense 

of the human body. In this study, I identified thrombospondin-1 (THBS1) and fibromodulin 

(FMOD) as positive and negative regulators, respectively, of the transforming growth factor-β1 

(TGF-β1)–SMAD4 signaling axis in human skin aging, based on in vitro and in vivo omics 

analyses and mathematical modeling. Furthermore, I analyzed the transcription factor (TF) 

network involved in dermal fibroblast senescence treatment with all-trans-retinoic acid (ATRA). 

Using transcriptomic and epigenetic analyses of replication-stress (RS) induced senescent dermal 

fibroblasts, I identified TGF-β1 as the key upstream regulator. Bifurcation analysis revealed a 

binary high-/low-TGF-β1 switch, with THBS1 as the main controller. Computational simulation 

of the TGF-β1 signaling pathway indicated that THBS1 expression was sensitively regulated, 

whereas FMOD was regulated robustly, suggesting THBS1 as a controllable molecule in skin 

aging. Furthermore, I identified ATRA as a potent THBS1 suppressor, regulating THBS1 

transcription via a network involving retinoid X receptor (RXR), SMAD, and transcriptional 

enhanced associate domain (TEAD). The analysis of TF activity of the RS model indicated RXR 

inactivation and SMAD and TEAD activation in senescent dermal fibroblasts. TEAD inhibition 

increased THBS1 levels. Additionally, senescent dermal fibroblasts cultured on a soft substrate 

markedly reduced the number of senescence-associated-β-galactosidase-positive cells by 

activating TEAD. Therefore, the study demonstrates the potential of combining data-driven target 

discovery with mathematical approaches to determine the mechanisms underlying skin aging. 
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1. INTRODUCTION 

1.1 Research topic 

Aging and Skin Aging 

Aging is a universal and unavoidable process that significantly increases the risk of diseases, 

such as skin cancer, by disrupting health homeostasis [1,2]. In the recent revision of the 

International Classification of Diseases (ICD), the global multilingual catalog of human diseases, 

medical conditions, and mental disorders, the World Health Organization (WHO) replaced 

"senility" in ICD-11 with "ageing associated decline in intrinsic capacity" to standardize disease 

diagnosis, reduce age discrimination, and promote better health and quality of life for elderly 

people [3]. Over the past century, the age structure of developed countries, such as Japan has 

undergone a major aging transition. In 1950, over half of Japan's population was under 25, but by 

2021, this share had declined, and the proportion of those over 65 had increased significantly, 

forming a substantial part of the population (Figure 1.1.1) [4]. In response to the population 

transition to an aging society, the third phase of Health Japan 21 (2023-2035), a national health 

promotion movement launched by the Japanese government, defines the extension of healthy life 

expectancy and reduction of health disparities as the basic direction of the policy [5]. The 

increasing proportion of the elderly population has led to a growing awareness of healthy life 

expectancy, and there is a growing demand for people to live longer and healthier lives, rather 

than simply live longer. Promoting research on aging will help seniors live long, healthy, and 

independent lives by increasing their healthy life expectancy, thereby reducing medical and long-

term care costs. Simulation analysis indicates reducing the need for long-term care among elderly 

Japanese people can reduce healthcare costs [6]. Maintaining the health of the elderly and 

promoting their productive participation in society through aging research will contribute to the 

economic stability of society. This demographic shift underscores the need for research into age-

related health issues. 

As age has been reported as one of the major risks for skin aging [7], demographic changes in 

society have increased the impact of skin aging research. Maintaining skin homeostasis during 

aging is vital for biological protection, as thinner and more fragile skin is more susceptible to 

diseases [8]. Skin aging causes loss of elasticity, increased inflammation, and reduced mechanical 

resistance to skin damage, ultimately resulting in elasticity change such as skin sagging and 

wrinkles [8]. Aging skin homeostasis is important not only from the perspective of biological 

defense, but also for external beauty; how other people see you is important for self-affirmation 

and has social and psychological significance. As skin texture, color, facial radiance, and elasticity 
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change with aging, these factors greatly affect how people perceive themselves [9–12]. 

Approaches to addressing skin aging improve mental health by increasing self-esteem and 

decreasing social anxiety and isolation, and they may extend healthy life expectancy by promoting 

preventive health behaviors [13]. Therefore, this study aims to investigate specific interventions 

to extend healthy life expectancy in Japan's aging society through skin aging research. 

 

Figure 1.1.1: Population distribution by age group in Japan. 

Illustration of the demographic shift in Japan's population from 1950 to 2021, highlighting 

the increasing proportion of the elderly population [4]. This demographic trend underscores 

the growing importance of research on aging and age-related diseases. 

 

The skin is the largest organ of the human body exposed to the outside world; it acts as a barrier 

to external environments and protects against unwanted external stimuli [14]. Skin tissue mainly 

consists of the epidermis, dermis, and hypodermis (Figure 1.1.2). The epidermis acts as an 

interface with the environment as a barrier, the dermis provides structure and flexibility to the 

skin, and the hypodermis helps to insulate, store energy, and act as a shock absorber [15].  
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Figure 1.1.2: Structure of human skin tissue. 

Skin mainly consists of the epidermis, dermis, and hypodermis tissue. The epidermis is 

composed primarily of keratinocytes and functions as a barrier to the external environment. 

The dermis provides elasticity to the skin through the extracellular matrix produced by 

dermal fibroblasts. The hypodermis is composed mainly of fat and plays a role in energy 

storage and shock absorption. The original of this image was obtained from TogoTV and 

modified (© 2016 DBCLS TogoTV, CC-BY-4.0). 

 

Skin aging has been reported to cause both structural and functional changes. Structurally, the 

epidermis becomes thinner and the bonds between keratinocytes weaken [16,17]. The effects of 

reduced dermal fibroblast activity and changes in gene expression related to extracellular matrix 

(ECM) components are crucial factors in skin aging [18]. In the dermis, ECM, which are essential 

for maintaining the structural integrity of the skin components, such as collagen production and 

elastin decrease, as does the thickness and number of fibroblasts, mast cells and macrophages 

[16,19]. Aging also induces fragmentation and non-organization of dermal collagen fibers due to 

increased expression of major matrix metalloproteinase 1, leading to abnormal ECM homeostasis 

[20]. In certain areas, hypodermis fat is reduced, with noticeable changes in the face, shins, hands, 

and feet [17,21,22]. These structural changes result in the functional decline of aging skin. 

Functionally, skin aging reduces the rate of epidermal, hair, and nail growth, and delays wound 

healing [17]. In addition, the skin's immune and inflammatory response are reduced and its 

resistance to infection is diminished [16,17]. The skin's barrier function is also compromised, 

along with its ability to retain moisture [16]. Hence, skin aging research is important not only for 

the aging society but also for individual biological defense.  
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Cellular Senescence 

Skin aging is caused by both external factors (such as UV exposure, smoking, and environmental 

pollution) [23] and internal factors (such as impaired skin repair and hormonal imbalance) [24]. 

Specifically, seven notable risk factors for various skin aging phenotypes have been identified: 

age, gender, ethnicity, air pollution, nutrition, smoking, and sun exposure [7]. As hallmarks of 

skin aging, genomic instability and telomere attrition, epigenetic alterations and loss of 

proteostasis, deregulated nutrient-sensing, mitochondrial damage and dysfunction, stem cell 

exhaustion/dysregulation, altered intercellular communication, and cellular senescence have been 

identified [25].  

The key internal factor in skin aging is cellular senescence [26,27], also a hallmark of aging in 

general [28]. Senescent cells increase with age in many mouse and human tissues, such as adipose 

tissue, liver, kidney, and skeletal muscle [29]. Cellular senescence was first reported in 1961 by 

L. Hayflick using human fibroblast cells to demonstrate the limitations of mitotic capacity with 

replication-stress (RS), known as the Hayflick limit [30]. Later, telomere shortening was 

identified as the cause of accelerated senescence under RS using retinal pigment epithelial cells 

and foreskin fibroblasts [31]. Currently, various stressors (e.g., replication-stress (RS), DNA 

double-strand breaks, oncogene activation, and reactive oxygen species (ROS)) are reported to 

induce cellular senescence [32].  

Senescent cells are characterized by their stable and terminal growth arrest and exhibit a flat and 

large morphology, DNA damage, shortened telomeres, ROS production, loss of Lamin-B1, 

enhanced senescence-associated β-galactosidase (SA-β-gal) activity, and increased levels of 

cyclin-dependent kinase inhibitors p53/p21 and/or p16 [33]. The secretion of the senescence-

associated secretory phenotype (SASP), consisting of inflammatory cytokines, such as interleukin 

(IL)-6 and IL-8, is also a well-known senescence marker [34,35]. Lamin-B1, a nuclear matrix 

protein, is used to quantify senescence in the skin. Immunohistochemistry of aged epidermal and 

dermal tissue indicated reductions in Lamin-B1 expression [36]. Reduced levels of Lamin-B1 

induced by UVB radiation also indicate a relationship with cellular senescence and skin aging 

[37]. An increase in SA-β-gal positive cells in aging skin is one of the earliest established 

indicators of senescent cells in aging skin [38].  

With the visualization of the accumulation of p16-expressing senescent cells in vivo using real-

time imaging methods, research on cellular senescence due to aging has been vigorously 

conducted [39,40]. Moreover, the removal of p16-expressing senescent cells suppresses aging and 

extends the lifespan of mice, indicating the importance of cellular senescence in aging research 

[41,42]. The finding that senescent cell removal contributes to an extended lifespan has led to 

senolysis studies that selectively remove senescent cells in aging skin [43]. A combination of 

senolytic drugs, Dasatinib and Quercetin, selectively decreased p16 and p21 expression in human 
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epidermis [44]. Treatment with the senolytic drugs ABT-263 and ABT-737 selectively eliminates 

p16-expressing senescent dermal fibroblast cells in aged mice, increases collagen density and 

expression, and inhibits age-related epidermal thinning [45]. These results indicate that cellular 

senescence is a fundamental factor in skin aging. However, these senolytic compounds repurpose 

medical drugs or reagents and do not lend themselves to general topical or cosmetic use. Therefore, 

new approaches to targeting senescent cells are required in the industry. 

Keratinocytes, which make up the epidermis, have less influence on senescence because they 

have a higher turnover than fibroblasts in the dermis [34]. In the dermis, skin aging results in the 

accumulation of senescent fibroblasts [38,46,47]. Fibroblasts orchestrate the development of a 

functional skin barrier through crosstalk between the dermis and epidermis [48]. Incorporating 

senescent fibroblasts into a 3D equivalent model of human skin can reproduce typical changes 

associated with skin aging [49,50]. Early or late passage fibroblasts can mimic young and aged 

skin, respectively; late passage fibroblasts thin the dermis and induce epidermal differentiation 

[49]. Another 3D skin model using oxidative stress-induced premature senescent fibroblasts 

caused progressive thinning of the epidermis, increasing premature senescent cells in the dermis 

[50]. These studies strongly suggest that regulation of fibroblast senescence is fundamental to 

maintaining the skin barrier and combating aging. However, a comprehensive systems-level 

analysis of skin aging and cellular senescence remains unclear. The identification of regulatory 

systems in skin fibroblast senescence will enable the identification of upstream factors in skin 

aging. Furthermore, elucidating mechanistic network enables us to simulate the progression of 

skin aging and identify potential intervention points. Thus, I utilized computational systems 

biology approaches toward skin aging. 

 

Computational Systems Biology Approaches Toward Skin Aging Research 

Aging and senescence are caused by various developmental signals and different types of 

stresses and are the results of a multistep process [51,52]. Although various induced in vitro 

senescent cell models [32] and in vivo aging animal models [53] have been reported to elucidate 

the complex system, an overall picture that recapitulates the cellular transmission and spatial 

interactions of aging is still lacking, which is necessary to understand and overcome the 

unfavorable effects of aging. Data-driven multi-omics approaches, such as epigenetics, bulk RNA 

sequencing (RNA-seq), and single-cell RNA-seq, are used to map the gene regulatory landscapes 

in skin aging [54–57]. RNA-seq, DNA methylation, histone methylation (histone H3 lysine 4 tri-

methylation [H3K4me3] and histone H3 lysine 27 tri-methylation [H3K27me3]) from healthy 

skin fibroblasts of donors aged 35 to 75 years revealed an age-dependent decrease in the 

expression of genes involved in translation and ribosomal function [54]. An assay for transposase-

accessible chromatin sequencing (ATAC-seq) and RNA-seq analyses of healthy and Hutchinson–
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Gilford progeria syndrome (HGPS, a premature aging syndrome) skin fibroblasts revealed altered 

chromatin accessibility enriched in lamina-associated domains and HGPS-specific gene 

expression [55]. Single-cell RNA-seq of human skin from healthy individuals of various ages 

revealed the age-related change in the heterogeneity of dermal fibroblasts [56,57]. Despite these 

advancements, a comprehensive understanding of the regulatory networks governing these 

processes remains elusive.  

Mathematical approaches have been used to infer skin disease modeling [58]. They have been 

also used to infer to skin aging phenotype such as facial wrinkles [59], length of each facial area 

[60], and skin barrier [61]. In terms of cellular senescence of dermal fibroblasts, RS-senescence-

induced dermal fibroblasts were utilized to explain tissue heterogeneity with aging using a 

mathematical model of somatic mutations associated with cellular senescence [62]. A dynamical 

systems model was developed to model the proportion of dermal fibroblast cells in proliferating, 

growth-arrested, apoptotic, and senescent states during the transition from early culture to 

senescence by measuring senescence markers such as PDL, SA-β-gal, Ki-67, γH2AX, and 

TUNEL assays [63]. Despite these mathematical approaches to skin aging and senescence, most 

model use phenotypes of skin aging and do not mention gene regulatory networks as a biological 

context, making them insufficient models to actually intervene in skin aging. Furthermore, aging-

related dynamic changes complicate the identification of key regulatory structures, making it 

difficult to understand the molecular mechanisms underlying skin aging and cellular senescence 

regulated by numerous genes. 

Snapshot omics studies do not provide information on the underlying mechanistic regulatory 

structures; only the correlations between genes based on their expressions can be obtained. From 

these static datasets, we can construct only mathematical models (e.g., regression models [64]) 

based on the probability of correlation between genes (Figure 1.1.3A) [65]. In contrast, time-

course omics data on skin aging, along with biological knowledge, show a directed graph between 

the gene regulatory network and the possible activity dynamics of each gene [65]. By integrating 

these data with mathematical models and performing numerical simulations, we can predict the 

mechanistic structure of biological systems and even manipulate them (Figure 1.1.3B) [65]. Here, 

I propose the integration of omics and mathematical modeling to offer a potential solution to 

deepen our understanding of the key mechanisms underlying skin aging regulated by genetic and 

environmental factors. Mathematical models have been used to represent human disease as a gene 

regulatory networks and stratify patients, identify key regulators, and predict drug targets [66–

68]. As the use of animals in skin cosmetic research is prohibited in the industry [69], insights 

from simulations with mathematical models are important to studying skin aging. 
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Figure 1.1.3: Differences between snapshot and time-course omics analysis [65]. 

A) Snapshot omics studies do not provide information on the underlying regulatory 

mechanisms; they only provide information regarding the correlations between genes. For 

these datasets, we can construct only mathematical models based on the probability of 

correlation among genes. 

B) Time-course skin aging omics show a directed graph of the gene regulatory network and 

the dynamics of each gene. By integrating these data with mathematical models, 

mechanisms of biological functions can be elucidated. 
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 Dynamic behaviors obtained from a mathematical simulation can also provide important 

insights into biological functions in silico, elucidating sensitivity and robustness of regulatory 

mechanisms and filling the gap between experimentally observable data and theoretical 

regulatory principles [70,71]. Biological systems can be represented using several networks, such 

as the ordinary differential equation (ODE) model [72]. ODE models are most commonly used to 

quantitatively understand biological systems [73,74]. The ODE model is said to be “ordinary” 

because it contains only one independent variable, which is basically time. It assumes that species 

are present in well-mixed compartments and that concentrations can be continuous [72], which 

generally makes the ODE model unsuitable for representing processes such as diffusion, spatial 

heterogeneity, and stochasticity [75]. Each variable represents the concentration of one 

component (e.g., gene, protein), and how it changes over time depends on the initial value of each 

variable, the concentrations of other variables, and fixed kinetic parameters. Hence, if we attempt 

to represent the biological system with the ODE model, we need to estimate the kinetic parameters 

that correspond to the time-series data. 

Notably, skin aging is a physiological phenomenon that progresses over several decades. By 

contrast, cellular senescence can be induced by a variety of stimuli in a rather short time period 

[32]. In other words, time-series information on signal transduction is important for phenomena 

that change rapidly, such as cellular senescence, and a model that allows a structural 

understanding of signaling pathways, such as the ODE model, is considered suitable. Thus, I 

selected the ODE model as an appropriate model for my dataset to elucidate the system behind 

skin aging and senescence. Furthermore, the identification of regulatory systems in skin fibroblast 

senescence will enable the identification of upstream factors in skin aging. In this dissertation, by 

integrating omics and mathematical approaches, I identified important genes from the numerous 

genes and how they should be targeted to counteract skin aging. 
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1.2 Objective 

In this dissertation, I hypothesize that specific genes and signaling pathways are crucial for 

elucidating the molecular mechanisms of skin aging and dermal fibroblast senescence. Therefore, 

the main objective is to address the challenges posed by an aging society by focusing on the 

regulatory mechanisms underlying skin aging and dermal fibroblast senescence. This study aims 

to: 

 

1. Identify key molecular targets and pathways involved in skin aging and dermal fibroblast 

senescence through multi-omics analysis and mathematical modeling. This will provide a 

detailed understanding of the gene regulatory networks and signaling pathways that drive skin 

aging. 

2. Develop and validate computational models to predict the dynamics of skin aging and dermal 

fibroblast senescence at the systems level. These models will integrate multi-omics data and 

time-course information to simulate the progression of skin aging and identify potential 

intervention points. 

3. Investigate and identify natural compounds that can modulate key molecular targets to 

mitigate skin aging and dermal fibroblast senescence. This includes elucidating the 

mechanisms of action of these compounds through omics approaches, thereby offering 

potential therapeutic strategies for age-related skin conditions. 

 

This research is structured into two main sections: the first focuses on the multi-omics analysis 

and mathematical modeling of skin aging, and the second explores the identification of natural 

compounds for therapeutic applications and their mode of action through an omics approach. 
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1.3 Contribution of this dissertation 

The contributions of this dissertation are multifaceted and address significant gaps in the 

understanding of skin aging and cellular senescence. Specifically, this dissertation makes the 

following contributions:  

 

1. Elucidation of Transcriptional Regulatory Mechanisms: 

This research elucidates the transcriptional regulatory mechanisms underlying dermal 

fibroblast senescence through multi-omics analysis of in vitro and in vivo data and 

mathematical modeling (Figure 1.3.1A). By integrating RNA-seq, chromatin 

immunoprecipitation (ChIP)-seq for H3K27Ac modifications, and ATAC-seq data from RS-

induced senescent human dermal fibroblasts, key molecular targets and pathways, such as 

transforming growth factor β1 (TGF-β1), thrombospondin-1 (THBS1), and fibromodulin 

(FMOD), were identified. This provides a deeper understanding of the gene regulatory 

networks involved in skin aging. 

2. Development of Predictive Computational Models: 

The dissertation develops and validates computational models to predict the dynamics of 

skin aging at the systems level. These models integrate multi-omics data and time-course 

information, allowing for the simulation of skin aging progression and identification of 

potential intervention points. This approach enhances the predictive power and utility of 

computational models in aging research. 

3. Integration of Omics and Mathematical Modeling: 

This dissertation demonstrates the integration of omics data with mathematical modeling to 

offer a comprehensive understanding of the regulatory networks governing skin aging and 

senescence. This integrated approach not only advances the field of aging research but also 

provides a robust framework for studying other complex biological processes. 

4. Identification and Mechanistic Elucidation of Natural Compounds: 

Through omics approaches, this research identifies natural compounds that can modulate 

key molecular targets to mitigate skin aging (Figure 1.3.1B). Specifically, all-trans-retinoic 

acid (ATRA) was found to effectively suppress THBS1 through nuclear transcriptional 

regulation involving the retinoid X receptor (RXR)/SMAD/transcriptional enhanced 

associate domain (TEAD) transcription factor network. This finding provides valuable 

insights for the development of therapeutic strategies for age-related skin conditions. 
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Figure 1.3.1: Workflow in this dissertation. 

A) Workflow of skin aging and senescence analyses [76]. In the first step, replication-stress 

(RS) was induced by passage culturing using HFF-1 cells to prepare each population 

doubling level (PDL) and generate data on RNA sequencing (RNA-seq), assay for 

transposase-accessible chromatin sequencing (ATAC-seq), and chromatin 

immunoprecipitation sequencing (ChIP-seq) with an H3K27Ac antibody. In the second step, 

two independent public RNA-seq datasets were analyzed, one in vitro [77] and another in 

vivo [78]. In the third step, I constructed a mathematical model based on the multi-omics 

analysis and in vitro experimental results. 

B) Workflow to investigate the potential of all-trans-retinoic acid (ATRA). In the first step, 

compound screening for THBS1 downregulation was performed. In the second step, I 

additionally generated RNA-seq and ATAC-seq data for ATRA with or without TGF-β1. In 

the third step, I elucidated the transcription factor (TF) network regarding ATRA and TGF-

β1. 

 

Through omics analysis, I found that TGF-β1 is the most enriched upstream regulator of 

senescence-related genes [76]. Among TGF-β-related genes, I found THBS1 and FMOD to be 

highly correlated with PDL or age both in vitro and in vivo. THBS1 is known to activate the latent 

form of TGF-β1 [79], while FMOD binds to TGF-β1 and inhibits its binding to the TGF-βR 
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receptor [80–82]. Using inhibitor and knockdown (KD) assays, I elucidated the signaling network 

for THBS1 and FMOD production. My mathematical modeling approach and bifurcation analysis 

revealed a regulatory network mechanism involving TGF-β1, THBS1, and FMOD in skin aging. 

Bifurcation analysis revealed a binary high-/low-TGF-β1 switch, with THBS1 as the primary 

controller. My computational simulation of the TGF-β1 signaling pathway indicated that THBS1 

expression was sensitively regulated, whereas FMOD was regulated robustly, suggesting that 

THBS1 is a critical target of skin aging. 

Combining omics and in vitro experiments, I found ATRA to be an effective natural compound 

exhibiting a mutual inhibitory relationship with SMAD signaling, involving the 

RXR/SMAD/TEAD TF network. Moreover, I found that TEAD, a TF enriched in senescence-

associated chromatin regions and increased by ATRA, inhibits cellular senescence. Importantly, I 

found that senescent human dermal fibroblasts grown on a soft substrate significantly decreased 

the number of SA-β-gal-positive cells through the involvement of TEAD activity. My findings 

provide valuable insights into the potential therapeutic targets for age-related skin issues and 

highlight the importance of the TGF-β and Hippo signaling pathways in regulating skin aging and 

cellular senescence. 

The findings of this dissertation are expected to provide a deeper understanding of the molecular 

mechanisms underlying skin aging, particularly the role of cellular senescence and the regulatory 

networks involved. Identifying key regulatory genes and pathways will contribute to the 

development of targeted therapeutic strategies. Integrating omics data with computational models 

offers a novel approach to studying complex biological processes, potentially leading to 

breakthroughs in the treatment and prevention of age-related skin conditions. This research could 

also inform the development of new cosmetic and medical products aimed at improving skin 

health and appearance. 

  



18 

2. MATERIALS AND METHODS 

2.1 Material Details 

See the KEY RESOURSE TABLE in Section 6 for the detailed information on materials used in 

this study. 

 

2.2 Experimental Model and Study Participant Details 

Cell lines 

HFF-1 and BJ cells, human dermal fibroblasts derived from the normal foreskin tissue of neonatal 

males, were purchased from the American Type Culture Collection (ATCC). HFF-1 and BJ cells 

were maintained in Dulbecco’s modified Eagle’s medium (DMEM, ATCC) supplemented with 

10% fetal bovine serum (FBS, Corning) and 1% antibiotic–antimycotic (Thermo Fisher 

Scientific) as described previously [76]. Unless otherwise noted, the population doubling level 

(PDL) of HFF-1 cells in the following experiments was kept at approximately 24, and that for BJ 

cells was approximately 36, which correspond with young cells. In the experiments, the cells were 

serum-starved with 0.1% FBS and tested under uniform 2% FBS conditions during stimulation. 

All cell lines were maintained at 37°C in a humidified atmosphere with 5% CO2. 

 

Human dermal tissues 

Human full-thickness dermal tissues were purchased from Biopredic International via KAC and 

stored frozen at −20°C as described previously [76]. Skin samples were anonymized, and 

informed consent was obtained from all participants (see Table 2.2.1 for donor list). This study 

using human tissue samples was approved by the Ethics Committee of the Institute for Protein 

Research, Osaka University (clearance no. 2021-2).  

 

Table 2.2.1: Detailed information on donors used to confirm protein expression in human dermal 

tissues. 

Donor 

ID 

Age 

(years) 

Part Gender Race Frozen time 

(Count) 

Body mass 

index 

#1 23  Breast Female Caucasian 1 23 

#2 27  Abdominal Female Caucasian 1 24 

#3 31  Breast Female Caucasian 1 31 

#4 46  Abdominal  Female Caucasian 1 21 
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#5 61  Breast Female Caucasian 1 29 

#6 63  Abdominal Female Caucasian 1 28 

 

2.3 Resource Availability 

Data and Code Availability 

The sequence data regarding to replication-stress (RS) and TGF-β1 treatment have been deposited 

in the DNA Data Bank of Japan (DDBJ) and is available under accession number PRJDB15707 

(Submission: DRA016119 and DRA017188). As for the sequence data regarding to all-trans-

retinoic acid (ATRA), I am in the process of preparing a submission. The code for bioinformatics 

analysis and mathematical modeling for the section 3.1 “Identification of Skin Aging Target via 

Omics Analyses” is available on GitHub (https://github.com/okadalabipr/Haga2023).  

 

2.4 Method Details 

Induction of RS in Dermal Fibroblasts 

RS was induced by passaging of HFF-1 and BJ cells. Briefly, cells were seeded in a cell culture 

flask and grown on DMEM supplemented with 10% FBS until reaching a sub-confluent condition 

as described previously [76]. Experiments were performed in triplicate flasks. After removing the 

medium, washing with PBS, and detaching using trypsin/EDTA (ATCC), cells were frozen in 

BAMBANKER® solution (NIPPON Genetics) at −80°C in a BICELL container (Nihon Freezer) 

and stored under liquid nitrogen. The PDL for each collection was calculated as follows: n = 3.32 

(log A – log B) + X (n: final PDL of the cell line, A: yield of harvested cells, B: count of seeded 

cells, and X: initial PDL of the seeded cell population). 

 

Sample Preparation for RNA-seq and Genomic Alignment 

HFF-1 cells (PDL 24, PDL 36, and PDL 47) were used to prepare RNA sequencing (RNA-seq) 

libraries as described previously [76]. Briefly, each PDL was seeded in 6-well plates at 200,000 

cells/well, treated with either control (DMEM with vehicle supplemented with 2% FBS) or 4 

ng/mL TGF-β1 (R&D Systems), and total RNA (three wells per sample) was harvested after 48 h 

using a NucleoSpin RNA kit (Macherey-Nagel GmbH & Co.).  

For treatment with ATRA, HFF-1 cells (PDL 24) were seeded in 6-well plates at 200,000 

cells/well, serum-starved with 0.1% FBS for 24 h, and treated with 0.1% dimethyl sulfoxide 

(DMSO) or 5 μM ATRA (Selleck) in 0.1% FBS DMEM for 1 h before treatment. After the 

pretreatment, the cells were treated with either control (DMEM with 2% FBS and 0.1% DMSO 

vehicle), 4 ng/mL TGF-β1, or 5 μM ATRA with or without 4 ng/mL TGF-β1, and total RNA (three 
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wells per sample) was harvested after 48 h using the NucleoSpin RNA kit (Macherey-Nagel 

GmbH & Co.). 

The quality of the total RNA was evaluated using a 2100 Bioanalyzer (Agilent), and RNA 

samples with RNA integrity > 9.0 were used for library preparation. cDNA libraries were prepared 

using a NEBNext® Poly(A) mRNA Magnetic Isolation Module (New England Biolabs) for PolyA 

selection and NEBNext® Ultra™ ll Directional RNA Library Prep Kit (New England Biolabs). 

Samples were prepared according to the manufacturer's protocol. The RNA-seq data were 

generated as paired-end 150 base reads on the NovaSeq 6000 (Illumina). The expression of 

specific genes was validated using qRT-PCR. 

 

Sequence Alignment for RNA-seq 

 All RNA-seq data, including public RNA-seq data, were trimmed using Trim Galore! version 

0.6.6 and aligned to human reference genome GRCh38 using hisat2 version 2.2.1 as described 

previously [76]. Mapped reads were extracted using samtools version 1.9 and a read count matrix 

was created using gene annotation (GRCh38.p13) with Subread version 2.0.1 for downstream 

analysis. 

 

Sample Preparation for Chromatin Immunoprecipitation Sequencing (ChIP-seq) and 

Sequence Alignment 

HFF-1 cells (PDL 24, PDL 36, and PDL 47) were used to prepare ChIP-seq libraries as described 

previously [76]. Briefly, the cells for each PDL were seeded in a 145-mm dishes at a density of 

4,000,000 cells per dish. After 48 h of incubation, the cells were collected using the SimpleChIP 

Enzymatic Chromatin IP kit (9003, Cell Signaling Technology [CST]) to obtain the sheared 

chromatin. Briefly, two dishes per sample were fixed with fresh 1% formaldehyde (28908, 

Thermo Fisher Scientific) for 5 min. The cells were subjected to treatment with a micrococcal 

nuclease at 37°C for 20 min and the M220 Focused ultrasonicator (Covaris) for 10 min to obtain 

the chromatin in 150–900-bp DNA/protein fragments. Next, the H3K27Ac antibody (ab177178, 

Abcam) and the iDeal ChIP-seq kit for histones (Diagenode) were used to obtain ChIP-DNA. 

Using the SX-8G (Diagenode) platform, 2 μg of the anti-H3K27Ac antibody was incubated with 

10 μL DiaMag ProteinA-coated magnetic beads for 3 h, and an IP reaction was performed for 12 

h. Decross-linking was performed using 5 M NaCl and Proteinase K (Thermo Fisher Scientific) 

at 60°C for 4 h. ChIP-DNA was purified using MinElute® PCR Purification Kit (Qiagen). ChIP-

seq libraries were prepared using NEBNext® Ultra II DNA Library Prep Kit for Illumina (New 

England Biolabs). All samples were prepared according to the manufacturer’s protocol. ChIP-seq 

data were generated as paired-end 150-base reads on the NovaSeq 6000 (Illumina). 

All ChIP-seq data were analyzed using the nfcore/chipseq pipeline version 1.2.2 with “nextflow 
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run nf-core/chipseq -r 1.2.2 -profile singularity –input samplesheet_ChIP.csv –genome GRCh38 

–save_reference –max_cpus 16 –max_memory 256.GB.” Briefly, reads were trimmed using Trim 

Galore! And aligned against the GRCh38 reference genome using BWA. MACS2 was used for 

broadPeak calling. Consensus peak sets across all samples were created using BEDTools version 

2.30.0. The counts for consensus peaks were generated using FeatureCounts and differential 

chromatin accessibility was analyzed using DESeq2 version 1.36.0. For more details, see the nf-

core/chipseq pipeline (https://nf-co.re/chipseq/1.2.2).  

 

Sample Preparation for Assay for Transposase-Accessible Chromatin Sequencing (ATAC-seq) 

and Sequence Alignment 

HFF-1 cells (PDL 24, PDL 36, and PDL 47) were used to prepare ATAC-seq libraries as described 

previously [76]. Cells for each PDL were seeded in 6-well plates at 200,000 cells/well. After 

treatment with either control (DMEM with vehicle supplemented with 2% FBS) or 4 ng/mL TGF-

β1 (R&D Systems), the cells were washed with PBS and detached using trypsin/EDTA after 48 

h. Using 200,000 cells of each PDL, ATAC-seq libraries were constructed using an ATAC-Seq 

Kit (Active Motif) according to the manufacturer’s protocol. The ATAC-seq data were generated 

as paired-end 150 base reads on the NovaSeq 6000 (Illumina).  

For treatment with ATRA, HFF-1 cells (PDL 24) were seeded in 6-well plates at a density of 

200,000 cells/well, serum-starved with 0.1% FBS for 24 h, and pretreated with 0.1% DMSO or 5 

μM ATRA in 0.1% FBS DMEM for 1 h. After pretreatment, the cells were exposed to one of the 

following conditions: control (DMEM with 2% FBS and 0.1% DMSO vehicle), 4 ng/mL TGF-β1 

(R&D Systems), or 5 µM ATRA with or without 4 ng/mL TGF-β1. Next, the cells were washed 

with PBS and harvested using trypsin/EDTA after 48 h. 

All ATAC-seq data were analyzed using the nfcore/atacseq pipeline version 1.2.1 with default 

parameters using the “nextflow run nf-core/atacseq -r 1.2.1 -profile singularity –input 

samplesheet_ATAC.csv –genome GRCh38 –save_reference –max_cpus 16 –max_memory 

256.GB” arguments. The downstream procedure is similar to that for the ChIP-seq analysis (for 

more detail, see the nf-core/atacseq pipeline [https://nf-co.re/atacseq/1.2.1]).  

 

Transcription factor (TF) Network Analysis  

For the TF network analysis, the differentially expressed genes (DEGs) in each RNA-seq were 

used as input, and the associated TF network was constructed using Epigenetic Landscape In 

Silico deletion Analysis (Lisa) version 1.0. The FC and adj-p were calculated for PDL 24 vs. PDL 

36, PDL 24 vs. PDL 47, and PDL 36 vs. PDL 47 (DEGs: |FC| > 1.2, adj-p < 0.05) using DESeq2 

version 1.36.0 to extract DEGs of the associated TF network with increasing PDL. Next, to 

identify DEGs in HFF-1 cells treated with control, ATRA, TGF-β1, and TGF-β1 + ATRA, I 
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calculated FC and adj-p for control vs. ATRA, control vs. TGF-β1, TGF-β1 vs. TGF-β1 + ATRA 

(DEGs: |FC| > 1.2, adj-p < 0.05) using DESeq2 version 1.36.0. The DEG symbol name was used 

as input to identify the TF network controlling the DEGs using Lisa. The DEG symbol name was 

used as input to identify the TF network controlling the DEGs using Lisa with “time lisa model –

clean=True –method=”all” –web=True –new_rp_h5=None –new_count_h5=None –species hg38 

–epigenome “[‘Dnase’, ‘H3K27ac’]” –cluster=False –covariates=False –random=True –prefix 

first_run –background=None –stat_background_number=1000 –threads 30 

upregulated_DEGs_SYMBOL.symbol downregulated_DEGs_SYMBOL.symbol”. 

 

TF Enrichment  

The activity of the top 20 TFs was determined for the DEGs according to the FC value for RNA-

seq data between PDLs and normalized transcripts per million (TPM) value for RNA-seq data 

using DoRothEA version 1.8.0 as described previously [76]. First, to identify the DEGs in RS 

induced HFF-1 cells, the FC and adj-p were calculated for PDL 24 vs. PDL 36, PDL 24 vs. PDL 

47, and PDL 36 vs. PDL 47 (DEGs: |FC| > 1.2, adj-p < 0.05) using DESeq2. DEGs and FC values 

were used as input to identify the top 20 TFs regulating the DEGs using DoRothEA (confidence 

level A, B, and C). The top 20 TFs were identified by extracting the top 10 TFs for PDL 24 vs. 

PDL 36, PDL 24 vs. PDL 47, and PDL 36 vs. PDL 47, excluding duplicate TFs. Finally, a 

normalized enrichment score (based on DoRothEA) was calculated for the top 20 TFs using 

normalized TPM values for all genes greater than five. 

 To identify the TF activity in HFF-1 cells treated with control, ATRA, TGF-β1, and TGF-β1 + 

ATRA, I first calculated FC and adj-p for control vs. ATRA, control vs. TGF-β1, TGF-β1 vs. 

TGF-β1 + ATRA (DEGs: |FC| > 1.2, adj-p < 0.05) using DESeq2. Next, DEGs and FC values 

were used as input to identify TFs that regulated the DEGs using DoRothEA (confidence levels 

A, B, and C). Finally, a normalized enrichment score (based on DoRothEA) was calculated for 

SMAD3, SMAD4, TEAD1, TEAD4, RARA, and RXRA using normalized TPM values for all 

genes greater than five. 

 

Motif Analysis 

Motif analysis was performed using HOMER version 4.11 as described previously [76]. Briefly, 

I first calculated the gain peak region of ATAC-seq from the counts at the consensus peak using 

DESeq2. The region with log2FC > 0 and adj-p < 0.05 was defined as the gain peak that 

significantly increases with increasing PDL. Next, the gained peaks for PDL 24 vs. PDL 36, PDL 

24 vs. PDL 47, and PDL 36 vs. PDL 47 were concatenated using the “cat” command, sorted and 

merged using “sortBed” and “mergeBed,” respectively, in Bedtools version 2.30.0. The 

concatenated gained peak bed file was analyzed with “findMotifsGenome.pl hg38 -size given -p 
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8” in HOMER to output log (adj-p value) and percent of target sequences with motif from 

knownResults.html. 

 

Gene Annotation of ATAC-seq and ChIP-seq Peaks and Intersection with DEGs 

Peak annotation for ATAC-seq and ChIP-seq was performed using “annotatePeak” in the R 

package ChIPseeker version 1.32.1 as described previously [76]. First, the region with |log2FC| 

> 0 and adj-p < 0.05 was defined as the differential peak that changes significantly for PDL 24 vs. 

PDL 36, PDL 24 vs. PDL 47, and PDL 36 vs. PDL 47 using DESeq2. Next, differential peaks 

were concatenated using the “cat” command, sorted and merged using “sortBed” and “mergeBed” 

in Bedtools. The differential peaks were annotated as the nearest neighboring gene with the closest 

distance from the peak to the transcription start site (TSS). The TSS region occurred from –3kb 

to +3kb. The annotation package for hg38 (TxDb.Hsapiens.UCSC.hg38.knownGene) was used 

as the TxDb object80. Peak annotation was conducted with the “tssRegion=c (-3000, 3000), 

TxDb=TxDb.Hsapiens.UCSC.hg38.knownGene, annoDb=‘org.Hs.eg.db’” option. DEGs from 

the RNA-seq data were identified for PDL 24 vs. PDL 36, PDL 24 vs. PDL 47, and PDL 36 vs. 

PDL 47 using DESeq2 (DEGs: |FC| > 1.2, adj-p < 0.05). Venn diagrams were created using DEGs 

and annotated genes from differential peaks in both the ATAC-seq and ChIP-seq data. 

 

Ingenuity Pathway Analysis (IPA)  

IPA was performed for upstream analysis using IPA tool version 81348237 software as described 

previously [76]. The gene set was mapped to Ingenuity Knowledge Base using “core analysis.” 

Molecule type, genes, RNAs, and proteins were used for the upstream analysis. A right-tailed 

Fisher’s exact test was used to calculate a p-value of overlap determining the probability that the 

association between the gene set and the upstream regulators is explained by chance alone. The 

Benjamini–Hochberg (BH) method for multiple testing was used to calculate the adjusted p-value. 

 

Analysis of Public in vivo and in vitro RNA-seq Data 

All public RNA-seq data used the same genomic alignment and read count matrix pipeline as 

described in the “Sample preparation for RNA-seq and genomic alignment” as described 

previously [76]. 

In vivo RNA-seq data (GSE113957) of human arm skin was analyzed after filtering outliers and 

clustering. Since multiple ethnic and tissue sources were included, data for 55 samples were 

manually selected for skin fibroblasts derived from Caucasian individuals (11–71 years of age, 

see donor list in Table 2.4.1). The samples were manually divided into three clusters according to 

age (young: 10s to 20s; middle: 30s to 50s; aged: 60s to 70s). For each cluster, a robust principal 

component analysis (PCA) was performed using “rrcov” version 1.5.2 to detect outliers, resulting 
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in a final dataset with 45 samples. Spearman’s correlation coefficient was calculated to evaluate 

the distance between each sample using normalized TPM values: distance =1 – Spearman’s 

correlation coefficient. Using the distance calculated, samples were clustered using the “hclust” 

function in R with “distance, method=‘ward.D2’” (Figure 2.4.1). Finally, DEGs were identified 

by comparing each cluster using DESeq2 (DEGs: |FC| > 1.5, adj-p < 0.05). The BH method was 

used to calculate the adjusted p-value. 

 

Table 2.4.1: Detailed information on donors in public in vivo expression data. 

Run Age (years) 
Disease 

Gender Source Ethnicity Sample 

filtering 

SRR7093887 11  Healthy Female Skin; Arm Caucasian Omitted 

SRR7093888 11  Healthy Female Skin; Arm Caucasian Used  

SRR7093889 12  Healthy Male Skin; Arm Caucasian Used 

SRR7093897 19  Healthy Male Skin; Arm Caucasian Used 

SRR7093899 20  Healthy Female Skin; Arm Caucasian Used 

SRR7093811 24  Healthy Female Skin; Arm Caucasian Used 

SRR7093930 24  Healthy Male Skin; Arm Caucasian Used 

SRR7093812 25  Healthy Male Skin; Arm Caucasian Used 

SRR7093813 25  Healthy Female Skin; Arm Caucasian Used 

SRR7093928 25  Healthy Female Skin; Arm Caucasian Used 

SRR7093814 26  Healthy Male Skin; Arm Caucasian Used 

SRR7093815 26  Healthy Female Skin; Arm Caucasian Used 

SRR7093816 28  Healthy Male Skin; Arm Caucasian Used 

SRR7093817 29  Healthy Male Skin; Arm Caucasian Used 

SRR7093818 29  Healthy Male Skin; Arm Caucasian Omitted 

SRR7093819 30  Healthy Male Skin; Arm Caucasian Used 

SRR7093820 30  Healthy Female Skin; Arm Caucasian Used 

SRR7093821 30  Healthy Male Skin; Arm Caucasian Omitted 

SRR7093822 30  Healthy Male Skin; Arm Caucasian Used 

SRR7093908 37  Healthy Male Skin; Arm Caucasian Used 

SRR7093909 39  Healthy Male Skin; Arm Caucasian Omitted 

SRR7093825 41  Healthy Male Skin; Arm Caucasian Used 

SRR7093832 41  Healthy Female Skin; Arm Caucasian Omitted 

SRR7093830 42  Healthy Female Skin; Arm Caucasian Used 
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SRR7093823 43  Healthy Female Skin; Arm Caucasian Used 

SRR7093833 43  Healthy Male Skin; Arm Caucasian Used 

SRR7093824 44  Healthy Male Skin; Arm Caucasian Used 

SRR7093834 44  Healthy Male Skin; Arm Caucasian Used 

SRR7093835 45  Healthy Male Skin; Arm Caucasian Used 

SRR7093828 46  Healthy Male Skin; Arm Caucasian Used 

SRR7093836 46  Healthy Male Skin; Arm Caucasian Omitted 

SRR7093837 46  Healthy Male Skin; Arm Caucasian Used 

SRR7093826 47  Healthy Male Skin; Arm Caucasian Used 

SRR7093831 47  Healthy Male Skin; Arm Caucasian Used 

SRR7093838 47  Healthy Male Skin; Arm Caucasian Used 

SRR7093827 50  Healthy Female Skin; Arm Caucasian Used 

SRR7093829 50  Healthy Male Skin; Arm Caucasian Used 

SRR7093910 51  Healthy Male Skin; Arm Caucasian Omitted 

SRR7093912 55  Healthy Male Skin; Arm Caucasian Omitted 

SRR7093839 61  Healthy Male Skin; Arm Caucasian Used 

SRR7093840 62  Healthy Female Skin; Arm Caucasian Used 

SRR7093841 62  Healthy Female Skin; Arm Caucasian Used 

SRR7093842 63  Healthy Male Skin; Arm Caucasian Used 

SRR7093843 64  Healthy Male Skin; Arm Caucasian Used 

SRR7093844 66  Healthy Male Skin; Arm Caucasian Used 

SRR7093845 67  Healthy Male Skin; Arm Caucasian Used 

SRR7093846 67  Healthy Male Skin; Arm Caucasian Used 

SRR7093847 68  Healthy Male Skin; Arm Caucasian Omitted 

SRR7093848 68  Healthy Male Skin; Arm Caucasian Used 

SRR7093939 68  Healthy Male Skin; Arm Caucasian Omitted 

SRR7093849 69  Healthy Male Skin; Arm Caucasian Used 

SRR7093850 69  Healthy Female Skin; Arm Caucasian Used 

SRR7093941 69  Healthy Male Skin; Arm Caucasian Used 

SRR7093940 70  Healthy Male Skin; Arm Caucasian Used 

SRR7093915 71  Healthy Female Skin; Arm Caucasian Used 
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Figure 2.4.1: Analysis of public in vivo omics data on aging. 

A) Clustering of public data on human skin fibroblast RNA-seq samples. Samples from human 

arm skin fibroblast (age: 11–71 years, n = 45) were clustered into cluster 1 (n = 22), cluster 

2 (n = 13), and cluster 3 (n = 10) using the “hclust” function of R with “method = ward.D2.” 

B) Age distribution of the clustered human skin fibroblast samples. The median (cluster 1: 39.5 

years; cluster 2: 45.0 years; cluster 3: 48.5 years) and average (cluster 1: 38.9 years; cluster 

2: 44.8 years; cluster 3: 54.5 years) of each cluster increased with the cluster number; n = 3, 

*p < 0.05 (Wilcoxon rank sum test). 

 

 In vitro RNA-seq data (GSE63577) for the human dermal fibroblast HFF-1 cell line was 

compared for each PDL (PDL 16, PDL 26, PDL 46, PDL 64, and PDL 74). DEGs were identified 

for PDL 16 vs. PDL 26, PDL 16 vs. PDL 46, PDL 16 vs. PDL 64, PDL 16 vs. PDL 74, PDL 26 

vs. PDL 46, PDL 26 vs. PDL 64, PDL 26 vs. PDL 74, PDL 46 vs. PDL 64, PDL 46 vs. PDL 74, 

and PDL 64 vs. PDL 74 using DESeq2 (DEGs: |FC| > 2.0, adj-p < 0.01) and intersected. The BH 

method was used to calculate the adjusted p-value. 
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 RNA-seq data for skin fibroblasts from healthy subjects (age: 1–9 years, n = 12) and 

Hutchinson–Gilford progeria syndrome (HGPS) patients (age: 2–8 years, n = 10) were 

downloaded from GSE113957 (see donor list in Table 2.4.2).  

 

Table 2.4.2: Detailed information on donors in public in vivo expression data. 

Run Age (years) Disease Gender Source Ethnicity 

SRR7093809 1  
Healthy 

Male Skin; Foreskin Asian 

SRR7093874 1  
Healthy 

Male Skin; Unspecified Caucasian 

SRR7093875 2  
Healthy 

Female Skin; Unspecified Caucasian 

SRR7093876 3  

Healthy 

Male Skin; Inguinal area Latino/Hispanic 

SRR7093877 3  
Healthy 

Male Skin; Unspecified NA 

SRR7093878 5  

Healthy 

Male Skin; Umbilical cord 

area 

Black 

SRR7093879 6  

Healthy 

Male Skin; Inguinal area Black 

SRR7093880 7  

Healthy 

Male Skin; Inguinal area Black 

SRR7093881 7  
Healthy 

Male Skin; Unspecified Caucasian 

SRR7093882 8  
Healthy 

Male Skin; Unspecified Caucasian 

SRR7093883 8  

Healthy 

Male Skin; Inguinal area Caucasian 

SRR7093884 9  
Healthy 

Female Skin; Unspecified Black 

SRR7093942 8  HGPS Female Skin; Leg Caucasian 

SRR7093943 8  HGPS Male NA NA 

SRR7093944 2 + 3 months HGPS Female NA NA 

SRR7093945 3 + 9 months HGPS Female NA NA 
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SRR7093946 4 + 8 months HGPS Female NA NA 

SRR7093947 8 + 6 months HGPS Male NA NA 

SRR7093948 6 + 11 months HGPS Female NA NA 

SRR7093949 5  HGPS Female NA NA 

SRR7093950 8 + 10 months HGPS Male NA NA 

SRR7093951 3  HGPS Female NA NA 

 

Kyoto Encyclopedia of Genes and Genomes (KEGG) Analysis of Public RNA-seq 

KEGG enrichment was compared using the “comparecluster” function in the R package 

clusterProfiler version 4.4.4 with “fun”=enrichKEGG, “organism”=I, “keyType”= 28 eg, 

“pAdjustMethod”=BH, “minGSSize”=10, “maxGSSize”=500, “pvalueCutoff”=0.05, 

“qvalueCutoff”=0.05, and “use_internal_data”=“FALSE” as described previously [76]. The BH 

method was used to calculate the adjusted p-value.  

 

Correlation Analysis of TGF-β Pathway-Enriched Genes Using Public RNA-seq Data 

Spearman’s correlation between age and gene expression was calculated for the in vivo data or 

PDL and gene expression for the in vitro data using “cor” (method = “spearman”) in R as 

described previously [76]. The genes associated with KEGG term “TGF-beta signaling pathway” 

in Figure 3.1.3D are plotted. 

 

Integrated Analysis of ATAC-seq and RNA-seq of TGF-β1 Treatment 

Peak annotation for ATAC-seq was performed using “annotatePeak” in the R package ChIPseeker 

version 1.32.1 as described previously [76]. Briefly, the region with adj-p < 0.05 was defined as 

the differential peak that changes significantly for control vs. 4 ng/mL TGF-β1 using DESeq2. 

The differential peaks were annotated as the nearest neighboring gene with the closest distance 

from the peak to the TSS. The TSS region occurred from –3 kb to +3 kb. The annotation package 

for hg38 (TxDb.Hsapiens.UCSC.hg38.knownGene) was used as the TxDb object [83]. Peak 

annotation was conducted with the “tssRegion = c (-3000, 3000), TxDb = 

TxDb.Hsapiens.UCSC.hg38.knownGene, annoDb = ‘org.Hs.eg.db’” option. DEGs from the 

RNA-seq data were identified for control vs. 4 ng/mL TGF-β1 using DESeq2 (adj-p < 0.05).  

 

Visualization of the Genomic Location of THBS1 

Integrative Genomics Viewer version 2.8.0 was used as the genome browser to view THBS1 

genomic locations. Briefly, I defined the region with |FC| > 1.2 as the differential peak that 

changed significantly for control vs. ATRA, control vs. TGF-β1, TGF-β1 vs. TGF-β1 + ATRA 
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using DESeq2. The differential peaks were annotated as the nearest neighboring gene with the 

closest distance from the peak to the transcription start site (TSS) using ChIPseeker version 1.32.1. 

The TSS region was defined as the region from −3 kb to +3 kb. The annotation package for hg38 

(TxDb.Hsapiens.UCSC.hg38.knownGene) was used as the TxDb object [83]. Peaks annotated as 

THBS1 were defined as variable regions of open chromatin near THBS1. 

 

Enrichment Analysis of TF Near THBS1 Genomic Loci 

The enrichment analysis of ChIP-Atlas (https://chip-atlas.org) was performed to identify the 

common epigenetic features of fluctuating ATAC-seq-derived genomic loci annotated as the 

variable regions of the open chromatin near THBS1. The enrichment analysis was performed with 

the following options: Experiment type = ChIP: TFs and others, cell type class = epidermis, and 

threshold for significance = 500. The ATAC-seq-derived genomic loci annotated as the variable 

regions of the open chromatin near THBS1 were obtained as described in the previous section. 

 The list of TFs annotated as THBS1-related TFs in the Signaling Pathways Project 

(https://signalingpathways.org) was obtained with the following options: Type = cistromic, 

gene(s) of interest = single gene, THBS1, signaling pathway category = all, signaling pathway 

class = all, signaling pathway family = all, and biosample category = all species. 

 

Extraction of Genes to which RARA/RXRA Bind in the Vicinity Using ChIP-Atlas 

To extract the neighboring genes to which RARA/RXRA bind, I used ChIP-Atlas to obtain the 

DNA regions to which RARA and RXRA bind, followed by obtaining a list of the neighboring 

genes. Initially, I identified DNA regions bound by RARA and RXRA using the peak browser 

function of ChIP-Atlas with the following conditions: experiment type = ChIP: TFs and others, 

cell type class = all cell types, threshold for significance = 500, and ChIP antigen = RARA or 

RXRA. Next, the peaks were annotated to neighboring genes using HOMER with the 

“annotatePeaks.pl Input.bed hg38” option. Finally, I counted the annotated genes from each peak 

of RARA and RXRA, constructed two clusters based on these counts, and extracted the common 

genes from the peaks. 

 

Extraction of Human Skin Tissue Protein 

Skin tissue proteins were extracted after dividing full thickness skin into dermis and epidermis 

[84]. In detail, a biopsy punch (tip diameter: 3 mm ø) was used to collect a full-layer skin sample 

(see donor list in Table 2.2.1), from which hypodermis tissue was physically removed. After 

washing in 70% ethanol and HBSS (Thermo Fisher Scientific), samples were treated with 25 

UI/mL Dispase II (Roche) HBSS solution for 15 h at 4°C. Enzymatic digestion was inactivated 

with HBSS supplemented with 10% FBS and the dermis and epidermis were separated with 
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tweezers. Each dermis and epidermis were separately homogenized in RIPA buffer (Thermo 

Fisher Scientific) supplemented with Halt™ Protease and Phosphatase Inhibitor (Thermo Fisher 

Scientific) for 10 min using a Powermasher II (Nippi) and centrifuged (13,000 rpm, 20 min, 4°C) 

to generate protein extracts for western blot (WB) analysis. 

 

Time-Course Cell Proliferation Analysis (Trypan Blue) 

HFF-1 cells were seeded in 6-well plates with DMEM at 200,000 cells/well. After serum 

starvation for 16 h, cells were treated with either control (DMEM with vehicle supplemented with 

2% FBS) or 4 ng/mL TGF-β1 (R&D Systems) and collected at 0 h, 8 h, 12 h, 24 h, and 48 h. 

Reconstitution buffer (0.1% bovine serum albumin [BSA] in 4 mM HCl PBS; R&D Systems) was 

used as vehicle and to dissolve TGF-β1. At each time-point, cells were washed with PBS and 

detached using trypsin/EDTA to count cells positive for trypan blue (Thermo Fisher Scientific) 

using a cell counter (WakenBtech) according to the manufacturer’s protocol.  

 

Cell Viability Analysis (WST-8) 

HFF-1 cells were seeded in 96-well plates with DMEM at 10,000 cells/well. After serum 

starvation for 16 h, cells were treated with each treatment. After 24 h, 10 L Cell Counting Kit-8 

solution (DOJINDO) was added, incubated for 1 h, and cell viability was calculated at an 

absorbance wavelength of 450 nm using a Multiskan FC system (Thermo Fisher Scientific).  

 

5-Bromo-2-Deoxyuridine (BrdU) Incorporation Assay  

The inhibition of DNA synthesis was measured using a CycLex Cellular BrdU enzyme-linked 

immunosorbent assay (ELISA) Kit Ver.2 (Medical & Biological Laboratories) according to the 

manufacturer’s instructions. Briefly, HFF-1 cells were seeded in 96-well plates with DMEM at 

10,000 cells/well. After 16 h of serum starvation, cells were treated with either control (DMEM 

with vehicle supplemented with 2% FBS), 4 ng/mL TGF-β1 (R&D Systems), or 1 g/mL THBS1 

(R&D Systems). After 8 h, the cells were incubated with anti-BrdU antibody and substrate for 16 

h, and absorbance was measured at 450 nm with 540 nm as a reference using the Multiskan FC 

system (Thermo Fisher Scientific). 

 

Senescence-Associated β-galactosidase (SA-β-gal) Staining 

The rate of positive SA-β-gal staining was calculated using a SA-β-gal Detection Kit (BioVision) 

according to the manufacturer’s protocol. Briefly, cells were seeded in 12-well plates at 100,000 

cells/well, treated with each stimulant, and fixed for 10 min with fixative solution after 48 h. The 

cells were stained with Staining Solution Mix at 37°C overnight. After washing with PBS, cells 

were treated with Hoechst® 33342 (DOJINDO) for 10 min and washed with PBS before 
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observation (BZ-9000, KEYENCE). SA-β-gal-positive rates were calculated as follows: SA-β-

gal-positive rate (%) = (number of SA-β-gal-positive cells per image/total number of cells per 

image) × 100. For each treatment, 12 images were randomly analyzed. The number of SA-β-gal-

positive cells was determined using thresholds for each experiment using ImageJ Fiji software 

(The National Institutes of Health). All image files were split into red, blue, and green channels. 

The red channels were subtracted from the green channels, and thresholds of 20 and 30 were set 

to identify SA-β-gal-positive cells. The total number of cells per image was counted as Hoechst® 

33342-positive cells using ImageJ Fiji software.  

 

siRNA Transfection 

HFF-1 cells were transfected with siRNA oligomer (Dharmacon/Horizon Discovery) mixed with 

Lipofectamine RNAiMAX reagent (Thermo Fisher Scientific) in Opti-MEM™ I (Thermo Fisher 

Scientific) according to the manufacturer’s instructions as described previously [76]. Briefly, cells 

were seeded in 6-well plates with DMEM at 200,000 cells/well. After transfection for 24 h in 

serum-starved conditions, cells were treated with either control (DMEM with vehicle 

supplemented with 2% FBS) or 4 ng/mL TGF-β1 (R&D Systems) and the lysates or its 

supernatants were collected for further quantification. KD efficacy of c-Fos and c-Jun at 50 nM 

siRNA are shown in Figure S5B. In addition, KD efficacy at 48 h post-stimulation of SMAD2, 

SMAD3, and SMAD4 at 25 nM siRNA is shown in Figure S13B. 

 

Inhibitor Screening for FMOD Regulatory Pathway 

HFF-1 cells were seeded in 96-well plates with DMEM at 10,000 cells/well. Cells were treated 

with control (DMEM with 2% FBS-added vehicle) or 4 ng/mL TGF-β1(R&D Systems) with or 

without each inhibitor, and supernatants were collected for FMOD ELISA. The following 

inhibitors were used: Akt inhibitor VIII (14870, Cayman Chemical) and LY294002 (440202, 

Calbiochem). The other inhibitors used were dispensed from a Tocriscreen Kinase Inhibitor 

Toolbox (3514, Tocris Bioscience). 

 

Inhibitor Treatment for THBS1 Regulatory Pathway  

HFF-1 cells were seeded in 6-well plates with DMEM at 200,000 cells/well. Cells were treated 

with control (DMEM with 2% FBS-added vehicle) or 4 ng/mL TGF-β1 (R&D Systems) with or 

without each inhibitor, and the lysates were collected after 48 h for quantification by WB. The 

following inhibitors were used: LY364947 (123-05981, Fujifilm), SB431542 (dispensed from a 

Tocriscreen Kinase Inhibitor Toolbox [3514, Tocris Bioscience]), and T-5224 (S28966, Selleck). 

 

Bifurcation Model Analysis 
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Dr. Keita Iida contributed to the bifurcation analyses as described previously [76]. Based on the 

experimental expression of THBS1 and FMOD upon treatment with different concentrations of 

TGF-β1 (Figure 3.1.6A), we constructed a core transcription factor network consisting of TGF-

β1, THBS1, and FMOD. A double positive feedback loop (between THBS1 and TGF-β1) and 

double negative feedback loop (between FMOD and TGF-β1) can be described by the following 

nonlinear ordinary differential equations (ODEs): 

d[THBS1]

d𝑡
= 𝑎 (

[TGFβ1]𝑛𝑎

[TGFβ1]𝑛𝑎 + 𝐾𝑎
) − 𝑑1[THBS1], (1) 

d[FMOD]

d𝑡
= 𝑏 (

𝐾𝑏
[TGFβ1]𝑛𝑏 + 𝐾𝑏

) − 𝑑2[FMOD], (2) 

d[TGFβ1]

d𝑡
= 𝑐 (

[THBS1] 

[THBS1] + 𝐾1
)(

𝐾2
[FMOD] + 𝐾2

) − 𝑑3[TGFβ1], (3) 

where 𝑎/𝑑1 , 𝑏/𝑑2 , and 𝑐/𝑑3  are maximal values of [THBS1] , [FMOD] , and [TGFβ1] , 

respectively; 𝐾𝑎 , 𝐾𝑏 , 𝐾1 , and 𝐾2  are the half saturation constants; and 𝑛𝑎  and 𝑛𝑏  are Hill 

coefficients. Setting the left-hand sides of Eqs. (1)–(3) to zero, the steady state solutions can be 

obtained as follows: 

[THBS1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
𝑎

𝑑1
(

[TGFβ1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑎

[TGFβ1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑎 + 𝐾𝑎
) , (4) 

[FMOD]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
𝑏

𝑑2
(

𝐾𝑏

[TGFβ1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑏 + 𝐾𝑏
) , (5) 

[TGFβ1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
𝑐

𝑑3
(

[THBS1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

[THBS1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝐾1
)(

𝐾2

[FMOD]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝐾2
) . (6) 

Substituting (4) and (5) into (6), [TGFβ1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  can be computed using Newton’s method and 

stability can be determined by the sign of the derivative. Note that [THBS1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≡ 0, [FMOD]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≡

𝑏/𝑑2, and [TGFβ1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≡ 0 are stable steady state solutions for 𝐾1 > 0 and 𝐾2 > 0. By fitting (4) 

and (5) to the experimental data (Figure 3.1.6A), the parameters were inferred using a nonlinear 

least-squares method with Gnuplot (version 5.4); 𝑎/𝑑1 = 2.36 , 𝑏/𝑑2 = 0.33 , 𝐾𝑎 = 0.016 , 

𝐾𝑏 = 0.002, 𝑛𝑎 = 1.6, and 𝑛𝑏 = 1.7 (Figure 3.1.9B). 

To understand the roles of endogenous TGF-β1, THBS1, and FMOD, we extended (6) to 

incorporate the effects of PDL and endogenous TGF-β1 production as described below: 

[THBS1 ∙ PDL]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝛼 (
PDL

PDL + 𝐾𝛼
) , (7) 

[FMOD ∙ PDL]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝛽 (
𝐾𝛽

PDL + 𝐾𝛽
) , (8) 

[TGFβ1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝛾 (
[THBS1 ∙ PDL]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

[THBS1 ∙ PDL]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝐾1̃
)(

𝐾2̃

[FMOD ∙ PDL]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝐾2̃
) , (9) 
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where [THBS1 ∙ PDL]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, [FMOD ∙ PDL]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , and [TGFβ1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are endogenous concentrations of THBS1, 

FMOD, and TGF-β1, respectively, 𝛼 , 𝛽 , and 𝛾  are the maximal values of [THBS1 ∙ PDL] , 

[FMOD ∙ PDL] , and [TGFβ1] , and 𝐾𝛼 , 𝐾𝛽 , 𝐾1̃ , and 𝐾2̃  are the half saturation constants, 

respectively. In particular, 𝛾  represents the endogenous TGF-β1 production rate. In the same 

manner as before, we fitted (7)-(9) to the experimental data (Figure 3.1.9C) to identify all the 

parameter values: 𝛼 = 3 , 𝛽 = 5 , 𝛾 = 3.5 , 𝐾𝛼 = 10.1 , 𝐾𝛽 = 5 , 𝐾1̃ = 0.46 , and 𝐾2̃ = 0.62 . 

The bifurcation diagram is depicted using (4)-(6) by replacing 𝑐/𝑑3, 𝐾1, and 𝐾2 with 𝛾, 𝐾1̃, 

and 𝐾2̃ (Figure 3.1.9E). 

Moreover, for simulating the immunostaining experiment (Figure 3.1.12), we extended the 

model (4)–(6) to a stochastic model by computing probability distributions of [THBS1]  and 

[FMOD]  for a given [TGFβ1] . Using an Ornstein–Uhlenbeck process as a model of gene 

expression82, we formulated the dynamics of [THBS1] and [FMOD] by the following stochastic 

differential equations: 

d[THBS1] = (𝑓THBS1([TGFβ1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) − [THBS1])d𝑡 + 𝜎1d𝐵1(𝑡), (10) 

d[FMOD] = (𝑓FMOD([TGFβ1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) − [FMOD])d𝑡 + 𝜎2d𝐵2(𝑡), (11) 

where d𝐵1(𝑡) and d𝐵2(𝑡) are standard Gaussian white noises (mean 0 and variance 1), 𝜎1 and 

𝜎2 are constant parameters, and 𝑓THBS1 and 𝑓FMOD are given by the following functions: 

𝑓THBS1([TGFβ1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) =
𝑎

𝑑1
(

[TGFβ1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑎

[TGFβ1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑎 + 𝐾𝑎
), 

𝑓FMOD([TGFβ1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) =
𝑏

𝑑2
(

𝐾𝑏

[TGFβ1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑏 + 𝐾𝑏
). 

In our immunostaining experiment, [TGFβ1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is assumed as a control parameter. Hence, we 

computed [TGFβ1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ as a time limit of [TGFβ1] using the following ODE: 

d[TGFβ1]

d𝑡
= 𝑓TGFβ1([TGFβ1]) − [TGFβ1], (12) 

where 𝑓TGFβ1([TGFβ1]) is given by the following equation: 

𝑓TGFβ1([TGFβ1])

=
𝑐

𝑑3
(

[TGFβ1]𝑛𝑎

[TGFβ1]𝑛𝑎 +
𝐾1𝑑1
𝑎

([TGFβ1]𝑛𝑎 +𝐾𝑎)
)(

𝐾2𝑑2
𝑏

([TGFβ1]𝑛𝑏 + 𝐾𝑏)

𝐾𝑏 +
𝐾2𝑑2
𝑏

([TGFβ1]𝑛𝑏 + 𝐾𝑏)
). 

Note that [TGFβ1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ corresponds with (6). 

 I numerically computed (10) and (11) using Euler-Maruyama method and (12) using Euler 

method with the following initial conditions: 

[THBS1](0) = 0, (12) 

[FMOD](0) = 0, (13) 

[TGFβ1](0)~𝑈(0, [TGFβ1]max), (14) 
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where (14) means that the initial value of [TGFβ1]  is randomly sampled from a uniform 

distribution 𝑈(0, [TGFβ1]max). Note that (10) and (11) may yield negative values. In such a case, 

we addressed it numerically by constraining them to zero. The resulting bias from this adjustment, 

however, proved to be negligible. I set the parameter values as follows: 𝜎1 = 𝜎2 = 0.2  and 

[TGFβ1]max = 0.2  in Figure 4C, and 𝜎1 = 𝜎2 = 0.05  and [TGFβ1]max = 1.0  in Figure 

3.1.11B. I simulated independent 10,000 sample paths for long time enough and obtained a steady 

state distribution of [THBS1] and [FMOD]. 

 

TGF-βR Inhibitor Treatment for Endogenous TGF-β Signaling 

HFF-1 cells (PDL 24, PDL 36, PDL 47, and PDL 53) were seeded in 6-well plates with DMEM 

at 200,000 cells/well. Cells were treated with control (DMEM with 2% FBS-added vehicle) or 5 

M LY364947 (123-05981, Fujifilm), and the lysates were collected after 48 h for quantification 

by WB. 

 

Time-Course Datasets for Mathematical Model Training 

I used the time-course data for phosphorylated SMAD3, c-Fos, THBS1, phosphorylated Akt 

(Ser473), and FMOD activity with or without 4 ng/mL TGF-β1 (eight time-points up to 48 h) 

treatment in HFF-1 cells for data-fitting of the comprehensive model as described previously [76]. 

Briefly, HFF-1 cells were seeded in 6-well plates at 200,000 cells/well and maintained in DMEM 

supplemented with 10% FBS. After serum starvation for 16 h, the cells were treated with either 

control (DMEM with vehicle supplemented with 2% FBS) or 4 ng/mL TGF-β1 (R&D Systems) 

and the lysate and supernatant were collected at 0 min, 15 min, 30 min, 60 min, 120 min, 8 h, 24 

h, and 48 h. Reconstitution buffer (0.1% BSA in 4 mM HCl PBS, R&D Systems) was used as 

vehicle. The cells were lysed with RIPA buffer (Thermo Fisher Scientific) supplemented with 

Halt™ Protease and Phosphatase Inhibitor (Thermo Fisher Scientific) and used in the western 

blot analysis for analyzing anti-phosphorylated SMAD3 (Ser423/425; 9520, CST), anti-c-Fos 

(2250, CST), anti-THBS1 (37879, CST), and anti-phosphorylated Akt (Ser473; 9271, CST) 

expression. Supernatants were centrifuged (13,000 rpm, 15 min, 4 °C) to remove cell debris and 

used for the FMOD ELISA (ab275895, Abcam). In addition, anti-phosphorylated SMAD2 data 

(Ser465/467; 3108, CST) were obtained for model validation and not used in data-fitting. The 

data were normalized between the minimum (0) and maximum (1) values. 

 

Model Simulation and Parameter Estimation 

I constructed the comprehensive mathematical model linking the TGF-β and VEGF signaling 

pathways (Figure 2.3.3) by integrating two mathematical models using a Python framework for 

Modeling and Analysis of Signaling Systems (BioMASS) as described previously [76].  
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Figure 2.3.3: Mathematical model diagram of the TGF-β–VEGF integrated signaling pathway 

[76]. 

TGF-β and VEGF signaling pathways in an ordinary differential equation model. (Upper 

panel) Diagram of molecular interactions in the TGF-β signaling model. A model of TGF-

βR activation, SMAD phosphorylation, and SMAD complex formation was developed for 

the TGF-β pathway. (Lower panel) In addition to the TGF-β signaling model, the process 
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of VEGFR activation to ERK phosphorylation was described using the Imoto model [68]. 

 

Parameter estimation was conducted in two steps. In step one, parameters related to the TGF-β 

signaling network, modified based on the Lucarelli model [86], were trained using normalized 

phosphorylated SMAD3, c-Fos, and THBS1 time-course expression. The resulting model had 27 

rate equations, 22 species, and 42 parameters, of which 34 were to be estimated. By minimizing 

the objective function, i.e., the sum of residual squares between simulation and experimental 

values, 30 fitting parameter sets were obtained that reproduce the experimental results 

with/without TGF-β1 stimulation in HFF-1 cells. In step two, an additional 30 parameter sets for 

the rest of the model, including the Raf-ERK cascade and PI3K-Akt pathway, were trained using 

normalized phosphorylated SMAD3, c-Fos, THBS1, phosphorylated Akt, and FMOD time-

course expression. The best fitting parameters in the TGF-β signaling network were adapted from 

step one. The resulting integrated model had 79 rate equations, 83 species, and 194 parameters. 

An additional 30 fitting parameter sets were obtained that reproduce the experimental results of 

TGF-β1 stimulation in HFF-1 cells (parameter range: Figure 2.3.4; objective function trace: 

Figure 2.3.5). 

 

Figure 2.3.4: Parameter range [76]. 

Estimated parameter values of 30 parameter sets for integrated TGF-β–VEGF signaling model. 
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Figure 2.3.5: Objective function trace [76]. 

A) Objective function traces from 30 optimization runs for the integrated TGF-β–VEGF 

signaling model. 

B) Distribution of objective function value of 30 parameter sets. Bar graph: histogram of the 

count. Shade: density of the count. 

 

For the TGF-β pathway, I developed an original model of TGF-βR activation, SMAD 

phosphorylation, and SMAD complex formation. This model activates the transcription of c-Fos 

at the same time and forms a logical AND gate with SMAD complexes to regulate THBS1 

expression. THBS1 forms positive feedback and activates latent TGF-β1. I modified the Imoto 

model [68] to describe the process from VEGFR receptor activation to ERK phosphorylation. 

ERK phosphorylation results in the activation of TFs for FMOD transcription. FMOD then forms 

a complex with activated TGF-β1 and inhibits its binding to TGF-βR. The TGF-β and VEGF 

signaling pathway models crosstalk via the PI3K-Akt pathway.  

All related files to execute the TGF-β and TGF-β VEGF model using BioMASS can be found at 

https://github.com/okadalabipr/Haga2023. I described each biochemical reaction using ODEs. To 

train model parameters, I used time-series expression data for HFF-1 cells. For the global 

parameter estimation, I minimized the sum of squared differences between the experimental 

observations and simulated values using Differential Evolution 87.  

 

Initial value for mathematical model 

Values measured by ELISA and RNA-seq were used to determine the initial values of the model 

[76]. 

The initial value for SMAD2, SMAD3, and SMAD4 were quantified using the respective ELISA 

kits (SMAD2: 0.060 nM, SMAD3: 0.38 nM, SMAD4: 0.0044 nM). Briefly, HFF-1 cells were 

seeded in 6-well plates with DMEM at 200,000 cells/well. Cell lysates were collected using the 

lysate buffer provided with the ELISA kits after serum starvation for 16 h, centrifuged (13,000 
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rpm, 15 min, 4°C), and used for SMAD2 (ab260065, Abcam), SMAD3 (ab264624, Abcam), and 

SMAD4 ELISAs (ab253211, Abcam). 

For other nonzero species, I used RNA-seq data obtained from non-stimulated HFF-1 cells to 

determine the initial value. Briefly, HFF-1 cells were seeded in 6-well plates with DMEM at 

200,000 cells/well. Total RNA (three wells per sample) was collected after serum starvation for 

16 h. RNA purification, sequencing library preparation, and downstream analysis was conducted 

as described in the “Sample preparation for RNA-seq and genomic alignment” section. Initial 

protein levels of the model species (total of 37 genes) were inferred from RNA-seq data, where 

the maximal transcription rate or translated protein level were estimated from the mRNA 

level68,88. I estimated protein amounts from one or more genes belonging to the same gene 

family (isoforms) and employed weighting factors to convert the TPM value of the gene 

corresponding to the protein to the appropriate initial protein value. The TPM values are shown 

in Table 2.3.4. 

 

Table 2.3.4: The list of genes used to estimate the initial protein value in the mathematical model 

and the corresponding transcripts per million (TPM) values. 

Gene symbol TPM (mean) TPM (SD) 
TGFBR1 64.76 2.24 
TGFBR2 95.81 4.21 
SMAD7 20.62 3.33 
FOS 1.17 0.62 
THBS1 4522.39 40.42 
FMOD 20.88 0.66 
FLT1 101.53 1.82 
KDR 0.02 0.02 
GRB2 128.45 0.34 
SHC1 401.13 8.79 
SHC2 1.16 0.49 
SHC3 4.28 0.38 
SHC4 1.26 0.30 
PIK3CA 16.36 0.80 
PIK3CB 15.10 0.89 
PIK3CD 32.27 1.57 
PIK3CG 0.00 0.00 
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PTEN 51.20 1.38 
RASA1 85.47 4.19 
RASA2 26.93 0.49 
RASA3 92.99 3.57 
GAB1 7.09 0.54 
SOS1 25.34 1.14 
SOS2 20.01 0.81 
AKT1 84.62 2.25 
AKT2 41.27 0.82 
HRAS 101.55 4.41 
KRAS 42.43 1.21 
NRAS 113.71 3.80 
ARAF 85.60 1.46 
BRAF 4.73 0.20 
RAF1 79.97 1.25 
MAP2K1 73.15 1.57 
MAP2K2 114.17 3.90 
PTPN1 84.13 3.12 
MAPK1 78.20 1.11 
MAPK3 75.96 5.75 

 

Sensitivity Analysis 

The sensitivity coefficient Sy was calculated using the following equation [68,88]: 

Sy = ∂lnM/ ∂ln𝑦𝑗 

where M is the signaling metric, i.e., the integral expression level of THBS1 with TGF-β1 

stimulation, and yj is each nonzero species in the mechanistic model. The sensitivity coefficients 

were calculated by finite difference approximations with 1% changes in the biochemical reactions. 

To calculate the sensitivity coefficients, I used BioMASS with run_analysis = (target=“reaction”, 

metric=‘‘integral’’, style=‘‘heatmap’’). 

 

Time-course PI3K-Akt Inhibitor Treatment 

I validated the model results using HFF-1 cell experiments with additional inhibitors at each time-

point (four time-points, up to 48 h) as previously described [76]. Briefly, HFF-1 cells were seeded 

in 96-well plates with DMEM at 10,000 cells/well. The cells were treated with either control 
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(DMEM with 0.1% DMSO supplemented with 2% FBS) or 4 ng/mL TGF-β1 (R&D Systems). 

Inhibitors for TGF-β1-treated samples were added at 0 h, 8 h, 24 h, and 32 h. Supernatants were 

collected at 48 h for quantification. Reconstitution buffer (0.1% BSA in 4 mM HCl PBS, R&D 

Systems) was used as vehicle. Supernatants were centrifuged (13,000 rpm, 15 min, 4°C) to 

remove cell debris and used for FMOD ELISA (Abcam). The following inhibitors were used: 

LY364947 (123-05981, Fujifilm) and Akt inhibitor VIII (14870, Cayman Chemical) 

 

Sample preparation for THBS1 and FMOD quantification with TGF-β family 

HFF-1 cells were used to prepare recombinant human TGF-β family treated lysates and 

supernatants for quantification as previously described [76]. Briefly, cells for were seeded in 6-

well plates at 200,000 cells/well. After treatment with either control (DMEM with vehicle 

supplemented with 2% FBS), TGF-β1 (R&D Systems), TGF-β2 (ProteinTech), or TGF-β3 

(ProteinTech), cell lysates and supernatants were collected after 48 h for quantification by WB or 

FMOD ELISA (Abcam).  

 

Sample Preparation for FMOD Quantification with VEGF, EGF, b-FGF, or PDGF-BB 

HFF-1 cells were used to prepare recombinant human VEGF, EGF, b-FGF, or PDGF-BB 

supernatants for FMOD ELISA as previously described [76]. Briefly, cells for were seeded in 12-

well plates at 100,000 cells/well. After treatment with either control (DMEM with vehicle 

supplemented with 2% FBS), VEGF (ProteinTech), EGF (PeproTech), b-FGF (R&D Systems), 

or PDGF-BB (ProteinTech), cell supernatants were collected after 48 h for quantification by 

FMOD ELISA (Abcam). 

 

Time-Course TGF-β1 Washout Experiment 

TGF-β1-stimulated HFF-1 cells was washed with PBS at seven time-points (i.e., 1 h, 2 h, 4 h, 8 

h, 12 h, 24 h, and 48 h or 15 min, 30 min, 1 h, 4 h, 12 h, 24 h, and 48 h) to confirm the effects of 

transient and sustained TGF-β1 stimulation on the expression of THBS1, FMOD, and 

phosphorylated Akt (Ser473) as previously described [76]. Briefly, HFF-1 cells were seeded in 6-

well plates with DMEM at 200,000 cells/well. After serum starvation for 16 h, cells were treated 

with control (DMEM with 2% FBS-added vehicle) or 4 ng/mL TGF-β1. Cells were washed with 

PBS and replaced with control medium at each time-point from the TGF-β1 stimulation condition, 

and all lysate was recovered at 48 h for western blot analysis. 

 

Natural Compound Screening for THBS1 Regulation 

HFF-1 cells (PDL 24) were seeded in 96-well plates with DMEM at a density of 10,000 cells/well. 

The cells were treated with control (DMEM with 2% FBS and 0.1% DMSO vehicle), 4 ng/mL 
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TGF-β1, or 4 ng/mL TGF-β1 combined with compounds from a natural bioactive substance 

library (S990043-NAT1 to 4, Sigma, 268 compounds in total) as previously described [76]. After 

48 h of the treatment, the cells were treated with the Cell Counting Kit-8 solution (DOJINDO), 

followed by incubation for 1 h. Cell viability was calculated at an absorbance wavelength of 450 

nm using the Multiskan FC system (Thermo Fisher Scientific). Additionally, the supernatants 

were collected to perform the ELISA of THBS1 (DTSP10-1, R&D Systems) according to the 

manufacturer’s protocol. Briefly, the supernatants were centrifuged (1, 000 rpm, 4 min, and 4°C) 

to remove cell debris and used for each measurement (n = 1). Relative protein levels were shown 

relative to TGF-β1 as indicated by (1) value. Natural compounds showing >80% cell viability 

were tested for THBS1 ELISA. 

 

THBS1 ELISA for Retinol and ATRA 

HFF-1 cells (PDL 24) were seeded in 6-well plates with DMEM at a density of 200,000 cells/well. 

The cells were pretreated with 0.1% DMSO or each retinoid (retinol or ATRA) in 0.1% FBS 

DMEM for 1 h before each treatment. The cells were treated with control (DMEM with 2% FBS 

and 0.1% DMSO vehicle), 4 ng/mL TGF-β1, 5 μM LY36494 with or without 4 ng/mL TGF-β1, 

0.5 μM or 5 μM retinol (LKT Labs) with or without 4 ng/mL TGF-β1, or 0.5 μM or 5 μM ATRA 

with or without 4 ng/mL TGF-β1. After 48 h of the treatment, the supernatants were collected for 

THBS1 ELISA (R&D Systems), and ELISA was performed according to the manufacturer’s 

protocol. Briefly, the supernatants were centrifuged (1, 000 rpm, 4 min, and 4°C) to remove cell 

debris and used for each measurement (n = 3). Relative protein levels were shown relative to 

TGF-β1 as indicated by (1) value. 

 

Sample Preparation for THBS1 and Lamin-B1 Quantification with TEAD Inhibitor Treatment 

HFF-1 cells (PDL 47) were seeded at a density of 200,000 cells/well in 6-well plates 

supplemented with 10% FBS/DMEM. The cells were serum-starved with 0.1% FBS for 24 h and 

pretreated with 0.1% DMSO or 5 μM ATRA for 1 h before each treatment. The cells were treated 

with control (DMEM with 2% FBS and 0.1% DMSO vehicle), 1 μM K-975 (Selleck) with or 

without 5 μM ATRA, cultured for 48 h, and lysates were collected after 48 h for quantification by 

western blotting. 

 

THBS1 Immunofluorescence Imaging 

The distribution of THBS1 expression in HFF-1 was examined by immunofluorescence imaging 

as previously described [76]. Briefly, HFF-1 cells were seeded in 24-well plates with DMEM at 

20,000 cells/well. After serum starvation for 16 h, cells were treated with control (DMEM with 

2% FBS-added vehicle), 0.04 ng/mL, or 0.2 ng/mL TGF-β1 for 48 h and fixed with fresh 4% 
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paraformaldehyde (Thermo Fisher Scientific) in PBS for 15 min (n = 6). After rinsing with PBS, 

the cells were subjected to a 0.2% TritonX-100 (Nakalai Tesque) in PBS for 10 min and blocked 

using 1% goat serum (Thermo Fisher Scientific) in PBS overnight. Next, cells were incubated 

with THBS1 antibodies (ab85762, Abcam) diluted in 1% goat serum in PBS overnight and washed 

with PBS. Finally, cells were incubated with Alexa Fluor® 594 conjugated secondary antibodies 

(Abcam), CellMaskTM (Thermo Fisher Scientific) for cell body staining, and Hoechst® 33342 

(DOJINDO) for nuclear staining for 1 h at 25 °C in the dark. Fluorescence images of 96 fields 

(16 fields per well) under each condition were acquired using IN Cell Analyzer 2500HS (Cytiva). 

CellProfiler (ver. 4.2.1) was used to segment nuclear regions from Hoechst® 33342 images and 

cytoplasmic regions by excluding nuclear regions from CellMaskTM images. The THBS1 signal 

intensity of each cell was then quantified in the cytoplasmic region; THBS1 signal intensity was 

calculated based on the integrated and mean signal density in each image.  

 

SMAD4 Immunofluorescence Imaging 

SMAD4 expression distribution in HFF-1 cells was examined by immunofluorescence imaging. 

Briefly, HFF-1 cells (PDL 24) were seeded in 24-well plates with DMEM at a density of 20,000 

cells/well. After serum starvation for 24 h, the cells were treated with control (DMEM with 2% 

FBS and vehicle), 4 ng/mL TGF-β1, 5 μM LY36494 with or without 4 ng/mL TGF-β1, or 5 μM 

ATRA with or without 4 ng/mL TGF-β1 for 15 min and fixed with fresh 4% paraformaldehyde 

(15710, Electron Microscopy Science) in PBS for 15 min. After rinsing with PBS, the cells were 

subjected to 0.2% Triton X-100 (Nakalai Tesque) in PBS for 10 min and blocked with 1% goat 

serum (Thermo Fisher Scientific) in PBS overnight. Next, the cells were incubated with SMAD4 

antibodies (CST), diluted with 1% goat serum in PBS overnight, and washed with PBS. Finally, 

the cells were incubated with anti-rabbit Alexa Fluor® 488-conjugated secondary antibodies 

(Abcam). CellMaskTM (Thermo Fisher Scientific) was used for cell body staining, whereas 

Hoechst® 33342 (DOJINDO) was used for nuclear staining for 1 h at 25°C in the dark. 

Fluorescence images of 30 fields under each condition were acquired using the IN Cell Analyzer 

2500HS (Cytiva). CellProfiler was used to segment nuclear regions from the Hoechst® 33342 

images. The SMAD4 signal intensity of each cell was quantified in the nuclear region and 

calculated based on the integrated signal density in each image. 

 

Effect of Surface Stiffness on Drug Sensitivity 

CytoSoft® 6-well plates (Advanced BioMatrix) were purchased for culturing on substrates of 

various stiffnesses (0.5, 2, 8, 16, and 32 kPa). Following the manufacturer’s instructions, 100 

μg/mL of PureCol Atelocollagen Solution (Advanced BioMatrix), a type I collagen, was prepared 

by diluting with degassed PBS (37°C). The collagen solution was added to each well and 
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incubated at RT for 1 h. After washing with PBS, the cells were seeded and used in further 

experiments. Briefly, HFF-1 cells (PDL 47) were seeded in 6-well plates with 10% FBS DMEM 

at a density of 150,000 cells/well. The cells were serum-starved with 0.1% FBS for 24 h, followed 

by their treatment with control (DMEM with 2% FBS and 0.1% DMSO vehicle), 5 μM ATRA, or 

1 μM K-975 for 48 h and processed for SA-β-gal staining as previously described in the SA-β-

gal Staining subsection. 

 

Western Blot Analysis 

All immunoblots are representative images of three biological replicates as previously described 

[76]. Attached cells were washed with PBS and lysed in RIPA buffer (Thermo Fisher Scientific) 

supplemented with Halt™ Protease and Phosphatase Inhibitor (Thermo Fisher Scientific). Cell 

lysates were centrifuged (13,000 rpm, 15 min, 4°C) to unify protein concentrations between 

samples, and a BCA protein assay kit (Thermo Fisher Scientific) was used according to the 

manufacturer’s protocol. Proteins were separated by SDS-PAGE and transferred to nitrocellulose 

membranes using iBlot2 (Thermo Fisher Scientific). After blocking with EveryBlot blocking 

buffer (Bio-Rad), the following antibodies were used for blotting: anti-THBS1 (37879, CST), 

anti-FMOD (60108-1-Ig, ProteinTech), anti-LAMIN-B1 (12987-1-AP, ProteinTech), anti-p53 

(2524, CST), anti-p21 (2946, CST), anti-c-Fos (2250, CST), anti-c-Jun (9165, CST), anti-

SMAD2 (5339, CST), anti-phosphorylated SMAD2 (Ser465/467; 3108, CST), anti-SMAD3 

(9523, CST), anti-phosphorylated SMAD3 (Ser423/425; 9520, CST), anti-SMAD4 (46535, CST), 

anti-phosphorylated Akt (Ser473; 9271, CST), anti-pan Akt (2920, CST), anti-USP11 (ab109232, 

Abcam), anti-GAPDH (M171-3, Medical & Biological Laboratories), and anti-GAPDH (10494-

1-Ap, ProteinTech). Primary antibodies were reacted at 4°C overnight, while secondary 

antibodies were reacted at room temperature for 1 h. For protein detection, Clarity Istern ECL 

Substrate (Bio-Rad) or Clarity Max Istern ECL Substrate (Bio-Rad) was used with an Amersham 

Imager 680 (GE Healthcare). Relative protein quantification was performed with ImageJ Fiji. 

Expression values (n = 3) were normalized using GAPDH as loading control and the ratio against 

the control was calculated. Molecular weights are indicated on the left of each image. 

 

ELISA 

All ELISAs were conducted according to the manufacturer’s protocol as previously described 

[76]. Cell supernatants were used as samples for ELISAs for THBS1, FMOD, TGF-β1, VEGF, 

EGF, b-FGF, PDGF, IL-6, and IL-8. Briefly, supernatant samples were centrifuged (1,000 rpm, 4 

min, 4°C) to remove cell debris and used for each measurement. Cell lysates were used as samples 

for the ELISA for SMAD2, SMAD3, and SMAD4. Lysate samples were collected using lysis 

buffer included in the kits, cell lysates were centrifuged (13,000 rpm, 15 min, 4°C) and used for 
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each ELISA. Relative expression levels are displayed with the control (1) value. The following 

ELISA kits were used for quantification: THBS1 (DTSP10-1, R&D Systems), FMOD (ab275895, 

Abcam), TGF-β1 (DB100B, R&D Systems), VEGF (DVE00, R&D Systems), IL-6 (D6050, R&D 

Systems), IL-8 (ab214030, Abcam), SMAD2 (ab260065, Abcam), SMAD3 (ab264624, Abcam), 

and SMAD4 (ab253211, Abcam). 

 

Quantitative RT-PCR (qRT-PCR) Analysis 

Total RNA from HFF-1 cells was prepared using the NucleoSpin RNA kit (Macherey-Nagel 

GmbH & Co.) and subjected to complementary DNA (cDNA) synthesis using ReverTra Ace® 

qPCR RT Master Mix (Toyobo Life Science) as follows: 15 min at 37°C, 5 min at 50°C, and 5 

min at 98°C [76]. Quantitative PCR using cDNA was conducted using a KOD SYBR qPCR kit 

(Toyobo Life Science) with a CFX96 Real-Time PCR System (Bio-Rad) according to the 

manufacturer’s protocol. PCR cycling conditions were as follows: 40 cycles of 10 s at 98°C, 10 s 

at 60°C, and 30 s at 68°C. The primers used for qRT-PCR were as follows: THBS1 (5′-

TCCCCATCCAAAGCGTCTTC-3′ and 5′-ACCACGTTGTTGTCAAGGGT-3′); FMOD (5′-

GGACGTGGTCACTCTCTGAA-3′ and 5′-GGCTCGTAGGTCTCATACGG-3′); GAPDH (5′-

GTCTCCTCTGACTTCAACAGCG-3′ and 5′-ACCACCCTGTTGCTGTAGCCAA-3′). Gene 

expression was quantified using the ΔΔCq method. Expression values (n = 3) were normalized 

using GAPDH and the ratio against the PDL 24 value was calculated.  

 

Quantification and Statistical Analysis 

Statistical data are presented as the mean with standard deviation (SD), calculated using the “sd” 

function in R. The horizontal line in the center of the box plot is the median, the lower and upper 

borders indicate the 25th and 75th percentiles, respectively, and all measurements are shown as 

point plots. For detection of upstream regulators, the right-tailed Fisher’s exact test was used in 

IPA. Comparisons of more than two groups were made using one-way Dunnett’s or Tukey’s 

multiple comparisons test. Comparisons of two groups were evaluated by Student’s t-test, Ilch’s 

t-test, or Wilcoxon rank sum test. The Silverman test was used to test for multimodality. I 

considered p < 0.05 to be statistically significant. Unless otherwise noted, p-values were 

calculated using the multcomp package in R. The statistical details of each experiment can be 

found in the figure legends. 
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3. RESULTS 

3.1 Identification of Skin Aging Target Through Omics 

Analyses and Mathematical Modeling 

3.1.1 Cellular Senescence Induced by Replication-Stress (RS) Using HFF-1 and BJ Cells 

To identify global transcriptional signatures and their regulatory mechanisms in dermal 

fibroblast senescence, I performed RNA-seq, ChIP-seq (for H3K27Ac modification), and ATAC-

seq of RS induced HFF-1 cells from different PDLs – early (PDL 24), middle (PDL 36), and late 

(PDL 47) [76]. First, HFF-1 and BJ, a different cell line of human dermal fibroblasts, were 

maintained from early (HFF-1: PDL 13, BJ: PDL 23) to late (HFF-1: PDL 53, BJ: PDL 61) PDL 

to induce RS (Figure 3.1.1A). I examined the activities of p53, p21, and SA-β-gal for different 

PDLs of fibroblast cells (HFF-1: Figure 3.1.1B, 3.1.1C; BJ: Figure 3.1.1D, 3.1.1E). Slower cell 

proliferation was observed with increased PDL in HFF-1 cells (Figure 3.1.1F). RS-induced 

cellular senescence was promoted by increased PDL in both cell lines. To explain the decline of 

p21 in PDL 53 in HFF-1 cells (Figure 3.1.1B), I focused on USP11—a deubiquitylase that 

stabilizes p21 protein and prevents its degradation [89]—and observed a significant decrease in 

USP11 expression with increased PDL in HFF-1 cells (Figure 3.1.1G). This result suggests that 

the stability of the p21 protein may decrease due to the decrease in USP11. 
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Figure 3.1.1: Cellular senescence induced by RS using HFF-1 and BJ cells [76]. 

A) Growth curve of HFF-1 (blue line) and BJ cells (green line); n = 3, mean ± SD. 

B) Western blot (WB) of p53 and p21 in RS-induced HFF-1 cells. Cells were cultured for 48 h, 

and lysates were analyzed. (Left panel) Representative image. (Middle panel) Quantification 

of p53 expression; n = 3, *p < 0.05 (Dunnett’s test). (Right panel) Quantification of p21 

expression; n = 3, *p < 0.05, **p < 0.01 (Dunnett’s test).  

C) (Left panel) SA-β-gal staining of RS-induced HFF-1 cells. Representative images. SA-β-

gal-positive cells are indicated by black arrowheads; scale bar: 200 m. (Right panel) 

Quantification of SA-β-gal: SA-β-gal-positive rate (%) = number of SA-β-gal positive cells 

/ total number of cells × 100. Four images per well were randomly analyzed from three wells 

(total of 12 images/PDL), ***p < 0.001 (Dunnett’s test).  

D) WB of p53 and p21 in RS-induced BJ cells. Cells of each PDL (PDL 36, PDL 46, PDL 54, 

PDL 63) were cultured for 48 h and the lysates were analyzed. (Left panel) Representative 

image. (Middle panel) Quantification of p53 expression; n = 3, *p < 0.05. (Dunnett’s test). 

(Right panel) Quantification of p21 expression; n = 3, **p < 0.01 (Dunnett’s test). 

E)  (Left panel) SA-β-gal staining of RS-induced BJ cells. Representative image. SA-β-gal-

positive cells for each PDL (PDL 29, PDL 36, PDL 46, PDL 54, PDL 63) are indicated with 

black arrowheads; scale bars: 200 m. (Right panel) Quantification of SA-β-gal: SA-β-gal-

positive rate (%) = number of SA-β-gal-positive cells / total number of cells × 100. Four 

images from each of the three wells were analyzed (total 12 images/condition), ***p < 0.001 

(Dunnett’s test). 

F) Cell counting with Hoechst® 33342 in RS-induced HFF-1 cells. Cells from each PDL (PDL 

24, PDL 36, PDL 47, PDL 53) were cultured for 48 h and the number of nuclei were counted. 

(Left panel) Representative image. Each image was processed using Image J. (Right panel) 

Quantification of cell count per image of each PDL. Four images from each of the three wells 

were analyzed (total of 12 images/PDL), ***p < 0.001 (Dunnett’s test).  

G) WB of USP11 in RS-induced HFF-1 cells. Cells of each PDL (PDL 24, PDL 36, PDL 47, 

PDL 53) were cultured for 48 h, and lysates were analyzed. (Left panel) Representative 

image. (Right panel) Quantification of USP11 expression; n = 3, *p < 0.05 (Dunnett’s test). 

 

3.1.2 Multi-omics analysis reveals TGF-β1 as a potential regulator of skin aging 

To identify transcription factors (TFs) that regulate senescence in HFF-1 cells, the TF enrichment 

score was calculated from the gene expression of each PDL using DoRothEA analysis [90], and 

the top 20 TFs were determined based on the enrichment score (Figure 3.1.2A) [76]. The 

downstream TFs of the TGF-β pathway, SMAD3 (PDL 24 vs. PDL 36: p < 0.01, PDL 24 vs. PDL 

47: p < 0.05) and SMAD4 (PDL 24 vs. PDL 36: p < 0.05, PDL 24 vs. PDL 47: p=0.057), were 
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enriched with increasing PDL. I also identified known senescence-associated TFs, including 

JUNB [91], GATA6 [92], TP53 [93], TEAD1 [91], and E2F4 [91]. To elucidate the TF network 

of DEGs related to the cellular senescence of skin fibroblasts, I also identified TFs regulating 

upregulated and/or downregulated DEGs with increasing PDLs using Lisa [94] (Figure 3.1.2B). 

SMAD3 was identified as a highly enriched TF that regulates genes whose expression was altered 

(upregulated or downregulated) with increasing PDLs. These results suggest that SMAD is an 

important factor in cellular senescence in dermal fibroblasts in passaging culture. When the 

TGF-β ligand binds to type I and type II serine/threonine kinase receptors on the cell surface, the 

TGF-β signaling pathway is activated [95]. The type II receptor phosphorylates and activates the 

type I receptor, which then phosphorylates SMAD2 or SMAD3, thereby forming a complex with 

SMAD4 that translocates to the nucleus and regulates gene transcription [95]. 

To confirm whether SMAD motifs indeed played an important role with cellular senescence, I 

performed a TF motif enrichment analysis using HOMER [96], by assessing the gained ATAC 

peaks—the open chromatin regions specifically enriched for late PDL (Figure 3.1.2C) [76]. As a 

result, I found that SMAD2 (–log[adj-p]: 15.8) and SMAD4 (–log[adj-p]: 10.3) were associated 

with the gained ATAC peaks. Next, I analyzed whether TGF-β is the upstream regulator of cellular 

senescence in dermal fibroblasts from 93 overlapping differentially expressed genes (DEGs) 

identified in the RNA-seq, differential ATAC peaks, and differential H3K27Ac peaks (Figure 

3.1.2D) between PDL 24, PDL 36, and PDL 47. TGF-β1 was identified as the top regulator among 

the overlapping DEGs. From the 294 common DEGs between ChIP-seq of H3K27Ac, a histone 

marker indicating active promoter and enhancer regions, and RNA-seq, TGF-β1 was identified as 

the most enriched upstream regulator of DEGs associated with cellular senescence (Figure 3.1.2E). 

These results indicate that the TGF-β1–SMAD axis with epigenetic changes can be activated in 

RS-induced dermal fibroblasts. 
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Figure 3.1.2: Multi-omics analysis reveals TGF-β1 as a potential regulator of skin aging [76]. 

A) Transcription factor (TF) enrichment analysis of RNA-seq data derived from RS-induced 

HFF-1 cells of top 20 TFs (see details in Methods section). Heatmap shows the normalized 

TF enrichment scores calculated using the DoRothEA analysis. 

B) TF network analysis of differentially expressed genes (DEGs; |fold change (FC)| > 1.2, adj-

p < 0.05) between PDL 24, PDL 36, and PDL 47 using Lisa. The top 20 TFs are highlighted 

in red.  

C) Enriched motifs in the gained ATAC-seq peaks with increase of PDL. Log (adj-p value) and 

proportion of target sequences with motif was calculated using the “findMotifsGenome.pl” 

function of HOMER. 

D) (Upper panel) Venn diagram showing RNA-seq differentially expressed genes (DEGs; blue 

sphere; |FC| > 1.2, adj-p < 0.05), genes annotated from ATAC differential peaks (purple 

sphere; |log2FC| > 0, adj-p < 0.05), and genes annotated from H3K27Ac differential peaks 

(red sphere; |log2FC| > 0, adj-p < 0.05) between PDL 24, PDL 36, and PDL 47. The number 

of genes in each condition is shown in the Venn diagram. (Lower panel) The top five 

upstream regulators found using Ingenuity Pathway Analysis (IPA) are shown with 
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epigenetic-linked DEGs (93 genes). A right-tailed Fisher’s exact test and the Benjamini–

Hochberg (BH) method were used to calculate −log10(adj-p) of the overlap. 

E) (Left panel) Venn diagram showing RNA-seq of DEGs (blue sphere; |FC| > 1.2, adj-p < 0.05) 

and genes annotated from H3K27Ac differential peaks (red sphere; |log2FC| > 0, adj-p < 

0.05) between PDL 24, PDL 36, and PDL 47. The number of genes in each condition is 

shown in the Venn diagram. (Right panel) The top ten upstream regulators found by 

performing the ingenuity pathway analysis are shown with epigenetic-linked DEGs (294 

genes). A right-tailed Fisher’s exact test and the BH method were used to calculate 

−log10(adj-p) of the overlap. 

 

3.1.3 TGF-β1 is an upstream factor in aging and cellular senescence, affecting THBS1 and 

FMOD expression, positive and negative regulators of TGF-β signaling, through epigenetic 

changes 

To further confirm the involvement of TGF-β1 in skin aging and senescence, two additional 

independent public RNA-seq datasets were analyzed [76]: in vivo data for primary human dermal 

fibroblasts [78] representing a wide age range (11–71 years of age, see donor list in Table 2.3.1), 

to analyze external factors, and in vitro data for HFF-1 cells over a long-term passage [77], to 

analyze internal factors (PDL 16–74, five PDL points). For in vivo data, I obtained three clusters 

of donors based on whole gene expression data and identified DEGs among the clusters (Figure 

2.3.1). For in vitro data, DEGs between each PDL were identified. The number of overlapping 

DEGs in both datasets corresponded to 592 downregulated and 502 upregulated genes (Figure 

3.1.3A). Functional analysis of overlapping gene sets using the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) database [97] revealed that the cell cycle and TGF-β signaling pathways were 

enriched in both datasets. In addition, TGF-β1 was identified as the top regulator for the 

upregulated gene set by upstream analysis of the overlapping gene sets (Figure 3.1.3B). In fact, 

the RNA-seq expression of TGFB1 was upregulated with the increase in PDL (Figure 3.1.3C). 

Comparisons between gene expression and in vivo age or in vitro PDL revealed that THBS1 and 

FMOD expression were strongly correlated with skin aging (in vivo) and senescence (in vitro) 

(R2=0.29) (Figure 3.1.3D). In both data, THBS1 and FMOD show the same time-course dynamics 

with in vivo age and in vitro PDL (Figure 3.1.3E, 3.1.3F). Further, the expression of the TGF-β 

receptor, TGFBR1, and TGFB3 was also correlated with gene expression levels both in vivo and 

in vitro, indicating that TGF-β signaling is more likely to be activated in skin aging. As THBS1 

has been associated with aging in other organs [98] and FMOD is responsible for cross-linking of 

collagen [99]—which decreases with age in skin tissue [8]—I focused on TGF-β1, THBS1, and 

FMOD for further analysis. Note that, while my RNA-seq data using HFF-1 cells showed a 

decrease in FMOD with senescence and TGF-β1 treatment (Figure 3.1.3G), public in vitro RNA-
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seq77 using the same HFF-1 cell line showed an opposite trend, i.e., increase of FMOD with 

senescence (Figure 3.1.3F). To investigate the effects of modulation of TGF-β1, THBS1, and 

FMOD, I obtained RNA-seq and ATAC-seq of TGF-β1 treated HFF-1 cells (Figure 3.1.3H). 

Altered expression levels and peak changes in THBS1 and FMOD were observed in the datasets. 

These results indicated that TGF-β1 is an upstream factor in aging and cellular senescence, 

affecting THBS1 and FMOD expression through epigenetic changes. 

 

Figure 3.1.3: Positive and negative regulators of TGF-β signaling, THBS1 and FMOD, 

identified as critical factors regulating skin aging and dermal fibroblast senescence [76]. 

A) (Upper panel) Venn diagram showing the public in vitro DEGs (blue sphere) and in vivo 
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DEGs (red sphere). (Lower panel) Heat map showing top five pathways annotated in the 

pathway enrichment analysis (Kyoto Encyclopedia of Genes and Genomes [KEGG]). The 

adj-p was calculated using “compareCluster” of clusterProfiler. 

B) Upstream regulators in common genes between the public in vitro and in vivo datasets. 

The top four upstream regulators of 592 downregulated (blue) and 502 upregulated (red) 

genes are shown with colored bars. A right-tailed Fisher’s exact test and the Benjamini–

Hochberg (BH) method were used to calculate −log10(adj-p) of the overlap. 

C) Quantification of RNA-seq expression data from RS-induced HFF-1 cells (blue) for 

TGFB1. Gene expression was normalized to log2(transcripts per million [TPM] + 1); n = 

3, ***p < 0.001 (Dunnett’s test).  

D) Correlation coefficient between the public in vitro (PDL), public in vivo (age), and gene 

expression data. The genes associated with KEGG term “TGF-beta signaling pathway” 

in Figure 1H are plotted. Spearman correlations were calculated using the “cor” function 

of R software; THBS1 (red) and FMOD (blue). R2 was calculated using the 

“ggpmisc::stat_poly_eq” function. 

E) Public in vivo time-course expression data27 for THBS1 and FMOD. Gene expression was 

normalized to log2(TPM + 1); n = 45 (age: 11–71 years; see donor list in Table S1). Linear 

regression lines were added using ‘geom_smooth’ (method = “lm”). 

F) Public in vitro time-course expression data26 for THBS1 and FMOD. Gene expression 

was normalized to log2(TPM + 1); n = 3, mean ± SD. 

G) RNA-seq expression data for THBS1 and FMOD in RS-induced and TGF-β1-stimulated 

HFF-1 cells (control: blue; 4 ng/mL TGF-β1: red). Gene expression was normalized to 

log2(TPM + 1). (Left panel) Quantification of THBS1; n = 3, ***p < 0.001 (Tukey’s 

multiple comparisons). (Right panel) Quantification of FMOD; n = 3, ***p < 0.001 

(Tukey’s multiple comparisons). 

H) Correlation between the expression FC (control vs. 4 ng/mL TGF-β1; adj-p < 0.05) of 

RNA-seq and peak FC (control vs. 4 ng/mL TGF-β1; adj-p < 0.05) of ATAC-seq; THBS1 

(red) and FMOD (blue). FC and adj-p were calculated using DESeq2. 

 

3.1.4 THBS1 and FMOD identified as critical factors regulating skin aging and dermal 

fibroblast senescence    

The percentage of TGF-β1-positive fibroblasts in the human dermis increases with age [100]. 

Higher PDL corresponded with higher TGF-β1 expression in HFF-1 cells (Figure 3.1.4A). Istern 

blot (Figure 3.1.4B), qPCR (Figure 3.1.4C), and enzyme-linked immunosorbent assay (ELISA) 

analyses (Figure 3.1.4D) revealed an increased and decreased expression of THBS1 and FMOD, 

respectively, in higher cell passages of dermal fibroblasts. The expression of THBS1 was 
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confirmed to increase with age in human dermal tissue isolated from female donors (23–63 years 

of age; Figure 3.1.4E, see Table 2.2.1 for donor list) [76]. From the same donors, p21 expression 

was also confirmed to increase with age, suggesting that my model of cellular senescence induced 

by long-term passaged culturing accurately captured changes in human skin-factors associated 

with aging. It is worth noting that THBS1 was not detected in the epidermis, suggesting that 

THBS1 functions in the dermis during skin aging. Interestingly, using publicly available 

transcriptome data [78] (see Table 2.3.2 for donor list), THBS1 expression was found to be 

increased in patients with HGPS (2–8 years of age) compared to that in healthy donors (1–9 years 

of age) of the same age (Figure 3.1.4F). The results from my data-driven analysis identified the 

TGF-β1–SMAD signaling pathway along with THBS1 and FMOD expression as critical factors 

regulating skin aging and dermal fibroblast senescence.  
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Figure 3.1.4: THBS1 and FMOD identified as critical factors regulating skin aging and dermal 

fibroblast senescence [76]. 

A) TGF-β1 enzyme-linked immunosorbent assay (ELISA) in RS-induced HFF-1 cell 

supernatants. Cells were cultured for 48 h, and supernatants were analyzed; n = 3, ***p 

< 0.001 (Dunnett’s test). 

B) WB analysis of THBS1 and FMOD in RS-induced HFF-1 cells. Cells were cultured for 

48 h, and lysates were analyzed. (Left panel) Representative image. (Middle panel) 
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Quantification of THBS1 expression; n = 3, *p < 0.05 (Dunnett’s test). (Right panel) 

Quantification of FMOD expression; n = 3, *p < 0.05 (Dunnett’s test). 

C) q-PCR analysis of RS-induced HFF-1 cells. (Left panel) Quantification of THBS1; n = 3, 

**p < 0.01 (Dunnett’s test). (Right panel) Quantification of FMOD; n = 3, **p < 0.01, 

***p < 0.001 (Dunnett’s test). 

D) THBS1 and FMOD ELISA of RS-induced HFF-1 (blue) and BJ (green) cell supernatants. 

Cells were cultured for 48 h and supernatants were analyzed. (Left) Quantification of 

THBS1 in HFF-1 cells; n = 3, *p < 0.05 (Dunnett’s test). (Middle left) Quantification of 

FMOD in HFF-1 cells; n = 3, ***p < 0.001 (Dunnett’s test). (Middle right) Quantification 

of THBS1 in BJ cells; n = 3, *p < 0.05, **p < 0.01 (Dunnett’s test). (Right) Quantification 

of FMOD in BJ cells; n = 3, ***p < 0.001 (Dunnett’s test). 

E) WB analysis of THBS1 and p21 in human dermal and epidermal tissues (n = 6). Data 

were normalized to the maximum (1) value. R2 was calculated using the “stat_poly_eq” 

function of R. (Upper panel) Age of each donor is displayed at the bottom of the image 

(see donor list in Table 2.2.1). (Lower left panel) Quantification of THBS1 expression in 

dermis. (Lower right panel) Quantification of p21 expression in dermis. 

F) THBS1 expression between healthy participants and patients with Hutchinson–Gilford 

progeria syndrome (HGPS). Public RNA-seq data27 for healthy participants (age: 1–9 

years, n = 12) and patients with HGPS (age: 2–8 years, n = 10) derived from dermal 

fibroblasts. Gene expression was normalized to log2(TPM + 1). **p < 0.01 (Ilch’s t-test). 

 

3.1.5 TGF-β1 and THBS1 induce senescence of human dermal fibroblasts 

Next, I investigated the biological functions of TGF-β1 and THBS1 in terms of the senescence 

of human dermal fibroblasts [76]. I first assessed the proliferation of HFF-1 cells (Figure 3.1.5A) 

and found that TGF-β1 treatment suppressed HFF-1 growth over time (8 h, 12 h, 24 h, and 48 h) 

compared to that of untreated cells. As with TGF-β1, THBS1 treatment resulted in a 

concentration-dependent decrease in cell viability (Figure 3.1.5B). TGF-β1 and THBS1 

treatments were confirmed to inhibit DNA synthesis by BrdU incorporation experiments (Figure 

3.1.5C). The levels of the senescence markers Lamin-B1 decreased and p21 increased in a TGF-

β1 dose-dependent manner (Figure 3.1.5D). Like the TGF-β1 treatment, THBS1 enhanced p21 

expression (Figure 3.1.5E), confirming that TGF-β1- or THBS1-dependent suppression of cell 

proliferation is caused by cellular senescence. TGF-β1 or THBS1 treatment of HFF-1 cells 

induced the production of the pro-inflammatory SASPs IL-6 and IL-8 (Figure 3.1.5F). TGF-β1 

treatment also decreased Lamin-B1 expression (Figure 3.1.5G) and increased IL-6, IL-8 (Figure 

3.1.5H) in BJ cells. Moreover, treatment with TGF-β1 or THBS1 significantly increased the 

number of SA-β-gal-positive cells (Figure 3.1.5I). Interestingly, FMOD alone did not affect SA-
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β-gal activity; however, in combination treatments, FMOD suppressed the effects of TGF-β1 or 

THBS1 on SA-β-gal activation. In addition, TGF-β1 treatment also increased SA-β-gal activity 

in BJ cells (Figure 3.1.5J). These results strongly suggest that TGF-β1 and THBS1 promote the 

senescence of skin fibroblasts and this effect is suppressed by FMOD.  
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Figure 3.1.5: TGF-β1 and THBS1 induce senescence of human dermal fibroblasts [76]. 

A) Time-course cell proliferation analysis of control (blue-circled dots) or 4 ng/mL TGF-β1-

treated (red triangular dots) cells stained with trypan blue; n = 3, mean ± SD. 

B) Cell viability analysis of TGF-β1- and THBS1-stimulated HFF-1 cells. After 24 h of 

treatment (control: blue, TGF-β1: red, THBS1: purple), cell viability was measured using 

the tetrazolium salt WST-8; n = 6, *p < 0.05, **p < 0.01 (Tukey’s multiple comparisons). 

C) BrdU incorporation assay: control (blue), 4 ng/mL TGF-β1 (red), or 1 g/mL THBS1 

(purple); n = 6, ***p < 0.001 (Dunnett’s test) 

D) WB analysis of Lamin-B1 and p21 in TGF-β1-stimulated HFF-1 cells. Cell lysates were 

collected 48 h after control (blue) or TGF-β1 (red) treatment. (Left panel) Representative 

image. (Middle panel) Quantification of Lamin-B1; n = 3, *p < 0.05 (vs. control, 

Dunnett’s test). (Right panel) Quantification of p21; n = 3, ***p < 0.001 (Dunnett’s test).  

E) Istern blot of p21 in THBS1-stimulated HFF-1 cells. Cell lysates were collected 48 h after 

control (blue) or THBS1 (purple) treatment. (Left panel) Representative image. (Right 

panel) Quantification of p21; n = 3, *p < 0.05 (Dunnett’s test).  

F) IL-6 and IL-8 ELISA in TGF-β1- or THBS1-stimulated HFF-1 cells. Cell supernatants 
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were collected 48 h after TGF-β1 (red) or THBS1 (purple) treatment. (First panel) 

Quantification of IL-6 ELISA with TGF-β1 treatment; n = 3, **p < 0.01, ***p < 0.001 

(Dunnett’s test). (Second panel) Quantification of IL-6 ELISA with THBS1 treatment; n 

= 3, **p < 0.01 (Dunnett’s test). (Third panel) Quantification of IL-8 ELISA with TGF-

β1 treatment; n = 3, **p < 0.01, ***p < 0.001 (Dunnett’s test). (Fourth panel) 

Quantification of IL-8 ELISA with THBS1 treatment; n = 3, **p < 0.01 (Dunnett’s test). 

G) WB of THBS1 and Lamin-B1 in TGF-β1-stimulated BJ cells. Cell lysates were collected 

48 h after control (blue) or TGF-β1 (red) treatment. (Left panel) Representative image. 

(Middle panel) Quantification of THBS1; N=3, ***p<0.001 (Dunnett’s test). (Right 

panel) Quantification of Lamin-B1; N=3, ***p<0.001 (Dunnett’s test).  

H) IL-6 and IL-8 ELISA in TGF-β1- or THBS1-stimulated BJ cells. Cell supernatants were 

collected at 48 h after control (blue), TGF-β1 (red), or THBS1 (purple) treatment. (First 

panel) Quantification of IL-6 ELISA with TGF-β1 treatment; N=3, ***p<0.001 

(Dunnett’s test). (Second panel) Quantification of IL-6 ELISA with THBS1 treatment; 

N=3, ***p<0.01 (Dunnett’s test). (Third panel) Quantification of IL-8 ELISA with TGF-

β1 treatment; N=3, **p<0.01, ***p<0.001 (Dunnett’s test). (Fourth panel) Quantification 

of IL-8 ELISA with THBS1 treatment; N=3, **p < 0.01, ***p < 0.001 (Dunnett’s test). 

I) Effect of TGF-β1 or THBS1 treatment and inhibition by FMOD on SA-β-gal activity. 

HFF-1 cells were treated with control, 4 ng/mL TGF-β1, 0.5 g/mL THBS1, or 8 ng/mL 

FMOD. Combinations of 4 ng/mL TGF-β1 and 8 ng/mL FMOD as well as 0.5 g/mL 

THBS1 and 8 ng/mL FMOD were performed alongside stand-alone treatments. (Left 

panel) Representative images. SA-β-gal-positive cells are shown with black arrowhead; 

scale bars: 200 m. See Figure S4E for processed images. (Right panel) Quantification 

of SA-β-gal: SA-β-gal-positive rate (%) =number of SA-β-gal-positive cells / total 

number of cells × 100. Four images per well were randomly analyzed from three wells 

(total 12 images/condition), ***p < 0.001 (Tukey’s multiple comparisons).  

J) Effect of TGF-β1 simulation on SA-β-gal activity in BJ cells. (Left panel) Representative 

images. SA-β-gal-positive cells are shown with black arrowheads; scale bar: 200 m. 

(Right panel) Quantification of SA-β-gal: SA-β-gal-positive rate (%) =number of SA-β-

gal-positive cells / total number of cells × 100. Four images from each of the three wells 

were analyzed (total 12 images/condition), ***p<0.001 (vs. control, Student’s t-test). 

 

3.1.6 THBS1 and FMOD expression is controlled by the TGF-β signaling pathway 

THBS1 is known to activate latent TGF-β1 [79], while FMOD reportedly binds to TGF-β1 to 

inhibit its binding to the TGF-βR [80–82]. THBS1 is also known to be induced by TGF-β1 

stimulation in human dermal fibroblasts [101]. Consistently, I found that THBS1 expression was 
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induced by TGF-β1 in HFF-1 cells (Figure 3.1.6A) [76]. However, the same TGF-β1 treatment 

decreased FMOD expression. These results were also confirmed in BJ cells (Figure 3.1.5G, 

3.1.6B). Next, the effect of FMOD on THBS1 expression was examined in HFF-1 cells (Figure 

3.1.6C). While TGF-β1 alone increased THBS1 expression, the addition of FMOD completely 

suppressed THBS1 levels. In contrast, THBS1 treatment downregulated FMOD expression in a 

dose-dependent manner (Figure 3.1.6D). These findings suggest a mutual inhibitory role for 

THBS1 and FMOD. Interestingly, stimulation of BJ cells with THBS1 enhanced its own 

expression (Figure 3.1.6E), suggesting the positive-feedback regulation of the TGF-β pathway by 

THBS1 in dermal fibroblasts. I additionally investigated the effects of other TGF-β family 

members, particularly TGF-β2 and TGF-β3, on the expression of THBS1 and FMOD, and found 

that THBS1 expression was promoted (Figure 3.1.6F) and FMOD expression was suppressed 

(Figure 3.1.6G) in all members of the TGF-β family. Therefore, TGF-β2 and TGF-β3 may also 

be involved in skin aging, but they were found to regulate THBS1 and FMOD via a common 

mechanism as TGF-β1.  

 



60 

 

Figure 3.1.6: THBS1 and FMOD expression is controlled by the TGF-β signaling pathway [76]. 

A) WB of THBS1 and FMOD in TGF-β1-stimulated HFF-1 cells. Cell lysates were collected 

48 h after control (blue) or TGF-β1 (red) treatment. (Left panel) Representative image. 

(Middle panel) Quantification of THBS1; n = 3, *p < 0.05 (vs. control, Dunnett’s test). 

(Right panel) Quantification of FMOD; n = 3, *p < 0.05, **p < 0.01 (Dunnett’s test).  

B) FMOD ELISA in TGF-β1-stimulated BJ cells. Cells were treated with control (blue) or 4 

ng/mL TGF-β1 (red) for 48 h and their supernatants were analyzed; N=3, **p<0.01 

(Student’s t-test). 
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C) WB analysis of THBS1 in TGF-β1- and FMOD-stimulated HFF-1 cells. Cell lysates were 

collected 48 h after treatment with control (blue), 4 ng/mL TGF-β1 (red), or a 

combination of 4 ng/mL TGF-β1 and 8 ng/mL FMOD (purple). (Left panel) 

Representative image. (Right panel) Quantification of THBS1; n = 3, *p < 0.05, **p < 

0.01 (Tukey’s multiple comparisons). 

D) FMOD ELISA of THBS1-stimulated HFF-1 cells. Cells were treated with THBS1 

(purple) for 48 h and their supernatants were analyzed; n = 3, *p < 0.01 (Dunnett’s test).  

E) WB analysis of THBS1 in THBS1-stimulated BJ cells. Cell lysates were collected 48 h 

after control (blue) or THBS1 (purple) treatment. (Left panel) Representative image. 

(Right panel) Quantification of THBS1; n = 3, **p < 0.01 (Dunnett’s test). 

F) WB analysis of TGF-β family-stimulated HFF-1 cells. Cell lysates were collected 48 h 

after control (blue) or 4ng/mL TGF-β family (red; with TGF-β1, TGF-β2, TGF-β3) 

treatment and the lysates were analyzed. (Left panel) Representative image. (Right panel) 

Quantification of THBS1 expression; N=3, *p<0.05, **p<0.01 (Dunnett’s test).  

G) FMOD ELISA in TGF-β family-stimulated HFF-1 cells. Cells were treated with control 

(blue) or 4 ng/mL TGF-β family (red; with TGF-β1, TGF-β2, TGF-β3) for 48 h and their 

supernatants were analyzed; N=3, ***p<0.001 (Dunnett’s test).  

 

3.1.7 THBS1 regulation requires SMAD activation and c-Fos/c-Jun DNA binding 

I investigated the regulation of THBS1 and FMOD by TGF-β1 and related signaling pathways 

using small molecule inhibitors and small interfering (si) RNA KD experiments [76]. TGF-β1-

dependent induction of THBS1 and phosphorylation of SMAD2 and SMAD3 were inhibited by 

LY364947 (TGF-βRI/TGF-βRII inhibitor) and SB431542 (TGF-βRI inhibitor; Figure 3.1.7A). 

Because both SMAD3 and SMAD4 cooperate with c-Fos/c-Jun of the activator protein-1 (AP1) 

family to mediate TGF-β-induced transcription [102–104], I tested the involvement of c-Fos/c-

Jun in the regulation of THBS1 using siRNA. C-Fos/c-Jun KD significantly reduced the TGF-β1-

induced expression of THBS1 compared to that with non-targeted KD (Figure 3.1.7B). The 

siRNA of c-Fos/c-Jun showed downregulation of c-Fos/c-Jun expression without affecting the 

activation of SMAD2, SMAD3, and SMAD4 (Figure 3.1.7C). The AP-1 DNA binding inhibitor, 

T-5224, was also tested for its effect on THBS1 regulation in HFF-1 cells (Figure 3.1.7D). While 

T-5224 alone had no effect on THBS1 expression compared to TGF-β1 alone, the combination of 

TGF-β1 and T-5224 reduced THBS1 expression. I also confirmed that T-5224 of c-Fos/c-Jun did 

not affect the activation of SMAD2, SMAD3, and SMAD4 (Figure 3.1.7E). These findings 

suggest that regulation of THBS1 in dermal fibroblasts requires the formation of AND-gated 

networks through the activation of SMAD and binding of c-Fos/c-Jun to DNA, both of which are 

activated by TGF-β stimulation. 
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Figure 3.1.7: THBS1 regulation requires SMAD activation and c-Fos/c-Jun DNA binding [76]. 

A) WB analysis of TGF-β1-stimulated HFF-1 cells treated with TGF-βR inhibitors. Cells 

were treated with LY364947 and SB431542 with/without TGF-β1 for 48 h and the lysates 

were analyzed. (Left panel) Representative image. (Right panel) Quantification of 

THBS1, pSMAD2, and pSMAD3 expression following TGF-βR inhibitor treatment; N=3, 

***p<0.001 (Tukey’s multiple comparisons).  

B) WB analysis of THBS1 with c-Fos/c-Jun knockdown (KD) using HFF-1 cells. Cells were 

pretreated with each siRNA (50 nM) and collected 48 h after control (blue) or 4 ng/mL 

TGF-β1 (red) treatment. (Left panel) Representative image. (Right panel) Quantification 

of THBS1; n = 3, **p < 0.01 (Tukey’s multiple comparisons).  

C) WB analysis of c-Fos/c-Jun KD in HFF-1 cells. C-Fos/c-Jun KD cell lysates were 

collected at 1 h after control (blue) or TGF-β1 (red) treatment. (Left panel) Representative 

image. (Right panel) Quantification of c-Fos, c-Jun, pSMAD2, pSMAD3, and SMAD4; 

N=3, *p<0.05, **p<0.01, ***p<0.001, NS: not significant (Tukey’s multiple 

comparisons). 

D) WB analysis of TGF-β1-stimulated HFF-1 cells treated with T-5224. Cells were treated 

with/without T-5224, and TGF-β1 for 48 h and the lysates were analyzed. (Left panel) 

Representative image. (Right panel) Quantification of THBS1; N=3, **p<0.01, 

***p<0.001 (Tukey’s multiple comparisons). 
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E) WB analysis of TGF-β1-stimulated HFF-1 cells treated with T-5224. Cells were treated 

with/without T-5224, and TGF-β1 for 1 h and lysates were analyzed. (Left panel) 

Representative image. (Right panel) Quantification of pSMAD2, pSMAD3, and SMAD4; 

N=3, **p<0.01, ***p<0.001, NS: not significant (Tukey’s multiple comparisons). 

 

3.1.8 Impact of Kinase Inhibitors on FMOD Expression in Dermal Fibroblasts 

To investigate the regulatory mechanism of FMOD in dermal fibroblasts, I conducted a 

compound screening using various kinase inhibitors (Figure 3.1.8A) [76]. The candidates in the 

screening included Ki8751 (VEGFRII inhibitor), GW5074 (c-Raf1 inhibitor), and U0126 

(MEK1/2 inhibitor). Alongside these compounds, ZM306416 (VEGFRI inhibitor) was also 

selected to validate the effect on FMOD expression, which was found to be significantly 

suppressed (Figure 3.1.8B). Further supporting this, the expression of FMOD was found to be 

significantly increased with higher concentrations of VEGF (Figure 3.1.8C). Additionally, other 

growth factors, such as epidermal growth factor (EGF), basic-fibroblast growth factor (b-FGF), 

and platelet derived growth factor-BB (PDGF-BB), which also activate c-Raf and MEK, were 

found to reduce FMOD expression (Figure 3.1.8D). These results collectively suggest that FMOD 

is regulated by the VEGF signaling pathway in dermal fibroblasts.  

To determine the mechanism of FMOD suppression by TGF-β1, I tested whether the 

combination of kinase inhibitor and TGF-β1 would restore FMOD expression (Figure 3.1.8E)  

[76]. Akt inhibitor VIII (Akt inhibitor) or LY294002 (PI3K inhibitor) significantly restored 

FMOD expression in the presence of TGF-β1. These results indicate that THBS1 and FMOD 

expression is regulated by the TGF-β and VEGF-Raf-ERK signaling pathway, respectively 

(Figure 3.1.8.F), and that the TGF-β1-dependent suppression of FMOD is mediated by the PI3K-

Akt pathway. 
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Figure 3.1.8: Impact of kinase inhibitors on FMOD expression in dermal fibroblasts [76]. 

A) FMOD ELISA in kinase inhibitors-screening of HFF-1 cells. Cells were treated with 
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various kinase inhibitors for 48 h and their supernatants were analyzed. (Left axis) 

Quantification of FMOD (vs. control). (Right axis) Cell viability (vs. control) measured 

using the tetrazolium salt WST-8; n = 1. 

B) FMOD ELISA of kinase inhibitor-treated HFF-1 cells. Cells were treated with 

ZM306416HCl, Ki8751, GW5074, or U0126 for 48 h and their supernatants were 

analyzed; n = 3, **p < 0.01, ***p < 0.001 (Dunnett’s test). 

C) FMOD ELISA of VEGF165 treated HFF-1 cells. Cells were treated with VEGF165 for 

48 h and the supernatants were analyzed; n = 3, *p < 0.05 (Dunnett’s test).  

D) FMOD epidermal growth factor (EGF), basic-fibroblast growth factor (b-FGF), or 

platelet derived growth factor-BB (PDGF-BB) treatment of HFF-1 cells. Cells were 

treated with each ligand for 48 h and their supernatants were analyzed; N=3, **p<0.01 

(Dunnett’s test). 

E) FMOD ELISA in kinase inhibitor- and TGF-β1-treated HFF-1 cells. Cells were treated 

with Akt inhibitor VIII or LY294002 combined with 4 ng/mL TGF-β1 for 48 h and their 

supernatants were analyzed; n = 3, **p < 0.01 (Student’s t-test), †p < 0.05, ††p < 0.01 

(Dunnett’s test).  

F) Regulatory network of THBS1 and FMOD. In human dermal fibroblasts, TGF-β1 

induced THBS1 production occurs via TGF-βR–SMAD activation (red shade). FMOD 

was regulated via activation of the VEGFR–cRaf–MEK pathway (blue shade). Crosstalk 

between these pathways occurred with the TGF-β pathway inhibiting the VEGF pathway 

via the PI3K-Akt pathway (green shade). 

 

3.1.9 Bifurcation Analysis of Dermal Senescence 

A nonlinear ordinary differential equation (ODE) model of the core network consisting of TGF-

β1, THBS1, and FMOD was constructed to qualitatively elucidate the behavior of the system 

(Figure 3.1.9A, see details in the Methods section) [76]. Fitting against the datasets of THBS1 

and FMOD levels at different TGF-β1 concentrations yielded parameters that reproduced the 

experimental results (Figure 3.1.9B), while the parameters for regulation of TGF-β1 by THBS1 

(𝐾1) and FMOD (𝐾2) are yet to be identified. I examined which parameter is more influential for 

controlling the steady state, and found that both parameters can induce a bistable switch for TGF-

β1 (Figure 3.1.9C). Since the expression levels of THBS1 and FMOD were upregulated and 

downregulated with the increase of TGF-β1expressions, respectively, changing these parameters 

simulates the transition from low- to high-TGF-β1 states (Figure 3.1.6A). For the purpose of this 

study, we defined ‘high-TGF-β1’ as the state with high-THBS1 and low-FMOD expressions, and 

‘low-TGF-β1’ as the state with low-THBS1 and high-FMOD expressions, respectively. 

Importantly, the bistable region was quite asymmetric with respect to 𝐾1 and 𝐾2: changes in 𝐾1 
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always induced a transition from the current state, whereas changes in 𝐾2 induced the transition 

only for a small parameter range of 𝐾1 (Figure 3.1.9C). Moreover, we extended the core model 

to a stochastic model to simulate the probability distributions of THBS1 (see details in the 

Methods section) (Figure 3.1.9D). As a result, we found that the bimodal distribution of THBS1 

expression becomes relatively unimodal when the value of 𝐾1  is changed from 14 (near the 

bifurcation point) to 10, which corresponds to increasing TGF-β1 levels. In contrast, changing the 

value of 𝐾2 (𝐾1 = 16) does not produce bifurcation. Taken together, we concluded that 𝐾1 has 

more influence on state transitioning. 

To better understand the roles of endogenous TGF-β1, THBS1, and FMOD, we extended the 

above-mentioned model as an endogenous core model to incorporate the effects of PDL and 

endogenous TGF-β1 production for simulating the system behavior in an endogenous condition 

(Figure 3.1.9E) [76]. By fitting the steady state values of THBS1, FMOD, and TGF-β1 against 

the corresponding in vitro experimental values for different PDLs (Figures 3.1.4A, 3.1.4B), we 

estimated the endogenous TGF-β1 normalized production rate as 𝛾 ≈ 3.5  (Figure 3.1.9F). I 

found that the endogenous core model also shows binary high-/low-TGF-β1 states. Moreover, it 

was observed that THBS1 is sensitive against 𝛾 < 1  (bifurcation point: 𝛾 ≈ 0.07 ), where 

endogenous TGF-β1 production rate is low. Consequently, the nonlinear model was shown to 

provide a core network for assessing the molecular contributions to both skin aging and dermal 

fibroblast senescence. 
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Figure 3.1.9: Bifurcation analysis of dermal senescence [76]. 

A) Core network consisting of TGF-β1, THBS1, and FMOD. Arrows and barred lines 

represent positive and negative regulations, respectively. 

B) Model parameters for the core network consisting of TGF-β1, THBS1, and FMOD were 

trained on the experimental expressions of THBS1 and FMOD upon treatment with 
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different concentrations (0.04, 0.4, or 4 ng/mL) of TGF-β1 (Figure 3.1.6A). The x- and 

y-axes represent steady state expressions of TGF-β1 and THBS1 (left panel) or FMOD 

(right panel). The points (◇ : Replicate 1, ⋇ : Replicate 2, ■: Replicate 3) indicate 

experimental data, and red solid lines indicate model fitting results.  

C) Bifurcation diagrams of steady state expressions of TGF-β1, THBS1, and FMOD, with 

respect to 𝐾1  (upper panel) and 𝐾2  (bottom panel), which correspond to the cut 

surfaces shown in left panels, respectively. Note that [TGFβ1] ≡ 0 is a stable solution 

for 𝐾1 > 0 and 𝐾2 > 0. Red and blue colors represent stable and unstable points on the 

surface, respectively. Solutions with high TGF-β1 expression levels indicate a high-

THBS1 (low-FMOD) state, while those with low TGF-β1 expression levels indicate a 

low-THBS1 (high-FMOD) state. 

D) Bifurcation diagrams (upper panel) and probability distributions (bottom panel) for the 

expression level of THBS1 with respect to 𝐾1 (left panel) and 𝐾2 (right panel), which 

correspond to the cut surfaces shown in Figure 3.1.9C. Stable (red) and unstable (blue) 

fixed points are computed using a deterministic model, while distributions are computed 

using a stochastic model with 10,000 independent simulations. Gray shade indicates the 

change in 𝐾1  from 14 (near the bifurcation point) to 10, which corresponds to an 

increase in TGF-β1. 

E) Bifurcation diagrams of the steady state expressions of endogenous TGF-β1, THBS1, and 

FMOD with respect to γ, computed from the extended model. Red and blue points 

represent stable and unstable points, respectively, and vertical broken line at γ≈3.5 

represent the fitted value to the in vitro experimental expression upon RS with different 

PDL. 

F) Model parameters for the core network consisting of endogenous effects of TGF-β1, 

THBS1, and FMOD were trained on the experimental expression of THBS1, FMOD, and 

TGF-β1 upon RS with different PDL (PDL 24, PDL 36, PDL 47, PDL 53) (Figures 3.1.4A, 

3.1.4B). The x- and y-axes represent steady state expressions of PDL and THBS1 (upper 

panel), FMOD (right panel), or TGF-β1 (bottom panel). The points (◇: Replicate 1, ⋇: 

Replicate 2, ■: Replicate 3) indicate experimental data, and red solid lines indicate model 

fitting results. 

 

3.1.10 Irreversibility of THBS1 in Dermal Senescence  

Here, we demonstrated a binary high-/low-TGF-β1 switch through bifurcation analysis. To 

validate the conclusions drawn from the mathematical approaches, I conducted additional 

experiments [76]. Firstly, I performed time-course washout experiments of TGF-β1 treatment to 

confirm the irreversibility of the regulatory system, which was suggested by the existence of 
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stable and unstable states. TGF-β1 was washed out at various time-points (i.e., 1 h, 2 h, 4 h, 8 h, 

12 h, 24 h, and 48 h) and replaced with only the medium, which served as the control (Figure 

3.1.10A, 3.1.10B). Interestingly, I found that both transient and sustained TGF-β1 treatments 

regulated THBS1 and FMOD expression in a similar manner. Furthermore, both treatments 

induced sustained activation of phosphorylated Akt (Ser473), implying that sustained stimulation 

is not essential for regulation of the system by TGF-β1, and that transient stimulation can 

reproduce the regulation. The regulation of THBS1 and Akt phosphorylation by transient and 

sustained stimulation was further confirmed with even shorter time-point washes (i.e., 15 min, 30 

min, 1 h, 4 h, 12 h, 24 h, and 48 h) (Figure 3.1.10C). These results indicated an irreversible nature 

of THBS1 upregulation and FMOD downregulation by TGF-β1 treatment, suggesting the 

presence of a binary switch. 
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Figure 3.1.10: Irreversibility of THBS1 in dermal senescence [76]. 

A) Schematic representation of TGF-β1 washout experiment. The x- and y-axes represent 

the washout time-points and concentration dynamics of TGF-β1, respectively. 

B) WB analysis of time-course TGF-β1 washout experiment using HFF-1 cells. Cells were 

treated with 4 ng/mL TGF-β1, washed with PBS at each time-point (1 h, 2 h, 4 h, 8 h, 12 

h, 24 h, and 48 h), and lysates were collected at 48 h. (Left panel) Representative image. 

(Right panel) Quantification of THBS1, FMOD, and phosphorylated Akt (Ser473); N=3, 
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*p<0.05, **p<0.01, ***p<0.001 (Tukey’s multiple comparisons). 

C) WB analysis of TGF-β1 washout experiment using HFF-1 cells. Cells were treated with 

TGF-β1, washed with PBS at each time-point (15 min, 30 min, 1 h, 4 h, 12 h, 24 h, and 

48 h), and lysates were collected at 48 h. (Left panel) Representative image. (Upper right 

panel) Quantification of THBS1; N=3, **p<0.01, ***p<0.001 (Tukey’s multiple 

comparisons). (Bottom right panel) Quantification of phosphorylated Akt (Ser473); N=3, 

***p<0.001 (Tukey’s multiple comparisons). 

 

3.1.11 Role of Endogenous TGF-β in Regulating THBS1 and FMOD Expression 

Secondly, the effects of endogenous TGF-β signaling on THBS1, FMOD, and phosphorylated 

Akt (Ser473) expressions were confirmed through LY364947 treatment—a TGF-βRI/TGF-βRII 

inhibitor—performed during progressive passage-induced senescence at each PDL (Figure 

3.1.11A) [76]. Inhibition of endogenous TGF-β signaling downregulated THBS1, but did not 

affect FMOD expression or the activation of phosphorylated Akt (Ser473). To further validate my 

in vitro findings with model simulations, I simulated the effect of TGF-βR inhibitor using the 

endogenous core model, by incorporating changes in the signaling pathways as the model 

parameter. Our stochastic simulations also showed that lowering the parameter γ for endogenous 

TGF-β1 production results in a decrease in THBS1 expression, while FMOD expression remains 

largely unchanged (see details in the STAR Methods section) (Figure 3.1.11B). These results 

indicate that when endogenous TGF-β signaling is inhibited, THBS1 is more likely to undergo a 

change of state, whereas FMOD remains barely sensitive. 
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Figure 3.1.11: Role of endogenous TGF-β in regulating THBS1 and FMOD expression [76]. 

A) WB analysis of RS-induced HFF-1 cells treated with the TGF-βR inhibitor. Cells of each 

PDL (PDL 24, PDL 36, PDL 47, PDL 53) were treated with 5  LY364947 for 48 h and 

the lysates were analyzed. (Upper panel) Representative image. (Bottom left panel) 

Quantification of THBS1; N=3, *p<0.05, ***p<0.001 (Tukey’s multiple comparisons). 

(Bottom middle panel) Quantification of FMOD; N=3, **p<0.01, ***p<0.001 (Tukey’s 

multiple comparisons). (Bottom right panel) Quantification of phosphorylated Akt 

(Ser473); N=3, NS: not significant (Tukey’s multiple comparisons). 

B) Probability distributions for the expression levels of endogenous THBS1 (left panel) and 

FMOD (right panel) with respect to endogenous TGF-β1 production rate γ, as computed 
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using a stochastic model with endogenous parameters and 10,000 independent 

simulations. 

 

3.1.12 Bimodality of THBS1 in Dermal Senescence  

Thirdly, to further validate the presence of a binary high-/low-TGF-β1 switch, I examined the 

bistability of THBS1 expression using immunofluorescence imaging (Figure 3.1.12) [76]. 

Quantification of integral intensity of each image revealed that THBS1 expression was 

significantly upregulated by TGF-β1 in a concentration-dependent manner (Figure 3.1.12), which 

was consistent with the results obtained through western blot (Figure 3.1.6A). Additionally, a 

comparison of the mean intensities of each individual immunostained image showed that THBS1 

expression was significantly upregulated by TGF-β1 (control vs. 0.2 ng/mL TGF-β1: p < 0.05), 

while bimodal distribution of THBS1 expression was also observed in the control group 

(Silverman test [105]; unimodal: p = 0.19, bimodal: p = 0.028). This result also demonstrated that 

the population of low-THBS1 cells (low TGF-β1) was reduced, whereas the population of high-

THBS1 cells (high TGF-β1) increased by 0.2 ng/mL TGF-β1 (Silverman test; unimodal: p = 0.11, 

bimodal: p = 0.92). Overall, a distinct population of low-THBS1 cells remained present, although 

reduced by the effect of TGF-β1. A bimodal to unimodal shift in THBS1 expression by TGF-β1 

was suggested based on the simulations of bifurcation analysis (Figure 3.1.9D). These findings 

support the existence of a binary high-/low-TGF-β1 switch in the network consisting of TGF-β1, 

THBS1, and FMOD. 
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Figure 3.1.12: Bimodality of THBS1 in dermal senescence [76]. 

Distribution of THBS1 expression by immunofluorescence imaging using HFF-1 cells. 

Cells were treated with TGF-β1 for 48 h and fixed for immunofluorescence imaging. 

(Upper panel) Representative images; scale bars: 100 m. (Bottom left panel) 

Quantification of integrated intensity of THBS1 of each image; 16 images per well from 

six wells were analyzed (total 96 images/condition); *p < 0.05, ***p < 0.001 (Dunnett’s 

test). (Bottom right panel) Quantification of mean intensity of THBS1 of each image; 16 

images per well from six wells were analyzed (total 96 images/condition); *p < 0.05 

(Dunnett’s test). 

 

3.1.13 Mechanistic Mathematical Model of Skin Aging  

Because of the limitations in explaining the molecular mechanisms using the above-mentioned 

model near equilibrium state, I further constructed a comprehensive ODE model of the TGF-β 

and VEGF receptor signaling network to quantitatively understand the dynamics of skin aging 

regulated by THBS1 and FMOD (Figure 2.3.3) [76]. The integrated model included latent TGF-

β1 activation by THBS1 [79], inhibition by FMOD [80–82], SMAD-AP1 complex formation 

[102–104], a negative feedback by SMAD7 [106], positive feedback of THBS1 [79,107–109], 

VEGFR and Raf-ERK cascade [68,88], and PI3K-Akt crosstalk between the TGF-β and VEGF 

pathways. The model was constructed using parameters trained with time-course data (i.e., 0 min, 
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15 min, 30 min, 60 min, 120 min, 8 h, 24 h, and 48 h) of protein phosphorylation or expression 

(i.e., phosphorylated SMAD3, c-Fos, THBS1, phosphorylated Akt, and FMOD) in HFF-1 cells 

stimulated with or without TGF-β1 (Figure 3.1.13A). I obtained 30 well-fitting parameter sets 

(Figure 2.3.4) that reproduced the experimental data (see details in the Methods section). The 

traces of 30 optimization runs and distribution of the objective function, i.e., sum of residual 

squares between simulation and experimental values, showed a uniform distribution, indicating 

robust parameter estimation results (Figure 2.3.5). The resulting model had 79 rate equations, 83 

species, and 194 parameters. To validate the model and assess the reproducibility of the model 

dynamics, I used phosphor-SMAD2 data, which was not used as training data (Figure 3.1.13B). 

Finally, I obtained a model that could successfully reproduce most of the experimental results for 

HFF-1 cells. 
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Figure 3.1.13: Mechanistic mathematical model of skin aging [76]. 

A) Experimental time-course WB image with/without TGF-β1 treatment in HFF-1 cells. 

HFF-1 was stimulated with/without TGF-β1 and the lysates were collected at 0 min, 15 

min, 30 min, 60 min, 120 min, 8 h, 24 h, and 48 h. Model parameters for the integrated 

TGF-β–VEGF model were trained on time-course phosphorylated SMAD3, c-Fos, 
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THBS1, phosphorylated Akt (Ser473), and FMOD protein levels. (Upper panel) 

Representative image (Bottom panel) The points (control: blue squares, TGF-β1: red 

squares) indicate experimental data, solid lines indicate the average simulation of 30 

parameter sets, and shade areas indicate SD. Error bar represents SD; n = 3, mean ± SD. 

B) Validation of mechanistic model using phosphorylated SMAD2. The model reproduced 

phosphorylated SMAD2 dynamics. The points (control: blue squares; 4 ng/mL TGF-β1: 

red squares) indicate experimental data, solid lines indicate the average simulation of 30 

parameter sets, and shaded areas indicate SD; N=3, mean ± SD. 

 

3.1.14 Late inhibition of PI3K-Akt is crucial for FMOD downregulation by TGF-β1  

As TGF-β1 and VEGF expression is known to increase during cellular senescence [110,111] and 

in HFF-1 cells with higher PDL (Figure 3.1.4A, 3.1.14A), numerical simulations were conducted 

with the generated comprehensive ODE model to mimic these changes [76]. In these simulations, 

the initial concentrations of TGF-β1 and VEGF were increased to represent a state of senescence 

(Fig 3.1.14B). The input increased, the levels of phosphorylated SMAD3 and activated Ras (Ras-

GTP) gradually increased. Interestingly, as senescence progressed, THBS1 gradually increased 

until 24 h, while FMOD started to decrease from the 24 h time-point, as compared to the control. 

I also observed that while the basal condition induced transient activation (blue line) of 

phosphorylated Akt at early phase, higher initial values resulted in sustained Akt activation (red 

line). This is likely because as cellular senescence progresses, Akt activation switches from 

transient to sustained, and sustained Akt activation suppresses FMOD expression in the later 

stages of the dynamics. Based on the simulation of FMOD expression, the 24 h time-point (black 

arrow) was identified as the breakpoint of FMOD inhibition by transient and sustained Akt 

activation. This suggests that the Akt activation observed in early phase does not affect FMOD 

expression, and that FMOD recovery may be achieved by selectively inhibiting persistent Akt 

activity in the late phase. 

To verify this difference in Akt activation, I examined FMOD recovery in TGF-β1-treated HFF-

1 cells by adding LY294002 (or Akt inhibitor VIII) at specific time-points to suppress Akt 

phosphorylation (3.1.14C) [76]. While FMOD expression was significantly reduced by TGF-β1 

treatment alone, co-treatment with LY294002 (or Akt inhibitor VIII) from start to end (indicated 

as 0 h) restored FMOD expression. When the inhibitor was added at 8 h or 24 h, FMOD recovered 

to the same level as observed at 0 h. However, no recovery was observed after 32 h, which exceeds 

the 24 h breakpoint where FMOD begins to decrease. Thus, using model simulations and their 

validation, I have demonstrated that the sustained dynamics of Akt activity are critical for the 

negative regulation of FMOD expression in the progression of cellular senescence. 
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Figure 3.1.14: Late inhibition of PI3K-Akt is crucial for FMOD downregulation by TGF-β1 [76]. 

A) VEGF ELISA in RS-induced HFF-1 cells. Cells of each PDL (PDL 24, PDL 36, PDL 47, 

PDL 53) were cultured for 48 h, and supernatants were analyzed by VEGF ELISA; N=3, 

*p<0.05 (Dunnett’s test). 

B) Simulation of phosphorylated SMAD3, activated Ras (Ras-GTP), THBS1, FMOD, and 

phosphorylated Akt levels using integrated TGF-β–VEGF mathematical model. Initial 

values of both TGF-β1 and VEGF were increased, as indicated by the color code (from 

×1 to ×10). Solid lines indicate the average simulation of 30 parameter sets, and shade 

areas indicate SD. The black arrow indicates breakpoint of FMOD inhibition. 

C) Quantification of FMOD in LY294002- (left panel) or Akt inhibitor viii- (right panel) 

treated HFF-1 cells by ELISA. Cells were initially treated with 4 ng/mL TGF-β1, 1 M 

LY294002 or 1 M Akt inhibitor viii was added at certain time-points (0 h, purple; 8 h, 

green; 24 h, bright red; 32 h, orange), and supernatants were collected at 48 h. The relative 

expression to the control (blue) is shown. TGF-β1 conditions that were not treated with 

inhibitors are indicated in dark red. n = 3, ***p < 0.01 (vs. control, Student’s t-test), † p 
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< 0.05, †† p < 0.01, ††† p < 0.01 (vs. TGF-β1, Dunnett’s test).  

 

3.1.15 THBS1 is a sensitive factor, FMOD is a robust factor, and SMAD2/3/4 formation is 

effective in suppressing THBS1 expression 

Finally, I aimed to identify the target molecule regulating the rate of cellular senescence. My 

findings thus far point to two possible targets: THBS1 can be downregulated or FMOD can be 

upregulated. To determined which target is more suitable for manipulation, I simulated THBS1 

and FMOD expression as model outputs by increasing the input of TGF-β1 and VEGF, 

respectively (Figure 3.1.15A) [76]. Interestingly, the simulation showed that THBS1 expression 

was sensitive to TGF-β1 input, whereas FMOD was minimally affected by VEGF input. This 

prediction for VEGF was confirmed in an in vitro experiment with HFF-1 cells (Figure 3.1.8C). 

Indeed, the expression of FMOD was significantly increased with increasing VEGF 

concentrations, but the rate of increase was much lower than that for THBS1 induced by TGF-β1 

(Figure 3.1.6A). These results suggest that THBS1 is a sensitive factor, while FMOD is a more 

robust factor in cell senescence. 

To further identify the molecular factors regulating THBS1 activity, I performed a sensitivity 

analysis [112] to determine the bottleneck of the TGF-β signaling network with THBS1 as output 

(Figure 3.1.15B) [76]. A reaction involving SMAD2–SMAD3–SMAD4 complex formation (V13, 

black arrow) was shown to be more sensitive than reactions involving SMAD2 and SMAD3 alone. 

This finding suggests that inhibition of the SMAD4 reaction can effectively suppress THBS1 

production. This simulation was validated by monitoring TGF-β1-induced THBS1 expression 

after siRNA KD of SMAD2, SMAD3, and SMAD4 in HFF-1 cells (Figure 3.1.15C). As suggested 

by the model, SMAD4 KD had the greatest effect on THBS1 expression compared to that of 

SMAD2 and SMAD3. Combinations of SMAD2–SMAD4, SMAD3–SMAD4, or SMAD2–

SMAD3–SMAD4 KDs did not show synergistic or additive effects compared to SMAD4 KD 

alone. After KD of each SMAD, I found that SMAD4 KD significantly suppressed the induction 

of TGF-β1-induced SA-β-gal positivity compared to that by SMAD2 and SMAD3 KDs (Figure 

3.1.15D). I also checked the effect of each SMAD KD on Lamin-B1—which was reduced by 

TGF-β1 treatment—to determine if SMAD4 KD is effective against other aging markers (Figure 

3.1.15E). I found that SMAD4 (p < 0.01) KD significantly restored Lamin-B1 expression, 

whereas SMAD2 (p=0.79) and SMAD3 (p=0.72) did not. These results suggested that SMAD4 

is essential for THBS1 induction and is a critical target for controlling cellular senescence. 
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Figure 3.1.14: Late inhibition of PI3K-Akt is crucial for FMOD downregulation by TGF-β1 [76]. 

A) Simulation of THBS1 and FMOD using developed mathematical model. The initial value 

of TGF-β1 for THBS1 or VEGF for FMOD were increased, as indicated by the color code 
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(From ×1 to ×10). Solid lines indicate the average simulation of 30 parameter sets, and 

shade areas indicate SD. 

B) Sensitivity analysis of TGF-β1-induced THBS1 for 30 parameter sets. Negative 

coefficients (blue) indicate that the quantity of the response metric decreases as species 

increase, while positive coefficients (red) indicate that the quantity of the metric increases. 

The black arrow indicates V13, SMAD2–SMAD3–SMAD4 formation. 

C) Validation of the sensitivity analysis by WB analysis of THBS1 following siRNA KD of 

SMADs in HFF-1 cells. Lysates were collected 48 h after pretreatment with each SMAD 

siRNA alone or in combination for 24 h prior to stimulation with or without 4 ng/mL 

TGF-β1. (Left panel) Representative image. (Right panel) Quantification of THBS1 with 

SMADs KD; n = 3, ***p < 0.001 (vs. non-target control treatment, Student’s t-test), ††p 

< 0.01 (vs. non-target TGF-β1 treatment, Dunnett’s test).  

D) Effect of siRNA KD of SMADs on SA-β-gal activity. HFF-1 cells were pretreated with 

each 25 nM siRNA and stimulated with or without 4 ng/mL TGF-β1. (Left panel) 

Representative images. SA-β-gal-positive cells are indicated with the arrowhead (black). 

Scale bars, 200 m. See Figure S13A for processed images. (Right panel) Quantification 

of SA-β-gal: SA-β-gal-positive rate (%) =SA-β-gal-positive cells / total number of cells 

× 100. Four images per well were randomly analyzed from three wells (total 12 

images/condition), ***p < 0.001 (Tukey’s multiple comparisons).  

E) WB analysis of Lamin-B1 and SMADs following siRNA KD of SMADs in HFF-1 cells. 

Cells were pretreated with each siRNA (25 nM) and collected 48 h after control (blue) or 

4 ng/mL TGF-β1 (red) treatment. (Left panel) Representative image. (Upper right panel) 

Quantification of Lamin-B1; N=3, *p<0.05 (Student’s t-test), ††p<0.01 (Dunnett’s test). 

(Middle left panel) Quantification of SMAD2; N=3, ***p<0.001 (Dunnett’s test), 

†††p<0.001 (Dunnett’s test). (Middle right panel) Quantification of SMAD3; N=3, 

**p<0.01 (Dunnett’s test), †p<0.05 (Dunnett’s test). (Bottom left panel) Quantification of 

SMAD4; N=3, ***p<0.001 (Dunnett’s test), †††p<0.001 (Dunnett’s test). 
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3.2 Identification of Potent THBS1 Suppressor and its 

Mechanism Toward Senescence 

3.2.1 ATRA Suppresses THBS1 by Nuclear Transcriptional Regulation 

As THBS1 was identified as a key promoter of skin aging, I decided to search for an effective 

molecule to suppress THBS1.To manipulate cellular senescence via THBS1, I screened a natural 

product library and identified compounds that efficiently suppressed TGF-β1-induced THBS1 

expression (Figure 3.2.1A). Among the 268 screened compounds, isotretinoin (13-cis-retinoic 

acid) was the most potent suppressor of THBS1. Consequently, I assessed other retinoic acid-

related compounds such as retinol and ATRA (Figure 3.2.1B). TGF-β1-induced THBS1 was 

suppressed after treatment with LY364947, a TGF-βRI/TGF-βRII inhibitor (p < 0.001, TGF-β1 

vs. 5 μM LY364947 + TGF-β1). Retinol showed no effect on THBS1 suppression at a 

concentration of 0.5 μM (p > 0.05, TGF-β1 vs. 0.5 μM Retinol + TGF-β1); however, it suppressed 

THBS1 at a concentration of 5 μM (p < 0.001, TGF-β1 vs. 5 μM Retinol + TGF-β1). Additionally, 

ATRA more potently inhibited THBS1 than retinol at the same concentration (p < 0.01, 5 μM 

Retinol + TGF-β1 vs. 5 μM ATRA + TGF-β1). As retinol is metabolized in the body and converted 

to ATRA [113], I further investigated using ATRA.  

Herein, immunostaining for SMAD4, which translocates to the nucleus upon TGF-β1 

stimulation, was performed to elucidate the regulatory mechanism by which ATRA suppresses 

THBS1 (Figure 3.2.1C). Treatment with TGF-β1 localized SMAD4 in the nucleus (p < 0.001, 

control vs. TGF-β1), whereas treatment with LY364947 and TGF-β1 combination prevented 

SMAD4 from entering the nucleus and restricted it to the cytoplasm (p < 0.001, TGF-β1 vs. 

LY364947 + TGF-β1). Treatment with the ATRA and TGF-β1 combination did not inhibit the 

nuclear localization of SMAD4, thus allowing it to enter the nucleus (p > 0.05, TGF-β1 vs. ATRA 

+ TGF-β1). This result indicates that TGF-β1-induced THBS1 suppression by ATRA is not a 

regulation that occurs outside the nucleus, but rather inside the nucleus. 
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Figure 3.2.1: ATRA suppresses THBS1 by nuclear transcriptional regulation. 

A) Natural compound screening for THBS1 downregulation. Each compound was combined 

with TGF-β1, and 119 compounds showing >80% cell viability were used for THBS1 

ELISA (n = 1). Relative levels are indicated in accordance with the TGF-β1 (1) value. 

B) THBS1 ELISA in compound-treated HFF-1 cell supernatants. The cells were cultured 

with control (DMEM with 2% fetal bovine serum and 0.1% DMSO vehicle), 4 ng/mL 

TGF-β1, 5 μM LY36494 with or without 4 ng/mL TGF-β1, 0.5 μM/5 μM retinol with or 

without 4 ng/mL TGF-β1, or 0.5 μM/5 μM ATRA with or without 4 ng/mL TGF-β1 for 

48 h, and supernatants were analyzed; n = 3, **p < 0.01, ***p < 0.001 (Tukey’s multiple 

comparisons). 

C) Nuclear localization of SMAD4 by immunofluorescence imaging using HFF-1 cells. The 

cells were treated with LY36494 or ATRA in combination with or without 4 ng/mL TGF-

β1 for 48 h and fixed for immunofluorescence imaging. (Left panel) Representative 

images; scale bars: 100 μm. (Right panel) Quantification of nuclear SMAD4 intensity in 

each treatment; In total, 30 images per treatment were randomly analyzed, ***p < 0.001 
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(Tukey’s multiple comparisons). 

 

3.2.2 Mutual Inhibition Identified Between TGF-β1 and ATRA 

To elucidate nuclear TF regulation by ATRA, I identified the TF network from the DEGs that 

were upregulated or downregulated in response to treatment with ATRA using the RNA-seq data 

analyzed by Lisa [94] (Figure 3.2.2A). The TF network analysis identified SMAD3 as a related 

TF in the ATRA-treated RNA-seq DEGs. Next, I determined the relationship between SMAD and 

ATRA based on TF activity predicted from RNA-seq using DoRothEA [90] and found that SMAD 

activity (SMAD3 and SMAD4) decreased after ATRA treatment, whereas ATRA activity (retinoic 

acid receptors [RARs] and retinoid X receptors [RXRs]) decreased after TGF-β1 treatment 

(Figure 3.2.2B). These results indicate a mutual inhibitory relationship between ATRA and 

SMAD signaling. To determine how these TFs are regulated after treatment with ATRA, I 

examined the binding sites of RARA and RXRA using ChIP-Atlas [114,115], a public TF database 

that integrates publicly available ChIP-seq data, allowing users to analyze binding sites of specific 

TFs and epigenetic modifications (Figure 3.2.2C). ATRA binds to RARA and RXRA to form 

heterodimers to regulate gene transcription [116]; thus, genes commonly annotated in RARA and 

RXRA ChIP peaks were extracted. The associated genes were identified by annotating 

neighboring genes at each binding region, and the gene group was divided into two clusters 

according to the number of peaks present as follows; cluster 1: peak count of 3 or fewer and 

cluster 2: peak count greater than 3. The KEGG analyses of each cluster revealed that the gene 

group with many RARA/RXRA binding sites, especially cluster 2, was associated with Hippo 

signaling, TGF-β signaling, and cellular senescence. These results are consistent with the findings 

obtained for Yes-associated protein (YAP)1–TEAD1, the major transcriptional mediators of the 

Hippo pathway [117,118], and SMAD3, an important TF of gene regulation in ATRA treatment 

(Figure 3.2.2A). These results indicate the possibility that TGF-β signaling- and cellular 

senescence-related genes are regulated by RARA/RXRA via YAP–TEAD when treated with 

ATRA. Therefore, I decided to investigate this aspect in detail. 
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Figure 3.2.2: Mutual inhibition identified between TGF-β1 and ATRA. 

A) TF network analysis of RNA-seq data derived DEGs (control vs. 5 μM ATRA, |FC| > 1.2, 

adj-p<0.01) using Lisa. The top 20 TFs are highlighted in red. 

B) TF enrichment analysis of RNA-seq data derived from control, 4 ng/mL TGF-β1, or 5 

µM ATRA with/without 4 ng/mL TGF-β1-treated HFF-1 cells, focusing on SMAD3, 

SMAD4, RARA, and RXRA (details in the Methods section). The heatmap shows the 

normalized TF enrichment scores calculated using DoRothEA analysis. 

C) (Upper panel) Venn diagram showing genes near the binding sites of RARA and RXRA 

using ChIP-Atlas (Cluster 1: peak count 3 or fewer, Cluster 2: peak count greater than 3). 

(Lower panel) Heatmap showing pathways annotated in the KEGG pathway enrichment 

analysis. The adj-p was calculated using the BH method with the “compareCluster” 

function of clusterProfiler. 

 

3.2.3 TEAD Family Is Associated with THBS1 Regulation in TGF-β1 and ATRA 

Stimulation 

To identify TFs crucial for the transcriptional regulation of THBS1, I used ATAC-seq data to 

identify DNA regions with fluctuating peak intensities near THBS1 (Figure 3.2.3A). Open 

chromatin regions around THBS1 that increased with TGF-β1 treatment and decreased with the 

combination of TGF-β1 and ATRA were identified. These DNA regions also fluctuated with both 
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TGF-β1 and ATRA treatments, revealing that a common TF may regulate THBS1 in response to 

both stimuli. Therefore, I extracted TFs with binding sites near THBS1 that fluctuated with TGF-

β1 or ATRA stimulation from ATAC-seq data using ChIP-Atlas (Figure 3.2.3B). I found TEAD4 

binding in both conditions. The TF network involved in ATRA-treated DEGs includes TEAD1 

and its upstream factor, YAP1, suggesting that YAP-TEAD may play a crucial role in regulating 

THBS1 (Figure 3.2.2A). To identify TFs associated with THBS1, I constructed a network of TFs 

involved in TGF-β1-stimulated DEGs using Lisa (Figure 3.2.3C). The graphs show 45 TFs 

common to the 269 TFs annotated as THBS1-related in “The Signaling Pathway Project” [119], 

a public dataset summarizing TFs near each gene, and the top 100 TFs associated with genes 

upregulated by TGF-β1 stimulation. Results suggest that TEAD1, similar to that in ATRA 

stimulation, is involved in regulating TGF-β1-stimulated DEGs. RXRA is also enriched by TGF-

β1 alone, and a binding site is present for RXRA near THBS1, suggesting that retinoic acid 

suppresses THBS1 expression by transcriptionally regulating it through RXRA. In Figure 2C, 

gene cluster 2, which contains many RARA/RXRA binding sites, is highly enriched in the Hippo 

signaling pathway, where TEAD functions as a key TF. To summarize, the RXR/SMAD/TEAD 

TF network plays a critical role in regulating THBS1. 

 

 

Figure 3.2.3: The TF network of retinoid X receptor (RXR)/SMAD/transcriptional enhanced 

associate domain (TEAD) is associated with stimulation of both TGF-β1 and ATRA. 
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A) DNA regions with fluctuating ATAC-seq peak intensities near THBS1. IGV traces of 

ATAC-seq peak intensities for each control, 4 ng/mL TGF-β1, or 5 µM ATRA 

with/without 4 ng/mL TGF-β1 (blue) are shown, along with DNA regions with fluctuating 

ATAC-seq peaks (red; |FC| > 1.2). The upper THBS1 ID indicates NM_003246.4, 

whereas the lower THBS1 ID indicates XM_011521971.3.  

B) Extraction of TFs with binding sites near THBS1 using ChIP-Atlas. The fluctuating DNA 

region derived from ATAC-seq for each TGF-β1 (horizontal axis) and ATRA (vertical 

axis) treatment was used to determine the frequency of each TF. 

C) (Left panel) Venn diagram showing common TFs between THBS1-related TFs from “The 

Signaling Pathway Project” and the top 100 TFs identified from upregulated DEGs 

(control vs. 4 ng/mL TGF-β1, FC > 1.2, adj-p<0.01) using Lisa. (Right panel) TF network 

analysis of RNA-seq data-derived DEGs (control vs. 4 ng/mL TGF-β1, |FC| > 1.2, adj-p 

< 0.01) using Lisa. RXRA, SMAD4, and TEAD1 are highlighted in red. In total, 45 TFs 

were identified from the Venn diagram. Except for RXRA, SMAD4, and TEAD1, the 

other TFs are shown in dark grey. 

 

3.2.4 TEAD Is Activated with Senescence of Dermal Fibroblasts 

TEAD protein is a major transcriptional mediator of the Hippo pathway, regulating gene 

expression crucial for development, cell proliferation, regeneration, and tissue homeostasis 

[117,118]. The transcriptional activity of TEAD is facilitated by its interaction with the co-

activators YAP/TAZ, which are regulated in the cytoplasm by phosphorylation via the Hippo 

pathway. When the Hippo pathway is activated, YAP/TAZ is degraded in the cytoplasm via 

phosphorylation and TEAD cannot interact with YAP/TAZ [117,118]. In contrast, when the Hippo 

pathway is inactivated, unphosphorylated YAP/TAZ translocates to the nucleus and interacts with 

TEAD, forming complexes with TEAD family TFs [120].  

Based on the involvement of the RXR/SMAD/TEAD network in TGF-β1 and ATRA treatments, 

I investigated how these TF activities change during cellular senescence. I calculated TF 

enrichment scores from the gene expression of each PDL using DoRothEA [90] (Figure 3.2.4A). 

As shown in previous section 3.1.2, SMAD3 and SMAD4 were found to be activated with 

increasing PDL. TEAD1 and TEAD4 were also found to be activated with increasing PDL, 

whereas RARA and RXRA showed attenuated activity with increasing PDL. The upstream 

analysis of DEGs associated with increased PDL also revealed that TEAD1 and TEAD4 are 

crucial for the transcriptional regulation of cellular senescence (Figure 3.1.2B). Additionally, 

ATAC-seq was used to explore the TF binding motifs present in DNA open chromatin regions, 

which were peaked by increased PDL and TEADs showed strong enrichment (Figure 3.2.4B). I 

also identified the AP1 family as senescence-associated motifs, including the Jun family (JunB 
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and Jun-AP1), Fos family (Fos), Fra family (Fra1 and Fra2), and ATF family (Atf3). These results 

suggest that TEAD-regulated gene expression increases with cellular senescence in dermal 

fibroblasts, and AP1-TEAD binding motifs are enriched in open chromatin regions. 

 

Figure 3.2.4: TEAD is activated with senescence of dermal fibroblasts. 

A) TF enrichment analysis of RNA-seq data derived from RS-induced HFF-1 cells for 

SMAD3, SMAD4, TEAD1, TEAD4, RARA, and RXRA. The heatmap shows the 

normalized TF enrichment scores calculated using DoRothEA analysis. 

B) Enriched motifs in the gained ATAC-seq peaks with increasing PDL. The log(adj-p value) 

and proportion of target sequences with motif were calculated using the 

“findMotifsGenome.pl” function of HOMER. TEAD motifs are highlighted in red. 

 

3.2.5 TEAD Inhibits Senescence of Dermal Fibroblasts 

 I determined the effect of TEAD inhibition on the regulation of THBS1 expression and SA-β-

gal activity as an in vitro senescence marker. Notably, THBS1 expression was upregulated by K-

975, a TEAD inhibitor [121], and the combination of K-975 and ATRA resulted in expression 

levels comparable to those of the controls (Figure 4A). These findings suggest that TEAD 

functions in a repressive manner on the transcriptional regulation of THBS1. Additionally, ATRA 

treatment suppresses THBS1 expression by promoting TEAD activity. Lamin-B1 expression, a 

marker of cellular senescence, was also confirmed and suppressed by K-975. The downregulation 

of Lamin-B1 expression suggests that TEAD inhibition may promote cellular senescence. When 

SA-β-gal staining with a TEAD inhibitor was performed using young PDL 24 HFF-1 cells, the 

number of SA-β-gal-positive cells increased (p < 0.001, control vs. K-975) and the expression of 

SA-β-gal returned to the same level as in the controls with the combination of K-975 and ATRA 

(Figure 4B). When SA-β-gal staining was performed using senescent PDL 47 HFF-1 cells, ATRA 

treatment decreased the number of SA-β-gal-positive cells (p < 0.001, control vs. ATRA) (Figure 

4C). These results indicate that TEAD has an inhibitory role against cellular senescence and that 

ATRA improves the function of TEAD.  
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Figure 3.2.5: TEAD inhibits the senescence of dermal fibroblasts.  

A) Western blotting of THBS1 and Lamin-B1 in K-975 and ATRA stimulated HFF-1 cells 

(PDL 47). Cells were treated with 1 μM K-975 with or without 5 μM ATRA, cultured for 

48 h, and lysates were analyzed. (Left panel) Representative images. (Middle panel) 

Quantification of THBS1 expression; n = 3, *p < 0.05, **p < 0.01 (Tukey’s multiple 

comparisons). (Right panel) Quantification of Lamin-B1 expression; n = 3, *p < 0.05 

(Tukey’s multiple comparisons).  

B) (Left panel) SA-β-gal staining of 1 μM K-975 with or without 5 μM ATRA stimulated 

PDL 24 HFF-1 cells. Representative images. SA-β-gal-positive cells are shown by black 

arrowheads. Scale bar: 200 μm. (Right panel) Quantification of SA-β-gal: SA-β-gal-

positive rate (%) = number of SA-β-gal-positive cells/total number of cells × 100. In total, 

12 images per treatment were randomly analyzed, ***p < 0.001 (Tukey’s multiple 

comparisons).  

C) (Left panel) SA-β-gal staining of control (DMEM with 2% FBS and 0.1% DMSO 

vehicle), 5 μM ATRA, or 1 μM K-975 with or without 5 μM ATRA stimulated PDL 47 

HFF-1 cells. Representative images. SA-β-gal-positive cells are shown by black 

arrowheads; scale bar: 200 μm. (Right panel) Quantification of SA-β-gal: SA-β-gal-

positive rate (%) = (number of SA-β-gal-positive cells/total number of cells) × 100. In 

total, 12 images per treatment were randomly analyzed, ***p < 0.001 (Tukey’s multiple 

comparisons).  

 

3.2.6 Mechanical Stress regulates Senescence of Dermal Fibroblasts 
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Mechanical stress from extracellular matrix (ECM) stiffness can regulate YAP/TAZ; hence, the 

Hippo signaling pathway involving TEAD is closely associated with adhesion in the surrounding 

environment [122,123]. While most cultured plastic plates are very stiff, with elastic moduli 

ranging from 0.2 to 5.0 GPa [124], a non-negligible difference is found in the human skin dermis 

at 35 kPa [125]. Additionally, the surrounding environment should be brought closer to skin tissue 

to determine the role of cellular senescence in TEAD activity. Hence, I examined SA-β-gal 

activity in senescent human dermal fibroblasts (PDL 47) grown on collagen-coated silicone gel 

of different stiffness elastic modulus ranging from 0.5 to 32 kPa (Figure 3.2.6). I found that 

culturing senescent cells on a soft substrate significantly decreases the number of SA-β-gal-

positive cells (p < 0.001, 2 kPa vs. 32 kPa). Although skin aging decreases the ability to produce 

collagen and other ECMs [20], my results indicate that the environment surrounding the cells may 

affect cellular senescence. Furthermore, the effects of ATRA and K-975 on SA-β-gal staining 

were confirmed at different substrate stiffnesses (2 kPa and 32 kPa). Under 2 kPa conditions, no 

changes were found with ATRA. However, I found that TEAD inhibition with K-975 increased 

SA-β-gal positivity (p < 0.001, control vs. K-975). In contrast, at 32 kPa, ATRA decreased SA-β-

gal positivity, whereas K-975 showed no significant effect (p = 0.49, control vs. K-975). These 

results indicate that TEAD inhibition increases SA-β-gal positivity when initial SA-β-gal levels 

are low, whereas ATRA has no effect (Figures 3.2.5B). When initial SA-β-gal levels are high, 

TEAD inhibition does not significantly change SA-β-gal positivity, but ATRA can suppress it 

(Figures 3.2.5C). 

 

Figure 3.2.6: Mechanical stress regulates senescence of dermal fibroblasts. 

(Left panel) SA-β-gal staining of control (DMEM with 2% FBS and 0.1% DMSO 

vehicle), 5 μM ATRA, or 1 μM K-975 stimulated PDL 47 HFF-1 cells cultured on 

substrates with elastic moduli of 2 kPa or 32 kPa. Representative images. SA-β-gal-

positive cells are shown by black arrowheads; scale bar: 200 μm. (Middle panel) 

Quantification of SA-β-gal under control (DMEM with 2% FBS and 0.1% DMSO 

vehicle) conditions at various elastic moduli of 0.5, 2, 8, 16, and 32 kPa for PDL 47 HFF-
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1 cells. In total, 12 images per treatment were randomly analyzed, ***p < 0.001 (Tukey’s 

multiple comparisons). (Right panel) Quantification of SA-β-gal staining of control 

(DMEM with 2% FBS and 0.1% DMSO vehicle), 5 μM ATRA, or 1 μM K-975 stimulated 

PDL 47 HFF-1 cells cultured on substrates with elastic moduli of 2 kPa or 32 kPa. In total, 

12 images per treatment were randomly analyzed, ***p < 0.001 (Tukey’s multiple 

comparisons).  
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4. DISCUSSION 

In this study, I investigate the regulatory network in skin aging using multi-omics and 

mechanistic modeling approaches. Inflammation and fibrosis have been shown to characterize 

senescence in in vivo [126]. Multi-omics analysis revealed the roles of the TGF-β and YAP-

TEAD signaling pathways in the senescence of dermal fibroblasts. TGF-β signaling pathway 

regulates fibrosis and the activation of YAP and TAZ, transcriptional coactivators of TEAD, 

which contribute to pulmonary fibrosis by activating the profibrotic functions of lung fibroblasts 

[127]. Studies have shown the involvement of the TGF-β signaling pathway in cellular 

senescence. TGF-β pathway activation can cause senescence in surrounding cells through the 

TGF-β1 protein [111,128]. Transcription of p21 can be activated by the TGF-β pathway [129]. 

Multi-omics analysis of RS-senescent WI-38 cells (human lung fibroblasts) showed activation 

of the TGF-β pathway and YAP-TEAD activity [130]. The transcriptome analysis of aged 

mouse skin highlights the TGF-β pathway as a regulator [131]. Together with my findings, 

these results support that the TGF-β pathway is a major signaling pathway and TEAD is 

involved in human skin aging. On contrary, previous papers reported TGF-β signaling pathway 

decline with human skin aging [20,132]. TβRII mRNA levels are reported to be reduced in aged 

(80+ years) compared to young (20-30 years) dermis, along with photoaged human skin, as 

determined by laser capture microdissection coupled with quantitative real-time RT-PCR [133]. 

Therefore, prior studies have concluded a decrease in TGF-β signaling from a macroscopic 

perspective using skin tissue in response to skin aging, while I have concluded an increase in 

TGF-β signaling from a microscopic examination using a cellular aging model of dermal 

fibroblasts. This contradiction highlights the complexity of skin aging, suggests that the role of 

TGF-β signaling in skin aging may vary depending on the context and scale of the analysis. 

The association between aging and Hippo signaling is well-documented [134,135]. Previous 

study has shown that YAP and TAZ activities decrease with aging, protecting the skin from 

premature aging in mouse dermal fibroblasts [136]. A whole-genome CRISPR knockout screen 

showed that the YAP–TEAD pathway affects cell viability in senescent cells [137]. Another 

study performed a multi-omics analysis of the RS model in mouse fibroblasts and identified AP-

1 and TEAD1 as key regulatory TFs [138]. Other studies have reported that AP-1 directly 

interacts with TEAD [139,140]. In human dermal fibroblasts, decreased YAP/TAZ levels 

activate AP-1, which suppresses the TGF-β pathway via the induction of SMAD7 [141]. In my 

analysis, I found that the AP-1 family, including the Jun family (e.g., JUN, JUND), Fos family 

(e.g., FOS), and ATF family (e.g., ATF3), is enriched with the increase in PDL, indicating the 

involvement of AP-1 in TEAD regulation in dermal fibroblast senescence. A previous study 

showed that Tead1 knockdown in mouse dermal fibroblasts attenuates SA-β-gal activity [138]. 
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However, the knockdown of YAP and TEAD1/3/4 increased SA-β-gal activity in IMR90 cells 

(human lung fibroblasts) [142]. My results showed that TEAD inhibitor treatment promotes SA-

β-gal activity. The association between YAP-TEAD and senescence indicates that even 

identical fibroblasts can play different roles in aging based on their species and organs of origin. 

Nevertheless, these results should be confirmed in human skin-derived cells to determine the 

role of YAP-TEAD in human skin aging. 

In addition, my analysis identified an age-related enrichment of estrogen receptor 2 (ESR2). 

Knockout of the human ESR2 gene reduced the expression of human THBS1 mRNA [143] and 

its ligand 17β-estradiol induced THBS1 mRNA expression [144]. 17β-estradiol decreased Fmod 

mRNA expression in the frontal cortex of rats [145]. These results suggest that ESR2 may also 

be involved in the regulation of THBS1 and FMOD in dermal senescence. Furthermore, USP11 

has been reported to stabilize p21 levels in a p53-independent manner [89]. As p53 expression 

did not decrease with increasing PDL in my study, it is possible that changes in USP11 are 

responsible for the downregulation of p21 in the late PDL. 

In previous reports, the analysis of human dermal fibroblast mRNA suggested that THBS1 

expression increased with age [146]. Among 998 proteins that showed an age-dependent secretion 

pattern, THBS1 was upregulated with skin aging [147]. These reports implicated THBS1 as a 

biomarker of skin aging but did not directly demonstrate its function. Collectively, my findings 

and previous findings suggest that THBS1 expression plays a vital role as a universal phenotype 

in skin aging. In addition, THBS1 was reported to promote senescence in endothelial cells 

[148,149]. Given the strong relationship between THBS1 and age-associated diseases [98], my 

current findings on THBS1 have potential applications beyond skin aging.  

In contrast, the expression of FMOD seems to be heterogeneous among reports of skin aging. I 

found that the expression of FMOD decreased with the senescence of dermal fibroblasts. 

Proteomic analysis of human skin punch biopsies showed that FMOD protein expression 

decreased with age [150]. In contrast, an earlier analysis of skin-fibroblast mRNA also suggested 

that FMOD increases with age [146]. FMOD expression was upregulated with increasing age and 

senescence in the public RNA-seq dataset, which contradicts my validation. A possible 

explanation for this difference in the senescence tendency of FMODs in the same HFF-1 cell line 

could be the variation in culture conditions, such as the medium glucose level. Inconsistencies in 

reports on FMOD regulation may also be due to the differences between proteomic and 

transcriptomic data in aging, suggesting that their expressions are poorly correlated and that 

mRNA profiling alone does not provide the complete picture [151].  

My findings suggest that both SMAD activation and c-Fos/c-Jun binding to DNA are required 

to regulate THBS1 expression in dermal fibroblasts. In earlier studies, THBS1 was regulated by 

the SMAD3 binding site of the THBS1 promoter [109]; c-Jun, but not c-Fos, was involved in AP-
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1 activity at the AP-1 binding site of the THBS1 promoter in human hepatocarcinoma cell lines 

[152]. Various TFs (e.g., NF-B, USF, E2F1, AP-1, EGR1, and SP1) have been reported to bind 

to the promoter region of THBS1 [153]; therefore, the TFs associated with THBS1 may vary 

among cell lines. In addition, I found that TEAD is involved in the transcriptional regulation of 

THBS1 in dermal fibroblasts. A bioinformatics analysis using MCF7 cells (breast cancer) 

identified THBS1 as a direct transcriptional target of YAP-TEAD [154]. WI-38 and HFF-1 cells 

show TGF-β and TEAD activation with RS; however, TEAD inhibition decreases THBS1 in WI-

38 cells [130]. However, my TEAD inhibition experiment with dermal fibroblasts increased 

THBS1. My findings indicate that while TEAD acts as a repressor of THBS1 in dermal fibroblasts, 

it may function differently in other cell types, including WI-38 and HFF-1 cells, highlighting the 

complexity of the Hippo signaling pathway and its context-dependent roles in cellular senescence 

and aging. Subsequent investigations into the molecular interactions among TEAD, THBS1, and 

other regulatory factors in various cell types can provide deeper insights into the tissue-specific 

functions of TEAD and its implications in skin aging and potential therapeutic interventions.   

Meanwhile, FMOD expression in dermal fibroblasts was found to be regulated by the VEGF–

Raf–ERK pathway. Previous reports have indicated that FMOD was regulated by the Wnt/β-

catenin pathway in human breast cancer cell lines [155], MAPK/AP-1 pathway in human 

pancreatic stellate cells [156], and TGF-β2 in rat pericytes [157]. These results suggest that 

FMOD regulation may vary in different cells, tissues or environments. 

Our bifurcation analysis of TGF-β1, THBS1, and FMOD network indicated that a binary high-

/low-TGF-β1 switch. Earlier studies identified a bistable switch that regulates TGF-β1 activation 

in liver fibrosis [158] and asthmatic airways [159]. In addition to these diseases, the bifurcation 

analysis may be useful in qualitatively capturing other phenomena of senescence. 

Several mathematical models have been reported for the TGF-β signaling pathway [86,160,161]. 

Nevertheless, my model is invaluable because it reflects unbiased data-driven insights into the 

gene regulatory network of skin aging, combined with the previous models. Computational 

simulation of skin aging showed that THBS1 responded sensitively while FMOD was robustly 

regulated with any input. These results suggest that THBS1 is a more promising drug target than 

FMOD. The sensitivity analysis further confirmed that the model-predicted sensitive response, 

i.e., the complex formation by SMAD4, was conserved across 30 independent parameter sets, 

suggesting that parameter identifiability does not affect the uncertainty of model outputs. In the 

siRNA-based SMADs KD experiments, knockdown of the SMAD2–SMAD3 combination 

(besides SMAD4) significantly reduced THBS1, which may indicate a functional redundancy of 

SMAD2 and SMAD3. On the contrary, when considering practical applications in drug 

development, focusing on a single target (SMAD4) is more suitable than developing drugs for 

two alternative targets, SMAD2 and SMAD3. Experimental evidence has shown that inhibition 
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of SMAD4 complex formation has a restorative effect on the aging phenotype (i.e., SA-β-gal and 

Lamin-B1), and that its effects go beyond THBS1 regulation. This approach of targeting THBS1 

by inhibiting SMAD4 complex formation will open new avenues for skin aging research. 

ATRA, also known as tretinoin, is considered the clinical gold standard for addressing skin 

aging-related concerns due to its ability to reduce fine lines, coarse wrinkles, and pigmentation, 

and improve skin texture [162]. ATRA influences the photodamage of the skin by promoting the 

production of collagen I, an ECM protein that provides structure and elasticity to the skin [163]. 

Furthermore, it plays a role in regulating epidermal thickening, proliferation, and differentiation, 

thereby maintaining the health of the epithelium and preventing skin aging [163,164]. 

Immunohistochemistry assay showed a significant increase in the number of RAR-expressing 

epidermal keratinocytes in aged photo-protected human skin compared to young skin [165]. 

Nevertheless, no change was found in RAR expression in dermal fibroblasts [165]. Retinoic acid 

inhibits collagenase and gelatinase expression in human dermal fibroblasts [166]. A TF network 

between retinoid receptors and the AP-1 family has been reported [167]. AP-1, which binds to the 

promoter region of matrix metalloproteinases collagenase and gelatinase and is triggered by UVB 

irradiation, is repressed by nuclear retinoid receptors [168,169]. Despite these findings, the 

mechanisms underlying the transcriptional regulation of RARs and RXRs in skin aging have yet 

to be elucidated. 

My results revealed mutual inhibition between SMAD activity and RARA/RXRA activities. I 

found that ATRA downregulates THBS1 via the regulation of the RXR/SMAD/TEAD TF network. 

Previous study has reported that retinoic acids exhibit anti-fibrotic activity in scleroderma 

fibroblasts where retinoic acids downregulated TGF-β1 expression [170]. In human tendon 

fibroblasts, ATRA inhibits SMAD2 and SMAD3 phosphorylation induced by TGF-β1 [171]. In 

this study, immunostaining results showed that ATRA does not affect the nuclear influx of 

SMAD4 induced by TGF-β1, indicating that multiple pathways may be present for the 

suppression of TGF-β1 by ATRA. However, retinoids have been reported to increase TGF-β 

activity [172]. Regarding the regulation of THBS1, a previous study reported that some cell lines 

upregulate or downregulate THBS1 expression in response to retinoic acid [173]. These findings 

suggest that crosstalk between TGF-β signaling and the retinoic acid signaling pathway is context-

dependent, sometimes promoting and other times inhibiting the pathway.  

Tissue cells sense and respond to the stiffness of their substrate [174]. Regarding the effect of 

substrate stiffness on senescence, soft substrates can delay senescence and maintain the 

proliferation of human mesenchymal stem cells during long-term expansion [175]. A previous 

study reported that senescent mesenchymal stromal cells showed reduced markers of the 

senescence-associated secretory phenotype (SASP) when cultured on soft substrates compared 

with those in cells cultured on tissue culture plastic [176]. In premature senescence-induced 
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dermal fibroblasts, cells cultured on soft substrates (0.5 kPa) did not express p21 and p16 

compared with those in cells cultured on stiff substrates (4 GPa) [177]. These findings suggest 

that the stiffness of the culture substrate may also affect cellular senescence induced by the RS 

model in dermal fibroblasts. My findings on SA-β-gal activity in human dermal fibroblasts grown 

in environments with different stiffness suggest that senescent human dermal fibroblasts induced 

by the RS model, when cultured on a soft substrate, can significantly decrease the number of SA-

β-gal-positive cells due to the involvement of TEAD activity. Previous studies [177] have not 

elucidated the mechanisms underlying how dermal senescent cells sense and respond to 

mechanical stimuli. Another study suggests a link between reduction of mechanical force, 

downregulation of the TGF-β signaling pathway and skin aging, but does not show the regulatory 

mechanism behind it [178]. Nevertheless, my findings suggest that substrate stiffness affects the 

senescence phenotype via TEAD regulation. The involvement of the retinoic acid receptor and 

TEAD in dermal fibroblast senescence provides an important background for therapeutic 

intervention in this field.  

Big data is increasingly being used to study real-world diseases and disorders. In this regard, the 

present study represents a major advancement in the study of skin aging and the regulatory 

mechanisms of retinoic acid. 
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5. CONCLUSION 

My findings indicate that the TGF-β1-SMAD axis is crucial for regulating cellular senescence 

in human dermal fibroblasts. I found that TGF-β1 is the most enriched upstream regulator of 

senescence-related genes. Additionally, activation of this pathway, accompanied by epigenetic 

changes, is induced by RS. Furthermore, multi-omics analysis revealed THBS1 as a major gene 

in skin aging and cellular senescence, with ATRA effectively suppressing THBS1 through nuclear 

transcriptional regulation. Suppression of THBS1 by ATRA occurs through a mutual inhibitory 

relationship between ATRA and SMAD signaling, involving the RXR/SMAD/TEAD 

transcription factor network. Moreover, I found that TEAD, a transcription factor enriched in 

senescence-associated chromatin regions and increased by ATRA, inhibits cellular senescence. 

Importantly, senescent human dermal fibroblasts grown on a soft substrate significantly decreased 

the number of SA-β-gal-positive cells through the involvement of TEAD activity. My findings 

provide valuable insights into the potential therapeutic targets for age-related skin issues and 

highlight the importance of the Hippo signaling pathway in regulating dermal fibroblast 

senescence. 

 

Figure 5: Schematic of the transcription factor network of RXR, SMAD, and TEAD in THBS1 

regulation in dermal fibroblasts senescence. 
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6. LIMITATIONS OF THE STUDY 

The mechanisms regulating FMOD expression in the dermal fibroblasts remain unclear. Although 

the involvement of VEGF pathway was demonstrated, this study does not rule out the possibility 

that FMOD expression may also be regulated by other ligands. Additionally, I used an anonymous 

transcription factor for FMOD in our mathematical model. Furthermore, the role of endogenous 

TGF-β signaling in senescent transcripts is yet to be elucidated. 

Further research is necessary to elucidate the factors regulating FMOD in skin aging, especially 

because the regulation of FMOD may vary in different cells and tissues, or in different 

environments. 

Although the involvement of mechanical stress in the senescence of dermal fibroblasts has been 

indicated, further validation with other markers of cellular senescence is required. Moreover, 

while the RXR/SMAD/TEAD transcription factor network has been implicated in dermal 

fibroblast senescence and THBS1 regulation, the mechanism of TEAD activation by ATRA 

remains unclear and warrants further investigation. 
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7. KEY RESOURSE TABLE 

Table 7.1: Detailed Information on Materials Used in This Study 

REAGENT or 

RESOURCE 
SOURCE IDENTIFIER 

Antibodies   

Anti-THBS1 Cell 

Signaling 

Technology 

Cat# 37879; RRID: AB_2799123 

Anti-THBS1 Abcam Cat# ab85762, RRID: AB_10674322 

Anti-FMOD ProteinTech Cat# 60108-1-Ig; RRID: AB_2105538 

Anti-Lamin B1 ProteinTech Cat# 12987-1-AP; RRID: AB_2136290 

Anti-p53 Cell 

Signaling 

Technology 

Cat# 2524; RRID: AB_331743 

Anti-p21 Cell 

Signaling 

Technology 

Cat# 2946; RRID: AB_2260325 

Anti-c-Fos Cell 

Signaling 

Technology 

Cat# 2250; RRID: AB_2247211 

Anti-c-Jun Cell 

Signaling 

Technology 

Cat# 9165; RRID: AB_2130165 

Anti-SMAD2 Cell 

Signaling 

Technology 

Cat# 5339; RRID: AB_10626777 

Anti-phosphorylated 

SMAD2 (Ser465/467) 

Cell 

Signaling 

Technology 

Cat# 3108; RRID: AB_490941 

Anti-SMAD3 Cell 

Signaling 

Technology 

Cat# 9523; RRID: AB_2193182 

Anti-phosphorylated 

SMAD3 (Ser423/425) 

Cell 

Signaling 

Technology 

Cat# 9520; RRID: AB_2193207 
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Anti-SMAD4 Cell 

Signaling 

Technology 

Cat# 46535; RRID: AB_2736998 

Anti-phosphorylated Akt 

(Ser473) 

Cell 

Signaling 

Technology 

Cat# 9271; RRID: AB_329825 

Anti-pan Akt Cell 

Signaling 

Technology 

Cat# 2920; RRID: AB_1147620 

Anti-USP11 Abcam Cat# ab109232; RRID: AB_10862711 

Anti-GAPDH Medical & 

Biological 

Laboratories 

Cat# M171-3; RRID: AB_10597731 

Anti-GAPDH ProteinTech Cat# 10494-1-Ap; RRID: AB_2263076 

Anti-H3K27Ac Abcam Cat# ab177178; RRID: AB_2828007 

Anti-IgG (H+L chain) 

(Mouse) pAb-HRP 

Medical & 

Biological 

Laboratories 

Cat# 330; RRID:AB_2650507 

Anti-IgG (H+L chain) 

(Rabbit) pAb-HRP 

Medical & 

Biological 

Laboratories 

Cat# 458; RRID:AB_2827722 

Goat Anti-Rabbit IgG 

H&L (Alexa Fluor® 594) 

Abcam Cat# ab150080, RRID:AB_2650602 

Goat Anti-Rabbit IgG 

H&L (Alexa FluorTM Plus 

488) 

Thermo 

Fisher 

Scientific 

Cat# A32731, RRID: AB_2633280 

Chemicals, Peptides, and 

Recombinant Proteins 

  

D-PBS (-) (1X) Nacalai 

Tesque 

Cat# 14249-24 

HBSS Thermo 

Fisher 

Scientific 

Cat# 14025092 

Dulbecco’s modified 

Eagle’s medium 

ATCC Cat# 30-2002 

Fetal bovine serum Corning Cat# 35-010-CV 
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Goat serum Thermo 

Fisher 

Scientific 

Cat# 16210–064 

Antibiotic–antimycotic Thermo 

Fisher 

Scientific 

Cat# 15240062 

Trypsin/EDTA ATCC Cat# 30-2101 

BAMBANKER® NIPPON 

Genetics 

Cat# CS-04-001 

RIPA Buffer Thermo 

Fisher 

Scientific 

Cat# 89900 

Halt™ Protease and 

Phosphatase inhibitor 

Thermo 

Fisher 

Scientific 

Cat# 78442 

Trypan blue Thermo 

Fisher 

Scientific 

Cat# 15250-061 

Cell counter WakenBtech Cat# WC2-100 

Hoechst® 33342 DOJINDO Cat# 346-07951 

Opti-MEM™ I  Thermo 

Fisher 

Scientific 

Cat# 31985-070 

Lipofectamine RNAiMax Thermo 

Fisher 

Scientific 

Cat# 13778150 

Precast gel 7.5–15% Nacalai 

Tesque 

Cat# 13066-44 

Wide Precast Gel 7.5–

15% 

Biocraft Cat# MDG-287 

Tris/Glycine/SDS Buffer Bio-Rad Cat# 1610732 

4× Laemmli sample 

buffer 

Bio-Rad Cat# 1610747 

2-Mercaptoethanol Bio-Rad Cat# 1610710 

Precision Plus Protein 

IsternC blotting standard 

Bio-Rad Cat# 1610376 
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Clarity Istern ECL 

Substrate 

Bio-Rad Cat# 1705060 

Clarity Max Istern ECL 

Substrate  

Bio-Rad Cat# 1705062 

Blocking buffer Bio-Rad Cat# 12010020 

iBlot®2 PVDF Thermo 

Fisher 

Scientific 

Cat# IB24001 

Reconstitution buffer 

(0.1% BSA in 4 mM HCl 

PBS) 

R&D 

Systems 

Cat# RB04 

Recombinant human 

TGF-β1 

R&D 

Systems 

Cat# 7754-BH-005 

Recombinant human 

TGF-β2 

ProteinTech Cat# HZ-1092 

Recombinant human 

TGF-β3 

ProteinTech Cat# HZ-1090 

Recombinant human 

EGF 

PeproTech Cat# AF-100-15 

Recombinant human b-

FGF 

R&D 

Systems 

Cat# 233-FB-025 

Recombinant human 

PDGF-BB 

ProteinTech Cat# HZ-1308 

Recombinant human 

THBS1 

R&D 

Systems 

Cat# 3074-TH-050 

Recombinant human 

FMOD 

Abcam Cat# ab152392 

Recombinant human 

VEGF165 

ProteinTech Cat# HZ-1038 

Dimethyl sulfoxide Fujifilm Cat# 041-29351 

all-trans-retinoic acid Selleck 

Chemicals 

Cat# S1653 

Retinol LKT Labs Cat# R1876 

LY364947 Fujifilm Cat# 123-05981 

Akt inhibitor VIII Cayman Cat# 14870 
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Chemical 

LY294002 Calbiochem Cat# 440202 

T-5224 Selleck 

Chemicals 

Cat# S8966 

Tocriscreen Kinase 

Inhibitor Toolbox 

Tocris 

Bioscience 

Cat# 3514 

ZM306416HCl Tocris 

Bioscience 

Cat# 3514-2499 

Ki8751 Tocris 

Bioscience 

Cat# 3514-2542 

GW5074 Tocris 

Bioscience 

Cat# 3514-1381 

U0126 Tocris 

Bioscience 

Cat# 3514-1144 

SB 431542 Tocris 

Bioscience 

Cat# 3514-1614 

K-975 Selleck 

Chemicals 

Cat# E1329 

Formaldehyde Thermo 

Fisher 

Scientific 

Cat# 28908 

Paraformaldehyde Electron 

Microscopy 

Science 

Cat # 15710 

HCS CellMask™ Stains Thermo 

Fisher 

Scientific 

Cat# H32721 

Triton® X-100 NACALAI 

TESQUE 

Cat# 35501-15 

Proteinase K Thermo 

Fisher 

Scientific 

Cat# 26160 

Dispase® II Roche Cat# 04942078001 

PureCol Atelocollagen 

Solution 

Advanced 

BioMatrix 

Cat#5005-100ML 

Critical Commercial   
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Assays 

PierceTM BCA Protein 

Assay Kit 

Thermo 

Fisher 

Scientific 

Cat# 23227 

NucleoSpin® RNA kit Macherey-

Nagel 

GmbH & 

Co. 

Cat# 740955 

ReverTra Ace® qPCR RT 

Master Mix 

Toyobo Life 

Science 

Cat# FSQ-201 

KOD SYBR® qPCR kit Toyobo Life 

Science 

Cat# QKD-201 

SimpleChIP® Enzymatic 

Chromatin IP kit 

Cell 

Signaling 

Technology 

Cat# 9003 

iDeal ChIP-seq kit for 

Histones 

Diagenode Cat# C01010171 

MinElute® PCR 

Purification Kit 

Qiagen Cat# 28004 

Bioanalyzer Agilent 

High-Sensibility DNA 

Kit 

Agilent Cat# 5067-4626 

NEBNext® Poly(A) 

mRNA Magnetic 

Isolation Module  

New 

England 

Biolabs 

Cat# E7490 

NEBNext® Ultra™ ll 

Directional RNA Library 

Prep Kit 

New 

England 

Biolabs 

Cat# E7760 

ATAC-Seq Kit Active 

Motif 

Cat# 53150 

NEBNext® Ultra II DNA 

Library Prep Kit for 

Illumina 

New 

England 

Biolabs 

Cat# 7645 

Cell Counting Kit-8 DOJINDO Cat# 343-07623 

SA-β-gal Detection Kit BioVision Cat# K320-250 

SA-β-gal Detection Kit Abcam Cat# ab65351 
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CycLex® Cellular BrdU 

ELISA Kit Ver.2 

Medical & 

Biological 

Laboratories 

Cat# CY-1142V2 

CytoSoft® 6-well plates Advanced 

BioMatrix 

Cat# 5190-7EA 

THBS1 ELISA Kit R&D 

Systems 

Cat# DTSP10 

FMOD ELISA Kit Abcam Cat# ab275895 

TGF-β1 ELISA Kit R&D 

Systems 

Cat# DB100B 

VEGF ELISA Kit R&D 

Systems 

Cat# DVE00 

SMAD2 ELISA Kit Abcam Cat# ab260065 

SMAD3 ELISA Kit Abcam Cat# ab264624 

SMAD4 ELISA Kit Abcam Cat# ab253211 

IL-6 ELISA Kit R&D 

Systems 

Cat# D6050 

IL-8 ELISA Kit Abcam Cat# ab214030 

Deposited Data   

RNA-seq: HFF-1 (PDL 

24, PDL 36, PDL 47) 

Treatment: Control 

This Paper Submission: DRA016119 

BioProject: PRJDB15707 

RNA-seq: HFF-1 (PDL 

24, PDL 36, PDL 47) 

Treatment: 4 ng/mL TGF-

β1  

This Paper Submission: DRA017188 

BioProject: PRJDB15707  

ChIP-seq: H3K27Ac 

HFF-1 (PDL 24, PDL 36, 

PDL 47); Input HFF-1 

(PDL 24, PDL 36, PDL 

47) 

Treatment: Control 

This Paper Submission: DRA016119 

BioProject: PRJDB15707 

ATAC-seq: HFF-1 (PDL 

24, PDL 36, PDL 47) 

Treatment: Control 

This Paper Submission: DRA016119 

BioProject: PRJDB15707 

ATAC-seq: HFF-1 (PDL This Paper Submission: DRA017188 
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24) 

Treatment: 4 ng/mL TGF-

β1 

BioProject: PRJDB15707 

RNA-seq: HFF-1 (PDL 

24) initial condition 

This Paper Submission: DRA016119 

BioProject: PRJDB15707 

The code for 

bioinformatics analysis 

and mathematical 

modeling 

This Paper https://github.com/okadalabipr/Haga2023 

Experimental models: 

Cell lines 

  

Human dermal fibroblast 

HFF-1 

ATCC Cat# SCRC-1041; RRID: CVCL_3285 

Human dermal fibroblast 

BJ 

ATCC Cat# CRL-2522; RRID: CVCL_3653 

Experimental models: 

Organisms/Strains 

  

Frozen human full 

thickness skin 

Biopredic 

International 

Cat# TRA1FTR0, TRA1FTR2  

Oligonucleotides   

qRT-PCR forward 

primer: THBS1 5′-

TCCCCATCCAAAGCG

TCTTC-3′ 

This paper N/A 

qRT-PCR reverse primer: 

THBS1 5 ′-

ACCACGTTGTTGTCA

AGGGT-3′ 

This paper N/A 

qRT-PCR forward 

primer: FMOD 5′-

GGACGTGGTCACTCT

CTGAA-3′ 

This paper N/A 

qRT-PCR reverse primer: 

FMOD 5′-

GGCTCGTAGGTCTCA

TACGG-3′ 

This paper N/A 

https://github.com/okadalabipr/Haga2023
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qRT-PCR forward 

primer: GAPDH 5′-

GTCTCCTCTGACTTC

AACAGCG-3′ 

OriGene Cat# HP205798 

qRT-PCR reverse primer: 

GAPDH 5′-

ACCACCCTGTTGCTG

TAGCCAA-3′ 

OriGene Cat# HP205798 

ON-TARGET plus Non-

targeting siRNA 

Dharmacon Cat# D-001810-02-20 

ON-TARGET plus 

Human c-Fos siRNA – 

SMARTpool 

Dharmacon Cat# L-003265-00-0010 

ON-TARGET plus 

Human c-Jun siRNA – 

SMARTpool 

Dharmacon Cat# L-003268-00-0010 

ON-TARGET plus 

Human SMAD2 siRNA – 

SMARTpool 

Dharmacon Cat# L-003561-00-0020 

ON-TARGET plus 

Human SMAD3 siRNA – 

SMARTpool 

Dharmacon Cat# L-020067-00-0020 

ON-TARGET plus 

Human SMAD4 siRNA – 

SMARTpool 

Dharmacon Cat# L-003902-00-0020 

Software and Algorithms   

CellProfiler ver. 4.2.1 Stirling et al. 

[179] 

https://cellprofiler.org/ 

RRID: SCR_007358 

ImageJ Fiji version 1.52p Schindelin 

et al. [180] 

http://fiji.sc 

RRID: SCR_002285 

Biomass version 0.5.2 Imoto et al. 

[68,88] 

https://github.com/biomass-dev/biomass 

RRID: N/A 

Gnuplot vesion 5.4 Williams et 

al. [181] 

http://www.gnuplot.info/ 

RRID: SCR_008619 

R version 4.2.1 The R 

Foundation 

https://r-project.org 

RRID: SCR_001905 

https://cellprofiler.org/
http://fiji.sc/
https://github.com/biomass-dev/biomass
http://www.gnuplot.info/
https://r-project.org/
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QIAGEN Ingenuity 

Pathway Analysis version 

81348237 

Krämer et 

al. [182] 

https://digitalinsights.qiagen.com/products-

overview/discovery-insights-portfolio/analysis-

and-visualization/qiagen-ipa/ 

RRID: SCR_008653 

Nextflow version 21.10.6 Tommaso et 

al. [183] 

https://github.com/nextflow-io/nextflow 

RRID: SCR_024135 

nfcore/chipseq version 

1.2.2 

Ewels et al. 

[184] 

https://nf-co.re/chipseq/1.2.2 

https://zenodo.org/record/7139814#.Y4lJDXbP1a

Q 

RRID: N/A 

nfcore/atacseq version 

1.2.1 

Ewels et al. 

[184] 

https://nf-co.re/atacseq/1.2.1 

https://zenodo.org/record/7384115#.Y4lJv3bP1aQ 

RRID: N/A 

Trim Galore! Version 

0.6.6 

The 

Babraham 

Institute 

http://www.bioinformatics.babraham.ac.uk/project

s/trim_galore/ 

RRID: SCR_011847 

hisat2 version 2.2.1 Kim et al. 

[185] 

http://ccb.jhu.edu/software/hisat2/index.shtml 

RRID: SCR_015530 

Samtools version 1.9 Danecek et 

al. [186] 

https://github.com/samtools/samtools 

RRID: SCR_002105 

Subread version 2.0.1 Liao et al. 

[187] 

https://subread.sourceforge.net/ 

RRID: SCR_009803 

BEDTools version 2.30.0 Quinlan et 

al. [188] 

https://github.com/arq5x/bedtools2 

RRID: SCR_006646 

HOMER version 4.11 Heinz et al.  

[96] 

http://homer.ucsd.edu/homer/ 

RRID: SCR_010881 

DoRothEA version 1.8.0 Garcia-

Alonso et al. 

[90] 

https://saezlab.github.io/dorothea/ 

RRID: N/A 

clusterProfiler version 

4.4.4 

Wu et al. 

[189] 

https://bioconductor.org/packages/release/bioc/ht

ml/clusterProfiler.html 

RRID: SCR_016884 

DESeq2 version 1.36.0 Love et al. 

[190] 

https://bioconductor.org/packages/release/bioc/ht

ml/DESeq2.html 

RRID: SCR_015687 

ChIPseeker version Yu et al. https://bioconductor.org/packages/release/bioc/ht

https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://github.com/nextflow-io/nextflow
https://nf-co.re/chipseq/1.2.2
https://zenodo.org/record/7139814#.Y4lJDXbP1aQ
https://zenodo.org/record/7139814#.Y4lJDXbP1aQ
https://nf-co.re/atacseq/1.2.1
https://zenodo.org/record/7384115#.Y4lJv3bP1aQ
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://ccb.jhu.edu/software/hisat2/index.shtml
https://github.com/samtools/samtools
https://subread.sourceforge.net/
https://github.com/arq5x/bedtools2
http://homer.ucsd.edu/homer/
https://saezlab.github.io/dorothea/
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/ChIPseeker.html
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1.32.1 

 

[191] ml/ChIPseeker.html 

RRID: SCR_021322 

rrcov version 1.5.2 Hubert et al. 

[192] 

https://cran.r-project.org/package=rrcov 

RRID: N/A 

ChIP-Atlas Oki et al. 

[114] 

Zou et al. 

[115]  

http://chip-atlas.org/ 

RRID: SCR_015511 

The Signaling Pathways 

Project 

Ochsner et 

al. [119] 

https://signalingpathways.org  

RRID: SCR_018412 

  

https://bioconductor.org/packages/release/bioc/html/ChIPseeker.html
https://cran.r-project.org/package=rrcov
http://chip-atlas.org/
https://signalingpathways.org/
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