

Title	Molecular recognition of the plant-type Ferredoxin and Pectocin M1 through Ferredoxin uptake system (Fus)
Author(s)	Nawee, Jantarit
Citation	大阪大学, 2024, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/98727
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (Nawee Jantarit)

Title

Molecular recognition of the plant-type Ferredoxin and Pectocin M1 through Ferredoxin uptake system (Fus)
(フェレドキシン取り込みシステムを通じた植物型フェレドキシンおよびPectocin M1の分子認識機構)

Abstract of Thesis

Iron acquisition is critical for the survival and pathogenicity of *Pectobacterium* species, phytopathogens that infect host plants. Under iron-limiting conditions, *Pectobacterium* ssp. have developed the ferredoxin uptake system (Fus), consisting of four proteins that collectively import ferredoxin and extract iron for cellular use. Additionally, *Pectobacterium* ssp. produce pectocin M (PM) to compete with closely related bacteria by using its ferredoxin domain to hijack the Fus system for cell entry, where it then exerts its lethal effects. Despite the importance of these biological functions, the structural details and interaction profiles of Fus proteins with ferredoxin and PM remain unclear. This thesis addresses these knowledge gaps through detailed purification, structural characterization, and mechanistic analysis of ferredoxin/PM with key Fus system components in *Pectobacterium* ssp. focusing on the TonB-dependent receptor FusA and the TonB-like FusB. First, I established methods for purifying FusA and analyzing its interactions with ferredoxins and pectocin M1 (PM1). A lack of affinity or the formation of a complexes with low affinity was observed between FusA and ferredoxins. While FusA:PM1 complex yielded moderate resolution structures insufficient for detailed analysis, promising interactions between FusA and PM1 were observed, suggesting that PM1 may stabilize FusA folding under specific conditions.

Second, I delved into the structure of full-length PM1 and its interaction with FusA. The crystal structure of PM1 at 2.04 Å resolution revealed a unique domain arrangement, providing insights into its binding and translocation mechanisms through FusA. Combining structural information of PM1 and FusA with HADDOCK docking simulation provide a more precise mechanism model for intact PM translocation through FusA lumen involving domain rearrangement, emphasizing the role of electrostatic surface properties in binding specificity. The findings in this work advanced the existing model of PM uptake through Fus system and also highlighted the structural differences and similarities compared with other ferredoxins and PM.

Third, I focused on the role of FusB in facilitating the translocation of ferredoxin and PM. Structural analysis revealed that FusB forms stable complexes with *Arabidopsis thaliana* ferredoxin 2 (AtFd2) and PM1 in its dimeric state, and ITC measurements indicated thermodynamically favorable interactions. These findings suggest that dimeric FusB plays a crucial role in binding and translocating iron-containing proteins through Fus system, providing new insights into the structure-based mechanisms of ferredoxin and PM uptake through this system. Collectively, the currently available structural and biological information obtained in this thesis significantly advance the understanding of importing ferredoxin and PM through Fus system in *Pectobacterium* ssp. by providing detailed structural and mechanistic insights into the interactions of these iron-containing proteins to Fus proteins, FusA and FusB. The purification protocol and the structure determination established for Fus proteins complexed with ferredoxin/PM lay a strong foundation for future research. The proposed mechanisms for PM and ferredoxin uptake into the Fus system offer valuable frameworks for further investigation, underscoring the need for innovative approaches and complementary techniques to overcome existing challenges. These insights may also inform the development of novel antibacterial strategies to combat phytopathogen infections in crops and ornamental plants.

論文審査の結果の要旨及び担当者

氏名 (Nawee Jantarit)		氏名
論文審査担当者	主査 教授	栗栖 源嗣
	副査 教授	中川 敦史
	副査 教授	加藤 貴之

論文審査の結果の要旨

学位申請者は、植物病害の一つである軟腐病の原因菌である *Pectobacterium* 属細菌がもつ特徴的なフェレドキシン取り込みシステムに着目し「Molecular recognition of the plant-type Ferredoxin and Pectocin M1 through Ferredoxin uptake system (Fus) (フェレドキシン取り込みシステムを通じた植物型フェレドキシンおよび Pectocin M1 の分子認識機構)」と題する研究を行った。

Pectobacterium 属細菌は、植物組織の軟化腐敗を引き起こす原因菌であり、野菜や花卉の栽培現場において大きな被害を引き起こす。*Pectobacterium* 属細菌が宿主植物に感染すると、ペクチン分解酵素やセルロース分解酵素を分泌して植物細胞壁を分解するとともに、細菌特有のフェレドキシン取り込みシステム (Fus) を介して、植物がもつ鉄硫黄タンパク質フェレドキシンを選択的に細菌細胞内に取り込み、生育する上で必須の鉄分を補給している。また、類縁菌に対して抗菌活性を示す Pectocin M を分泌して、類縁菌がもつ Fus システムを介して Pectocin M を取り込ませることで類縁菌を殺すことが知られている。Fus システムは外膜に存在する膜タンパク質 FusA、ペリプラズム領域で働く FusB と FusC をもち、全てフェレドキシンを認識し結合することが知られていた。しかし、FusA および FusB のフェレドキシンや Pectocin M との複合体構造が解析されていなかったため、その分子認識の詳細な議論ができていない状況であった。また、植物型フェレドキシンは光合成電子伝達を担う末端タンパク質として様々なレドックス代謝酵素と相互作用するが、電子伝達を伴わない Fus タンパク質群とフェレドキシン間の分子認識様式は未解明のままであった。本論文で、申請者は *Pectobacterium carotovorum* 由来 Pectocin M1 の結晶構造を 2.04 Å で解析した。N 末端から植物型フェレドキシンと配列相同性の高いフェレドキシンドメイン、αヘリックススリンカー、C 末端の触媒活性ドメインがタンデムに繋がった構造をしており、類縁の Pectocin M2 の結晶構造と比較したところ、各ドメインの主鎖構造は類似していたものの、ドメイン間の相対配置が大きく異なっており、αヘリックススリンカーと各ドメインの相互作用に新しい様式を発見した。FusA による Pectocin M1 の認識において、αヘリックススリンカー周辺のフレキシブルな構造が、分子サイズの大きな Pectocin M1 を FusA を介して細胞内に取り込ませる構造要因であると考察している。さらに、*Pectobacterium atrosepticum* 由来 FusA と上述の Pectocin M1 との複合体構造をクライオ電子顕微鏡で構造解析するべく、界面活性剤の種類や濃度を詳細に検討して FusA と Pectocin M1 の安定な複合体形成条件を見出すことにも成功している。次に申請者は、Pectocin M1 が FusB と複合体を形成することを実験的に示すべく ITC 測定を行った。その結果、2 つのタンパク質の複合体形成は主にエンタルピー依存的であることを確認すると同時に、エントロピーによる効果も大きいことを明らかにした。

申請者は、*Pectobacterium* 属細菌が分泌する Pectocin M1 の立体構造を初めて解明すると同時に、Fus システムを構成する FusA および FusB に対する植物型フェレドキシンおよび Pectocin M1 の認識機構を導き出すことに成功している。本論文の研究内容は、*Pectobacterium* 属細菌がもつ Fus システムを理解する上で、大変意義のある成果である。

よって、本論文は博士（理学）の学位論文として十分価値あるものと認める。